WorldWideScience

Sample records for absorption spectra measured

  1. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    Science.gov (United States)

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH).

  2. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    Science.gov (United States)

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  3. Electronic absorption spectra of antiviral aminophenol derivatives

    Science.gov (United States)

    Belkov, M. V.; Ksendzova, G. A.; Raichyonok, T. F.; Skornyakov, I. V.; Sorokin, V. L.; Tolstorozhev, G. B.; Shadyro, O. I.

    2011-03-01

    Electronic absorption spectra of aminophenol derivatives in solutions have been studied. A general property of the absorption spectra of these compounds, the dependence of the maximum of a long-wavelength absorption band on the solvent polarity, is revealed. As a rule, the absorption band maximum of compounds possessing pharmacological properties shows a greater shift to short wavelength with an increase in the medium polarity than that of inactive compounds. Absorption measurements of solutions of aminophenol derivatives can be used for a tentative estimation of their antiviral activity.

  4. Detection of O4 absorption around 328 and 419 nm in measured atmospheric absorption spectra

    Directory of Open Access Journals (Sweden)

    J. Lampel

    2018-02-01

    Full Text Available Retrieving the column of an absorbing trace gas from spectral data requires that all absorbers in the corresponding wavelength range are sufficiently well known. This is especially important for the retrieval of weak absorbers, whose absorptions are often in the 10−4 range. Previous publications on the absorptions of the oxygen dimer O2–O2 (or short: O4 list absorption peaks at 328 and 419 nm, for which no spectrally resolved literature cross sections are available. As these absorptions potentially influence the spectral retrieval of various trace gases, such as HCHO, BrO, OClO and IO, their shape and magnitude need to be quantified. We assume that the shape of the absorption peaks at 328 and 419 nm can be approximated by their respective neighbouring absorption peaks. Using this approach we obtain estimates for the wavelength of the absorption and its magnitude. Using long-path differential optical absorption spectroscopy (LP-DOAS observations and multi-axis DOAS (MAX-DOAS observations, we estimate the peak absorption cross sections of O4 to be (1.96  ±  0.20 × 10−47 cm5 molec−2 and determine the wavelength of its maximum at 328.59  ±  0.15 nm. For the absorption at 419.13  ±  0.42 nm a peak O4 cross-section value is determined to be (5.0  ±  3.5 × 10−48 cm5 molec−2.

  5. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  6. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  7. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  8. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.

    Science.gov (United States)

    Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T

    2018-02-13

    Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  9. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  10. Proposal for an experiment at the SIN: contribution on πE3-beam dosimetry. Measurement of particle spectra after pion absorption in biologically interesting nuclei

    International Nuclear Information System (INIS)

    Appel, H.; Boehmer, V.; Bueche, G.; Kluge, W.; Matthay, H.

    It is proposed to measure the energy spectra of light charged particles (protons, deuterons, tritons, 3 He- and 4 He-nuclei) and of neutrons, after the absorption of stopped pions in the biologically interesting hydrogen, oxygen, carbon, and nitrogen nuclei. In addition, the relative particle yield will be examined in tissue-like targets such as polyethylene, plexiglas, and water. Furthermore, it is proposed to measure the coincidence spectra of two particles emitted after absorption, as a function of the angle between their impulses. In the case of a pure three-body decay, these examinations may open the possibility of drawing conclusions about the heavy recoil nuclei arising during pion absorption. Particle energy and type will be determined by a combined time-of-flight/energy measurement with totally absorbent NaI or plastic detectors. The HF signal will serve as a start signal for time-of-flight measurements

  11. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  12. A comparative study of EL2 and other deep centers in undoped SI GaAs using optical absorption spectra and photoconductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, J.P. E-mail: jpkozlova@rbcmail.ru; Bowles, T.J.; Eremin, V.K.; Gavrin, V.N.; Koshelev, O.G.; Markov, A.V.; Morozova, V.A.; Polyakov, A.J.; Verbitskaya, E.M.; Veretenkin, E.P

    2003-10-11

    The performance of radiation detectors fabricated from semi-insulating (SI) GaAs is highly sensitive to EL2{sup +}-concentration in the material. Near-infrared optical absorption measurements are commonly used to determine the EL2-concentration and to roughly estimate the EL2{sup +}-concentration under the assumption that the optical absorption is mainly determined by the photoionization and the photoneutralization of EL2{sup 0} and EL2{sup +}, respectively. However, the presence of different native defects can contribute to optical absorption and reduce the precision of determination of EL2-concentration. In this work, we evaluate the contributions into optical absorption from EL2 and other deep center namely EL3 defect (0.55 eV) using near-infrared optical absorption and photoconductivity (PC) measurements in the photon energy interval 0.5-1.4 eV for SI GaAs crystals grown by the liquid encapsulated Czochralski method from melts with As content changing from 50% to about 46%. The photoelectrical spectra were measured on p-i-n structure detectors with heavily doped p{sup +} and n{sup +} layers grown by Liquid Phase Epitaxy and on Schottky diodes. The short circuit photocurrent spectra were registered for all detectors in the energy interval 0.65-1.4 eV. Unexpectedly, the current sensitivities in the regions of the extrinsic and intrinsic absorption were comparable. A comparative study of optical absorption, PC and short circuit photocurrent spectra resulted in determination of EL2{sup +}-concentration. It was concluded that contribution of additional deep centers, particularly the ionized EL3{sup +} defect could be comparable to the EL2-contribution. The EL3 centers were attributed to oxygen-related defects based on published results and on some indirect evidence in our experimental data.

  13. Absorption spectra measurements of the x-ray radiation heated SiO2 aerogel plasma in 'dog-bone' targets irradiated by high power laser pulses

    Science.gov (United States)

    Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.

    2008-05-01

    We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.

  14. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    Science.gov (United States)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  15. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  16. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  17. Molecular geometry in the ultraviolet absorption spectra

    International Nuclear Information System (INIS)

    Albuquerque, S.F. de; Monteiro, L.S.; Adamis, L.M.B.; Baltar, M.C.P.; Silva, R.M. da

    1977-01-01

    The ultraviolet absorption spectra may be sensibly affected by steric effects. These effects can cause a lot of difficulties and unexpected changes in spectrum. The most general source of such difficulties is steric inhibition of resonance. In addition to this, ultraviolet epectra may be markedly changed by steric factors which change the positions of dipoles in the molecule with respect to each other and by the interaction of nonconjugated chromophores suitably located in space. We have studied in detail each of these effects presenting a lot of usual and importants examples in Organic Chemistry. Others relevants subjects were not considerated in this present work [pt

  18. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  19. Measurement of energy spectra and correlated charged secondary particles following the absorption of stopped negative pions in oxygen containing compounds

    International Nuclear Information System (INIS)

    Muenchmeyer, D.

    1979-04-01

    Targets of 0.259 and 0.0183 g cm -2 celluloseacetate and 0.277 as well as 0.0199 g cm -2 mylar are used. By measurements of the pionic X-radiation the relative capture rates oncarbon and oxygen are determined for both targets as 1.1:1 and1.7:1, respectively. Protons, deuterons, tritons, 3 He, 4 He, 6 Li, and 7 Li nuclei are identified from the energy threshold of 1.5 MeVup to the kinematical limit. (orig.) [de

  20. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  1. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  2. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  3. Inelastic electron scattering spectroscopy: a comparison of absorption and emission spectra

    International Nuclear Information System (INIS)

    Schnatterly, S.E.

    1984-01-01

    The operation of a high energy inelastic scattering spectrometer is briefly described. Measured absorption and emission spectra are fit to parameters in recently described models for insulators. Implications for model validity are discussed

  4. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  5. Absorption Spectra Of Rbcl:Yb Rbbr:Yb And Rbi:Yb Crystals ...

    African Journals Online (AJOL)

    Single crystals of rubidium chloride, bromide and iodide were doped with substitutional divalent ytterbium, Yb ions, by heating them in ytterbium atmosphere. The absorption spectra of the Yb doped crystals were measured at room and liquid nitrogen temperatures. The spectra were found to consist of intense broad ...

  6. Theoretical study on absorption and emission spectra of adenine analogues.

    Science.gov (United States)

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  7. [Study on UV-Vis absorption spectra and fluorescence emission spectra of sixteen tetra-substituted metallophthalocyanine complexes].

    Science.gov (United States)

    Huang, Zi-yang; Huang, Jian-dong; Chen, Nai-sheng; Huang, Jin-ling

    2009-05-01

    The UV-Visible absorption spectra and the fluorescence emission spectra of sixteen tetra-substituted metallo-phthalocyanine complexes {R4 PcM, where R = 2-[4-(2-sulfonic ethyl) piperazin-1-] ethoxyl (SPEO--), 2-(piperidin-1-yl) ethoxyl (PEO--); substitution position at alpha-position and beta-position of phthalocyanine ring; M = Zn(II), Ni(II), Co(II) and Cu(II)} were measured. The influence of different central ion, substituted group and its position, as well as different solvent on the Q-band of phthalocyanine complex in its UV-Vis absorption spectra was investigated. The influence of different central ion, substituted group and its position on the fluorescence emission spectra was discussed. Some properties of the UV-Vis absorption spectra such as the maximum absorption wavelength (lamdamax ) of Q-band and its molar extinction coefficient (epsilon), and those of the fluorescence emission spectra such as fluorescence quantum yield (phiF), fluorescence lifetime (r) and excited state energy (Es) were studied. The results showed that the lamdamax of Qband of all complexes were located at 681-718 nm, which had a distinct red shift in contrast with unsubstituted metallophthalocyanines (669-671 nm). All complexes of R4 PcM possessed a very high molar extinction coefficient up to 10(5) L x mol(-1) x cm(-1). And the UV-Vis absorption spectra and the fluorescence emission spectra of all complexes exhibited mirror shape concurrently. Two beta-substituted zinc phthalocyanine complexes with formula beta-(SPEO)4PcZn and beta-(PEO)4PcZn possessed very high molar extinction coefficient, fluorescence quantum yield and fluorescence lifetime specially. Therefore, it is hoped that these two would be developing to be new photosensitizers for photodynamic therapy (PDT)and photodynamic diagnosis (PDD).

  8. Faraday effect and λ-modulation absorption spectra of GaP

    International Nuclear Information System (INIS)

    Petkova, P N; Dimov, T N; Iliev, I A

    2007-01-01

    There are presented the absorption optical spectra of GaP measured by λ-modulation method at room temperature in the spectral region from 505 nm to 700 nm. It is not possible even by λ-modulation to be registered at room temperature the wave bands due to the exciton-phonon interaction. The absorption spectra of GaP carried out by a λ-modulation can be separated exactly in the spectral parts as follows: the transmittance region where the absorption is too slightly expressed; the region determined by the phonon-assisted indirect transitions; the region of the interband absorption. The purpose of Faraday rotation measurements is to establish the influence of the exciton-phonon interaction on the magneto-optical effect. The magneto-optical effect has been investigated by a φ-modulation. The spectral dependence of dn/dλ in the transmittance region is determined by the φ-modulated spectra

  9. Uncertainty analysis for absorption and first-derivative EPR spectra

    Science.gov (United States)

    Tseitlin, Mark; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    Electron paramagnetic resonance (EPR) experimental techniques produce absorption or first-derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by different methods. In this study it was used to derive analytical equations to relate uncertainties for integrated intensity and line widths obtained from absorption or first-derivative spectra to the signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for integrated intensities and line widths are in good agreement with Monte Carlo calculations for Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, which can be modeled in the Monte Carlo simulations. When noise is close to white, the analytical equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths obtained from absorption and first-derivative spectra are similar. The impact of integration or differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it also changes the frequency distribution of the noise. If the lineshape of the signal is known, the integrated intensity can be determined more accurately by fitting the first-derivative spectrum than by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities and line widths are less when the parameters are determined from the original data than from spectra that have been either integrated or differentiated. PMID:25774102

  10. High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH2=CF-CF3 and trans-CHF=CH-CF3.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Ilichev, Alexander N

    2010-05-20

    Rate constants for the gas phase reactions of OH radicals with two isomers of tetrafluoropropene, CH(2)=CF-CF(3) (k(1)) and trans-CHF=CH-CF(3) (k(2)); were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit a noticeable curvature. The temperature dependences of the rate constants are very weak and can be represented by the following expressions over the indicated temperature intervals: k(1)(220-298 K) = 1.145 x 10(-12) x exp{13/T} cm(3) molecule(-1) s(-1), k(1)(298-370 K) = 4.06 x 10(-13) x (T/298)(1.17) x exp{+296/T} cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 1.115 x 10(-13) x (T/298)(2.03) x exp{+522/T} cm(3) molecule(-1) s(-1). The overall accuracy of the rate constant measurements is estimated to be ca. 2% to 2.5% at the 95% confidence level. The uncertainty of the measured reaction rate constants is discussed in detail. The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 12 and 19 days respectively under the assumption of a well mixed atmosphere. IR absorption cross-sections were measured for both compounds and their global warming potentials were estimated.

  11. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  12. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  13. Photothermal Determination of Absorption and Scattering Spectra of Silver Nanoparticles.

    Science.gov (United States)

    Marcano Olaizola, Aristides

    2018-02-01

    This work reports on photothermal lens spectra of silver nanoparticles of different dimensions in the spectral region of 370-730 nm performed using an arc-lamp-based photothermal spectrophotometer. We show that the photothermal and extinction cross-section spectra of the samples are similar for nanoparticles of reduced dimensions where scattering effects are small. The results differ substantially for nanoparticles of a diameter larger than 30 nm for which scattering becomes relevant. We demonstrate that the photothermal spectrum corresponds to the absorption component of the particle's extinction. Photothermal spectra show a clear picture of the plasmonic peaks of the nanoparticle even in the presence of high scattering. By subtracting the photothermal component from the total extinction, we extract the scattering cross-section spectra of the nanoparticles. The technique allows determination of the absorption and scattering components of the extinction providing a better understanding of the particle's optical properties. The results agree well with the Mie approximation, which is valid for a single spherical nanoparticle. We discuss and demonstrate the application of the method to characterize particles of arbitrary shape and dimensions.

  14. Visible and infrared absorption spectra of covering materials for solar collectors

    International Nuclear Information System (INIS)

    Pelece, I.

    2008-01-01

    Use of solar energy increases every year. In Latvia, solar energy is used mainly by solar collectors. The main part of the solar collector is the absorber, but not less important is the covering material which protects the absorber from the cooling impact of the wind. This cover must be transparent for solar radiation, but opaque for thermal radiation of the absorber, which is at greater wavelengths. Therefore it is important to measure absorption spectra of possible covering materials at visible and infrared wavelength ranges. Absorption spectra have been measured for several materials: glass, polythene, Plexiglas, and cells Plexiglas. Absorption spectra for all these materials are measured in three ranges: ultraviolet-visible (UV-VIS): 250-1000 nm; near infrared (NIR): 700-110 nm; infrared (IR): 1200-8000 nm. UV-VIS spectra with the 'Ocean Optics' device HR-4000 have been measured, but NIR and IR - with 'Bruker' Furje spectrometer EQUINOX 55. Evaluation of absorption spectra showed that the most suitable material (from the considered) for covering of solar collectors is Plexiglas

  15. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  16. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Ole Green

    2010-11-01

    Full Text Available A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA, was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  17. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    Science.gov (United States)

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  18. Measurements of Narrow Mg II Associated Absorption Doublets with ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The measurement of the variations of absorption lines over time is a good method to study the physical conditions of absorbers. In this paper, we measure the variations of the line strength of 36 narrow Mg II2796, 2803 associated absorption doublets, which are imprinted on 31 quasar spectra with two ...

  19. Automated generation and ensemble-learned matching of X-ray absorption spectra

    Science.gov (United States)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-03-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  20. Infrared absorption spectra of selenate compounds of indium (3)

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Kadoshnikova, N.V.; Tananaev, I.V.

    1979-01-01

    Obtained and discussed are infrared absorption spectra (400-4000 cm -1 ) of the following indium selenates: In 2 (SeO 4 ) 3 x5H 2 O, In 2 (SeO 4 ) 3 x9H 2 O, NaIn(SeO 4 ) 2 x6H 2 O, NaIn(SeO 4 ) 2 xH 2 O, MIn(SeO 4 ) 2 x4H 2 O (M=NH 4 , K, Rb), CsIn(SeO 4 ) 2 x2H 2 O, Na 3 In(SeO 4 ) 3 x7H 2 O, MIn(SeO 4 ) 2 (M=NH 4 , Na, K, Rb, Cs), M 2 InOH(SeO 4 ) 2 xyH 2 O (M=NH 4 , Na, K, Rb) and K 2 InOD(SeO 4 ) 2 xyD 2 O

  1. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    Science.gov (United States)

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

  2. Infrared absorption spectra of nanosized silica with organic additives

    Directory of Open Access Journals (Sweden)

    Мaria О. Savchenko

    2014-12-01

    Full Text Available The prospects of using of silica nanoparticles modified with urea-formaldehyde polymers which is obtained by sulfuric acid sol-gel technology are shown. The aim is a detailed research on the infrared absorption spectra of nanodispersed silica modified with urea-formaldehyde polymers with identification of the absorption bands of the spectrum. The method of infrared spectroscopy is used to research spectral characteristics of nanosized silica, urea-formaldehyde polymer and nanodispersed silica modified with urea-formaldehyde polymers in different ratio. It is found that interaction of initial ingredients occurs at the stage of phase formation in solutions in colloidal silica products containing urea-formaldehyde polymers. Organic components are localized on the surface of the globules and in the interglobular space. This result of such interaction is the physical and structural transformation of globular surfaces of silica and new chemical compounds formation. This allows to give to final product a variety of properties required for practical use in many industries.

  3. Substitution effects on the absorption spectra of nitrophenolate isomers.

    Science.gov (United States)

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  4. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  5. Ultraviolet absorption spectra and kinetics of CH3S and CH2SH radicals

    DEFF Research Database (Denmark)

    Anastasi, C.; Broomfield, M.; Nielsen, O.J.

    1991-01-01

    The ultraviolet absorption spectra of CH3S and CH2SH radicals have been measured between 215 and 380 nm using the pulse-radiolysis/kinetic-absorption method. One absorption band between 250 and 300 nm and one around 215 nm have been tentatively assigned to the CH2SH and CH3S radicals, respectively....... This spectrum has been used to measure the self-reaction rates of these radicals. Rate constants of 4 x 10(-11) and 7 x 10(-11) cm3 molecule-1 s-1 have been measured at 298 K for CH3S and CH2SH recombination, respectively. The possible reaction pathways are discussed....

  6. The absorption spectra of Pu(VI), -(V) and -(IV) produced electrochemically in carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1983-01-01

    Absorption spectra in carbonate and bicarbonate media have been measured for various oxidation states of plutonium. The oxidation state of plutonium was adjusted electrochemically (Pu(VI)-V), Esub(f)=+0.11 V vs. SCE) to avoid contamination by redox reagents. In carbonate medium the spectra of Pu(VI) and Pu(V) showed marked differences from the spectra of the same oxidation state in acidic solutions. In bicarbonate the spectra of Pu(VI) and Pu(IV) also differed from the corresponding spectra in acidic media. Reduction to Pu(III) resulted in a precipitate in both carbonate and bicarbonate media. (author)

  7. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    International Nuclear Information System (INIS)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH 3 CF 3 ) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range – around 13.8×10 −17 cm.molecule −1 in the 570–1500 cm −1 spectral band – show the most consistency between authors. - Highlights: • Large discrepancies exist between authors on the absorption spectra of HFC-143a. • We present new cross-section spectra of a pure vapour at 263, 273 and 283 K. • The data were compared to literature values. • Total integrated intensities in the highest range are the most consistent. • The radiative efficiency of HFC-143a should be revised upward

  8. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    Science.gov (United States)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  9. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  10. Absorption spectra of superconducting qubits driven by bichromatic microwave fields

    Science.gov (United States)

    Pan, Jiazheng; Jooya, Hossein Z.; Sun, Guozhu; Fan, Yunyi; Wu, Peiheng; Telnov, Dmitry A.; Chu, Shih-I.; Han, Siyuan

    2017-11-01

    We report experimental observation of two distinct quantum interference patterns in the absorption spectra when a transmon superconducting qubit is subjected to a bichromatic microwave field with the same Rabi frequencies. Within the two-mode Floquet formalism with no dissipation processes, we propose a graph-theoretical representation to model the interaction Hamiltonian for each of these observations. This theoretical framework provides a clear visual representation of various underlying physical processes in a systematic way beyond rotating-wave approximation. The presented approach is valuable to gain insights into the behavior of multichromatic field driven quantum two-level systems, such as two-level atoms and superconducting qubits. Each of the observed interference patterns is represented by appropriate graph products on the proposed color-weighted graphs. The underlying mechanisms and the characteristic features of the observed fine structures are identified by the transitions between the graph vertices, which represent the doubly dressed states of the system. The good agreement between the numerical simulation and experimental data confirms the validity of the theoretical method. Such multiphoton interference may be used in manipulating the quantum states and/or generate nonclassical microwave photons.

  11. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.; Kelley, Matthew S.; Chen, Lin X.; Schatz, George C.; Ratner, Mark A.

    2017-01-01

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.

  12. Urbach tail in the absorption spectra of 2H-WSe{sub 2} layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.Y. [Department of Electrical Engineering, Tung Fang Institute of Technology, Hunei Township, Kaohsiung County 82941 (China); Lee, Y.C. [Department of Electronic Engineering, Research Center for Micro/Nano Technology, Tung Nan Institute of Technology, Shen-Keng, Taipei 22202 (China); Shen, J.L.; Chen, K.W. [Department of Physics, Chung Yuan Christian University, Chung-Li, Tao-Yuan 32023 (China); Huang, Y.S. [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607 (China)

    2007-07-15

    Urbach's rule and steepness parameter of 2H-WSe{sub 2} layered crystals have been studied via the absorption spectra from the photoconductivity (PC) measurements in the temperature range of 15-300 K. From the analysis of the temperature-dependent band gap with Varshni semi-empirical equation, the Debye temperature was estimated as 160 K while the Einstein temperature was around 125 K from the Einstein oscillator model. The effective phonon energy was estimated successfully from the temperature dependence of the Urbach energy extracted from the PC spectra and the value was found out to be well correlated to the active E{sub 1g} mode observed in the Raman spectra of 2H-WSe{sub 2}. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  14. Computer simulation of molecular absorption spectra for asymmetric top molecules

    International Nuclear Information System (INIS)

    Bende, A.; Tosa, V.; Cosma, V.

    2001-01-01

    The effective Hamiltonian formalism has been used to develop a model for infrared multiple-photon absorption (IRMPA) process in asymmetric top molecules. Assuming a collisionless regime, the interaction between the molecule and laser field can be described by the time-dependent Schroedinger equation. By using the rotating wave approximation and Laplace transformation, the time-dependent problem reduces to a time-independent eigen problem for an effective Hamiltonian which can be solved only numerically for a real vibrational-rotational structure of polyatomic molecule. The vibrational-rotational structure is assumed to be an anharmonic oscillator coupled to an asymmetric rigid rotor. The main assumptions taken into account for this model are the following: (1) the excitation is coherent, i.e. the collision (if present during the laser pulse) does not influence the excitation; (2) the excitation starts from the ground state and is near resonant to a normal mode, thus, the rotating wave approximation can be applied; (3) after absorbing N photons the vibrational energy of the excited mode leak into a quasicontinuum; (4) the thermal population of the ground state is given by the Maxwell-Boltzmann distribution law. The energy levels of the asymmetric top molecules cannot be represented by an explicit formula analogous to that for the symmetric top, according to quantum mechanics, but we can consider it a deviation from the prolate or oblate case of the symmetric top, and we can find in the same manner the selection rules of the asymmetric case using the selection rules for the symmetric case. The infrared bands of asymmetric top molecules are not resolved, but if the dispersion used is not too small, so that the envelopes of the bands can be distinguished from simple maxima, it is possible to draw conclusions as to the type of the bands. In this case, the simulation of the absorption spectra can give us some important information about the types of these bands. In

  15. A study of luminescence and absorption spectra of GaP

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Abdel Wahab, S.M.

    1994-08-01

    Experimental luminescence and absorption spectra of GaP at room temperature are presented. A theoretical analysis has been performed on the luminescence and absorption spectra in GaP. The experimental data are in good agreement with the theoretical results. (author). 18 refs, 8 figs

  16. QM/MM-Based Calculations of Absorption and Emission Spectra of LSSmOrange Variants.

    Science.gov (United States)

    Bergeler, Maike; Mizuno, Hideaki; Fron, Eduard; Harvey, Jeremy N

    2016-12-15

    The goal of this computational work is to gain new insight into the photochemistry of the fluorescent protein (FP) LSSmOrange. This FP is of interest because besides exhibiting the eponymous large spectral shift (LSS) between the absorption and emission energies, it has been experimentally observed that it can also undergo a photoconversion process, which leads to a change in the absorption wavelength of the chromophore (from 437 to 553 nm). There is strong experimental evidence that this photoconversion is caused by decarboxylation of a glutamate located in the close vicinity of the chromophore. Still, the exact chemical mechanism of the decarboxylation process as well as the precise understanding of structure-property relations in the measured absorption and emission spectra is not yet fully understood. Therefore, hybrid quantum mechanics/molecular mechanics (QM/MM) calculations are performed to model the absorption and emission spectra of the original and photoconverted forms of LSSmOrange. The necessary force-field parameters of the chromophore are optimized with CGenFF and the FFToolkit. A thorough analysis of QM methods to study the excitation energies of this specific FP chromophore has been carried out. Furthermore, the influence of the size of the QM region has been investigated. We found that QM/MM calculations performed with time-dependent density functional theory (CAM-B3LYP/D3/6-31G*) and QM calculations performed with the semiempirical ZIndo/S method including a polarizable continuum model can describe the excitation energies reasonably well. Moreover, already a small QM region size seems to be sufficient for the study of the photochemistry in LSSmOrange. Especially, the calculated ZIndo spectra are in very good agreement with the experimental ones. On the basis of the spectra obtained, we could verify the experimentally assigned structures.

  17. Thermoluminescence spectra measured with a Michelson interferometer

    International Nuclear Information System (INIS)

    Haschberger, P.

    1991-01-01

    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author)

  18. In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy

    Science.gov (United States)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Stripp, Diana C. H.; Malkowicz, S. B.; Whittington, Richard; Miles, Jeremy; Glatstein, Eli; Hahn, Stephen M.

    2004-06-01

    A continuing challenge in photodynamic therapy is the accurate in vivo determination of the optical properties of the tissue being treated. We have developed a method for characterizing the absorption and scattering spectra of prostate tissue undergoing PDT treatment. Our current prostate treatment protocol involves interstitial illumination of the organ via cylindrical diffusing optical fibers (CDFs) inserted into the prostate through clear catheters. We employ one of these catheters to insert an isotropic white light point source into the prostate. An isotropic detection fiber connected to a spectrograph is inserted into a second catheter a known distance away. The detector is moved along the catheter by a computer-controlled step motor, acquiring diffuse light spectra at 2 mm intervals along its path. We model the fluence rate as a function of wavelength and distance along the detector"s path using an infinite medium diffusion theory model whose free parameters are the absorption coefficient μa at each wavelength and two variables A and b which characterize the reduced scattering spectrum of the form μ"s = Aλ-b. We analyze our spectroscopic data using a nonlinear fitting algorithm to determine A, b, and μa at each wavelength independently; no prior knowledge of the absorption spectrum or of the sample"s constituent absorbers is required. We have tested this method in tissue simulating phantoms composed of intralipid and the photosensitizer motexafin lutetium (MLu). The MLu absorption spectrum recovered from the phantoms agrees with that measured in clear solution, and μa at the MLu absorption peak varies linearly with concentration. The ´"s spectrum reported by the fit is in agreement with the known scattering coefficient of intralipid. We have applied this algorithm to spectroscopic data from human patients sensitized with MLu (2 mg kg-1) acquired before and after PDT. Before PDT, the absorption spectra we measure include the characteristic MLu absorption

  19. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    Key words. Line: identification—quasars: absorption lines—quasars: general. 1. Motivation. Absorption lines are often observed on the quasar spectrum. The intrinsic absorption lines of quasars are often thought to originate in the ionized gas that are physically related with the corresponding quasars, while the intervening ...

  20. Nanometer-scale local probing of X-ray absorption spectra of Co/Pt multilayer film

    Science.gov (United States)

    Quach, Duy-Truong; Pham, Duc-Thang; Handoko, Djati; Shim, Je-Ho; Eon Kim, Dong; Lee, Kyung-Min; Jeong, Jong-Ryul; Kim, Namdong; Shin, Hyun-Joon; Kim, Dong-Hyun

    2018-03-01

    We report our local X-ray absorption spectra (XAS) measurement mapping for a Co/Pt multilayer using scanning transmission microscopy with 25-nm spatial resolution and 0.1-eV spectral resolution. We have systematically analyzed the two-dimensional XAS intensity variation over the corresponding magnetic domain patterns, revealing a XAS profile across the magnetic domain wall as well as the simultaneous high-throughput measurement of local XAS spectra.

  1. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...... stable steps appear in the absorption spectrum when conditions for dynamical localization are met. [S0163-1829(95)03412-2]....

  2. Spectroscopic absorption measurement of a low-Z plasma

    International Nuclear Information System (INIS)

    Yang Jiamin; Ding Yaonan; Yan Jun; Zheng Zhijan; Li Jiaming; Zhang Baohan; Yang Guohong; Zhang Wenhai; Wang Yaomei

    2002-01-01

    Low-Z plasmas have been produced by x-ray radiative heating of a low-Z sample on the 'Xingguang II' laser facility. High-resolution transmission spectra of the low-Z plasma (CHO) have been measured by using a flat field grating spectrometer. Absorption lines of oxygen and carbon ions in the region from 1.6 nm to 5.0 nm have been observed clearly and identified. The unresolved transition array model (UTA) has been introduced to calculate the transmission spectra of the CHO plasma. The measured transmission spectra have been compared with the calculated ones and the results of other works

  3. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  4. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  5. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    Science.gov (United States)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-10-01

    Quantitative mid-IR absorption spectra (2500 3400 cm-1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm-1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm-1 resolution. High-resolution (0.1 cm-1), room-temperature measurements of neat hydrocarbons were made at low pressure (˜1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon˜0.06 1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.

  6. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  7. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  8. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton.

    Science.gov (United States)

    Zhou, Wen; Wang, Guifen; Li, Cai; Xu, Zhantang; Cao, Wenxi; Shen, Fang

    2017-10-20

    Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESD v ) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESD v had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of C i ESD v were in good agreement with the measurements, with r 2 =0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESD v with r 2 =0.78 and NRMSE=23.9%.

  9. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  10. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    . Baise 533000, China. 2Guangdong University of Technology, Guangzhou 510006, China. 3Centre for Astrophysics, Guangzhou University, Guangzhou 510006, China. ∗ e-mail: cysu@gdut.edu.cn. Abstract. Absorption lines are an important ...

  11. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Science.gov (United States)

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  12. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  13. Absorption spectra of ammonia near 1 mu m

    Czech Academy of Sciences Publication Activity Database

    Barton, E. J.; Polyansky, O. L.; Yurchenko, S. N.; Tennyson, J.; Civiš, Svatopluk; Ferus, Martin; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-01-01

    Roč. 203, DEC 2017 (2017), s. 392-397 ISSN 0022-4073 EU Projects: European Commission(XE) 267219 - EXOMOL Grant - others:RFBR(RU) 16-32-00244 Institutional support: RVO:61388955 Keywords : room temperature * ammonia * absorption intensities * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.419, year: 2016

  14. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  15. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  16. SPECTROPHOTOMETRY OF HEMOGLOBIN - ABSORPTION-SPECTRA OF RAT OXYHEMOGLOBIN, DEOXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; BUURSMA, A; FALKE, HE; CATSBURG, JF

    The absorptivity at 540 nm of methemoglobincyanide from rat blood was determined on the basis of iron and found to be equal to the established value for human methemoglobincyanide (11,01/mmol/cm). On this basis the absorption spectra of the common derivatives were determined for rat hemoglobin.

  17. Spectrophotometry of hemoglobin : Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin

    NARCIS (Netherlands)

    Zijlstra, WG; Buursma, A

    1997-01-01

    The absorptivity at 540 nm of bovine hemiglobincyanide (cyanmethemoglobin) was determined on the basis of the iron content and found to be equal to the established value for human hemiglobincyanide (11.0 L . mmol(-1).cm(-1)). On this basis the absorption spectra of the common derivatives were

  18. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    Science.gov (United States)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  19. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  20. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    Science.gov (United States)

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-08

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  1. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  2. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  3. Soil emissivity and reflectance spectra measurements

    International Nuclear Information System (INIS)

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo; Jimenez-Munoz, Juan C.; Hook, Simon J.; Baldridge, Alice; Ibanez, Rafael

    2009-01-01

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 μm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  4. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Charlton, Jane C.; Eracleous, Michael, E-mail: misawatr@shinshu-u.ac.jp [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  5. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  6. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  7. Linewidths in excitonic absorption spectra of cuprous oxide

    Science.gov (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  8. Absorption spectra of ammonia near 1 μm

    Science.gov (United States)

    Barton, Emma J.; Polyansky, Oleg L.; Yurchenko, Sergei. N.; Tennyson, Jonathan; Civiš, S.; Ferus, M.; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-12-01

    An ammonia absorption spectrum recorded at room temperature in the region 8800-10,400 cm-1 is analysed using a variational line list, BYTe, and ground state energies determined using the MARVEL procedure. BYTe is used as a starting point to initialise assignments by combination differences and the method of branches. Assignments are presented for the region 9400-9850 cm-1. 642 lines are assigned to 6 previously unobserved vibrational bands, (2v1 + 2 v42) ±, (2v1 + v31) ± and (v1 + v31 + 2 v42) ±, leading to 428 new energy levels with 208 confirmed by combination differences. A recently calculated purely ab initio NH3 PES is also used to calculate rovibrational energy levels. Comparison with assigned levels shows better agreement between observed and calculated levels than for BYTe for higher vibrational bands.

  9. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    Science.gov (United States)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  10. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  11. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  12. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    Science.gov (United States)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  13. Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra

    NARCIS (Netherlands)

    van Stokkum, Ivo; Jumper, Chanelle C.; Snellenburg, J.; Scholes, Gregory D.; van Grondelle, R.; Malý, P.

    2016-01-01

    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a

  14. Absorption, phosphorescence and Raman spectra of IrQ(ppy){sub 2} organometallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, Silviu, E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, Iulia Corina [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Tsuboi, Taiju [Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2015-07-15

    The absorption and photoluminescence (PL) spectra, PL decays, Raman spectrum, cyclic voltammetry (CV) and nuclear magnetic resonance of heteroleptic Ir-compound IrQ(ppy){sub 2} compound with two phenylpyridine (ppy) ligands and one quinoline (Q) ligand have been investigated experimentally and theoretically. Two very weak absorption bands due to the transitions to the triplet states are found at about 560 and 595 nm in IrQ(ppy){sub 2} doped in CH{sub 2}Cl{sub 2} solution. IrQ(ppy){sub 2} exhibits a dual emission of red and green phosphorescence bands. The red emission intensity is much higher than the green one in IrQ(ppy){sub 2} powder, but much lower than the green one in lightly IrQ(ppy){sub 2}-doped CH{sub 2}Cl{sub 2} solution and PMMA film. The intensity ratio of the red emission to the green emission, however, is observed to increase with increasing the IrQ(ppy){sub 2} concentration in CH{sub 2}Cl{sub 2} solution and PMMA film. The enhancement of the red emission is suggested to be caused by the Forester energy transfer from Ir-ppy component to Ir–Q components between two neighboring IrQ(ppy){sub 2} molecules. The HOMO energy is estimated to be −4.865 eV from the CV measurement, which is close to the HOMO energy of −4.844 eV calculated using the time dependent density function theory (TD-DFT). The LUMO energy is estimated as −2.856 eV from the HOMO energy and the long-wavelength absorption edge found at 617 nm in the absorption spectrum. The absorption spectrum of IrQ(ppy){sub 2} is calculated by the TD-DFT. Discussion is given on a deviation of the calculated spectrum from the measured spectrum. - Graphical abstract: Display Omitted - Highlights: • IrQ(ppy){sub 2} has red and green emissions of different ratio between film and solution. • Intensity ratio of red to green emissions increases with IrQ(ppy){sub 2} concentration. • Enhancement of red emission is due to energy transfer in two neighboring IrQ(ppy){sub 2}. • Lowest-energy absorption

  15. The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite

    Science.gov (United States)

    Czaja, Maria; Lisiecki, Radosław; Chrobak, Artur; Sitko, Rafał; Mazurak, Zbigniew

    2017-12-01

    The electron absorption-, photoluminescence- and electron paramagnetic-resonance spectra of Mn3+ in red beryl from Wah Wah Mountains (Utah USA) and of pink- and purple vesuvianite from Jeffrey Mine (Asbestos, Canada) were measured at room- and low temperatures. The crystal field stabilization energies are equal to 130.9 kJ/mol for the red beryl, and 151.5-158.0 and 168.0 kJ/mol for for the pink- and the purple vesuvianite, respectively. The red photoluminescence of Mn3+ was not intensive either at room- or at low temperatures. The high Mn content in the crystals caused the emergence of an additional emission band and short photoluminescence-decay lifetimes. The latter are only 183 μs for beryl and 17 μs for vesuvianite.

  16. Temperature dependence of absorption spectra of P-type GaP

    International Nuclear Information System (INIS)

    Mounir, M.; Balloomal, L.S.

    1985-10-01

    The theoretical analysis of the optical absorption due to band-impurity (impurity-band) electron transitions involving deep impurity levels in semi-conductors is considered. Also the data of the experimental absorption spectra of GaP were performed at room temperature and the results were found to be in agreement with the theoretical results if the electron-phonon interaction is taken into consideration. (author)

  17. Absorption spectra and Faraday effect in Cs2NaNdCl6 and Cs2NaPrCl6 crystals

    International Nuclear Information System (INIS)

    Ehdel'man, I.S.; Galanov, E.K.; Kokov, I.T.; Malakhovskij, A.V.; Anistratov, A.T.

    1985-01-01

    The paper is devoted to studying absorption spectra and the Faraday effect in Cs 2 NaNdCl 6 and Cs 2 NaPrCl 6 crystals. The absorption spectra and Faraday effect were measured at room temperature in the range of 9000-30000 cmsup(-1) (0.33-1.2 μm) in 0-10 kOe magnetic fields. The absorption spectra produced contain several groups of intense absorption bands resulted from intraconfiguration electron transitions in rare-earth cations. The Faraday spectra in the whole range studied for both crystals have the form of smoothly dipping curves when increasing wavelength. The form of these curves testifies to prevailing contribution of strong electron transitions lying in a nearer UV region to the Faraday effect

  18. Polarized absorption spectra of aromatic radicals in stretched polymer film, 4. Radical ions of 9-substituted anthracenes. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Hiroshi; Nakamura, Hitoshi; Tanizaki, Yoshie; Nakajima, Keihachiro (Tokyo Inst. of Tech. (Japan). Faculty of Science)

    1982-11-01

    Radical ions of some 9-substituted anthracene derivatives have been prepared in polymer film by gamma -irradiation at 77 K. By use of the polarized absorption spectra of these radical ions, the absorption spectra have been resolved into two components (resolved spectra), the transition moments of which are polarized parallel to the molecular long and short axes, respectively. Correlation of the characteristic absorption bands is discussed briefly.

  19. Polarized absorption spectra of aromatic radicals in stretched polymer film. 3. Radical ions of acridine and phenazine

    Energy Technology Data Exchange (ETDEWEB)

    Sekigucki, K.; Hiratsuka, H.; Tanizaki, Y.; Hatano, Y.

    1980-02-21

    Radical anions and cations of acridine and phenazine have been prepared in polymer film by ..gamma..-ray irradiation at 77 K. For the preparation of radical anions the sample was incorporated into polyethylene film by sec-butylamine, while for radical cations poly(vinyl chloride) film and sec-butyl chloride were used. Polarized absorption spectra of these radical ions have been measured in stretched polymer film and analyzed qualitatively in terms of molecular orbital calculations.

  20. Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3

    NARCIS (Netherlands)

    Pollnau, Markus; Heumann, E.; Huber, G.

    1992-01-01

    A pump- and probe-beam technique is used for measuring time-resolved excited-state absorption (ESA) and stimulated-emission (SE) spectra of Er3+ doped YAlO3. The Er3+ 4I15/2 -> 4F7/2 transition of the sample is excited at 488 nm by an excimer laser pumped dye laser. The ESA and SE of broadband xenon

  1. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    Science.gov (United States)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  2. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  3. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time...

  4. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  5. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    Science.gov (United States)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  6. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...Introduction……………………………………………………………………….………………..1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….1 DFT Calculation of Equilibrium

  7. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  8. Measuring sound absorption using local field assumptions

    NARCIS (Netherlands)

    Kuipers, E.R.

    2013-01-01

    To more effectively apply acoustically absorbing materials, it is desirable to measure angle-dependent sound absorption coefficients, preferably in situ. Existing measurement methods are based on an overall model of the acoustic field in front of the absorber, and are therefore sensitive to

  9. Continuum and discrete pulsed cavity ring down laser absorption spectra of Br2 vapor.

    Science.gov (United States)

    Sharma, Ramesh C; Huang, Hong-Yi; Chuang, Wang-Ting; Lin, King-Chuen

    2005-07-01

    The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.

  10. Ultraviolet absorption spectra of cis and trans potassium peroxynitrite (KOONO) in solid argon

    Science.gov (United States)

    Lo, Wen-Jui; Lee, Yuan-Pern; Tsai, Jyh-Hsin M.; Beckman, Joseph S.

    1995-08-01

    Two conformers (cis and trans) of potassium peroxynitrite (KOONO) were produced in an argon matrix containing potassium nitrate (KNO 3) at 13 K by means of in situ photolysis with an ArF excimer laser at 193 nm. Photoconversion among cis- and trans-KOONO, and KNO 3, was achieved on irradiation of the matrix with a laser at varied wavelengths. With the aid of the relative intensities of IR absorption lines observed for each species at each stage of photolysis, the UV absorption spectra of cis- and trans-KOONO were determined. The absorption maxima, near 325 and 375 nm for cis- and trans-KOONO, respectively, agree with theoretical calculations by Krauss. The photolytic behavior of both conformers at varied wavelengths can be understood in relation to the observed UV absorptions.

  11. Temperature dependent absorption spectra of Br(-), Br2(•-), and Br3(-) in aqueous solutions.

    Science.gov (United States)

    Lin, Mingzhang; Archirel, Pierre; Van-Oanh, Nguyen Thi; Muroya, Yusa; Fu, Haiying; Yan, Yu; Nagaishi, Ryuji; Kumagai, Yuta; Katsumura, Yosuke; Mostafavi, Mehran

    2011-05-05

    The absorption spectra of Br(2)(•-) and Br(3)(-) in aqueous solutions are investigated by pulse radiolysis techniques from room temperature to 380 and 350 °C, respectively. Br(2)(•-) can be observed even in supercritical conditions, showing that this species could be used as a probe in pulse radiolysis at high temperature and even under supercritical conditions. The weak temperature effect on the absorption spectra of Br(2)(•-) and Br(3)(-) is because, in these two systems, the transition occurs between two valence states; for example, for Br(2)(-) we have (2)Σ(u) → (2)Σ(g) transition. These valence transitions involve no diffuse final state. However, the absorption band of Br(-) undergoes an important red shift to longer wavelengths. We performed classical dynamics of hydrated Br(-) system at 20 and 300 °C under pressure of 25 MPa. The radial distribution functions (rdf's) show that the strong temperature increase (from 20 to 300 °C) does not change the radius of the solvent first shell. On the other hand, it shifts dramatically (by 1 Å) the second maximum of the Br-O rdf and introduces much disorder. This shows that the first water shell is strongly bound to the anion whatever the temperature. The first two water shells form a cavity of a roughly spherical shape around the anion. By TDDFT method, we calculated the absorption spectra of hydrated Br(-) at two temperatures and we compared the results with the experimental data.

  12. The effect of zinc ion on the absorption and emission spectra of glutathione derivative: predication by ab initio and DFT methods.

    Science.gov (United States)

    Liu, Jianhua; Ma, Jie; Zhang, Hua; Wang, Haijun

    2012-06-01

    Relying on the reaction of o-phthalaldehyde (OPA) with glutathione (GSH) to form a highly fluorescence derivative GSH-OPA has been widely used to measure reduced glutathione. In order to better understand spectra property of the GSH-OPA and the effect of zinc ion on it, the ground and the lowest singlet excited state properties, the electronic absorption and emission spectra are predicted by ab initio and DFT methods. The absorption spectra are simulated using time dependent DFT method (TD-DFT) whereas the emission spectra are approximated by optimizing the lowest singlet excited state by HF/CI-Singles and then subsequently using this geometry for the TD-DFT calculations. The solvent effects on transition energies have been described within the conductor-like polarizable continuum model (CPCM). The calculated transition energies (absorption and emission) are in agreement with available experimental information. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Aerosol optical absorption measurements with photoacoustic spectroscopy

    Science.gov (United States)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  14. Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods.

    Science.gov (United States)

    Radney, James G; You, Rian; Zachariah, Michael R; Zangmeister, Christopher D

    2017-05-16

    Particles from smoldering biomass burning (BB) represent a major source of carbonaceous aerosol in the terrestrial atmosphere. In this study, mass specific absorption spectra of laboratory-generated smoldering wood particles (SWP) from 3 hardwood and 3 softwood species were measured in situ. Absorption data spanning from λ = 500 to 840 nm were collected using a photoacoustic spectrometer coupled to a supercontinuum laser with a tunable wavelength and bandwidth filter. SWP were size- (electrical mobility) and mass-selected prior to optical characterization allowing data to be reported as mass-specific absorption cross sections (MAC). The median measured MAC at λ = 660 nm for smoldering oak particles was 1.1 (0.57/1.8) × 10 -2 m 2 g -1 spanning from 83 femtograms (fg) to 517 fg (500 nm ≤ mobility diameter ≤950 nm), MAC values in parentheses are the 16 th and 84 th percentiles of the measured data (i.e., 1σ). The collection of all six wood species (Oak, Hickory, Mesquite, Western redcedar, Baldcypress, and Blue spruce) had median MAC values ranging from 1.4 × 10 -2 m 2 g -1 to 7.9 × 10 -2 m 2 g -1 at λ = 550 nm with absorption Ångström exponents (AAE) between 3.5 and 6.2. Oak, Western redcedar, and Blue spruce possessed statistically similar (p > 0.05) spectra while the spectra of Hickory, Mesquite, and Baldcypress were distinct (p < 0.01) as calculated from a point-by-point analysis using the Wilcox rank-sum test.

  15. Interstellar absorption lines in high-resolution IUE spectra of cataclysmic variables

    International Nuclear Information System (INIS)

    Mauche, C.W.; Raymond, J.C.; Cordova, F.A.

    1988-01-01

    High-resolution ultraviolet spectra of five cataclysmic variables obtained with the IUE are used to investigate the character of the interstellar medium in the vicinity of the sun. These spectra reveal narrow absorption features of neutral and singly ionized interstellar species, and, in SS Cyg, narrow velocity-shifted absorption features of C IV, Si IV, and Si III. Using the column densities implied by the absorption features of the neutral and singly ionized species, values for the depletion of Si, Mg, Mn, and Fe from the gas phase of the interstellar medium in the vicinity of the sun are obtained. These hydrogen column densities are of particular importance in constraining the soft X-ray luminosity of cataclysmic variables because of the severe attenuation of the soft X-ray flux of cataclysmic variables by photoelectric absorption in the interstellar medium. In addition, using the column densities implied by the absorption features of C IV, Si IV, and Si III in the spectrum of SS Cyg, the existence of an expanding H II region of interstellar gas photoionized by he EUV and soft X-ray flux of this cataclysmic variable are inferred. 78 references

  16. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between....... The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans....

  17. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  18. Noise spectra measured on the Dragon reactor primary heat exchanges

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1969-09-01

    The frequency spectra of secondary water flow and tube wall temperatures have been measured on Dragon primary heat exchangers. No indication of tube wall temperature oscillations leading to tube burnout was found from the noise spectra analysed. (author)

  19. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    Science.gov (United States)

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  20. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  1. The UV absorption of nucleobases: semi-classical ab initio spectra simulations

    Czech Academy of Sciences Publication Activity Database

    Barbatti, M.; Aquino, A. J. A.; Lischka, Hans

    2010-01-01

    Roč. 12, č. 19 (2010), s. 4959-4967 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:Special Research Program(AT) P18411-N19 Institutional research plan: CEZ:AV0Z40550506 Keywords : semi-classical simulations * UV absorption spectra * nucleobases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  2. Indirect measurements of X-ray spectra

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    2006-01-01

    To the effects of measuring the spectral distribution of the radiation emitted by the x-ray tubes and electron accelerators, numerous procedures that are grouped in two big categories exist at the present time: direct and indirect methods. The first ones use high resolution detectors that should be positioned, together with the appropriate collimator, in the direction of the x ray beam. The user should be an expert in the use and correction of the obtained data by the different effects that affect the detector operation such as efficiency and resolution in terms of the energy of the detected radiation. The indirect procedures, although its are more simple to use, its also require a considerable space along the beam to position the ionization chamber and the necessary absorbents to construct by this way the denominated attenuation curve. We will analyze the operation principle of the indirect methods and a new proposal in which such important novelties are introduced as the beam dispersion to avoid to measure along the main beam and that of determination of the attenuation curve in simultaneous form. By this way, with a single shot of the tube, the attenuation curve is measured, being necessary at most a shot of additional calibration to know the relative response of the detectors used in the experimental array. The physical processes involved in the obtaining of an attenuation curve are very well well-known and this it finishes it can be theoretically calculated if the analytic form of the spectrum is supposed well-known. Finally, we will see a spectra reconstruction example with the Kramers parametric form and comparisons with numeric simulations carried out with broadly validated programs as well as the possibility of the use of solid state dosemeters in the obtention of the attenuation curve. (Author)

  3. Towards higher stability of resonant absorption measurements in pulsed plasmas

    International Nuclear Information System (INIS)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-01-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source

  4. The electronic absorption spectra of pyridine azides, solvent-solute interaction

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Khedr, Mahmoud K.

    2009-01-01

    The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium ⇌ azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to π → π* transitions, n → π* may be overlapped with the stronger π → π* ones.

  5. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  6. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    Science.gov (United States)

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  7. Decoupling multimode vibrational relaxations in multi-component gas mixtures: Analysis of sound relaxational absorption spectra

    International Nuclear Information System (INIS)

    Zhang Ke-Sheng; Wang Shu; Zhu Ming; Ding Yi; Hu Yi

    2013-01-01

    Decoupling the complicated vibrational—vibrational (V—V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V—V coupled energy to each vibrational—translational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Absorption Spectra of Ni and Co Nanoparticles using Density Functional Theory

    International Nuclear Information System (INIS)

    Elham Gharibshahi; Elias Saion

    2011-01-01

    Metal nanoparticles (NPs) demonstrate excellent electronic properties due to quantum confinement effects and have tremendous applications in catalysts, optics, single-electron devices, bio-chemical sensors, etc. We propose quantum mechanics method for the calculation of absorption spectra of conduction electrons of some transition metal NPs using time-independent Schrodinger equation and approximate the solution by density functional theory. The total energy functional is obtained from the ground-state energy functional of Thomas-Fermi-Dirac- Weizsaecker atomic system. The absorption function was derived and replaced the density function in the final Euler-Lagrange equation. The total energy functional can then be computed numerically for isolated Ni and Co NPs having fcc lattice structure and different nano sizes. The results show a red-shift absorption peak increase with increasing diameter of nanosphere correspond to the number of atoms required to form nanoparticles of respective sizes. (author)

  9. Measuring Transmission Spectra from the Ground

    Science.gov (United States)

    Jordan, Andres; Espinoza, Nestor; Eyheramendy, Susana

    2015-08-01

    Transmission spectroscopy allows study of the atmospheres of exoplanets without the need of spatially resolving them from their parent stars and is one of the most valuable follow-up possibilities offered by transiting systems. The measurement of a transmission spectrum, i.e. the apparent planetary size in units in the stellar radius as a function of wavelength, is conceptually simple, but the expected features that need to be discerned are on the order of one part in a thousand or less, and need to be extracted against a background of (potentially correlated) noise and systematic effects with amplitudes greatly exceeding that of the sought signal. In this talk I will describe how we have tackled the estimation of transmission spectra in a ground based survey we are carrying out with IMACS at Las Campanas Observatory, the Arizona-CfA-Catolica Exoplanet Spectroscopy Survey. Our treatment assumes an additive model consisting of the signal, common systematics and one of a set of stochastic processes with different memory characteristics for the noise. Common systematics are estimated from comparison stars using principal component analysis and the model parameter posterior distributions are estimated using MCMC. Model comparison is used to let the data select the model with the most appropriate noise component. I will illustrate the performance of our approach, and discuss possible avenues of improvement. I will also illustrate the importance of potential biases arising from our incomplete knowledge of stellar properties. In particular, I will show that limb darkening assumptions can limit the accuracy of our estimates of planetary radii above the achievable precisions in regimes currently being probed.

  10. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  11. High-resolution absorption coefficient and refractive index spectra of common pollutant gases at millimeter and THz wavelengths

    Science.gov (United States)

    Almoayed, Nawaf N.; Piyade, Baris C.; Afsar, Mohammed N.

    2007-09-01

    Dispersive Fourier Transform Spectroscopy (DFTS) provides us with a very precise method of measuring the absorption and refractive index spectra of common pollutant gases. This paper presents the rotational transition lines of Sulfur Dioxide and Carbon Monoxide gas as a function of varying pressure using DFTS for the very first time as a combined study. The relationship between the variation of the pressure and the change in the absorption spectrum is examined and discussed in detail. Sulfur Dioxide and Carbon Monoxide gases are highly toxic, pollutant gases that are major contributors to global pollution and can potentially be used as a chemical threat. The relationship between pressure and rotational transmission lines is discussed in detail in the frequency range of 0.3 THz - 0.9 THz. These findings are crucial in characterizing these gases as well as identifying them in a blind test.

  12. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  13. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  14. X ray spectra measurement using a CdTe detector

    International Nuclear Information System (INIS)

    Kurkova, D.; Judas, L.

    2014-01-01

    X ray spectra were measured using a CdTe XR-100T detector (Amptek). Spectra of N series were measured (according to ISO 4037-1:1996): from N60 to N150 for anode voltage of the tube 60-150 kV, realised by x ray tubeIsovolt Titan in dosimetric laboratory SURO, v.v.i.. Two sets of spectra were measured - first without using the tungsten collimator kit of the spectrometer, in a distance of 7 m from x ray tube and low tube current and second using a tungsten collimator kit measured in a distance 1 m from x ray tube focus and low tube current. Elimination of random coincidences was achieved by reduction of counting rates on the detection system. Further artefacts in measured spectra were compensated using an analytic response matrix. Response matrix was computed and subsequently applied in a program made in MATLAB. We demonstrate a function of response matrix on both model physical spectra and measured spectra. In consequence of mainly continuous character of measured spectra more parameters are needed for its description compared to the line spectra. Therefore we came up with additional parameters for characterization and mutual comparison of x ray spectra. (authors)

  15. Measurements of Narrow Mg II Associated Absorption Doublets with ...

    Indian Academy of Sciences (India)

    1994; de Kool & Begelman 1995; Murray & Chiang. 1997; Proga et al. 2000; Everett 2005) ... One of the most popular methods to identify the intrinsic absorption lines is the time variations of absorption ... The corrections of galactic extinction are done with the reddening map of Schlegel et al. (1998). For each spectra, we fit a ...

  16. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  17. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    Science.gov (United States)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  18. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Vorwerk, Christian [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Hartmann, Claudia [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Cocchi, Caterina [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Sadoughi, Golnaz [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Habisreutinger, Severin N. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado, United States; Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Wilks, Regan G. [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bär, Marcus [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Draxl, Claudia [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L3 and the Pb M5 edges of the methylammonium lead iodide (MAPbI3) hybrid inorganic-organic perovskite and its binary phase PbI2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  19. Water vapor absorption spectra of the upper atmosphere /45-185 per cm/

    Science.gov (United States)

    Augason, G. C.; Mord, A. J.; Witteborn, F. C.; Erickson, E. F.; Swift, C. D.; Caroff, L. J.; Kunz, L. W.

    1975-01-01

    The far IR nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 plus or minus 0.4 microns of precipitable water on 30 August 1971 and 2.4 plus or minus 0.3 microns of precipitable water on 6 January 1972.-

  20. Absorption spectra of thin films of triple compounds in the system RbIPbI2

    International Nuclear Information System (INIS)

    Yunakova, O.N.; Miloslavskij, V.K.; Ksenofontova, E.V.; Kovalenko, E.N.

    2012-01-01

    A formation of compounds RbPbI 3 and Rb 4 PbI 6 in the system RbI-PbI 2 is revealed and their absorption spectra are investigated in an energy interval 2-6 eV and a temperatures range 90-500 K. It is established that the low-frequency exciton excitations are localized in PbI 6 4- structural elements of the crystal lattice, they are classified as excitons of intermediate coupling and are of a three-dimensional character in RbPbI 3 and a quasi-two-dimensional one in Rb 4 PbI 6 .

  1. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  2. The effect of dimethylsulfoxide on absorption and fluorescence spectra of aqueous solutions of acridine orange base.

    Science.gov (United States)

    Markarian, Shiraz A; Shahinyan, Gohar A

    2015-12-05

    The photophysical properties of aqueous solutions of acridine orange base (AOB) in wide concentration range of dimethylsulfoxide (DMSO) were studied by using absorption and steady-state fluorescence spectroscopy techniques at room temperature. The absorption spectrum of acridine orange in water shows two bands at 468 and 490 nm which were attributed to the dimer ((AOBH)2(2+)) and monomer (AOBH(+)) species respectively. In DMSO solution for the same AOB concentration only the basic form was detected with the band at 428 nm. The addition of DMSO to AOB aqueous solution leads to the decrease of absorption band at 490 nm and the new absorption band increases at 428 nm due to deprotonated (basic) form of AO and the first isosbestic point occurs at 450 nm. The evolution of isosbestic point reveals that an other equilibrium, due to the self-association of DMSO molecules takes place. From the steady-state fluorescence spectra Stokes shifts were calculated for AOB in aqueous and DMSO solutions. The addition of DMSO into the aqueous solution induced the enhancement in the fluorescence intensity of the dye compared to those in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z., E-mail: namezhangzhen@126.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Huang, J.; Geng, F.; Zhou, X.Y. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Feng, S.Q. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Cheng, X.L., E-mail: chengxl@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Jiang, X.D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, W.D. [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Zheng, W.G.; Tang, Y.J. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-01-01

    Highlights: • Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. • As the energy density increases to 2.54 J/cm{sup 2}, the absorption intensity reaches to about 0.2. • The mechanism of two-photon ionization mainly plays a critical role at sub-damage site. • Intensity of Raman spectra is very high at low energy density and decreased with respect to high energy density. -- Abstract: Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm{sup 2}, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  4. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    Science.gov (United States)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  5. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  6. Component spectra extraction from terahertz measurements of unknown mixtures.

    Science.gov (United States)

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  7. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increas...

  8. The Associated Absorption Features in Quasar Spectra of the Sloan Digital Sky Survey. I. Mg II Absorption Doublets

    Science.gov (United States)

    Chen, Zhi-Fu; Huang, Wei-Rong; Pang, Ting-Ting; Huang, Hong-Yan; Pan, Da-Sheng; Yao, Min; Nong, Wei-Jing; Lu, Mei-Mei

    2018-03-01

    Using the SDSS spectra of quasars included in the DR7Q or DR12Q catalogs, we search for Mg II λλ2796, 2803 narrow absorption doublets in the spectra data around Mg II λ2798 emission lines. We obtain 17,316 Mg II doublets, within the redshift range of 0.3299 ≤ z abs ≤ 2.5663. We find that a velocity offset of υ r 6000 km s‑1. If associated Mg II absorbers are defined by υ r present at least one associated Mg II system with {W}{{r}}λ 2796≥slant 0.2 \\mathringA . The fraction of associated Mg II systems with high-velocity outflows correlates with the average luminosities of their central quasars, indicating a relationship between outflows and the quasar feedback power. The υ r distribution of the outflow Mg II absorbers is peaked at 1023 km s‑1, which is smaller than the corresponding value of the outflow C IV absorbers. The redshift number density evolution of absorbers (dn/dz) limited by υ r > ‑3000 km s‑1 differs from that of absorbers constrained by υ r > 2000 km s‑1. Absorbers limited by υ r > 2000 km s‑1 and higher values exhibit profiles similar to dn/dz. In addition, the dn/dz is smaller when absorbers are constrained with larger υ r . The distributions of equivalent widths, and the ratio of {W}rλ 2796/{W}rλ 2803, are the same for associated and intervening systems, and independent of quasar luminosity.

  9. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    Science.gov (United States)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  10. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. VizieR Online Data Catalog: Sgr B2 los molecular absorption line spectra (Corby+, 2018)

    Science.gov (United States)

    Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.

    2017-11-01

    Spectra covering transitions of c-C3H2, c-H1 SO, CCS, H2CS, HCS+, OH, SiO, 29SiO, H2CO, H2(13C)O, l-C3H, and l-C3H+ with line-of-sight absorption observed in the 1-50 GHz data from the PRebiotic Interstellar MOlecular Survey (PRIMOS) taken with the Robert C. Byrd Green Bank Telescope (GBT). Data were observed between 2001 and 2014, with the majority of the data obtained in 2007 in GBT Key Science project ID GBT07A-051. Spectra have been baseline-subtracted using best fit polynomials as described in the paper, and normalized by the continuum, so that the y-axis represents (T/TC-1). Data are provided in the FITS format; each FITS file contains all lines of a single molecule that are observed to have foreground absorption. Please refer to Table 1 of the paper to obtain molecular transition rest frequencies, energies, GBT beam sizes, and transition quantum numbers. (2 data files).

  12. Effect of absorption discontinuity on neutron spectra of water assemblies poisoned with non-1/V absorbers

    International Nuclear Information System (INIS)

    Gupta, I.J.; Trikha, S.K.

    1977-01-01

    Calculations are presented of the diffusion of thermal neutrons (2.5 x 10 -4 to 7 x 10 -1 eV) across an absorption discontinuity in a water assembly, consisting of pure water on one side and aqueous solutions of three different non-1/V absorbers on the other, which were obtained by solving the Boltzmann transport equation in the diffusion approximation using the multigroup formalism. The gradual appearance and disappearance of the depletion region in the neutron spectra (caused by the resonance absorption peaks at energies 0.096 and 0.179 eV for samarium and cadmium respectively), as one moves from the pure water assembly to the poisoned water assembly and vice versa, have also been studied. The minimum concentrations of Sm and Cd atoms in water for which the depletion region in the spectra just starts building up are found to be 60 x 10 18 Sm atom cm -3 and 125 x 10 18 Cd atom cm -3 respectively. However no such depletion region is observed in gadolinium-poisoned water assembly. At the boundary, the equilibrium neutron distribution gets disturbed and is re-established to the equilibrium distribution of the second medium at some distance from the interface. The diffusion lengths so calculated from the total neutron density curves are in good agreement with the experimental results of Goddard and Johnson (Nucl. Sci. Eng.; 37:127 (1969)) at various concentrations of Gd and Cd atoms in water. (author)

  13. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  14. Fullerene-Based Photoactive Layers for Heterojunction Solar Cells: Structure, Absorption Spectra and Charge Transfer Process

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2014-12-01

    Full Text Available The electronic structure and optical absorption spectra of polymer APFO3, [70]PCBM/APFO3 and [60]PCBM/APFO3, were studied with density functional theory (DFT, and the vertical excitation energies were calculated within the framework of the time-dependent DFT (TD-DFT. Visualized charge difference density analysis can be used to label the charge density redistribution for individual fullerene and fullerene/polymer complexes. The results of current work indicate that there is a difference between [60]PCBM and [70]PCBM, and a new charge transfer process is observed. Meanwhile, for the fullerene/polymer complex, all calculations of the twenty excited states were analyzed to reveal all possible charge transfer processes in depth. We also estimated the electronic coupling matrix, reorganization and Gibbs free energy to further calculate the rates of the charge transfer and the recombination. Our results give a clear picture of the structure, absorption spectra, charge transfer (CT process and its influencing factors, and provide a theoretical guideline for designing further photoactive layers of solar cells.

  15. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-01-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5 ′ -monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5 ′ -monophosphate, and adenosine 5 ′ -triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety

  16. The electronic absorption spectra of some acyl azides. Molecular orbital treatment

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Mohamed, Adel A.; Farag, A. M.; Al Omar, Ahmed M.

    2008-06-01

    The electronic absorption spectra of benzoyl azide and its derivatives: p-methyl, p-methoxy, p-chloro and p-nitrobenzoyl azide were investigated in different solvents. The observed spectra differ basically from the electronic spectra of aryl azides or alkyl azides. Four intense π-π * transitions were observed in the accessible UV region of the spectrum of each of the studied compounds. The contribution of charge transfer configurations to the observed transitions is rather weak. Shift of band maximum with solvent polarity is minute. On the other hand, band intensity is highly dependent on the solvent used. The observed transitions are delocalized rather than localized ones as in the case with aryl and alkyl azides. The attachment of the C dbnd O group to the azide group in acyl azides has a significant effect on the electronic structure of the molecule. The arrangements as well as energies of the molecular orbitals are different in acyl azides from those in aryl azides. The first electronic transition in phenyl azide is at 276 nm, whereas that of bezoyle azide is at 251 nm. Ab initio molecular orbital calculations using both RHF/6-311G* and B3LYP/6-31+G * levels were carried out on the ground states of the studied compounds. The wave functions of the excited states were calculated using the CIS and the AM1-CI procedures.

  17. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    International Nuclear Information System (INIS)

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-01-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at ∼295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport

  18. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  19. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M. [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw (Poland); Czerny, B., E-mail: tek@camk.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46 02-668, Warsaw (Poland)

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.

  20. Brillouin scattering measurements of the temperature dependence of sound velocity and acoustic absorption in simple alcohols

    Science.gov (United States)

    Stevens, J. R.; Coakley, R. W.

    2011-07-01

    A scanning Fabry-Perot interferometer was used to measure Brillouin spectra of methanol, isopropanol and a 95% ethanol-water mixture for temperatures ranging between 285 K and 320 K. The Brillouin frequency shifts and linewidths were used to calculate the velocities and absorption coefficients of hypersonic acoustic waves in these liquids. The temperature dependence of sound speed and acoustic attenuation was determined. For all three materials, both sound velocity and absorption coefficient decreased with temperature.

  1. Complexes of uranyl with N-oxides of heterocyclic amines. Electron-vibrational absorption spectra

    International Nuclear Information System (INIS)

    Jezowska-Trzebiatowska, B.; Wieczorek, M.

    1977-01-01

    A number of coordination compounds formed by uranyl chloride and nitrate with N-oxides of heterocyclic amines have been prepared and characterized by spectral measurements in the absorption region 20000-50000 cm -1 . The electrons and vibronic transitions have been determined and discussed. (author)

  2. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    The endogenous morphine-like pentapeptide, [Leu]enkephalin, which binds to the opiate receptor in the brain, spinal core and gut, is the subject of this study. Vibrational absorption (VA) measurements were carried out on [Leu] enkephalin in non-polar solvent, DMSO-D6 to stabilize the environment...

  3. Spallation neutron spectra measured at Saturne

    International Nuclear Information System (INIS)

    Boyard, J.L.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Leray, S.; Milleret, G.; Plouin, F.; Uematsu, M.; Whittal, D.M.; Martinez, E.; Beau, M.; Boue, F.; Crespin, S.; Drake, D.; Frehaut, J.; Lochard, J.P.; Patin, Y.; Petibon, E.; Legrain, R.; Terrien, Y.

    1995-01-01

    Good knowledge of spallation reactions is necessary to design accelerator-based transmutation systems. An extensive program has begun at Saturne to measure energy and angular distributions of neutrons produced by incident protons or deuterons of up to 2 GeV on several thin targets. Our measurements will extend the available data to higher energies than the present limit of 800 MeV enabling improvements to the codes which are sometimes in poor agreement with the data. (Authors). 7 refs., 7 figs

  4. Time-Dependent Density Functional Calculations of Ligand K-Edge X-Ray Absorption Spectra

    Energy Technology Data Exchange (ETDEWEB)

    DeBeer George, S.; /SLAC, SSRL; Petrenko, T.; Neese, F.

    2007-07-10

    X-ray absorption spectra (XAS) at the Cl and S K edge and Mo L edge have been calculated at the TDDFT level for a series of dioxomolybdenum complexes LMoO{sub 2}X (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate, X = Cl, SCH{sub 2}Ph, OPh), which play an important role in modeling the catalytic cycle of the sulfite oxidase enzyme. Also, the XAS spectra of model molecules of the Mo complexes have been simulated and interpreted in terms of the Mo 4d orbital splitting, in order to find possible correlations with the spectral pattern of the complexes. Comparison with the available experimental data allows us to assess the performances of the present computational scheme to describe the core excitations in large bioinorganic systems. The theoretical interpretation of the spectral features of both the metal and ligand core excitations in terms of the oscillator strength distribution provides important insight into the covalency of the metal-ligand bond.

  5. DFT study of the effect of substituents on the absorption and emission spectra of Indigo

    Directory of Open Access Journals (Sweden)

    Cervantes-Navarro Francisco

    2012-07-01

    Full Text Available Abstract Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl, Sulfur (S, Selenium (Se and Bromine (Br substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT with the Becke 3- parameter-Lee-Yang-Parr (B3LYP functional, where the 6-31 G(d,p basis set was employed. The configuration interaction singles (CIS method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased.

  6. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) and k(HOC(CH3)2CH2O2. + NO2) were determined to be (4.9 +/- 0.9) X 10(-12) and (6.7 +/- 0.9) x 10(-12) cm3 molecule-1 s-1, respectively. In the FTIR experiments products were studied using chlorine-initiated oxidation in TBA/N2/Cl2 and TBA/N2/O2/Cl2 mixtures....

  7. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    Science.gov (United States)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  8. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.

    Science.gov (United States)

    Rocca, Dario; Lu, Deyu; Galli, Giulia

    2010-10-28

    We describe an ab initio approach to compute the optical absorption spectra of molecules and solids, which is suitable for the study of large systems and gives access to spectra within a wide energy range. In this approach, the quantum Liouville equation is solved iteratively within first order perturbation theory, with a Hamiltonian containing a static self-energy operator. This procedure is equivalent to solving the statically screened Bethe-Salpeter equation. Explicit calculations of single particle excited states and inversion of dielectric matrices are avoided using techniques based on density functional perturbation theory. In this way, full absorption spectra may be obtained with a computational workload comparable to ground state Hartree-Fock calculations. We present results for small molecules, for the spectra of a 1 nm Si cluster in a wide energy range (20 eV), and for a dipeptide exhibiting charge transfer excitations.

  9. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and...1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….2 DFT Calculation of Equilibrium

  10. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    Science.gov (United States)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  11. Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones

    Directory of Open Access Journals (Sweden)

    NATASA V. VALENTIC

    2001-08-01

    Full Text Available A number of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones from cyanoacetamide and the corresponding alkyl ethyl acetoacetates were synthesized according to modified literature procedures. The alkyl ethyl acetoacetates were obtained by the reaction of C-alkylation of ethyl acetoacetate. An investigation of the reaction conditions for the synthesis of 4-methyl-3-cyano-6-hydroxy-2-pyridone from cyanoacetamide and ethyl acetoacetate in eight different solvents was also performed. The ultraviolet absorption spectra of synthesized pyridones were measured in nine different solvents in the range 200–400 nm. The effects of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of linear solvation energy relationships using a general equation of the form n = n0 + sp* + aa + bb, where p* is a measure of the solvent polarity, a is the scale of the solvent hydrogen bond donor acidities and b is the scale of the solvent hydrogen bond acceptor basicities.

  12. UV-VIS Absorption Spectra of Molten AgCl and AgBr and of their Mixtures with Group I and II Halide Salts

    Science.gov (United States)

    Greening, Giorgio G. W.

    2015-10-01

    The UV-VIS absorption spectra of (Ag1-X[Li-Cs, Ba]X)Cl and of (Ag1-X[Na, K, Cs]X)Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  13. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  14. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    International Nuclear Information System (INIS)

    White, W.T. III.

    1985-01-01

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs

  15. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  16. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1

    International Nuclear Information System (INIS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-01-01

    High-resolution absorption spectra of NH 3 in the region 2100–5500 cm −1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH 3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm −1 . The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work. - Highlights: • Absorption spectrum of ammonia recorded at 1300 K. • 2038 line assignments, 1755 newly assigned. • 15 bands observed for the first time.

  17. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    Science.gov (United States)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  18. Modelling High Resolution Absorption Spectra with ExoMolLine Lists: NH3and CH4

    DEFF Research Database (Denmark)

    Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    The conditions, chemical reactions and gas mixing in industrial progresses involving gasification or combustion can be monitored by in situ measurement of gas temperature and gas composition. This can be done spectroscopically, though the result is highly dependent on the quality of reference data...... [1]. For this reason, a smart collaboration has been established between Optical Diagnostics Group at DTU and ExoMol, to combine high resolution spectra measured at elevated temperatures and empirically tuned ab initio methods to produce suitable molecular line lists for modelling molecules...

  19. C IV Broad Absorption Line Variability in QSO Spectra from SDSS Surveys

    Directory of Open Access Journals (Sweden)

    Demetra De Cicco

    2017-12-01

    Full Text Available Broad absorption lines (BALs in the spectra of quasi-stellar objects (QSOs are thought to arise from outflowing winds along our line of sight; winds, in turn, are thought to originate from the accretion disk, in the very surroundings of the central supermassive black hole (SMBH, and they likely affect the accretion process onto the SMBH, as well as galaxy evolution. BALs can exhibit variability on timescales typically ranging from months to years. We analyze such variability and, in particular, BAL disappearance, with the aim of investigating QSO physics and structure. We search for disappearing C IV BALs in the spectra of 1,319 QSOs from different programs from the Sloan Digital Sky Survey (SDSS; the analyzed time span covers 0.28–4.9 year (rest frame, and the source redshifts are in the range 1.68–4.27. This is to date the largest sample ever used for such a study. We find 67 sources (5.1-0.6+0.7% of the sample with 73 disappearing BALs in total (3.9-0.5+0.5% of the total number of C iv BALs detected; some sources have more than one BAL that disappears. We compare the sample of disappearing BALs to the whole sample of BALs, and investigate the correlation in the variability of multiple troughs in the same spectrum. We also derive estimates of the average lifetime of a BAL trough and of the BAL phase along our line of sight.

  20. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Science.gov (United States)

    Zhang, Z.; Huang, J.; Geng, F.; Zhou, X. Y.; Feng, S. Q.; Cheng, X. L.; Jiang, X. D.; Wu, W. D.; Zheng, W. G.; Tang, Y. J.

    2014-01-01

    Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm2, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  1. CALCULATION OF MAGNETIC-X-RAY DICHROISM IN 4D AND 5D ABSORPTION-SPECTRA OF ACTINIDES

    NARCIS (Netherlands)

    OGASAWARA, H; KOTANI, A; THOLE, BT

    1991-01-01

    We present atomic calculations of the magnetic dichroism in 4d and 5d x-ray-absorption (XAS) spectra of trivalent actinide ions. The calculations are carried out for both linearly and circularly polarized light at zero temperature. Large magnetic dichroism is predicted for 5d XAS with

  2. Hierarchy of stochastic Schrödinger equation towards the calculation of absorption and circular dichroism spectra

    Science.gov (United States)

    Ke, Yaling; Zhao, Yi

    2017-05-01

    A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.

  3. Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N

    Science.gov (United States)

    Muramatsu, Yasuji

    Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.

  4. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Stern, S. A.; Spencer, J. R.; Shinn, A. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO 80302 (United States); Cunningham, N. J.; Hain, M. J., E-mail: astern@swri.edu [Nebraska Wesleyan University, 5000 Saint Paul Avenue, Lincoln, NE 68504 (United States)

    2012-01-15

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  5. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    Science.gov (United States)

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  6. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yajing; Wang Yinghui; Yang Yanqiang, E-mail: yqyang@hit.edu.c [Harbin Institute of Technology, Center for Condensed Matter Science and Technology, Department of Physics (China); Dlott, Dana D., E-mail: dlott@illinois.ed [University of Illinois at Urbana-Champaign, School of Chemical Sciences (United States)

    2010-03-15

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed 'structural energetic materials' that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al{sub 2}O{sub 3}, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  7. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Science.gov (United States)

    Peng, Yajing; Wang, Yinghui; Yang, Yanqiang; Dlott, Dana D.

    2010-03-01

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed "structural energetic materials" that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al2O3, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  8. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  9. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  10. Measuring 14 Elemental Abundances with R = 1800 LAMOST Spectra

    Science.gov (United States)

    Ting, Yuan-Sen; Rix, Hans-Walter; Conroy, Charlie; Ho, Anna Y. Q.; Lin, Jane

    2017-11-01

    The LAMOST survey has acquired low-resolution spectra (R = 1800) for 5 million stars across the Milky Way, far more than any current stellar survey at a corresponding or higher spectral resolution. It is often assumed that only very few elemental abundances can be measured from such low-resolution spectra, limiting their utility for Galactic archaeology studies. However, Ting et al. used ab initio models to argue that low-resolution spectra should enable precision measurements of many elemental abundances, at least in theory. Here, we verify this claim in practice by measuring the relative abundances of 14 elements from LAMOST spectra with a precision of ≲ 0.1 dex for objects with {{S}}/{{{N}}}{LAMOST}≳ 30 (per pixel). We employ a spectral modeling method in which a data-driven model is combined with priors that the model gradient spectra should resemble ab initio spectral models. This approach assures that the data-driven abundance determinations draw on physically sensible features in the spectrum in their predictions and do not just exploit astrophysical correlations among abundances. Our analysis is constrained to the number of elemental abundances measured in the APOGEE survey, which is the source of the training labels. Obtaining high quality/resolution spectra for a subset of LAMOST stars to measure more elemental abundances as training labels and then applying this method to the full LAMOST catalog will provide a sample with more than 20 elemental abundances, which is an order of magnitude larger than current high-resolution surveys, substantially increasing the sample size for Galactic archaeology.

  11. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  12. X-Ray Absorption Spectra of Water from First Principles Calculations

    International Nuclear Information System (INIS)

    Prendergast, David; Galli, Giulia

    2006-01-01

    We present a series of ab initio calculations of the x-ray absorption cross section (XAS) of ice and liquid water at ambient conditions. Our results show that all available experimental data and theoretical results are consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of a quasitetrahedral model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasitetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid

  13. Scaled-Absorption and Recurrence Spectra of Argon in an Electric Field Using Two Photon Excitation

    Science.gov (United States)

    Wright, J. D.; Huang, W.; Flores-Rueda, H.; Morgan, T. J.

    2001-05-01

    For multi-electron atoms in an electric field, low angular momentum Rydberg electrons strongly interact with the atomic core causing scattering which can be associated with the presence of chaos. The photoabsorption spectra exhibits extraordinary complex structure but is still in principle interpretable semiclassically using closed orbit theory and semiclassical S-matrix theory [1]. Previously we measured the scaled-photoabsorption and recurrence spectra of argon in an electric field, using single uv-photon excitation from a metastable state [2]. We have extended these measurements to two photon excitation from the same initial state, which allows access to different angular momentum states. The effect of multi-photon excitation on the structure of the recurrence spectrum and its subsequent semiclassical interpretation will be presented. Work supported by the National Science Foundation. [1] B. E. Granger and C. H. Greene, Phys.Rev.A 62, 12511 (2000) [2] H. Flores-Rueda, J. D. Wright, W. Huang, T. J. Morgan, Bull. Am. Phys. Soc. 45, 94 (2000)

  14. Experimental and theoretical comparison of the precision of flame atomic absorption, fluorescence, and emission measurements

    International Nuclear Information System (INIS)

    Bower, N.W.; Ingle, J.D. Jr.

    1981-01-01

    Theoretical equations and experimental evaluation procedures for the determination of the precision of flame atomic absorption, emission, and fluorescence measurements are presented. These procedures and noise power spectra are used to evaluate the precision and noise characteristics of atomic copper measurements with all three techniques under the same experimental conditions in a H 2 -air flame. At the detection limit, emission and fluorescence measurements are limited by background emission shot and flicker noise whereas absorption measurements are limited by flame transmission lamp flicker noise. Analyte flicker noise limits precision at higher analyte concentrations for all three techniques. Fluctutations in self-absorption and the inner filter effect are shown to contribute to the noise in atomic emission and fluorescence measurements

  15. Low level optical absorption measurements on organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stella, M.; Rojas, F.; Escarre, J.; Asensi, J.M.; Bertomeu, J.; Andreu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona. Av. Diagonal 647, 08028 Barcelona (Spain); Voz, C.; Puigdollers, J.; Fonrodona, M. [Micro and Nano Technology Group (MNT), Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord - Modul C4, 08034 Barcelona (Spain)

    2006-06-15

    The optical absorption of n-type (C{sub 60} and PTCDA) and p-type (CuPc and pentacene) organic semiconductors is investigated by optical transmission and photothermal deflection spectroscopy. The usual absorption bands related to HOMO-LUMO transitions are observed in the high absorption region of transmission spectra. Photothermal deflection spectroscopy also evidences exponential absorption shoulders with characteristic energies 47meV for CuPc, 38meV for pentacene, 50 meV for PTCDA and 87meV for C{sub 60}. In addition, broad bands in the low absorption level are observed for C{sub 60} and PTCDA. These bands have been attributed to contamination due to air exposure. On the other hand, in CuPc a clear absorption peak at 1.12eV is observed with smaller features at 1.04eV, 1.20eV and 1.33eV. These peaks are attributed to transitions between the Pc levels of CuPc ions. Finally, the optical absorption expected in blends of organic semiconductors is estimated by an effective media approximation. (author)

  16. Magnetic measurements, Raman and infrared spectra of metal ...

    Indian Academy of Sciences (India)

    70

    Magnetic measurements, Raman and infrared spectra of metal- ligand complex derived from CoCl2·6H2Oand ... molecule derived transition metal (TM) ion based complexes have opened a wide research field in the interface of physics and ..... will give the proper value of the magnetic moment. The present value suggests.

  17. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sellberg, Jonas A.; Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Kaya, Sarp [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Segtnan, Vegard H. [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nofima AS, N-1430 Ås (Norway); Chen, Chen [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ogasawara, Hirohito; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Pettersson, Lars G. M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  18. Spatial Spectra of Jet Turbulence Measured by Particle Image Velocimetry

    DEFF Research Database (Denmark)

    Wänström, Maja; George, William K.; Meyer, Knud Erik

    2009-01-01

    to be in excellent agreement with the data, and in fact key to the present application. Despite relatively poor spatial resolution of the scales of motion (up to 15 times the Kolmogorov microscale) and limited dynamic range due to progressive jet velocity decay, it was possible to produce highly accurate spectra......The unique capabilities of particle image velocimetry (PIV) have been utilized together with two-point similarity theory to measure spatial spectra in a ‘homogenized’ fully-developed turbulence jet at relatively high Reynolds number (20,000). The theory developed by Ewing et al. [1] was found...

  19. How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids

    Science.gov (United States)

    Zhang, Daqi

    2011-01-01

    Summary Single-walled carbon nanotubes (SWNTs) can be efficiently dispersed in the imidazolium-based ionic liquids (ILs), at relatively high concentration, with their intrinsic structure and properties retained. Due to the hygroscopicity of the ILs, water bands may be introduced in the absorption spectra of IL-dispersed SWNTs and cause problems in spectral deconvolution and further analysis. In order to remove this influence, a quantitative characterization of the trace water in [BMIM]+[PF6]− and [BMIM]+[BF4]− was carried out by means of UV–vis-NIR absorption spectroscopy. A simple yet effective method involving spectral subtraction of the water bands was utilized, and almost no difference was found between the spectra of the dry IL-dispersed SWNT samples treated under vacuum for 10 hours and the spectra of the untreated samples with subtraction of the pure water spectrum. This result makes it more convenient to characterize SWNTs with absorption spectra in the IL-dispersion system, even in the presence of trace amount of water. PMID:22003471

  20. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    Science.gov (United States)

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  1. Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, J.B. [Department of Physics, San Jose State University, San Jose, California 95192-0106 (United States); Wright, A.O.; Seltzer, M.D. [Research and Technology Division, Naval Air Warfare Center, Code 474230D, China Lake, California 93555-6001 (United States); Zandi, B.; Merkle, L.D. [IR Optics Technology OFC, Army Research Laboratory, Ft. Belvoir, Virginia 22060-5838 (United States); Hutchinson, J.A. [Night Vision and Electronics Sensors Directorate, The United States Army, Ft. Belvoir, Virginia 22060-5806 (United States); Morrison, C.A. [Army Research Laboratory, Adelphi, Maryland 20783-1145 (United States); Allik, T.H. [Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102 (United States); Chai, B.H. [Center for Research on Electro-optics and Lasers, University of Central Florida, Orlando, Florida 32836 (United States)

    1997-05-01

    Polarized fluorescence spectra produced by site-selective excitation and conventional polarized absorption spectra were obtained for Tm{sup 3+} and Er{sup 3+} ions individually incorporated into single crystals of strontium fluorapatite, Sr{sub 5}(PO{sub 4}){sub 3}F. Substitution of the trivalent rare earth ion for divalent strontium was achieved by passive charge compensation during Czochralski growth of the fluorapatite crystals. Spectra were obtained between 1780 and 345 nm at temperatures from 4 K to room temperature on crystals having the hexagonal structure [P6{sub 3}/m(C{sub 6h}{sup 2})]. The polarized fluorescence spectra due to transitions from multiplet manifolds of Tm{sup 3+}(4f{sup 12}), including {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} to manifolds {sup 3}H{sub 6} (the ground-state manifold), {sup 3}F{sub 4}, {sup 3}H{sub 5}, {sup 3}H{sub 4}, and {sup 3}F{sub 3} were analyzed for the details of the crystal-field splitting of the manifolds. Fluorescence lifetimes were measured for Tm{sup 3+} transitions from {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} at room temperature and from {sup 1}G{sub 4} at 16 K. Results of the analysis indicate that the majority of Tm{sup 3+} ions occupy sites having C{sub s} symmetry. A point-charge lattice-sum calculation was made in which the crystal-field components, A{sub nm}, were determined assuming that trivalent thulium replaces divalent strontium in the metal site having C{sub s} symmetry. Results support the conclusion that the nearest-neighbor fluoride (F{sup {minus}}) is replaced by divalent oxygen (O{sup 2{minus}}), thus preserving overall charge neutrality and local symmetry. Crystal-field splitting calculations predict energy levels in agreement with experimental data. By varying the crystal-field parameters, B{sub nm}, we obtained a rms difference of 7cm{sup {minus}1} between 43 calculated and experimental Stark levels for Tm{sup 3+}(4f{sup 12}) in Tm:SFAP. (Abstract Truncated)

  2. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Xue, L.C.; Wu, L.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, S.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); School of Sciences, Hebei University of Science and Technology, Shijiazhuang City 050018 (China); Li, Z.Z. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Qi, W.H.; Ge, X.S.; Ding, L.L. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2016-07-01

    It is very important to determine electron transition energies (E{sub tr}) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν){sup 2} vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E{sub tr}) between the anions and cations, Fe{sup 2+} and Fe{sup 3+} at the (A) and [B] sites and Ni{sup 2+} at the [B] sites for the (A)[B]{sub 2}O{sub 4} spinel ferrite samples Co{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (0.0≤x≤0.3), Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0≤x≤0.3) and Fe{sub 3}O{sub 4}. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  3. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    Science.gov (United States)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  4. Calculation of emission and absorption spectra of LTE plasma by the STA [Super Transition Array] method

    International Nuclear Information System (INIS)

    Bar-Shalon, A.; Oreg, J.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration we use zeroeth order energies in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed 'UTA' structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. 4 refs., 9 figs

  5. Calculation of emission and absorption spectra of LTE plasma by the STA method

    International Nuclear Information System (INIS)

    Oreg, A.B.J.; Goldstein, W.H.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations to a specific one-electron transition is then represented by a Gaussian whose moments (total intensity, average energy and variance) are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the superconfiguration the authors use zeroeth order energies in the Boltzmann factor corrected by a superconfiguration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. The authors also take into account orbital relaxation by calculating orbitals and energies for each superconfiguration in its own, optimized potential

  6. Calculation of emission and absorption spectra of LTE plasma by the STA (Super Transition Array) method

    Science.gov (United States)

    Bar-Shalon, A.; Oreg, J.; Goldstein, W. H.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for Laser Thermal Equilibrium (LTE) plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration zeroeth order energies are used in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions.

  7. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  8. Effect of ligand nature and geometry of its surrounding on electron absorption spectra of NpO22+ and PuO22+ compounds

    International Nuclear Information System (INIS)

    Sokolov, E.I.; Tebelev, L.G.; Melkaya, R.F.; Rykov, A.G.

    1981-01-01

    Electron absorption spectra of actinide compounds with the symmetry of the nearest surrounding of actinyl-ions as follows: Dsub(2h)-AnO 2 (NO 3 ) 2 xnH 2 O, AnO 2 (CH 3 COO) 2 x2H 2 O; Dsub(3h)-MAnO 2 (NO 3 ) 3 (M-K, Rb, Cs), NaAnO 2 (CH 3 COO) 3 , (NH 4 ) 4 AnO 2 (CO 3 ) 3 ; Dsub(4h)-Cs 2 AnO 2 Cl 4 , where An-U, Np, Pb, are measured at room temperature. It is established that position, intensity and form of absorption bands in neptunyl compound spectra are sensible equally to geometry of coordination sphere and to ligand nature. The character of the change of plutonyl compound spectra is the same as of neptunyl ones: it is determined both by surrounding geometry and chemical nature of ligands. It is shown that in the near infrared region ligand effect on plutonyl compound spectra with the symmetry of anion complex Dsub(3h) is weaker than in the visible region

  9. Molecular-orbital studies via satellite-free x-ray fluorescence: Cl K absorption and K--valence-level emission spectra of chlorofluoromethanes

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Cowan, P.L.; Lindle, D.W.; LaVilla, R.E.; Jach, T.; Deslattes, R.D.

    1991-01-01

    X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting ''satellite-free'' x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These simplified emission spectra and the associated x-ray absorption spectra are modeled using straightforward procedures and compared with semiempirical ground-state molecular-orbital calculations. Good agreement is observed between the present experimental and theoretical results for valence-orbital energies and those obtained from ultraviolet photoemission, and between relative radiative yields determined both experimentally and theoretically in this work

  10. XMM-Newton Survey of Local O VII Absorption Lines in the Spectra of Galactic X-Ray Sources

    Science.gov (United States)

    Luo, Yang; Fang, Taotao; Ma, Renyi

    2018-04-01

    The detection of highly ionized metal absorption lines in the X-ray spectra of the Galactic X-ray binaries (XRBs) implies the distribution of hot gas along the sightline toward the background sources. However, the origin of this hot gas is still unclear: it can arise in the hot interstellar medium (ISM), or is intrinsic to the XRBs. In this paper, we present an XMM-Newton survey of the O VII absorption lines in the spectra of Galactic XRBs. A total of 33 XRBs were selected, with 29 low-mass XRBs and 4 high-mass XRBs. At a more than 3σ threshold, O VII absorption line was detected in 16 targets, among which 4 were newly discovered in this work. The average line equivalent width is centered around ∼20 mÅ. Additionally, we do not find strong correlations between the O VII EWs and the Galactic neutral absorption N H, the Galactic coordinates, or the distance of background targets. Such non-correlation may suggest contamination of the circumstellar material, or a lack of constraints on the line Doppler-b parameter. We also find that regardless of the direction of the XRBs, the O VII absorption lines are always detected when the flux of the background XRBs reaches a certain level, suggesting a uniform distribution of this hot gas. We estimate a ratio of 0.004–0.4 between the hot and neutral phases of the ISM. This is the second paper in the series following Fang et al. (2015), in which we focused on the local O VII absorption lines detected in the background AGN spectra. Detailed modeling of the hot ISM distribution will be investigated in a future paper.

  11. Absorption spectra of trapped holes in anatase TiO2

    DEFF Research Database (Denmark)

    Zawadzki, Pawel

    2013-01-01

    absorption spectroscopy (TAS), but the understanding of the optical absorption due to trapped carriers in TiO2 is incomplete. On the basis of the generalized Δ self-consistent field density functional theory (Δ-SCF DFT) calculations, we attribute the experimentally observed absorption band at 430-550 nm...

  12. CIRCUMSTELLAR MOLECULAR LINE ABSORPTION AND EMISSION IN THE OPTICAL-SPECTRA OF POST-AGB STARS

    NARCIS (Netherlands)

    BAKKER, EJ; LAMERS, HJGLM; WATERS, LBFM; SCHOENMAKER, T

    We present a list of post-AGB stars showing molecular line absorption and emission in the optical spectrum. Two objects show CH+, one in emission and one in absorption, and 10 stars show C-2 and CN in absorption. The Doppler velocities of the C-2 lines and the rotational temperatures indicate that

  13. Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Cao, Lihua; Liu, Yuanyuan; Chen, Xi; Zhu, Cunguang; Qin, Zengguang

    2017-09-01

    A novel strategy for more accurate tunable diode laser absorption spectroscopy (TDLAS) measurement is presented. This method is immune to non-absorption transmission losses, and allows dead zone removal for ultra-low concentration detection, and reference point selection at atmospheric pressure. The method adjusts laser emission and creates artificial absorption peaks according to requirements. By creating an artificial absorption peak next to the real absorption zone, calibration is not necessary. The developed method can be applied to not only wavelength modulation spectroscopy (WMS) but also direct absorption (DA). In WMS, the method does not need two harmonic signals, resulting in higher reliability, better performance, and no electro-optical gain uncertainty. At the same time, non-absorption transmission losses effect is suppressed from 70% to 0.425% with DA and from 70% to 0.225% with WMS method. When the artificial absorption peak coincides with the real one, the dead zone of measurement can be removed to give a lower detection limit, and water vapor still can be detected when concentration is lower than 0.2 ppm in our experiment. Reference point selection uncertainty with the DA method, especially when the signal-to-noise ratio is low and absorption line is broad, can also be facilitated. And the uncertainty of reference point selection is improved from 6% to 0.8% by measuring reference point amplitude. The method is demonstrated and validated by WMS and DA measurements of water vapor (1 atm, 296 K, 1368.597 nm). The measurement results obtained using the new method reveal its promise in TDLAS.

  14. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    Science.gov (United States)

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  15. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  16. Aerosol light absorption and its measurement: A review

    International Nuclear Information System (INIS)

    Moosmueller, H.; Chakrabarty, R.K.; Arnott, W.P.

    2009-01-01

    Light absorption by aerosols contributes to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. Aerosol light absorption in the atmosphere is dominated by black carbon (BC) with additional, significant contributions from the still poorly understood brown carbon and from mineral dust. Sources of these absorbing aerosols include biomass burning and other combustion processes and dust entrainment. For particles much smaller than the wavelength of incident light, absorption is proportional to the particle volume and mass. Absorption can be calculated with Mie theory for spherical particles and with more complicated numerical methods for other particle shapes. The quantitative measurement of aerosol light absorption is still a challenge. Simple, commonly used filter measurements are prone to measurement artifacts due to particle concentration and modification of particle and filter morphology upon particle deposition, optical interaction of deposited particles and filter medium, and poor angular integration of light scattered by deposited particles. In situ methods measure particle absorption with the particles in their natural suspended state and therefore are not prone to effects related to particle deposition and concentration on filters. Photoacoustic and refractive index-based measurements rely on the heating of particles during light absorption, which, for power-modulated light sources, causes an acoustic signal and modulation of the refractive index in the air surrounding the particles that can be quantified with a microphone and an interferometer, respectively. These methods may suffer from some interference due to light-induced particle evaporation. Laser-induced incandescence also monitors particle heating upon absorption, but heats absorbing particles to much higher temperatures to quantify BC mass

  17. Pavement sound absorption measurements in the U.S.

    Science.gov (United States)

    2012-08-19

    In the U.S., the topic of pavement sound absorption in regard to tire-pavement noise has shown increased interest and research over the last several years. Four types of pavement sound absorption measurements with various applications are discussed: ...

  18. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    . The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations...... in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made...... with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  19. ANALYSIS OF UNCERTAINTY MEASUREMENT IN ATOMIC ABSORPTION SPECTROPHOTOMETER

    OpenAIRE

    NEHA S.MAHAJAN; NITIN K. MANDAVGADE; S.B. JAJU

    2012-01-01

    A spectrophotometer is a photometer that can measure intensity as a function of the light source wavelength. The important features of spectrophotometers are spectral bandwidth and linear range of absorption or reflectance measurement. Atomic absorption spectroscopy (AAS) is a very common technique for detecting chemical composition of elements in metal and its alloy. It is very reliable and simple to use. Quality of result (accuracy) depends on the uncertainty of measurement value of the tes...

  20. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    of Arsenic-Water Complexes Using Density Functional Theory June 3, 2016 Approved for public release; distribution is unlimited. L. Huang S.g... Density Functional Theory L. Huang, S.G. Lambrakos, A. Shabaev,1 and L. Massa2 Naval Research Laboratory, Code 6394 4555 Overlook Avenue, SW...absorption spectra for As-H2O complexes using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can

  1. Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector

    International Nuclear Information System (INIS)

    Birch, R.; Marshall, M.

    1979-01-01

    A method of computing theoretical X-ray spectra in the range 30 to 150 kV is presented. The theoretical spectra have been compared with constant potential, high resolution spectra from a tungsten target measured with a Ge(Li) detector, for a range of target angles, tube voltage and filtrations. Above 100 kV the spectra were also measured with a NaI detector but, as there was good agreement between the Ge(Li) and NaI detectors, only the former are presented. Spectra computed using Kramers' theory are also included for comparison, giving fairly good agreement at large target angles (30 0 ) but becoming gradually worse as the target angle decreased. Spectra may be computed by this method for any desired filtration, target angle, and tube voltage between 30 and 150 kV, in excellent agreement with the measured data. (author)

  2. Absorption spectra and cyclic voltammograms of uranium species in molten lithium molybdate-sodium molybdate eutectic at 550 C

    International Nuclear Information System (INIS)

    Nagai, T.; Fukushima, M.; Myochin, M.; Uehara, A.; Fujii, T.; Yamana, H.; Sato, N.

    2011-01-01

    Absorption spectra of uranium species dissolved in molten lithium molybdate.sodium molybdate eutectic of 0.51Li 2 MoO 4 -0.49Na 2 MoO 4 mixture at 550 C were measured by UV/Vis/NIR spectrophotometry, and their redox reactions were investigated by cyclic voltammetry. We found that the major ions of uranium species dissolved in the melt were uranyl penta-valent. After purging dry oxygen gas into the melt, pentavalent species were oxidized to the uranyl hexa-valent. In the cyclic voltammetry of the melt without uranium species, it was confirmed that the lithium-sodium molybdenum oxide compounds were deposited on the working electrode at the negative potential and the lithium molybdenum oxide compounds were deposited on the counter electrode at positive potential. When UO 2 was dissolved into the melt, the reductive reaction of the uranium species was observed at the reductive potential of the pure melt. This suggests that the uranium species dissolved in the melts could be recovered as mixed uranium-molybdenum oxides by electrolysis. (orig.)

  3. Spreadsheet analysis of gamma spectra for nuclear material measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, W.R.; Pace, D.M.

    1990-01-01

    A widely available commercial spreadsheet package for personal computers is used to calculate gamma spectra peak areas using both region of interest and peak fitting methods. The gamma peak areas obtained are used for uranium enrichment assays and for isotopic analyses of mixtures of transuranics. The use of spreadsheet software with an internal processing language allows automation of routine analysis procedures increasing ease of use and reducing processing errors while providing great flexibility in addressing unusual measurement problems. 4 refs., 9 figs.

  4. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    Science.gov (United States)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  5. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    Science.gov (United States)

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-05-05

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  6. X-ray measurements on wood - spectra measurements

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Thygesen, Lisbeth Garbrecht; Gerward, Leif

    The report concerns simultaneous non-destructive measurements of water content and density of wood. Theoretically, this should be possible using a x-ray equipment newly build at BKM, and this work is an attempt to use the equipment for assessing water content and density of wood samples under...... laboratory conditions. A number of wood samples with different densities are placed at different relative humidities from 0.5 to 97 %RH. When equilibrium is obtained the samples are measured with the x-ray equipment such that 10 points are measured in the sample followed by measurements outside the sample...... (free-scanning). In this way 100 points are measured for each wood sample. This produces information about moisture content and density of the samples as water and wood attenuations of the x-rays are different for the different energy levels contained in the x-rays. The "real" density and moisture...

  7. MEASUREMENTS OF STELLAR MAGNETIC FIELDS USING AUTOCORRELATION OF SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Borra, E. F.; Deschatelets, D. [Département de physique, de génie physique et d’optique. Université Laval (Canada)

    2015-11-15

    We present a novel technique that uses the autocorrelation of the spectrum of a star to measure the line broadening caused by the modulus of its average surface magnetic field. The advantage of the autocorrelation comes from the fact that it can detect very small spectral line broadening effects because it averages over many spectral lines and therefore gives an average with a very high signal-to-noise ratio. We validate the technique with the spectra of known magnetic stars and obtain autocorrelation curves that are in full agreement with published magnetic curves obtained with Zeeman splitting. The autocorrelation also gives less noisy curves so that it can be used to obtain very accurate curves. We degrade the resolution of the spectra of these magnetic stars to lower spectral resolutions where the Zeeman splitting is undetectable. At these resolutions, the autocorrelation still gives good quality curves, thereby showing that it can be used to measure magnetic fields in spectra where the Zeeman splitting is significantly smaller than the width of the spectral line. This would therefore allow observing magnetic fields in very faint Ap stars with low-resolution spectrographs, thereby greatly increasing the number of known magnetic stars. It also demonstrates that the autocorrelation can measure magnetic fields in rapidly rotating stars as well as weak magnetic fields that give a Zeeman splitting smaller than the intrinsic width of the spectral lines. Finally, it shows that the autocorrelation can be used to find unknown magnetic stars in low-resolution spectroscopic surveys.

  8. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  9. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  10. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{{{Ne {VIII}}}} = 2.2 ^{+1.6 }_{ _-1.2} × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  11. Agnostic Stacking of Intergalactic Doublet Absorption: Measuring the Ne VIII Population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Michael Shull, J.

    2018-02-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a pathlength Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power law column density distribution function with slope β = -1.86+0.18-0.26 and normalisation log f_{13.7} = -13.99+0.20-0.23, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38+0.97-0.82. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{Ne VIII} = 2.2+1.6-1.2 × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4% of the total baryonic mass.

  12. Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation

    Science.gov (United States)

    Huang, Tsung-wei; Yang, Ling; Zhu, Chaoyuan; Lin, Sheng Hsien

    2012-07-01

    Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein (GFP) chromophore, namely p-hydroxybenzylideneimidazolidinone (p-HBDI), have been simulated using the Franck-Condon factors including inhomogeneous broadening of solvent effect. Ground and the first excited states were calculated by time dependent density functional theory with and without the polarizable continuum model environment. Simulated peak of the neutral/anionic p-HBDI at 380 nm (423 nm)/421 nm agrees with experiment value 370 nm (434 nm)/419 nm for absorption (fluorescence) spectrum. Simulated width of the neutral/anionic p-HBDI at 0.51 eV (0.54 eV)/0.57 eV agrees with experiment value 0.54 eV (0.66 eV)/0.56 eV for absorption (fluorescence) spectrum.

  13. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard

    2013-01-01

    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  14. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    Science.gov (United States)

    Garland, Nancy L.; Medhurst, Laura J.; Nelson, H. H.

    1993-12-01

    We measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF2OCHF2 (E 134), k(T) = (5.4 ± 3.5) × 10-13 cm3 s-1 exp [(-3.1 ± 0.4 kcal mol-1)/RT]; CF3CH2CF3 (FC 236fa), k(T) = (2.0 ± 1.0) × 10-14 cm3 s-1 exp [(-1.8 ± 0.3 kcal mol-1)/RT]; CF3CHFCHF2 (FC 236ea), k(T) = (2.0 ± 0.9) × 10-13 cm3 s-1 exp [(-2.0 ± 0.3 kcal mol-1)/RT]; and CF3CF2CH2F (FC 236cb), k(T)= (2.6 ± 1.6) × 10-13 cm3 s-1 exp [(-2.2 ± 0.4 kcal mol-1)/RT]. The measured activation energies (2-3 kcal mol-1) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm-1 suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not.

  15. Infrared absorption spectra of gaseous HD. II. Collision-induced fundamental band of HD in HD--Ne and HD--Ar mixtures at room temperature

    International Nuclear Information System (INIS)

    Prasad, R.D.G.; Reddy, S.P.

    1976-01-01

    The collision-induced infrared absorption spectra of the fundamental band of HD in binary mixtures of HD with Ne and Ar at room temperature have been studied with an absorption path length of 105.2 cm for different base densities of HD in the range 8--20 amagat and a number of total gas densities up to 175 amagat. The observed features of the profiles of the enhancement of absorption in these mixtures resemble closely those of the corresponding profiles of the fundamental band of H 2 in binary mixtures with Ne and Ar. The binary absorption coefficients of the band obtained from the measured integrated intensities are (1.84 +- 0.06) x 10 -35 and (4.41 +- 0.06) x 10 -35 cm 6 s -1 for HD--Ne and HD--Ar, respectively. The characteristic half-width parameters, delta/subd/ and delta/subc/ of the overlap transitions and delta/subq/ (and delta/subq//sub prime/) of the quadrupolar transitions, are obtained from an analysis of the profiles of the enhancement of absorption in both these mixtures. The quantity delta/subc/ which is the half-width of the intercollisional interference dip of the Q branch increases with the density of the perturbing gas Ne or Ar, and for HD--Ne it varies in a manner similar to that for HD--He as described in Paper I of this series

  16. Absorption Spectra of BaF2 Sm2O3, Sm, Gd, and Ho Plasmas

    Science.gov (United States)

    Martin, Michael; Bastiani-Ceccotti, Serena

    2009-11-01

    Knowledge of the opacities of high Z element plasmas is important in indirect drive ICF and the study of stellar evolution. There are few experimental measurements of this quantity, and its theoretical determination is difficult due to the number of possible bound electron configurations. This study aims to better the theoretical understanding of this parameter by looking at the 3d-4f transitions of BaF2, Sm2O3, Sm, Gd, and Ho plasmas at the LULI2000 facility. The plasmas are produced by radiative heating and are cold, 15 -- 40 eV, and relatively dense, ˜ .01gm/cm^3 A plasma is produced by a .5 ns laser pulse irradiating a gold hohlraum and then probed by an x-ray source created by a gold foil irradiated by a 10 ps laser pulse. The transmission is found with simultaneous source and absorption measurements by an x-ray spectrometer in the 8 - 20 å range We will compare the results with statistical atomic structure codes. From this experiment we will gain further insight into the spectral broadening of neighboring Z elements due to changing plasma temperature and into mixture thermodynamics. This is a first step towards an experimental study of astrophysical domains.

  17. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-02-16

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical.

  18. The IR Spectra, Molar Absorptivity, and Integrated Molar Absorptivity of the C76-D2 and C84-D2:22 Isomers

    Directory of Open Access Journals (Sweden)

    T. Jovanovic

    2017-01-01

    Full Text Available The FT-IR spectra of the stable C76 and C84 isomers of D2 symmetry, isolated by the new, advanced extraction and chromatographic methods and processes, were recorded by the KBr technique, over the relevant region from 400 to 2000 cm−1, at room temperature. All the observed infrared bands are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations for these fullerenes, which is presented in this article, as the evidence of their validity. The molar absorptivity ε and the integrated molar absorptivity ψ of their IR absorption bands were determined and reported together with the relative intensities. Excellent agreement is found between the relative intensities of the main and characteristic absorption maxima calculated from ελ and from the ψλ values in adequate integration ranges. These results are significant for the identification and quantitative determination of the C76-D2 and C84-D2:22 fullerenes, either in natural resources on Earth and in space or in artificially synthesized biomaterials, electronic, optical, and biomedical devices, sensors, polymers, optical limiters, solar cells, organic field effect transistors, special lenses, diagnostic and therapeutic agents, pharmaceutical substances in biomedical engineering, and so forth.

  19. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  20. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    International Nuclear Information System (INIS)

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-01-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively

  1. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-04

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms.

  2. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  3. L23 soft-x-ray emission and absorption spectra of Na

    International Nuclear Information System (INIS)

    Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.

    1978-01-01

    The L 23 soft-x-ray emission (SXE) and soft-x-ray absorption (SXA) edges have been measured. The SXE edges were measured at temperatures between 85 and 380 K, and analyzed to obtain edge positions and widths. The widths increased from GAMMA/sub SXE/ = 100 meV at 85 K to 150 meV at 320 K and to 180 meV above the melting point at 380 K. Both SXE and SXA edges were measured at 100 K with the same spectrometer, and the data were analyzed to obtain values of the edge widths (GAMMA/sub SXE/ = 100 meV and GAMMA/sub SXA/ = 64 meV), of the many-body peaking parameter (α/sub SXE/ = 0.15 and α/sub SXA/ = 0.24), of the gap between the edges (E/sub g/ = 74 meV), and of the excess width of the emission edge [(ΔGAMMA) 2 = GAMMA 2 /sub SXE/ - GAMMA 2 /sub SXA/ = 5900 (meV) 2 ]. The values of E/sub g/ and (ΔGAMMA) 2 were used in the partial-lattice-relaxation theory of Almbladh to obtain a value of the core-hole lifetime broadening (GAMMA/sub 2p/ = 10 meV). We conclude that structure in the transition density of states, many-body effects, and lattice relaxation all have important effects on the edge structure, and suggest that rounding of the SXE edge by partial relaxation accounts for the smaller peaking parameter obtained from the SXE data as compared to the SXA data

  4. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  5. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    K. Beier

    1994-08-01

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  6. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    CERN Document Server

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  7. The investigation of hydrogens bonds between sulphur-bearing heterocyclic and proton-donor compounds by IR absorption spectra

    International Nuclear Information System (INIS)

    Narziev, B.N.; Nurulloev, M.; Makhkambaev, D.

    1982-01-01

    In this article the results of intermolecular interaction study of sulfur-containing heterocyclic (thiophene, thiophane) and proton-donar (water, alcohol, carbonic acids, chlorophon) molecules for measuring of IR spectrum absorption of protondonar compounds in soluted shape are presented

  8. Measurements of reflectance spectra of ion-bombarded ice and application to surfaces in the outer Solar System

    International Nuclear Information System (INIS)

    O'Shaughnessy, D.J.; Boring, J.W.; Johnson, R.E.

    1988-01-01

    A number of the icy satellites of the outer planets exhibit interesting hemispherical differences in brightness which have been attributed to enhanced bombardment by the local plasma of one hemisphere. The plasma bombardment is thought to erode the icy surfaces and implant species, thereby altering the surface reflectance spectra, as well as producing fresh plasma. Here we present the first results of laboratory measurements of the wavelength dependence of the alteration of the visible reflectance spectra of H 2 O ice irradiated by keV ions. When the implanted species is chemically neutral, absorption is slightly enhanced below 0.55 μm. For an incident species containing sulphur, a strong absorption feature is produced at 0.4 μm corresponding (probably) to S 3 . This occurs at too large a wavelength to account for the absorption feature observed at Europa by Voyager and therefore casts doubt on the recent interpretations of the reflectance data of Europa. (author)

  9. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  10. Activation method for measuring the neutron spectra parameters. Computer software

    International Nuclear Information System (INIS)

    Efimov, B.V.; Ionov, V.S.; Konyaev, S.I.; Marin, S.V.

    2005-01-01

    The description of mathematical statement of a task for definition the spectral characteristics of neutron fields with use developed in RRC KI unified activation detectors (UKD) is resulted. The method of processing of results offered by authors activation measurements and calculation of the parameters used for an estimation of the neutron spectra characteristics is discussed. Features of processing of the experimental data received at measurements of activation with using UKD are considered. Activation detectors UKD contain a little bit specially the picked up isotopes giving at irradiation peaks scale of activity in the common spectrum scale of activity. Computing processing of results of the measurements is applied on definition of spectrum parameters for nuclear reactor installations with thermal and close to such power spectrum of neutrons. The example of the data processing, the measurements received at carrying out at RRC KI research reactor F-1 is resulted [ru

  11. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Gronoff, G.; Mertens, C. J.; Norman, R. B. [NASA LaRC, Hampton, VA (United States); Maggiolo, R. [BIRA-IASB, Avenue Circulaire 3, 1180 Brussels (Belgium); Wedlund, C. Simon [Aalto University School of Electrical Engineering Department of Radio Science and Engineering, P.O. Box 13000, FI-00076 Aalto (Finland); Bell, J. [National Institute of Aerospace, Hampton, VA (United States); Bernard, D. [IPAG, Grenoble (France); Parkinson, C. J. [University of Michigan, MI (United States); Vidal-Madjar, A., E-mail: Guillaume.P.Gronoff@nasa.gov [Observatoire de Paris, Paris (France)

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  12. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  13. Measurements of {sup 237}Np secondary neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, N.V.

    1997-03-01

    The activities carried out during the first year of the project are summarized. The main problems for Np spectra measurements arise from high intrinsic gamma-ray activity of the sample and admixture of the oxygen and iron nuclei. The inelastically scattered neutrons and the fission neutrons spectra for {sup 237}Np were measured by time-of-flight spectrometer of the IPPE at incident neutron energies {approx_equal}1.5 MeV, and {approx_equal}0.5 MeV. A solid tritium target and a Li-metallic target were used as neutron sources. The neutron scattering on C sample (C(n,n) standard reaction) was measured to normalize the Np data. The experimental data should be simulated by Monte Carlo method to correct the experimental data for oxygen and iron admixture as well as for multiple scattering of the neutrons in the sample. Therefore the response function of the spectrometer, and the neutron energy distribution from the source were investigated in detail. (author)

  14. Indirect measure of X-rays spectra using TLDs

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.

    2011-10-01

    A methodology of indirect measure of X-rays spectra, emitted by conventional tubes, was developed recently and its feasibility verified in the first place by Monte Carlo simulations. For that case is intended to measure, by means of plastic scintillators, attenuation curves of dispersed beams previously. In this work were carried out measurements of attenuation curves with thermoluminescent dosimeters (TLD) to verify the kindness of the indirect measure method. The attenuation curve was also measured using an ionization chamber brand Capintec (model 192) with the purpose of making a comparison. The results of the attenuation curve measured with both dosimeters present a good resolution inside the statistical fluctuations and the spectral reconstruction using diverse parametric functions is carried out in a quick and simple way with excellent resolutions in the functional form. For this reconstruction method are of fundamental importance the following properties of the used dosimeter: in the first place the repetition of the measures, property that could check; in second place the precision of the measured data and lastly the dosimeter response, this is, the increase of the thermoluminescent signal before an increase of the photons flow of X-rays. This parameter is the gradient of the curve thermoluminescent signal versus the dose imparted to the dosimeter. The measures were realized with a generator of X-rays brand Kevex provided of a conventional tube with tungsten anti cathode that polarizes with high tension to a maximum value of 50 kV and current of 0.5 ma. (Author)

  15. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    Science.gov (United States)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  16. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  17. LIME: Semiautomated line measurement and identification from stellar spectra

    Science.gov (United States)

    Sahin, T.

    2017-09-01

    We present LIME (Line Measurements from ECHELLE Spectra), an IDL-based code, as a powerful tool for semiautomated stellar line measurement and identification. Interactively selected line positions (i.e. wavelengths) are compared with a master line list of the user's selections. Each unknown line that the user interactively chooses is displayed with potential identifications provided by the code in the vicinity of the selected line. The best identification is evaluated on the basis of several criteria (e.g., atomic/molecular line information, wavelength displacement, and theoretical equivalent width for solar atmospheric values). We examined the identifications by LIME in the spectra of post-red supergiant star HD 179821 over a range of signal-to-noise values and wavelength ranges. We found that the results obtained by LIME show virtually complete agreement with the manual identifications for which the conventional and also tedious approach is to use a revised multiplet table as an initial guide and perform a systematic search that makes use of the lower excitation potential and gf-values. Comparison to previous identifications for HD 179821 in the literature revealed not only lines that were unmeasurable and/or blended but also misidentifications. While a manual identification process takes a relatively longer time to be accomplished by an experienced spectroscopist, LIME can provide a rapid extraction of line information in a few hours with moderate user interaction.

  18. Ruthenium(II) chloro-bis(bipyridyl) complexes with substituted pyridine ligands: interpretation of their electronic absorption spectra

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ershov, A.Yu.; Ivanova, N.V.; Shashko, A.D.; Kutejkina-Teplyakova, A.V.

    2003-01-01

    A number of complexes cis-[Ru(Bipy) 2 (L)(Cl)](BF 4 ), where Bipy-2,2'-bipyridine, L-pyridine, 4-aminopyridine, 4-picoline, nicotinamide, isonicotinamide, 3- and 4-cyanopyridine, 4,4'-bipyridine, trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azopyridine, pyrazine, imidazole and NH 3 , were prepared. Using the CINDO-CI semiempirical method the energies and intensities of transition in electronic absorption spectra (EAS) of the complexes were calculated. It is shown that major differences in EAS of the compounds stem from position of transitions with charge transfer d π (Ru)→π*(L) [ru

  19. Absorption spectra of Ag and Au nanoparticles using density functional theory

    International Nuclear Information System (INIS)

    Elham Gharibshahi; Elias Saion; Hishamuddin Zainuddin

    2009-01-01

    Full text: The absorption of photons in metal nanoparticles has been modelled electromagnetically by Mei theory. In this work, the problem was resolved quantum mechanically using the density function theory. This new development is based on the ground-state energy functional of Thomas-Fermi-Dirac-Weizsaecker atomic system and the absorption function replacing the density function in the Euler-Lagrange equation. The total energy functional was computed numerically for isolated spherical Ag and Au nanoparticles having face-centered-cubic lattice primitive cell structure. The absorption peaks appear at 412, 414, and 417 nm for Ag nanoparticles and at 515, 517, and 520 nm for Au nanoparticles when simulated for particle size of 8, 12, and 20 nm respectively. (author)

  20. Measurements of scattering and absorption in mammalian cell suspensions

    Science.gov (United States)

    Mourant, Judith R.; Freyer, James P.; Johnson, Tamara M.

    1996-04-01

    During the past several years a range of spectroscopies, including fluorescence and elastic- scatter spectroscopy, have been investigated for optically based detection of cancer and other tissue pathologies. Both elastic-scatter and fluorescence signals depend, in part, on scattering and absorption properties of the cells in the tissue. Therefore an understanding of the scattering and absorption properties of cells is a necessary prerequisite for understanding and developing these techniques. Cell suspensions provide a simple model with which to begin studying the absorption and scattering properties of cells. In this study we have made preliminary measurements of the scattering and absorption properties of suspensions of mouse mammary carcinoma cells (EMT6) over a broad wavelength range (380 nm to 800 nm).

  1. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    Science.gov (United States)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  2. Evidence from spectra of bright fireballs. [self absorption effects in meteor radiation

    Science.gov (United States)

    Ceplecha, Z.

    1973-01-01

    Spectral data with dispersions from 11 to 94 A/mm on 4 fireballs of actual brightness of -4 to -12 magnitude and with velocities of about 30 km/s at 70 to 80 km heights are used for studies of meteor radiation problems. The radiation of fireballs is found to be strongly affected by self absorption. But if the emission curve of growth is used for correction of the self absorption of Fe I lines, a great discrepancy between spectral data and efficiency data for total Fe I light is found. If one assumes that the self absorption is superposed on another effect, a decrease of the dimensions of the radiating volume with increasing lower potential, the spectral data on Fe I lines will be in agreement with the luminous efficiency of total Fe I meteor radiation. Formulas for emission curve of growth and Boltzmann distribution including this effect are derived. This effect is important for fireballs brighter than about -1 or -2 magnitude, while self absorption seems to be important even for fainter meteors.

  3. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data

    Directory of Open Access Journals (Sweden)

    Dariusz Ficek

    2004-12-01

    Full Text Available Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(λ by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP, undetected by HPLC. A preliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450-650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.

  4. Plasma absorption evidence via chirped pulse spectral transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Minardi, Stefano [Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Couairon, Arnaud; Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Selva, Marco; Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  5. Determination of temperature and concentrations of main components in flames by fitting measured Raman spectra

    NARCIS (Netherlands)

    Sepman, A. V.; Toro, V.V.; Mokhov, A. V.; Levinsky, H. B.

    The procedure of deriving flame temperature and major species concentrations by fitting measured Raman spectra in hydrocarbon flames is described. The approach simplifies the calibration procedure to determine temperature and major species concentrations from the measured Raman spectra. The

  6. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  7. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    Science.gov (United States)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  8. TD-DFT Study of Absorption and Emission Spectra of 2-(2'-Aminophenyl)benzothiazole Derivatives in Water.

    Science.gov (United States)

    Manojai, Natthaporn; Daengngern, Rathawat; Kerdpol, Khanittha; Kungwan, Nawee; Ngaojampa, Chanisorn

    2017-03-01

    Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H 2 S) which is useful in fluorescence microscopy and H 2 S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2'-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H 2 S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes' shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H 2 S in water.

  9. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  10. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  11. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  12. Attenuation corrections through energy spectra analysis of whole body and partial body measurements applying gamma spectroscopy

    International Nuclear Information System (INIS)

    Schelper, L.F.; Lassmann, M.; Haenscheid, H.; Reiners, C.

    1997-01-01

    The study was carried out within the framework of activities for testing means of direct determination of radioactivity levels in the human body due to incorporated, inhomogenously distributed radionuclides. A major task was to derive the average depth of activity distributions, particularly from photon radiation at energies below 500 keV, for the purpose of making suitable attenuation corrections. The paper presents two applicable methods which yield information on the mean depths of activity distributions, obtained through additional analyses of the energy spectra. The analyses are based on measuring the dependence of intensity of the Compton radiation on the length of pathways of the photons penetrating the soft tissue, or on measuring the energy-dependent absorption effects with photons. (orig./CB) [de

  13. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    Science.gov (United States)

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-02

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.

  14. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  15. Tone-burst technique measures high-intensity sound absorption

    Science.gov (United States)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  16. In situ sound absorption measurement: investigations on oblique incidence

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries; Klemenz, M.

    2012-01-01

    A novel method for the measurement of sound absorption has been developed. By assuming that, in a single point, the sound field consists of an incident- and a reflected plane wave, the locally incident- and reflected intensities can be determined. To this purpose, the active intensity and the sum of

  17. Radioisotope studies for quantitative measurement of manganese absorption

    International Nuclear Information System (INIS)

    Helbig, U.

    1981-01-01

    Purpose of the present study was to quantitatively determine the manganese absorption in growing rats by means of radioisotopes. First of all the following factors had to be investigated, which are significant for this determination: Measurability of stable and radioactive Mn in rat tissues; labelling of stable Mn and distribution of stable and radioactive Mn in the organism; verification of the isotope dilution method and of the comparative balance method with regard to its applicability for the determination of the true Mn absorption. We useed male and female Sprague-Dawley rats. The most important results are summarized in the following: in some separate tissues measurement of stable Mn was accompanied by difficulties. The measurement of radioactive Mn however, could be performed without any problems. 10 d after i.m. injection of 54 Mn only 17% of the administered Mn was still detectable in the organism. However, there was no uniform tissue labelling found. Therefore it is possible to an only restricted extent to draw quantitative conclusions on the content of stable Mn. A high percentage of stable and radioactive Mn was found above all in the liver. The isotope dilution method permits by feces analysis to differentiate between unabsorbed Mn coming from the food and endogenic Mn coming from the organism itself. The effective Mn absorption was also determined by means of the comparative balance method. By means of the isotope dilution method we determined the quantitative Mn-absorption with staged Mn administration and the contribution of absorption and excretion to the homeostatic regulation mechanisms of Mn. We found that absorption and excretion help the organism to keep an almost constant Mn concentration even with a differing Mn supply. (orig./MG) [de

  18. Absorption of sound in air - High-frequency measurements

    Science.gov (United States)

    Bass, H. E.; Shields, F. D.

    1977-01-01

    The absorption of sound in air at frequencies from 4 to 100 kHz in 1/12 octave intervals, for temperatures from 255.4 K (0 F) to 310.9 K (100 F) in 5.5 K (10 F) intervals, and at 10% relative-humidity increments between 0% and saturation has been measured. The values of free-field absorption have been analyzed to determine the relaxation frequency of oxygen for each of the 92 combinations of temperature and relative humidity studied and the results are compared to an empirical expression. The relaxation frequencies of oxygen have been analyzed to determine the microscopic energy-transfer rates.

  19. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  20. Interpretation of x-ray absorption spectra in compounds with configurational disorder

    International Nuclear Information System (INIS)

    Kuzmin, A.; Dalba, G.; Fornasini, P.; Rocca, F.; Sipr, O.

    2005-01-01

    Full text: X-ray absorption spectroscopy (EXAFS and XANES) provides with unique information on electronic, atomic and dynamic structure of materials. Standard EXAFS and XANES analysis is based on relatively simple structural models as Gaussian / normal distribution. However, there are many compounds as glasses and nanocrystalline materials in which atoms of the same type occupy structural sites with different local environments. Therefore, special approach is required to access properly the case of configurational disorder. In this work we present recent developments for such problem

  1. Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels.

    Science.gov (United States)

    Loper, G L; Calloway, A R; Stamps, M A; Gelbwachs, J A

    1980-08-15

    Absorption cross-section data are reported for the toxic rocket fuels hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine (UDMH), as well as for their selected air oxidation products dimethylamine, trimethylamine, and methanol at up to seventy-eight CO(2) laser wavelengths each. These data are important for the assessment of the capability of CO(2) laser-based spectroscopic techniques for monitoring low levels of hydrazine-fuel vapors in the ambient air. Interference-free detection sensitivities of <30 ppb have been demonstrated for UDMH using a laboratory photoacoustic detection system.

  2. Ly(alpha) emission and absorption features in the spectra of galaxies

    Science.gov (United States)

    Chen, W. L.; Neufeld, David A.

    1994-01-01

    The combined effects of interstellar dust absorption and of scattering by hydrogen atoms may give rise to a Ly(alpha) spectral feature of negative equivalent width, as has been observed in several star-forming galaxies. By considering the transfer of Ly(alpha) line radiation and of neighboring stellar continuum radiation within a dusty galaxy, we find that dust absorption has three effects: (1) it reduces the apparent ultraviolet continuum luminosity at all wavelengths; (2) it preferentially decreases the apparent Ly(alpha) line luminosity from H II regions; and (3) it creates an 'attenuation feature' in the continuum spectrum -- centered at the Ly(alpha) rest frequency -- which occurs because the attenuation of the stellar continuum radiation increases as the Ly(alpha) rest frequency is approached, due to the effects of scattering by hydrogen atoms. For plausible values of the galactic dust content and of the disk thickness, these effects can lead to a negative net Ly(alpha) equivalent width, even for galaxies in which the unattenuated spectrum would show a strong Ly(alpha) emission line.

  3. Testing Accretion Disk Wind Models of Broad Absorption Line Quasars with SDSS Spectra

    Science.gov (United States)

    Lindgren, Sean; Gabel, Jack

    2017-06-01

    We present an investigation of a large sample of broad absorption line (BAL) quasars (QSO) from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Properties of the BALs, such as absorption equivalent width, outflow velocities, and depth of BAL, are obtained from analysis by Gibson et al. We perform correlation analysis on these data to test the predictions made by the radiation driven, accretion disk streamline model of Murray and Chiang. We find the CIV BAL maximum velocity and the continuum luminosity are correlated, consistent with radiation driven models. The mean minimum velocity of CIV is lower in low ionization BALs (LoBALs), than highly ionized BALs (HiBALS), suggesting an orientation effect consistent with the Murray and Chiang model. Finally, we find that HiBALs greatly outnumber LoBALs in the general BAL population, supporting prediction of the Murray and Chiang model that HiBALs have a greater global covering factor than LoBALs.

  4. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    Science.gov (United States)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  5. Low-frequency sound absorption measurements in air

    Science.gov (United States)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  6. First southern hemisphere intercomparison of measured solar UV spectra

    Science.gov (United States)

    McKenzie, R. L.; Kotkamp, M.; Seckmeyer, G.; Erb, R.; Roy, C. R.; Gies, H. P.; Toomey, S. J.

    1993-10-01

    Three UV spectroradiometers from the National Institute of Water and Atmospheric Research (NIWA) New Zealand, the Fraunhofer Institute (IFU) Germany, and the Australian Radiation Laboratory (ARL) Australia were intercompared at Lauder NZ on 23 February 1993. Over the spectral range 290-400 nm, the agreement between the IFU and NIWA instruments was better than 5%. At noon on this day, the irradiances measured by all three instruments agreed within +/- 10%, except at wavelengths shorter than 300 nm, where the ARL instrument gave higher readings. At larger solar zenith angles (SZA) the differences at short wavelengths were more pronounced, and at wavelengths above 300 nm the ARL measurements were systematically lower. The reasons for these differences are discussed. Having established the diffrences between the sets of instrumentation, spectra of maximum clear sky UV irradiances observed by these groups in New Zealand, Australia, and Europe are compared. The erythemally weighted irradiance observed in Melbourne Australia was the highest (0.35 W/sq m). Respective maxima for Lauder NZ and for Neuherberg Germany were 85% and 66% of that in Australia. Differences are larger for DNA-weighted UV.

  7. Second and third peaks in the non-resonant microwave absorption spectra of superconducting Bi2212 crystals

    CSIR Research Space (South Africa)

    Srinivasu, V V

    2010-04-01

    Full Text Available Non-resonant microwave absorption (NMA) measurements at liquid nitrogen temperature with systematic microwave power variation showed a two-peak structure in the Bi-2212 textured crystals, similar to that observed in the Bi-2212 single crystals...

  8. Forward modeling and retrieval of water vapor from the Global Ozone Monitoring Experiment: Treatment of narrowband absorption spectra

    NARCIS (Netherlands)

    Lang, R.; Maurellis, A.N.; van der Zande, W.J.; Aben, I.; Landgraf, J.; Ubachs, W.M.G.

    2002-01-01

    [1] We present the algorithm and results for a new fast forward modeling technique applied to the retrieval of atmospheric water vapor from satellite measurements using a weak ro-vibrational overtone band in the visible. The algorithm uses an Optical Absorption Coefficient Spectroscopy (OACS) method

  9. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  10. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  11. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  12. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    International Nuclear Information System (INIS)

    Gatuzz, E.; Mendoza, C.; García, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 10 21 cm –2 ; an ionization parameter of log ξ = –2.70 ± 0.023; an oxygen abundance of A O = 0.689 +0.015 -0.010 ; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A O =0.952 +0.020 -0.013 , a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  13. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  14. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement.

    Science.gov (United States)

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor's emission and acceptor's absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  15. Collisional Processing Of Comet And Asteroid Surfaces: Velocity Effects On Absorption Spectra

    Science.gov (United States)

    Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-10-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectroscopic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  16. Electronic absorption spectra and geometry of molecular ions generated from stilbene and related compounds, 3

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Ogawa, Keiichiro; Shida, Tadamasa; Kira, Akira.

    1983-01-01

    The radical ions of (Z)-stilbene and its α,β-dialkyl derivatives were produced by γ-ray irradiation of the parent compounds in frozen matrices at 77 K, and their geometries were investigated by electronic absorption spectroscopy. While the relaxed geometries of the radical ions of (Z)-stilbene are probably similar to that of the neutral molecule, those of the radical ions of the α,β-dialkyl derivatives are appreciably different from those of the neutral molecules: The torsion angle of the central ethylenic bond is distinctly larger and that of each C-Ph bond is probably smaller in the radical ions than in the neutral molecules. On illumination the radical ions of (Z)-stilbene isomerize to the E isomers, but those of the α,β-dialkyl derivatives do not. A mechanism of the photoisomerization is proposed, and an interpretation of the difference in the photochemical behavior between the unsubstituted stilbene radical ions and the α,β-dialkyl derivatives is given. (author)

  17. Use of X-Ray Absorption Spectra as a ``Fingerprint'' of the Local Environment in Complex Chalcogenides

    Science.gov (United States)

    Branci, C.; Womes, M.; Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J. C.

    2000-03-01

    The local environment of tin, titanium, iron, and sulfur in spinel compounds Cu2FeSn3S8 and Cu2FeTi3S8 was studied by X-ray absorption spectroscopy (XAS) at the titanium, iron, sulfur K edges, and the tin LI-edge. As detailed calculations of the electronic structure of these compounds are difficult to carry out due to the large number of atoms contained in the unit cell, the XAS spectra of the spinels are compared to those of relatively simple binary sulfides like SnS2, TiS2, and FeS. Indeed, the metal environments in these binary compounds are very similar to those in the spinels, and they can be considered good model compounds allowing the interpretation of electronic transitions observed in the spectra of quaternary phases. In the latter, the bottom of the conduction band is mainly formed by Sn 5s-S 3p, Sn 5p-S 3p antibonding states for the tin-based compounds and by Ti 3dt2g-S 3p, Ti 3deg-S 3p antibonding states for the titanium-based compounds. It it shown that the local environment of iron atoms remains unchanged when substituting tin with titanium atoms, according to a topotactic substitution.

  18. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    Science.gov (United States)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  19. Spectra of optical absorption and energy levels diagram of Er3+ ions in bulk crystals of aluminum nitride

    Science.gov (United States)

    Poletaev, N. K.; Skvortsov, A. P.

    2017-12-01

    The absorption spectra of the Er3+ ions embedded in the AlN matrix have been investigated. The admixture of erbium was introduced in bulk AlN crystals by diffusion. The absorption lines, which are associated with the intraconfigurational electronic f- f-transitions from the ground 4 I 15/2-state to the levels of ion Er3+ excited states have been observed in the spectral range of 370-700 nm. The transitions to the state levels 4 F 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 2 H 9/2, and 4 G 11/2 have been investigated in detail at the temperature T = 2 K. The number of the observed lines for these transitions coincides with the theoretically possible one for the electronic f- f-transitions in the ions Er3+, which are in the crystal field with the symmetry below cubic. The narrowness of the observed lines and their number convincingly testify the replacement of preferably one regular crystalline position by erbium ions. The implementation of Er3+ in the Al3+ position with the local symmetry C 3v appears the most probable. The energy positions of the levels of excited states for the investigated transitions have been determined. The diagram of the Er3+ ion energy levels in the AlN crystals has been built.

  20. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Blanco, S E

    2014-01-24

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π(*)). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Excited S 1 state dipole moments of nitrobenzene and p-nitroaniline from thermochromic effect on electronic absorption spectra

    Science.gov (United States)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-11-01

    The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.

  2. Soft x-ray absorption and emission spectra and the electronic structure of some exotic materials

    International Nuclear Information System (INIS)

    Ederer, D.L.; Canfield, L.R.; Callcott, T.A.; Tsang, K.L.; Zhang, C.H.; Arakawa, E.T.

    1988-01-01

    The technique of soft x-ray fluorescence spectroscopy (SXE) is complimentary to that of photoemission spectroscopy (PES). SXE probes the local partial density of states (PDOS), selects dipole allowed symmetries, and is not necessarily surface sensitive. PES on the other hand, averages over the DOS and can be used to measure the dispersion of the energy bands. PES is also very surface sensitive. We present measurements on the high T/sub c/ superconductors, the quasicrystalline phase of AlMn, and the LiAl intermetallic alloy. These measurements provide insight for theoretical modeling. In the case of the high T/sub c/ compound and the intermetallic compound the measurements are in good agreement with the theory. However, for the quasicrystals the measurements provide new insights to challenge theory. 13 refs., 3 figs

  3. Measurement of the Multi-TeV Gamma-Ray Flare Spectra of Markarian 421 and Markarian 501

    International Nuclear Information System (INIS)

    Krennrich, F.; Biller, S.D.; Bond, I.H.; Boyle, P.J.; Bradbury, S.M.; Breslin, A.C.; Buckley, J.H.; Burdett, A.M.; Gordo, J.B.; Carter-Lewis, D.A.; Catanese, M.; Cawley, M.F.; Fegan, D.J.; Finley, J.P.; Gaidos, J.A.; Hall, T.; Hillas, A.M.; Lamb, R.C.; Lessard, R.W.; Masterson, C.; McEnery, J.E.; Mohanty, G.; Moriarty, P.

    1999-01-01

    The energy spectrum of Markarian 421 in flaring states has been measured from 0.3 to 10 TeV using both small and large zenith angle observations with the Whipple Observatory 10 m imaging telescope. The large zenith angle technique is useful for extending spectra to high energies, and the extraction of spectra with this technique is discussed. The resulting spectrum of Markarian 421 is fitted reasonably well by a simple power law: J(E)=E -2.54±0.03±0.10 photons m -1 s -1 TeV -1 , where the first set of errors is statistical and the second set is systematic. This is in contrast to our recently reported spectrum of Markarian 501, which over a similar energy range has substantial curvature. The differences in TeV energy spectra of gamma-ray blazars reflect both the physics of the gamma-ray production mechanism and possibly differential absorption effects at the source or in the intergalactic medium. Since Markarian 421 and Markarian 501 have almost the same redshift (0.031 and 0.033, respectively), the difference in their energy spectra must be intrinsic to the sources and not due to intergalactic absorption, assuming the intergalactic infrared background is uniform. copyright copyright 1999. The American Astronomical Society

  4. Total absorption gamma-ray spectrometer for measurement of beta-decay intensity distributions for fission product radionuclides

    International Nuclear Information System (INIS)

    Greenwood, R.C.; Helmer, R.G.; Lee, M.A.; Putnam, M.H.; Oates, M.A.; Struttmann, D.A.; Watts, K.D.

    1992-01-01

    A total absorption γ-ray spectrometer (TAGS), based on a 25.4 cm diameterx30.5 cm long NaI(Tl) well detector, has been developed at the INEL on-line isotope separator facility. A Si detector in the well of the NaI(Tl) detector allows one to collect β-particle-gated coincidence spectra as well as singles spectra. With this system, measurements of the total absorption spectra have been made for a number of fission product nuclei. The analysis of the measured spectra is based on response functions for single γ rays that are computed with a Monte Carlo code. Routines have been written to use these response functions to simulate the response to a cascade of several γ rays and by extension to a whole decay scheme. The bremsstrahlung from a ground-state β branch can also be simulated. The quality of the simulation is demonstrated for test spectra of 137 Cs, 24 Na, 60 Co, and 110m Ag. As examples of the operation of this system, the measurements and analyses of the β-decay feeding distributions are described for the decay of 141 Ba, 139 Cs and 140 Cs. (orig.)

  5. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    Science.gov (United States)

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  6. The device for measuring amplitude spectra of ionizing irradiation

    International Nuclear Information System (INIS)

    Polyak, Yu.V.; Nebesnyj, A.F.

    1996-01-01

    The front-end electronic device for measuring of amplitude spectra of ionizing radiation have been made. The device have connection interface with the ionizing radiation detector, the pulse former, adapter, memory, electron ray tube with diode, supply unit and the regime setting unit of the work of electron ray tube. There are linear transmission scheme, level discriminator, pulse series - channel code converter, dividing capacitor in the device. Dynode of electron ray tube has been made in the form of rack or pads installed in the line parallel to axis of vertical scanning and electrically joined with each other. The distance between next tooth of rack or pads is Δy≥0,5 d, where d - diameter of focused electron beam of electron ray tube. The output of pulse former is joined with level discriminator and the first entrance of linear transmission scheme. The output of linear transmission scheme is joined with the entrance of pulse delay scheme, and the second entrance is joined with the first output of level discriminator. The output of pulse delay scheme is joined with Y-deflecting plate of electron ray tube. The first and the second entrance of pulse series - channel code converter are joined correspondingly with the output of adapter and the second output of level discriminator, and its output - with the entrance of memory unit. The first pin of loading resistor is joined through dividing capacitor with the entrance of adapter, its second pin - with the anode output nearest to dynode of electron ray tube. (E.V.Kh.)

  7. Evidence for the presence of the 802.7/cm band Q branch of HO2NO2 in high resolution solar absorption spectra of the stratosphere

    Science.gov (United States)

    Rinsland, C. P.; Zander, R.; Farmer, C. B.; Norton, R. H.; Brown, L. R.; Russell, J. M., III; Park, J. H.

    1986-08-01

    Stratospheric solar absorption spectra recorded at ≡0.01 cm-1 resolution by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer during the Spacelab 3 Shuttle mission show a weak absorption feature covering ≡802.5 - 803.3 cm-1. The authors identify this feature as the unresolved Q branch of the 802.7 cm-1 band of HO2NO2 and report profiles for 31°N and 47°S.

  8. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  9. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  10. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  11. Magnetic measurements, Raman and infrared spectra of metal ...

    Indian Academy of Sciences (India)

    2018-04-06

    Apr 6, 2018 ... [24] Bandyopadhyay A, Sutradhar S, Sarkar B J, Deb A. K and Chakbarti P K 2012 Appl. Phys. Lett. 100. 252411. [25] Nakamoto K 1997 Infrared and Raman spectra of inorganic and coordination compounds (New York: John Wiley & Sons. Inc.) 5th edn. [26] Faulques E, Perry D I, Lott S, Zubkowski J D and ...

  12. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  13. Differential absorption lidar systems for tropospheric and stratospheric ozone measurements

    Science.gov (United States)

    Mcdermid, I. Stuart; Haner, David A.; Kleiman, Moshe M.; Walsh, T. Daniel; White, Mary L.

    1991-01-01

    A lidar facility has been established at the Jet Propulsion Laboratory-Table Mountain Facility located at an altitude of 2300 m in the San Gabriel Mountains in Southern California. This facility is using the technique of differential absorption lidar to measure atmospheric ozone concentration profiles. Two separate systems are needed to obtain the profile from the ground up to an altitude of 45 to 50 km. An Nd:YAG-based system is described for measurements from the ground up to 15 to 20 km altitude, and an excimer-laser-based system for measurements from 15 km to 45 to 50 km altitude. The systems were designed to make high-precision, long-term measurements to aid in the detection of changes in the atmospheric ozone abundance through participation in the Network of Detection of Stratospheric Change.

  14. Measurements of light absorption efficiency in InSb nanowires

    Directory of Open Access Journals (Sweden)

    A. Jurgilaitis

    2014-01-01

    Full Text Available We report on measurements of the light absorption efficiency of InSb nanowires. The absorbed 70 fs light pulse generates carriers, which equilibrate with the lattice via electron-phonon coupling. The increase in lattice temperature is manifested as a strain that can be measured with X-ray diffraction. The diffracted X-ray signal from the excited sample was measured using a streak camera. The amount of absorbed light was deduced by comparing X-ray diffraction measurements with simulations. It was found that 3.0(6% of the radiation incident on the sample was absorbed by the nanowires, which cover 2.5% of the sample.

  15. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  16. Measurement of the bremsstrahlung spectra generated from thick ...

    Indian Academy of Sciences (India)

    of 10 keV electrons. The photon's detection angle with respect to incident beam direction, θ = 135°. ♢: Present experiment; - - -: MC simulation. events in which the incident electrons lose all of their energies in one encounter with the target atoms without undergoing an appreciable absorption of emitted photons by the target.

  17. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    Science.gov (United States)

    Smolin, Sergey Y.

    -derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance change in the near-infrared region in LSFO is indicative of carrier bandfilling of newly created electronic states by photoexcited carriers. Moreover, we find that similar transient spectral trends can be induced with A

  18. Accurate determination of low state rotational quantum numbers (J < 4) from planar-jet and liquid nitrogen cell absorption spectra of methane near 1.4 micron

    Czech Academy of Sciences Publication Activity Database

    Votava, Ondřej; Mašát, M.; Pracna, Petr; Kassi, S.

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3145-3155 ISSN 1463-9076 R&D Projects: GA AV ČR IAA400400706 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * absorption spectra * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  19. Classification and individualization of black ballpoint pen inks using principal component analysis of UV-vis absorption spectra.

    Science.gov (United States)

    Adam, Craig D; Sherratt, Sarah L; Zholobenko, Vladimir L

    2008-01-15

    The technique of principal component analysis has been applied to the UV-vis spectra of inks obtained from a wide range of black ballpoint pens available in the UK market. Both the pen ink and material extracted from the ink line on paper have been examined. Here, principal component analysis characterised each spectrum within a group through the numerical loadings attached to the first few principal components. Analysis of the spectra from multiple measurements on the same brand of pen showed excellent reproducibility and clear discrimination between inks that was supported by statistical analysis. Indeed it was possible to discriminate between the pen ink and the ink line from all brands examined in this way, suggesting that the solvent extraction process may have an influence on these results. For the complete set of 25 pens, interpretation of the loadings for the first few principal components showed that both the pen inks and the extracted ink lines may be classified in an objective manner and in agreement with the results of parallel thin layer chromatography studies. Within each class almost all inks could be individualised. Further work has shown that principal component analysis may be used to identify a particular ink from a database of reference UV-vis spectra and a strategy for developing this approach is suggested.

  20. TD-M06-2X insights into the absorption and emission spectra of dichlorvos and its molecularly imprinted recognition by methacrylic acid.

    Science.gov (United States)

    Cheng, Xueli

    2016-11-01

    The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.

  1. Oscillator strengths for absorption spectra of Pr/sup 3 +/, Nd/sup 3 +/, Eu/sup 3 +/, Er/sup 3 +/ and Yb/sup 3 +/ ions in GaCl/sub 3/-SOCl/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Batyaev, I.M.; Shilov, S.M.

    1984-07-01

    The solutions of Pr/sup 3 +/, ND/sup 3 +/, Eu/sup 3 +/, Er/sup 3 +/, and Yb/sup 3 +/ chlorides in the aprotic inorganic solvent GaCl/sub 3/-SOCl/sub 2/ are prepared. The absorption spectra in the range 5000-24000 cm/sup -1/ are measured. In general, the correlation between the calculated (on the basis of Judd-Ofelt theory) and observed intensities in the solution absorption spectra is very good. The variation of the intensity parameters tausub(lambda) (where tausub(lambda)-values describing radial wave functions state, refrective index of a medium and ligand field parameters which is characteristic to the vicinity of rare-earth metal ions) over the series is discussed.

  2. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  3. Measurement of the thorium absorption cross section shape near thermal energy (LWBR development program)

    International Nuclear Information System (INIS)

    Green, L.

    1976-11-01

    The shape of the thorium absorption cross section near thermal energies was investigated. This shape is dominated by one or more negative energy resonances whose parameters are not directly known, but must be inferred from higher energy data. Since the integral quantity most conveniently describing the thermal cross section shape is the Westcottg-factor, effort was directed toward establishing this quantity to high precision. Three nearly independent g-factor estimates were obtained from measurements on a variety of foils in three different neutron spectra provided by polyethylene-moderated neutrons from a 252 Cf source and from irradiations in the National Bureau of Standards ''Standard Thermal Neutron Density.'' The weighted average of the three measurements was 0.993 +- 0.004. This is in good agreement with two recent evaluations and supports the adequacy of the current cross section descriptions

  4. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself.

    This new approach provides a description of the SCD the exactness of which depends on the order of the Taylor expansion, and is independent from any assumptions or a priori knowledge of the considered absorbers.

    In case studies of simulated and measured spectra in the UV range (332–357 nm, we demonstrate the improvement by this approach for the retrieval of vertical profiles of BrO from the SCIAMACHY limb observations. The results for BrO obtained from the simulated spectra are closer to the true profiles, when applying the new method for the SCDs of ozone, than when the standard DOAS approach is used. For the measured spectra the agreement with validation measurements is also improved significantly, especially for cases with strong ozone absorption.

    While the focus of this article is on the improvement of the BrO profile retrieval from the SCIAMACHY limb measurements, the novel approach may be applied to a wide range of DOAS retrievals.

  5. Measurements of Iodine Monoxide Levels During the CAST Campaign Using Broadband Cavity Enhanced Absorption Spectroscopy

    Science.gov (United States)

    Harris, N. R. P.; Popoola, O. A.; McLeod, M.; Ouyang, B.; Jones, R. L.

    2014-12-01

    Iodine monoxide (IO) has been regarded as an important radical involved in the ozone destruction in the remote marine boundary layer. Here we presented the first in situ aircraft measurements of IO using broadband cavity enhanced absorption spectroscopy with 1s -sensitivity of ~1.5 ppt Hz-1/2 on the surface level during the Coordinated Airborne Studies in the Tropics (CAST) campaign between January - February 2014. IO was retrieved from analysis of absorption spectrum recorded between 415 nm - 452.5 nm. Instrument baseline corresponding to the "zero" signal of IO was obtained by injection of ~20 ppb of nitric oxide (NO) into the sample air at chosen frequency and period. No clear absorption feature was observable from the spectra by eye with up to 100 seconds averaging, pointing to very low mixing ratios (<~0.5 ppt) of IO over the sampled area. A small positive bias (~0.3 ppt) of IO (against the baseline signal during NO titration) was obtained in the statistical histogram of retrieved IO from average of each straight and level run, but little altitude dependence was noted. In summary, our observation appears to support the existence of IO in the remote marine boundary above the Pacific Ocean at sub ppt levels, but the limited sensitivity precludes us from quantifying spatial gradients more accurately.

  6. Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions

    Science.gov (United States)

    Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy

    2017-04-01

    DIFFERENTIAL ABSORPTION LIDAR (DIAL) MEASURMENTS OF LANDFILL METHANE EMISSIONS F. INNOCENTI *, R.A. ROBINSON *, T.D. GARDINER, A. FINLAYSON *, A. CONNOR* * National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is an important element of climate change research. Range-resolved infrared Differential Absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. DIAL is a powerful technique that can be used to track and quantify plumes emitted from area emission sources such as landfill sites, waste water treatment plants and petrochemical plants. By using lidar (light detection and ranging), the DIAL technique is able to make remote range-resolved single-ended measurements of the actual distribution of target gases in the atmosphere, with no disruption to normal site operational activities. DIAL provides 3D mapping of emission concentrations and quantification of emission rates for a wide range of target gases such as methane. The NPL DIAL laser source is operated alternately at two similar wavelengths. One of these, termed the "on-resonant wavelength", is chosen to be at a wavelength which is absorbed by the target species. The other, the "off-resonant wavelength", is chosen to be at a nearby wavelength which is not absorbed significantly by the target species. The two wavelengths are chosen to be close, so that the atmospheric scattering properties are the same for both wavelengths. They are also chosen so that any differential absorption due to other atmospheric species are minimised. Any measured difference in the returned signals is therefore due to absorption by the target gas. In the typical DIAL measurement configuration the mobile DIAL facility is positioned downwind of the area being

  7. Measuring sound absorption: considerations on the measurement of the active acoustic power

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    Using a local plane wave assumption, one can determine the normal incidence sound absorption coefficient of a surface by measuring the acoustic pressure and the particle velocity normal to that surface. As the measurement surface lies in front of the material surface, the measured active and

  8. DOAS (differential optical absorption spectroscopy) urban pollution measurements

    Science.gov (United States)

    Stevens, Robert K.; Vossler, T. L.

    1991-05-01

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.

  9. Measurement of iron absorption from meals contaminated with iron

    International Nuclear Information System (INIS)

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-01-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer

  10. Ultra sound absorption measurements in rock samples at low temperatures

    Science.gov (United States)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  11. Study of Material Moisture Measurement Method and Instrument by the Combination of Fast Neutron Absorption and γ Absorption

    International Nuclear Information System (INIS)

    Hou Chaoqin; Gong Yalin; Zhang Wei; Shang Qingmin; Li Yanfeng; Gou Qiangyuan; Yin Deyou

    2010-01-01

    To solve the problem of on-line sinter moisture measurement in the iron making plant, we developed material moisture measurement method and instrument by the combination of fast neutron absorption and y-absorption. It overcomes the present existed problems of other moisture meters for the sinter. Compare with microwave moisture meter, the measurement dose not affected by conductance and magnetism of material; to infrared moisture meter, the measurement result dose not influenced by colour and light-reflect performance of material surface, dose not influenced by changes of material kind; to slow neutron scatter moisture meter, the measurement dose not affected by density of material and thickness of hopper wall; to the moisture measurement meter which combined by slow neutron penetrate through and y-absorption, there are definite math model and good linear relation between the measurement values, and the measurement dose not affected by material thickness, changes of material form and component. (authors)

  12. Quantitative materials analysis of micro devices using absorption-based thickness measurements

    International Nuclear Information System (INIS)

    Sim, L M; Wog, B S; Spowage, A C

    2006-01-01

    Preliminary work in designing an X-ray inspection machine with the capability of providing quantitative thickness analysis based on absorption measurements has been demonstrated. This study attempts to use the gray levels data to investigate the nature and thickness of occluded features and materials within devices. The investigation focused on metallic materials essential to semiconductor and MEMS technologies such as tin, aluminium, copper, silver, iron and zinc. The materials were arranged to simulate different feature thicknesses and sample geometries. The X-ray parameters were varied in-order to modify the X-ray energy spectrum with the aim of optimising the measurement conditions for each sample. The capability of the method to resolve differences in thicknesses was found to be highly dependent on the material. The thickness resolution with aluminium was the poorest due to its low radiographic density. The thickness resolutions achievable for silver and tin were significantly better and of the order of 0.015 mm and 0.025 mm respectively. From the linear relationship between the X-ray attenuation and sample thickness established, the energy dependent linear attenuation coefficient for each material was determined for a series of specific energy spectra. A decrease in the linear attenuation coefficient was observed as the applied voltage and thickness of the material increased. The results provide a platform for the development of a novel absorption-based thickness measurement system that can be optimised for a range of industrial applications

  13. Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.

    Science.gov (United States)

    Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R

    2017-07-01

    To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.

  14. Determination of electromagnetic absorption parameters by reflection measurements

    International Nuclear Information System (INIS)

    Vittitoe, C.N.

    1975-09-01

    The method described is for determining the electromagnetic absorption parameters of a material by measuring the optical reflection from a thick sample. With linearly polarized incident light (both perpendicular to and parallel to the plane of incidence), the ratio of the reflected intensities at three or more angles of incidence offers promise for determining the complex index of refraction of a material for a broad range of parameter values. The method may be applicable to molten materials, such as UO 2 , where high temperatures cause corrosion and containment difficulties. A method is given for extending the data to neighboring frequencies. Use of the method was successful for all portions of the complex index of refraction plane except for small values of the extinction coefficient

  15. STUDY ON EUROPEAN FUNDS ABSORPTION IN ROMANIA FOR MEASURE 313

    Directory of Open Access Journals (Sweden)

    Florentina D. MATEI

    2014-06-01

    Full Text Available In this paper we wish to highlight the main causes of regional disparities in Romania in terms of absorption of European funds through Measure 313: Encouragement of tourism activities. The post-accession of Romania shows a major deficiency in attracting funds from the European Union, this situation is generated, in particular, by the lack of a coherent long-term vision of the authorities, insufficient resources for co-financing projects, low administrative capacity at central and local level, lack of inter-institutional coordination, public-private partnerships failures and insufficient skilled human resources . We will analyze the number of projects approved and implemented in each region of Romania (2007-2013 to establish the real possibilities of expansion of rural tourism.

  16. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  17. Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA.

    Science.gov (United States)

    Bruijns, Brigitte; Tiggelaar, Roald; Gardeniers, Han

    2017-02-01

    This article describes data related to a research article entitled "Fluorescent cyanine dyes for the quantification of low amounts of dsDNA" (B. Bruijns, R. Tiggelaar, J. Gardeniers, 2016) [1]. Six cyanine dsDNA dyes - EvaGreen, SYBR Green, PicoGreen, AccuClear, AccuBlue NextGen and YOYO-1 - are investigated and in this article the absorption spectra, as well as excitation and emission spectra, for all six researched cyanine dyes are given, all recorded under exactly identical experimental conditions. The intensity graphs, with the relative fluorescence in the presence of low amounts of dsDNA, are also provided.

  18. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  19. Time-Resolved Absorption and Resonance Raman Spectra of the lowest Excited Triplet State of All-Trans-1,3,5-Heptatriene

    DEFF Research Database (Denmark)

    Langkilde, Frans; Wilbrandt, Robert Walter; Jensen, Niels-Henrik

    1984-01-01

    The lowest excited triplet state of all-trans-1,3,5-heptatriene has been studied by time-resolved absorption and resonance Raman spectroscopy. The difference absorption spectrum of the triplet state has a maximum around 315 nm, and the triplet state decays by first-order kinetics with k = (3.4 ± 0.......3) × 106 s−1. Time-resolved resonance Raman spectra of the heptatriene triplet excited at 317.5 nm showed bands at 1574, 1298, 1275, 1252, 1209, and 1132 cm−1....

  20. Millimeter wave transmittance/absorption measurements on micro and nano hexaferrites

    Science.gov (United States)

    Korolev, Konstantin A.; Chen, Shu; Barua, Radhika; Afsar, Mohammed N.; Chen, Yajie; Harris, Vincent G.

    2017-05-01

    Millimeter wave transmittance measurements have been successfully performed on commercial samples of micro- and nano-sized particles of BaFe12O19 and SrFe12O19 hexaferrite powders and nano-sized particles of BaFeO2 and SrFeO2 powders. Broadband millimeter wave transmittance measurements have been performed using free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of ferrite powders, as well as saturation magnetization and anisotropy field have been determined based on Schlöemann's theory for partially magnetized ferrites. Micro- and nano-sized ferrite powders have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all ferrite powders. These materials seem to be quite promising as tunable millimeter wave absorbers and filters, based on their size-dependent absorption.

  1. Millimeter wave transmittance/absorption measurements on micro and nano hexaferrites

    Directory of Open Access Journals (Sweden)

    Konstantin A. Korolev

    2017-05-01

    Full Text Available Millimeter wave transmittance measurements have been successfully performed on commercial samples of micro- and nano-sized particles of BaFe12O19 and SrFe12O19 hexaferrite powders and nano-sized particles of BaFeO2 and SrFeO2 powders. Broadband millimeter wave transmittance measurements have been performed using free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 – 120 GHz. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of ferrite powders, as well as saturation magnetization and anisotropy field have been determined based on Schlöemann’s theory for partially magnetized ferrites. Micro- and nano-sized ferrite powders have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all ferrite powders. These materials seem to be quite promising as tunable millimeter wave absorbers and filters, based on their size-dependent absorption.

  2. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Van Dijk, M.A.; Zhu, G.; Gong, Z.; Li, Y.M.; Qin, B.

    2009-01-01

    Total particulate, tripton and phytoplankton absorption coefficients were measured for eutrophic (Lake Taihu), meso-eutrophic (Lake Tianmuhu) and mesotrophic waters (the Three Gorges Reservoir) in China using the quantitative filter technique. Meanwhile, tripton and phytoplankton absorption

  3. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  4. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Science.gov (United States)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  5. MARVEL analysis of the measured high-resolution spectra of 14NH3

    International Nuclear Information System (INIS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-01-01

    Accurate, experimental rotational–vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14 NH 3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm −1 region, with a large gap between 7000 and 15 000 cm −1 . The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para- 14 NH 3 , respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14 NH 3 , 8 for ortho- and 22 for para- 14 NH 3 . The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- 14 NH 3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14 NH 3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14 NH 3 ; these lines are also deposited in the Supporting Information to this paper

  6. Solvent effect on UV/Vis absorption and emission spectra in aqueous solution based on a modified form of solvent reorganization energy

    Science.gov (United States)

    Ren, HaiSheng; Ming, MeiJun; Zhu, Jun; Ma, JianYi; Li, XiangYuan

    2013-09-01

    In this Letter, novel form of solvatochromic shifts for absorption and emission spectra are proposed. As a typical test, the lowest transitions of s-trans-acrolein in aqueous solution are investigated. The obtained absorption solvent shift of 0.22 eV is in good agreement with the experimental value of 0.20 eV. In addition, we predict emission solvent shift of -0.16 eV. This value seems more reasonable comparing with the value of -0.12 eV by the traditional theory. The contributions to the shift are discussed and electrostatic polarization components are found to be crucial for electronic spectra of acrolein in water.

  7. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans

    Science.gov (United States)

    Gomez-Amaro, Rafael L.; Valentine, Elizabeth R.; Carretero, Maria; LeBoeuf, Sarah E.; Rangaraju, Sunitha; Broaddus, Caroline D.; Solis, Gregory M.; Williamson, James R.; Petrascheck, Michael

    2015-01-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. PMID:25903497

  8. A global method for handling fluorescence spectra at high concentration derived from the competition between emission and absorption of colloidal CdTe quantum dots.

    Science.gov (United States)

    Noblet, Thomas; Dreesen, Laurent; Hottechamps, Julie; Humbert, Christophe

    2017-10-11

    We investigate the effects of the concentration of CdTe quantum dots (QDs) on their fluorescence in water. The emission spectra, acquired in right angle geometry, exhibit highly variable shapes. The measurements evidence a critical value of the concentration beyond which the intensity and the spectral bandwidth decrease and the fluorescence maximum is redshifted. To account for these observations, we develop a model based on the primary and secondary inner filter effects. The accuracy of the model ensures that the concentration dependent behaviour of QD fluorescence is completely due to inner filter effects. This result is all the more interesting because it precludes the assumption of dynamic quenching. As a matter of fact, the decrease of the emission intensity is not a consequence of collisional quenching but an effect of competition between fluorescence and absorption. We even show that this phenomenon is linked not only to the QD concentration but also to the geometric configuration of the setup. Hence, our analytical model can be easily adapted to every fluorescence spectroscopy configuration to quantitatively predict or correct inner filter effects in the case of QDs or any fluorophore, and thus improve the handling of fluorescence spectroscopy for highly concentrated solutions.

  9. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Directory of Open Access Journals (Sweden)

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  10. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  11. Real-Time Measurement of Fluorescence Spectra From Single Airborne Biological Particles

    National Research Council Canada - National Science Library

    Hill, Steven

    1999-01-01

    ... (total and spectrally dispersed) of individual airborne particles, and describe our present system, which can measure fluorescence spectra or single micrometer-sized bioaerosol particles with good signal-to-noise ratios...

  12. Time-of-flight techniques applied to neutron spectra measurements in fast subcritical assemblies

    International Nuclear Information System (INIS)

    Rotival, Michel

    1975-04-01

    Time-of-flight measurements on Uranium-Graphite assemblies were performed using the BCMN linear accelerator. Methods to provide scalar spectra averaged over a core cell from these experimental results are described [fr

  13. Influence of TiO2 Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer

    Directory of Open Access Journals (Sweden)

    Puhong Wen

    2012-01-01

    Full Text Available The absorption spectra of N719 sensitizer anchored on the films prepared by TiO2 nanocrystals with different morphology and size were investigated for improving the performance of dye-sensitized solar cell (DSC. We find that the morphology and size of TiO2 nanocrystals can affect the UV-vis and FT-IR spectra of the sensitizer anchored on their surfaces. In particular, the low-energy metal-to-ligand charge-transfer transitions (MLCT band in the visible absorption spectra of N719 is strongly affected, and locations of these MLCT bands revealed larger differences. The results indicate that there is a red shift of MLCT band in the spectra obtained by using TiO2 nanocrystals with long morphology and large size compared to that in solution. And it produced a larger red-shift on the MLCT band after TiO2 nanocrystals with small size mixed with some long nanocrystals. Accordingly, the utilization rate to visible light is increased. This is a reason why the DSC prepared by using such film as a photoelectrode has better performance than before mixing.

  14. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  15. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  16. Solar-absorption measurements of ozone from two ground based FTIR sites

    Science.gov (United States)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  17. Comparison of damage measures based on fiber Bragg grating spectra

    International Nuclear Information System (INIS)

    Park, Chun; Peters, Kara

    2012-01-01

    We compare the performance of four different damage measures based on the full spectral response of fiber Bragg grating (FBG) sensors: spectral bandwidth, number of peaks, cross-correlation coefficient and fractal dimension. These damage measures provide a rapid indication of the extent of damage near the FBG sensor. Each damage measure is applied to data simulating the response of a FBG to a pure strain gradient and experimental data from FBG sensors embedded in a laminate subjected to multiple impacts. The cross-correlation coefficient and number of peaks did not perform well for the experimental data. The spectral bandwidth presented a low sensitivity to noise and a high sensitivity to rapidly increasing strain fields, whereas the fractal dimension was more sensitive to more gradually changing strain fields. Ultimately, the best strategy would be to fuse the results of the spectral bandwidth and fractal dimension damage measures to incorporate the strengths of each approach. At the same time, this study highlighted the challenges in using such spectral data from FBG sensors embedded in structural materials, primarily due to the variability in response between sensors exposed to the same damage states. (paper)

  18. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  19. Mass Measurement Using Energy Spectra in Three-body Decays

    CERN Document Server

    Agashe, Kaustubh; Kim, Doojin; Wardlow, Kyle

    2016-01-01

    In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off-shell bottom squark. The combinatorial background stemming from the indi...

  20. Measurements of the Absorptive Properties of the Ionosphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absorption of radio waves occurs when electrons responding to the wave fields collide with and transfer energy to the neutral particles. A study of ionospheric...

  1. Evolutionary Spectra Estimation of Field Measurement Typhoon Processes Using Wavelets

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available This paper presents a wavelet-based method for estimating evolutionary power spectral density (EPSD of nonstationary stochastic oscillatory processes and its application to field measured typhoon processes. The EPSD, which is deduced in a closed form based on the definition of the EPSD and the algorithm of the continuous wavelet transform, can be formulated as a sum of squared moduli of the wavelet functions in time domain modulated by frequency-dependent coefficients that relate to the squared values of wavelet coefficients and two wavelet functions with different time shifts. A parametric study is conducted to examine the efficacy of the wavelet-based estimation method and the accuracy of different wavelets. The results indicate that all of the estimated EPSDs have acceptable accuracy in engineering application and the Morlet transform can provide desirable estimations in both time and frequency domains. Finally, the proposed method is adopted to investigate the time-frequency characteristics of the Typhoon Matsa measured in bridge site. The nonstationary energy distribution and stationary frequency component during the whole process are found. The work in this paper may promote an improved understanding of the nonstationary features of typhoon winds.

  2. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    Science.gov (United States)

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Study of the peak shape in alpha spectra measured by liquid scintillation

    CERN Document Server

    Vera-Tome, F; Martin-Sanchez, A

    2002-01-01

    Liquid-scintillation counting allows the measurement of alpha and beta activities jointly or only of the alpha-emitting nuclides in a sample. Although the resolution of the alpha spectra is poorer than that attained with semiconductor detectors, it is still an attractive alternative. We describe here attempts to fit a peak shape to experimental liquid-scintillation alpha spectra and discuss the parameters affecting this shape, such as the PSA (pulse-shape analyser) level, vial type, shaking the sample, etc. Spectral analysis has been applied for complex alpha spectra.

  4. Water vapor measurements in the 0.94 micron absorption band - Calibration, measurements and data applications

    Science.gov (United States)

    Reagan, J. A.; Thome, K.; Herman, B.; Gall, R.

    1987-01-01

    This paper describes methods and presents results for sensing the columnar content of atmospheric water vapor via differential solar transmission measurements in and adjacent to the 0.94-micron water-vapor absorption band. Calibration and measurement techniques are presented for obtaining the water vapor transmission from the radiometer measurements. Models are also presented for retrieving the columnar water vapor amount from the estimated transmission. Example retrievals are presented for radiometer measurements made during the 1986 Arizona Monsoon Season to track temporal variations in columnar water vapor amount.

  5. Novel Instrument to Measure Aerosol Fluorescence, Absorption, and Scattering, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Picarro, Inc proposes to develop the first cavity ringdown spectroscopy (CRDS) system to measure fluorescence, absorption, and scattering properties of atmospheric...

  6. SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.

    Science.gov (United States)

    Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E

    2012-06-01

    To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.

  7. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    OpenAIRE

    Sinev, V. V.

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-prol...

  8. Effect of reflection and refraction on NEXAFS spectra measured in TEY mode.

    Science.gov (United States)

    Filatova, Elena; Sokolov, Andrey

    2018-01-01

    The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO 2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θ c . Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers-Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail.

  9. Measurement of CIB power spectra over large sky areas from Planck HFI maps

    Science.gov (United States)

    Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2017-04-01

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.

  10. Measurement of time-dependent fast neutron energy spectra in a depleted uranium assembly

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-10-01

    Time-dependent neutron energy spectra in the range 0.6 to 6.4 MeV have been measured in a depleted uranium assembly. By selecting windows in the time range 0.9 to 82 ns after the beam pulse, it was possible to observe the change of the neutron energy distributions from spectra of predominantly 4 to 6 MeV neutrons to spectra composed almost entirely of fission neutrons. The measured spectra were compared to a Monte Carlo calculation of the experiment using the ENDF/B-IV data file. At times and energies at which the calculation predicted a fission spectrum, the experiment agreed with the calculation, confirming the accuracy of the neutron spectroscopy system. However, the presence of discrepancies at other times and energies suggested that there are significant inconsistencies in the inelastic cross sections in the 1 to 6 MeV range. The time response generated concurrently with the energy spectra was compared to the Monte Carlo calculation. From this comparison, and from examination of time spectra measured by other workers using 235 U and 237 Np fission detectors, it would appear that there are discrepancies in the ENDF/B-IV cross sections below 1 MeV. The predicted decay rates were too low below and too high above 0.8 MeV

  11. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    Science.gov (United States)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-07

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  12. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in t....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  13. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  14. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  15. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  16. Water absorption tests for measuring permeability of field concrete.

    Science.gov (United States)

    2013-09-01

    The research results from CFIRE Project 04-06 were communicated to engineers and researchers in this project. : Specifically, the water absorption of concrete samples (i.e., 2-in. thick, 4-in. diameter discs cut from concrete : cylinders) was found s...

  17. Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.

    Science.gov (United States)

    Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G

    1979-01-01

    A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium.

  18. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high tempera...... to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851are newly assigned to mainly hot bands involving vibrational states as high as v2=5....

  19. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  20. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar.

    Science.gov (United States)

    Abshire, James B; Riris, Haris; Weaver, Clark J; Mao, Jianping; Allan, Graham R; Hasselbrack, William E; Browell, Edward V

    2013-07-01

    We report on airborne CO(2) column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO(2) line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 8-10 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  1. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  2. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  3. Absorption and fluorescence spectra of Am{sup 3+}-doped Cs{sub 2}NaLuCl{sub 6} elpasolite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barbanel`, Yu.A.; Chudnovskaya, G.P.; Dushin, R.B.; Kolin, V.V.; Kotlin, V.P.; Nekhoroshkov, S.N.; Pen`kin, M.V. [Radievyj Inst., St. Petersburg (Russian Federation)

    1998-07-24

    Low-temperature absorption and fluorescence (including self-fluorescence) spectra of Am{sup 3+} in the elpasolite lattice have been studied in the regions of the {sup 7}F{sub 6}<-{sup 7}F{sub 0} and {sup 5}L{sub 6}{yields}{sup 7}F{sub 0} transitions, correspondingly. Ten crystal field sublevels in the {sup 7}F{sub 6} and {sup 5}L{sub 6} levels have been localized and assigned. The crystal field parameters have been calculated for the AmCl{sub 6}{sup 3-} complex. (orig.) 17 refs.

  4. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andriashin, A.V.; Devkin, B.V.; Lychagin, A.A.; Minko, J.V.; Mironov, A.N.; Nesterenko, V.S.; Sztaricskai, T.; Petoe, G.; Vasvary, L.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra from (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (Auth.)

  5. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andryashin, A.V.; Devlein, B.V.; Lychagin, A.A.; Minko, Y.V.; Mironov, A.N.; Nesterenko, V.S.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra form (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (author). 3 figs., 6 refs

  6. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  7. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  8. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  9. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    Science.gov (United States)

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-04-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  10. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  11. A new technique of measuring trace absorption of optical thin films

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Sahoo, N.K.

    1993-01-01

    An instrument to measure trace absorption of optical thin films is indigenously developed using a novel technique. The instrument based on calorimetric principle measures the temperature rise and absorption of a sample simultaneously by two independent techniques. Such a dual technique feature enables one to measure the sample absorption with the first technique and simultaneously check the result with the second technique. The instrument can be used to measure trace absorption of dielectric optical thin films in UV, visible and near-IR spectral regions. Using the new instrument the absorption constant β and extinction coefficient k of Sb 2 O 3 and ZrO 2 films at 308 and 337 nm are measured successfully and reported for the first time. (author). 16 refs., 6 figs., 3 tabs

  12. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which......Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite...... absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...

  13. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    Science.gov (United States)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  14. Interpretation of polarized Cu K x-ray absorption near-edge-structure spectra of CuO

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Šimůnek, Antonín

    2001-01-01

    Roč. 13, - (2001), s. 8519-8525 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z1010914 Keywords : polarized Cu K-edge spectra * CuO * band-structure calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.611, year: 2001

  15. Estimations of On-site Directional Wave Spectra from Measured Ship Responses

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2006-01-01

    include an quivalence of energy in the governing equations and, as regards the parametric concept, a frequency dependent spreading of the waves is introduced. The paper includes an extensive analysis of full-scale measurements for which the directional wave spectra are estimated by the two ship response......In general, two main concepts can be applied to estimate the on-site directional wave spectrum on the basis of ship response measurements: 1) a parametric method which assumes the wave spectrum to be composed by parameterised wave spectra, or 2) a non-parametric method where the directional wave...

  16. Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data

    International Nuclear Information System (INIS)

    Wilson, W.B.; Bozoian, M.; Perry, R.T.

    1988-01-01

    One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs

  17. Measurement of double-differential neutron emission spectra from uranium-238

    International Nuclear Information System (INIS)

    Baba, Mamoru; Wakabayashi, Hidetaka; Ito, Nobuo; Maeda, Kazuto; Hirakawa, Naohiro

    1990-01-01

    We have performed the measurement of neutron emission spectra from 238 U using a time-of-flight technique, and deduced the following data; (1) the prompt fission neutron spectra for 2 MeV incident neutrons at two emission angles of 90deg and 135deg, (2) the double-differential neutron emission cross sections at the incident energies of 1.2, 2.0, 4.2, 6.1 and 14.1 MeV. The emission spectra and the cross sections for scattering process were also deduced by subtracting the fission neutrons from the experimental spectra. The experimental results were compared with other experiments and the evaluations of JENDL-3 and ENDF/B-IV. From the fission spectrum data ranging from 2 to 12 MeV, we have derived the best fit parameters for the Maxwellian and Watt type distribution functions. The experimental spectra are described with the Maxwellian spectrum with temperature of 1.24∼1.26 MeV and are softer than both evaluations. The spectra and cross sections for inelastic-scattering showed substantial disagreement with the evaluations concerning the discrete levels between 0.5 and 1.2 MeV, and continuum neutrons due to evaporation and pre-equilibrium processes. The secondary neutron angular distributions at 14 MeV incident energy were reproduced fairly well with the systematics. (author)

  18. STRONG MAGNETIC-X-RAY DICHROISM IN 2P ABSORPTION-SPECTRA OF 3D TRANSITION-METAL IONS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    1991-01-01

    From atomic calculations in crystal-field symmetry we find a very strong circular and linear dichroism in the 2p x-ray absorption edges of magnetically ordered 3d transition-metal ions. The spectral shape changes drastically with the character of the ground state, which is determined by the presence

  19. Measuring temperature and ammonia hydrate ice on Charon in 2015 from Keck/OSIRIS spectra

    Science.gov (United States)

    Holler, B. J.; Young, L. A.; Buie, M. W.; Grundy, W. M.; Lyke, J. E.; Young, E. F.; Roe, H. G.

    2017-03-01

    In this work we investigated the longitudinal (zonal) variability of H2O and ammonia (NH3) hydrate ices on the surface of Charon through analysis of the 1.65 μm and 2.21 μmabsorption features, respectively. Near-infrared spectra presented here were obtained between 2015-07-14 and 2015-08-30 UT with the OSIRIS integral field spectrograph on Keck I. Spectra centered on six different sub-observer longitudes were obtained through the Hbb (1.473-1.803 μm) and Kbb (1.965-2.381 μm) filters. Gaussian functions were fit to the aforementioned bands to obtain information on band center, band depth, full width at half maximum, and band area. The shift in the band center of the temperature-dependent 1.65 μm feature was used to calculate the H2O ice temperature. The mean temperature of the ice on the observable portion of Charon's surface is 45 ± 14 K and we report no statistically significant variations in temperature across the surface. We hypothesize that the crystalline and amorphous phases of water ice reached equilibrium over 3.5 Gyr ago, with thermal recrystallization balancing the effects of irradiation amorphization. We do not believe that cryovolcanism is necessary to explain the presence of crystalline water ice on the surface of Charon. Absorption from ammonia species is detected between 12° and 290°, in agreement with results from New Horizons. Ongoing diffusion of ammonia through the rocky mantle and upper layer of water ice is one possible mechanism for maintaining its presence in Charon's surface ice. Reduced Charon spectra corrected for telluric and solar absorption are available as supplementary online material.

  20. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  1. Reconstruction of 6 MV photon spectra from measured transmission including maximum energy estimation.

    Science.gov (United States)

    Baker, C R; Peck, K K

    1997-11-01

    Photon spectra from a nominally 6 MV beam under standard clinical conditions and at higher and lower beam qualities have been derived from narrow-beam transmission measurements using a previously published three-parameter reconstruction model. Estimates of the maximum photon energy present in each spectrum were derived using a reduced number of model parameters. An estimate of the maximum contribution of background, or room, scatter to transmission measurements has been made for this study and is shown to be negligible in terms of the quality index and percentage depth-dose of the derived spectra. Percentage depth-dose data for standard beam conditions derived from the reconstructed spectrum were found to agree with direct measurements to within approximately 1% for depths of up to 25 cm in water. Quality indices expressed in terms of TPR10(20) for all spectra were found to agree with directly measured values to within 1%. The experimental procedure and reconstruction model are therefore shown to produce photon spectra whose derived quality indices and percentage depth-dose values agree with direct measurement to within expected experimental uncertainty.

  2. Measurement of the absorption coefficient using the sound-intensity technique

    Science.gov (United States)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  3. UV absorption spectra, kinetics and mechanisms of the self-reaction of CHF2O2 radicals in the gas phase at 298-K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Ellermann, T.; Bartkiewicz, E.

    1992-01-01

    The ultraviolet-absorption spectrum and the self-reaction of CHF2O2 radicals have been studied in the gas phase at 298 K using the pulse radiolysis technique and long-pathlength Fourier transform infrared spectroscopy. Absorption cross sections were quantified over the wavelength range 220-280 nm....... The measured cross section near the absorption maximum was sigma(CHF2O2)(240 nm) = (2.66 +/- 0.46) x 10(-18) cm2 molecule-1. The absorption cross section data were used to derive the observed self-reaction rate constant for the reaction CHF2O2 + CHF2O2 --> products, defined as d[R]/dt = 2k(1obs)[CHF2O2]2, k(1...

  4. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    Directory of Open Access Journals (Sweden)

    Veinardi Suendo

    2012-07-01

    Full Text Available Chlorophyll a is one the most abundant pigment on Earth that responsible for trapping the light energy to perform photosynthesis in green plants. This molecule has been studied for many years from different point of views in both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS, time-dependent density functional theory (TDDFT and several semi-empirical methods (CNDO/s and ZINDO calculations were carried out to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on single molecule approach were succeeded to reconstruct the absorption spectra but required to be rescaled to fit the experimental one. In general, the semi-empirical methods provide better energy scaling factor that closer to unity. However, they lack of vertical transition fine features with respect to the spectrum obtained experimentally. Here, the ab initio calculations provide more complete features, especially the TDDFT at high level of basis sets that also has a good accuracy in the transition energies. The contribution of ground states and excited states orbitals in the main vertical transitions is discussed based on delocalization nature of the wavefunctions and the presence of solvent through polarizable continuum model (PCM.

  5. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    Science.gov (United States)

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  6. Absorption and Reflectance Spectra of Microwave Radiation by an Epoxy Resin Composite with Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    Komarov, F. F.; Milchanin, O. V.; Parfimovich, I. D.; Grinchenko, M. V.; Parhomenko, I. N.; Tkachev, A. G.; Bychanok, D. S.

    2017-09-01

    A procedure for dispersing multi-walled carbon nanotubes in the two-component polymer SpeciFix-20 (epoxy resin + hardener) using combined hydromechanical and ultrasonic mixing was developed. New composites with carbon nanotubes were produced. Their structures and optical and electrophysical characteristics were studied. The propagation of microwave radiation (26-38 GHz) in experimental composite samples was investigated. It was shown that the strong absorption of the composites appeared only with significant additions of multi-walled carbon nanotubes and was caused by the resulting electrical conductivity of the composites. A size effect of the additive on the optical characteristics of the produced composites was established. Equal absorption coefficients for microwave radiation could be achieved by using a smaller amount of carbon nanotubes with smaller diameters and greater specific surface areas in the composite.

  7. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    Science.gov (United States)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  8. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    Science.gov (United States)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  9. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    International Nuclear Information System (INIS)

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  10. Transmission properties of barite mortar using X-ray spectra measured with Cd Te detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J. C.; Mariano, L.; Costa, P. R. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Tomal, A., E-mail: josilene@usp.br [Universidade Federal de Goias, Instituto de Fisica, Campus Samambaia, 74001-970 Goiania (Brazil)

    2014-08-15

    Current methods for calculating X-ray shielding barriers do not take into account spectral distribution of the beam transmitted by the protective material. This consideration is important in dose estimations for radiation workers and general public in diagnostic radiology facilities. The aim of the present study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. These curves were described in units of ambient dose equivalent (H (10)), since it is the radiation quantity adopted by IAEA for dose assessment in medical environment. Attenuation curves were determined using the optimized model for shielding evaluation presented by Costa and Caldas (2002). Workload distribution presented by Simpkin (1996), measured primary spectra and mass attenuation coefficients of barite mortar were used as input data in this model. X-ray beams in diagnostic energy range were generated by an industrial X-ray tube with 3 mm of aluminum additional filtration. Primary experimental spectra were measured by a Cd Te detector and corrected by the response function of detector by means of a stripping procedure. Air kerma measurements were performed using an ionization chamber for normalization purpose of the spectra. The corrected spectra presented good agreement with spectra generated by a semi-empirical model. The variation of the ambient dose equivalent as a function of barite mortar thickness was calculated. Using these data, it was estimated the optimized thickness of protective barrier needed for shielding a particular area in an X-ray imaging facility. The results obtained for primary protective barriers exhibit qualitative agreement with those presented in literature. (Author)

  11. Selection/extraction of spectral regions for autofluorescence spectra measured in the oral cavity

    NARCIS (Netherlands)

    Skurichina, M; Paclik, P; Duin, RPW; de Veld, D; Sterenborg, HJCM; Witjes, MJH; Roodenburg, JLN; Fred, A; Caelli, T; Duin, RPW; Campilho, A; DeRidder, D

    2004-01-01

    Recently a number of successful algorithms to select/extract discriminative spectral regions was introduced. These methods may be more beneficial than the standard feature selection/extraction methods for spectral classification. In this paper, on the example of autofluorescence spectra measured in

  12. Some methods of neutron spectra reconstruction according to results of measurements by multispherical spectrometer

    International Nuclear Information System (INIS)

    Semenov, V.P.; Trykov, L.A.; Tyufyakov, N.D.

    1975-01-01

    MENAOT, MODSPECTRA, MODMESKO, REGUS programs designed to restore neutron spectra by results of measurements with the multi-sphere spectrometer are described. These programs are written in the ALGOL language (the TA-2M translator) for the M-220 computer. Directed selection, MODSPECTRA and regularization algorithms were used to develop these programs

  13. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  14. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  15. Measurement of spectra and neutron fluxes on artificial earth satellites from the Cosmos series

    Science.gov (United States)

    Dudkin, V. Y.; Kovalev, Y. Y.; Novikova, M. R.; Potapov, Y. V.; Skvortsov, S. S.; Smirennyy, L. N.

    1975-01-01

    In 1966-1967 measurements were carried out at the altitudes of 200 to 400 km to determine the spectra and fluxes of fast neutrons inside the hermetically sealed artificial earth satellites of the Cosmos series. The detectors used were nuclear emulsions of the B9 and BR types and an emulsion of the P9 type, filled with Li and P. Spectra and fluxes of neutrons in the range of energies from thermal energies to 10 MeV are presented. Neutron doses are also estimated.

  16. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  17. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Infrared and UV-visible absorption measurement at Syowa Station (abstract)

    OpenAIRE

    Murata,Isao; Kita,Kazuyuki; Iwagami,Naomoto; Ogawa ,Toshihiro

    1993-01-01

    Vertical column contents of some trace gases were observed by solar infrared and UV-visible absorption techniques at Syowa Station, to study the dynamics and chemistry of Antarctic ozone. HCl, HF, N_2O, OCS, CO and C_2H_6 column contents were measured by infrared absorption spectroscopy in the 3-5

  19. Absorption spectra of localized surface plasmon resonance observed in an inline/picoliter spectrometer cell fabricated by a near ultraviolet femtosecond laser

    Science.gov (United States)

    Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi

    2018-03-01

    Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.

  20. Analysis of γ spectra in airborne radioactivity measurements using multiple linear regressions

    International Nuclear Information System (INIS)

    Bao Min; Shi Quanlin; Zhang Jiamei

    2004-01-01

    This paper describes the net peak counts calculating of nuclide 137 Cs at 662 keV of γ spectra in airborne radioactivity measurements using multiple linear regressions. Mathematic model is founded by analyzing every factor that has contribution to Cs peak counts in spectra, and multiple linear regression function is established. Calculating process adopts stepwise regression, and the indistinctive factors are eliminated by F check. The regression results and its uncertainty are calculated using Least Square Estimation, then the Cs peak net counts and its uncertainty can be gotten. The analysis results for experimental spectrum are displayed. The influence of energy shift and energy resolution on the analyzing result is discussed. In comparison with the stripping spectra method, multiple linear regression method needn't stripping radios, and the calculating result has relation with the counts in Cs peak only, and the calculating uncertainty is reduced. (authors)

  1. Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Poruba, Aleš; Purkrt, Adam; Remeš, Zdeněk; Vaněček, Milan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2167-2170 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 Keywords : silicon * solar cells * band structure * defects * optical properties * absorption * FTIR measurements * photoconductivity * medium-range order Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  2. Photothermal method for absorption measurements in anisotropic crystals

    Czech Academy of Sciences Publication Activity Database

    Stubenvoll, M.; Schäfer, B.; Mann, K.; Novák, Ondřej

    2016-01-01

    Roč. 87, č. 2 (2016), 1-7, č. článku 023904. ISSN 0034-6748 R&D Projects: GA ČR GA16-12960S; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : wave-front deformation * bulk absorption * gray-tracking * barium borate * duv-optics * ktp Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.515, year: 2016

  3. gamma-ray spectra measurements for long cooled MOX spent fuels

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Kobayashi, Iwao

    1993-09-01

    Gamma-ray spectra of spent fuels have important informations in the estimation of burnup rate, concentration of fission products, cooling time and etc. which are required in the fuel loading control of reactors and special nuclear materials accountancy from the view point of safe guard. Although, some available data are given about uranium dioxide fuels, few data are given about uranium and plutonium dioxide mixtures (MOX fuels). Especially, there is few data about MOX fuels which are irradiated in thermal reactors and cooled more than ten years. Gamma-ray spectra are measured for PuO 2 -UO 2 fuel rods (IFA-159, IFA-160) which are irradiated at HBWR in Norway up to 9,420 and 5,340MWd/t respectively. Gamma-ray spectra had been measured about the two fuels ten years ago at the spent fuel pond of Japan Demonstration Reactor (JPDR). The objectives of this measurement is to know how decayed the gamma-ray spectra in these ten years and some fission products are there which are effective to estimate burnup rate of spent MOX fuels. (author)

  4. Lick optical spectra of quasar HS 1946+7658 at 10 kilometers per second resolution Lyman-alpha forest and metal absorption systems

    Science.gov (United States)

    Fan, Xiao-Ming; Tytler, David

    1994-01-01

    We present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar

  5. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Haino, S.; Sanuki, T.; Abe, K.; Anraku, K.; Asaoka, Y.; Fuke, H.; Imori, M.; Itasaki, A.; Maeno, T.; Makida, Y.; Matsuda, S.; Matsui, N.; Matsumoto, H.; Mitchell, J.W.; Moiseev, A.A.; Nishimura, J.; Nozaki, M.; Orito, S.; Ormes, J.F.; Sasaki, M.; Seo, E.S.; Shikaze, Y.; Streitmatter, R.E.; Suzuki, J.; Takasugi, Y.; Tanaka, K.; Tanizaki, K.; Yamagami, T.; Yamamoto, A.; Yamamoto, Y.; Yamato, K.; Yoshida, T.; Yoshimura, K

    2004-07-29

    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.

  6. Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung spectra

    Science.gov (United States)

    Kasthurirangan, S.; Agnihotri, A. N.; Desai, C. A.; Tribedi, Lokesh C.

    2012-11-01

    The electron temperature of a 14.5 GHz ECR plasma is determined by measuring the electron bremsstrahlung spectra. The dependence of this temperature is studied as a function of the inlet gas pressure and the input microwave power for different gases, such as Ne and Ar. The measurements were made along the axis of the ECR plasma using a NaI(Tl) detector with suitable collimation to cut down on the high count rate.

  7. Measurements and calculations of neutron spectra and neutron dose distribution in human phantoms

    International Nuclear Information System (INIS)

    Palfalvi, J.

    1984-11-01

    The measurement and calculation of the radiation field around and in a phantom, with regard to the neutron component and the contaminating gamma radiation, are essential for radiation protection and radiotherapy purposes. The final report includes the development of the simple detector system, automized detector measuring facilities and a computerized evaluating system. The results of the depth dose and neutron spectra experiments and calculations in a human phantom are given

  8. The Hyperspectral Absorption Sensor - Advantages and challenges of continuous, in situ absorption coefficient measurements

    Science.gov (United States)

    Wollschläger, J.; Röttgers, R.; Petersen, W.; Zielinski, O.

    2016-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  9. Determining clinical photon beam spectra from measured depth dose with the Cimmino algorithm

    International Nuclear Information System (INIS)

    Bloch, P.; Altschuler, M.D.; Bjaerngard, B.E.; Kassaee, A.; McDonough, J.

    2000-01-01

    A method to determine the spectrum of a clinical photon beam from measured depth-dose data is described. At shallow depths, where the range of Compton-generated electrons increases rapidly with photon energy, the depth dose provides the information to discriminate the spectral contributions. To minimize the influence of contaminating electrons, small (6x6cm2 ) fields were used. The measured depth dose is represented as a linear combination of basis functions, namely the depth doses of monoenergetic photon beams derived by Monte Carlo simulations. The weights of the basis functions were obtained with the Cimmino feasibility algorithm, which examines in each iteration the discrepancy between predicted and measured depth dose. For 6 and 15 MV photon beams of a clinical accelerator, the depth dose obtained from the derived spectral weights was within about 1% of the measured depth dose at all depths. Because the problem is ill conditioned, solutions for the spectrum can fluctuate with energy. Physically realistic smooth spectra for these photon beams appeared when a small margin (about ±1%) was attributed to the measured depth dose. The maximum energy of both derived spectra agreed with the measured energy of the electrons striking the target to within 1 MeV. The use of a feasibility method on minimally relaxed constraints provides realistic spectra quickly and interactively. (author)

  10. Infrared absorption spectra of t-HNOH radicals generated on VUV irradiation of NO in solid hydrogen.

    Science.gov (United States)

    Wu, Yu-Jong; Lin, Meng-Yeh; Hsu, Sheng-Chuan; Cheng, Bing-Ming

    2009-04-14

    Photoproduct signature: Irradiation of solid hydrogen near 3 K containing NO with vacuum-UV light from synchrotron radiation yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1) (see figure). These new lines are assigned to vibrational modes of t-HNOH. This photoproduct is formed from electronically excited NO reacting with neighboring hydrogen in the solid sample.Irradiation of solid H(2) near 3 K containing NO with vacuum-ultraviolet light from a synchrotron yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1). The structures of four possible structural isomers: H(2)NO, t-HNOH, c-HNOH and NOH(2), their vibrational wavenumbers, IR intensities and D-isotopic shifts are calculated with density-functional theory according to B3LYP and PW91PW91/aug-cc-pVTZ methods. Based on the results of those calculations and of experiments with deuterium labeling, we assign the new lines to nu(4) (cis bending), nu(5) (N==O stretching) and nu(6) (out-of-plane deformation) modes, respectively, of t-HNOH. This photoproduct is formed through reaction of electronically excited NO with neighboring H(2) in the solid sample.

  11. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and Kβ emission spectra.

    Science.gov (United States)

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry.

  12. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM–Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ∼ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  13. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  14. First results from a laboratory facility for measurement of emission spectra under simulated planetary conditions

    Science.gov (United States)

    Lucey, Paul G.; Domergue-Schmidt, Natalie; Henderson, Bradley G.; Jakosky, Bruce

    1993-01-01

    We have developed a laboratory spectroscopic facility for the measurement of emission spectra under simulated planetary conditions. Spectral measurements are made from 6 to 13 microns with a scanning grating monochromator equipped with a HgCdTl detector. An environment chamber in service in Hawaii for several years in which we can control the temperature from 77 K to 500 K, the pressure from 10(exp -5) torr to two atmospheres, has been equipped with a 77 K or 273 K cold shield. The shield serves to minimize light reflected off the sample and to aid in development of thermal gradients for obtaining spectra under conditions simulating the thermal environment of airless bodies. Samples are placed in small cups on a temperature controlled substrate allowing measurements of emission due to heating from below by the substrate, or from illumination from a solar simulation source.

  15. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  16. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  17. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    Science.gov (United States)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  18. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  19. A Compact In Situ Sensor for Measurement of Absorption and Backscattering in Natural Waters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an active sensor for in situ measurement of the inherent optical properties (IOPs) absorption and backscattering at multiple wavelengths....

  20. Measurement of the effective atomic numbers of compounds with cerium near to the absorption edge

    International Nuclear Information System (INIS)

    Polat, Recep; Icelli, Orhan

    2010-01-01

    In order to measure atomic, molecular and electronic cross-section; the effective atomic number, density of electron and absorption jump factor, we have first measured μ t values of compounds which are determined by mixture rule using transmission method. In order to measure experimentally the effective atomic number within absorption jump factors of compounds with Ce, the X-ray source used Am-241 whose gamma rays were stopped at secondary source (Sm), thus producing Kα and Kβ X-ray emission. The most crucial finding in this study is that measurement of the effective atomic number is not appropriate near to the absorption edge and the effective atomic number is affected by near to the absorption edge. The results obtained have been compared with theoretical values.

  1. Effects of tattoo ink's absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser.

    Science.gov (United States)

    Leu, Fur-Jiang; Huang, Chuen-Lin; Sue, Yuh-Mou; Lee, Shao-Chen; Wang, Chia-Chen

    2015-01-01

    The mechanisms responsible for variable responses of cosmetic tattoos to Q-switched laser removal treatment remain unclear. We sought to investigate the properties of tattoo inks that may affect the efficacy of laser-assisted tattoo removal. The absorption of white, brown, and black inks before and after Q-switched neodymium-doped yttrium aluminum garnet laser irradiation were analyzed by a reflectance measurement system. Rats were tattooed using the three inks and treated with the same laser for two sessions. Skin biopsies were taken from the treated and untreated sites. Black ink showed strong absorption, reduced after laser irradiation, over the entire spectrum. White ink had low absorption over the visible light spectrum, and brown ink had strong absorption at 400-550 nm wavelengths. White and brown inks turned dark after laser exposure, and the absorption of laser-darkened inks were intermediate between their original color and black ink. White, brown, and black tattoos in rat skin achieved poor, fair to good, and excellent responses to laser treatment, respectively. Transmission electron microscopy showed that white tattoo particles were the largest, brown were intermediate, and black were the smallest before laser. After laser treatment, white and brown tattoo particles were mixtures of large and small particles, while black particles showed overall reduction in number and size. Black tattoo ink's excellent response to Q-switched lasers was associated with its strong absorption and small particle size. White tattoo ink's poor response was associated with its poor absorption, even after laser darkening, and large particle size.

  2. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  3. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  4. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  5. The fluctuating population of Sm 4f configurations in topological Kondo insulator SmB6 explored with high-resolution X-ray absorption and emission spectra.

    Science.gov (United States)

    Lee, Jenn-Min; Haw, Shu-Chih; Chen, Shi-Wei; Chen, Shin-Ann; Ishii, Hirofumi; Tsuei, Ku-Ding; Hiraoka, Nozomu; Liao, Yen-Fa; Lu, Kueih-Tzu; Chen, Jin-Ming

    2017-09-12

    High-resolution partial-fluorescence-yield X-ray absorption and resonant X-ray emission spectra were used to characterize the temperature dependence of Sm 4f configurations and orbital/charge degree of freedom in SmB 6 . The variation of Sm 4f configurations responds well to the formed Kondo gap, below 140 K, and an in-gap state, below 40 K. The topological in-gap state is correlated with the fluctuating population of Sm 4f configurations that arises via carrier transfer between 3d 9 4f 6 and 3d 9 4f 5 states; both states are partially delocalized, and the mediating 5d orbital plays the role of a transfer path. Complementary results shown in this work thus manifest the importance of configuration fluctuations and orbital delocalization in the topological surface state of SmB 6 .

  6. Assignment of Pre-Edge Features in the Ru K-Edge X-Ray Absorption Spectra of Organometallic Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-05-18

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray absorption spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d {l_arrow} 1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates.

  7. Time dependent density functional study of the absorption spectra of 1,3-benzoxazole and three substituted benzoxazole in gas phase and liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquilla, Rafael J; Neira, Oscar L, E-mail: rjcarrasquilla@yahoo.com [Grupo de Espectroscopia Optica y Laser, Universidad Popular del Cesar, Valledupar (Colombia)

    2011-01-01

    Time dependent density functional (TD-DFT) calculations were performed on 1,3-benzoxazole and substituted benzoxazoles using the B3LYP functional and the 6-31+G(d) basis sets. The geometry of the S{sub 0} and S{sub 1} singlet ground and excited states were optimized in gas phase, toluene and methanol using B3LYP/6-31+G(d) y CIS/6-31+G(d) methods, respectively, and the vertical {pi} {yields} {pi}{sup *} absorption largest wavelength transitions were determined. Several global molecular descriptors were considered such as the hardness, chemical potential, electronegativity and the dipole moment for each molecule and was determined the influence that has, about the values of these descriptors, the alteration of the main molecular chain of an initial structure (1,3 not substituted Benzoxazole). Generally, the predicted spectra are in agreement with the experimental data.

  8. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    Science.gov (United States)

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  9. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    Science.gov (United States)

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  10. A spectroscopic temperature measurement of converging detonations by the emission spectra-matching method

    International Nuclear Information System (INIS)

    Sugimura, Tadayoshi; Fujiwara, Toshitaka.

    1980-01-01

    The spectroscopic measurement of the temperature of converging detonation by the emission spectrum-matching method was proposed and performed. The combination of gas dynamics parameters was adjusted until the agreement between the calculated profile of artificial spectra and the light emission spectra at the convergence center was obtained. The mixed gas of oxygen and acetylene was used for the experiment. When the mixing ratio of oxygen and acetylene was one to one, and the initial gas pressure was 60 Torr, the behavior of detonation was same as that of cylindrically converging shock waves propagating in the gas of specific heat ratio of 1.28 in the Guderley's theory. The increase of light emission intensity with the increase of molecular density, and the effect of temperature were observed. The effect of pressure broadening was also studied. It was found that the spectrum-matching method is available even for the weak emission or strong broadening. The artificial light emission spectra which agreed with the observed spectra were obtained. (Kato, T.)

  11. Estimations of On-site Directional Wave Spectra from Measured Ship Responses

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2006-01-01

    In general, two main concepts can be applied to estimate the on-site directional wave spectrum on the basis of ship response measurements: 1) a parametric method which assumes the wave spectrum to be composed by parameterised wave spectra, or 2) a non-parametric method where the directional wave...... spectrum is found directly as the values in a completely discretised frequency-directional domain without a priori assumptions on the spectrum. The paper outlines the theory of these two concepts, and it is shown how to deal with the speed-of-advance problem for operating ships. In addition, the methods...... include an quivalence of energy in the governing equations and, as regards the parametric concept, a frequency dependent spreading of the waves is introduced. The paper includes an extensive analysis of full-scale measurements for which the directional wave spectra are estimated by the two ship response...

  12. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with

  13. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible

  14. Automated low energy photon absorption equipment for measuring internal moisture and density distributions of wood samples

    International Nuclear Information System (INIS)

    Tiitta, M.; Olkkonen, H.; Lappalainen, T.; Kanko, T.

    1993-01-01

    Automated equipment for measuring the moisture and density distributions of wood samples was developed. Using a narrow beam of gamma rays, the equipment scans the wood samples, which are placed on the moving belt. The moisture measurement is based on the 241 Am photon absorption technique (59.5 keV), where the difference of the linear absorption coefficients of the moist and dry wood is measured. The method requires no knowledge of the thickness of the specimen. The density estimation method is based on the measurement of the linear attenuation coefficient of wood. Comprehensive software including image processing was developed for treatment of the numerical values of the measurements. (author)

  15. Measurements of proton, helium and muon spectra at small atmospheric depths with the BESS spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Sanuki, T.; Anraku, K.; Asaoka, Y.; Fuke, H.; Haino, S.; Ikeda, N.; Imori, M.; Izumi, K.; Maeno, T.; Makida, Y.; Matsuda, S.; Matsui, N.; Matsukawa, T.; Matsumoto, H.; Mitchell, J.W.; Moiseev, A.A.; Nishimura, J.; Nozaki, M.; Orito, S.; Ormes, J.F.; Sasaki, M.; Seo, E.S.; Shikaze, Y.; Sonoda, T.; Streitmatter, R.E.; Suzuki, J.; Tanaka, K.; Tanizaki, K.; Yamagami, T.; Yamamoto, A.; Yamamoto, Y.; Yamato, K.; Yoshida, T.; Yoshimura, K

    2003-07-03

    The cosmic-ray proton, helium, and muon spectra at small atmospheric depths of 4.5-28 g/cm{sup 2} were precisely measured during the slow descending period of the BESS-2001 balloon flight. The variation of atmospheric secondary particle fluxes as a function of atmospheric depth provides fundamental information to study hadronic interactions of the primary cosmic rays with the atmosphere.

  16. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  17. Measurement of fast assembly spectra using time-of-flight method

    International Nuclear Information System (INIS)

    Duquesne, Henry; Rotival, Michel; Schmitt, Andre; Allard, Christian; De Keyser, Albert; Hortsmann, Henri

    1975-07-01

    Measurement of neutron spectra made in fast subcritical assemblies HUG 3 and PHUG 3 (uranium-graphite and plutonium-graphite) utilizing time-of-flight techniques are described. The matrix were excited by the pulsed neutron source from the BCMN Linac beam impinging on a target of natural uranium. Details of the experimental procedure, safety studies, detector calibration and data reduction are given [fr

  18. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    Science.gov (United States)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  19. Measurement of positron spectra after heavy ion collisions with special weighting of the data processing

    International Nuclear Information System (INIS)

    Weik, F.

    1981-01-01

    The measurement of positron spectra of the supercritical 238 U - 238 U system is described, at which the 1ssub(sigma)-level should dip into the negative energy continuum. For the comparison the measurement of the subcritical 238 U - 208 Pb and the nuclear system 238 U - 108 Pd are used. All measurements were performed at 5.9 MeV/A. For the detection of the positrons a solenoid transport system with 2 Si(Li) diodes as energy determining elements and with 4 NaI crystals for the identification by the 511 keV annihilation radiation in coincidence were used. The electronics, the data acquisition on the base of a process computer with coupling to an IBM computer and the analysis are extensively described. To this belongs also an unfolding procedure of a model response function for positron and gamma spectra. The unfolded positron spectra were corrected under assumption of E1-Conversion coefficients to the nuclear contribution which were fitted to the 238 U - 108 Pd system. The positron spectrum of the supercritical 238 U - 238 U shows no evident indication which may lead to the conclusion of a dipping of the 1ssub(sigma) level. (orig.) [de

  20. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion.

    Science.gov (United States)

    Ma, Jian; Moix, Jeremy; Cao, Jianshu

    2015-03-07

    We develop a hybrid cumulant expansion method to account for the system-bath entanglement in the emission spectrum in the multi-chromophoric Förster transfer rate. In traditional perturbative treatments, the emission spectrum is usually expanded with respect to the system-bath coupling term in both real and imaginary time. This perturbative treatment gives a reliable absorption spectrum, where the bath is Gaussian and only the real-time expansion is involved. For the emission spectrum, the initial state is an entangled state of the system plus bath. Traditional perturbative methods are problematic when the excitations are delocalized and the energy gap is larger than the thermal energy, since the second-order expansion cannot predict the displacement of the bath. In the present method, the real-time dynamics is carried out by using the 2nd-order cumulant expansion method, while the displacement of the bath is treated more accurately by utilizing the exact reduced density matrix of the system. In a sense, the hybrid cumulant expansion is based on a generalized version of linear response theory with entangled initial states.

  1. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  2. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  3. Confirmation of Enhanced Dwarf-sensitive Absorption Features in the Spectra of Massive Elliptical Galaxies: Further Evidence for a Non-universal Initial Mass Function

    Science.gov (United States)

    van Dokkum, Pieter G.; Conroy, Charlie

    2011-07-01

    We recently found that massive cluster elliptical galaxies have strong Na I λ8183, 8195 and FeH λ9916 Wing-Ford band absorption, indicating the presence of a very large population of stars with masses clusters associated with M31. These globular clusters have similar metallicities, abundance ratios, and ages as massive elliptical galaxies but their low dynamical mass-to-light ratios rule out steep stellar initial mass functions (IMFs). From high-quality Keck spectra we find that the dwarf-sensitive absorption lines in globular clusters are significantly weaker than in elliptical galaxies and consistent with normal IMFs. The differences in the Na I and Wing-Ford indices are 0.027 ± 0.007 mag and 0.017 ± 0.006 mag, respectively. We directly compare the two classes of objects by subtracting the averaged globular cluster spectrum from the averaged elliptical galaxy spectrum. The difference spectrum is well fit by the difference between a stellar population synthesis model with a bottom-heavy IMF and one with a bottom-light IMF. We speculate that the slope of the IMF may vary with velocity dispersion, although it is not yet clear what physical mechanism would be responsible for such a relation.

  4. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    Science.gov (United States)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles.

  5. Thermal neutron spectra measurements in IEAR-1 Reactor, by using a crystal spectrometer

    International Nuclear Information System (INIS)

    Fulfaro, R.; Figueiredo Neto, A.M.; Stasiulevicius, E.; Vinhas, L.A.

    1975-01-01

    The thermal neutron spectrum of the IEN Argonauta reactor has been measured in the wavelength from 0.7 to 1.9A, using a neutron crystal spectrometer. An aluminium single crystal, in transmission, was used as monochromator. The aluminium crystal reflectivity employed in the analysis of the data was calculated for the first five permitted orders. An effective absorption coefficient of the crystal was used to perform the calculations instead of the macroscopic cross section of the element

  6. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  7. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems.

    Science.gov (United States)

    Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2018-02-08

    In this work, the efficiency of first-principles calculations of X-ray absorption spectra of large chemical systems is drastically improved. The approach is based on the previously developed restricted open-shell configuration interaction singles (ROCIS) method and its parametrized version, based on a density functional theory (DFT) ground-state determinant ROCIS/DFT. The combination of the ROCIS or DFT/ROCIS methods with the well-known machinery of the pair natural orbitals (PNOs) leads to the new PNO-ROCIS and PNO-ROCIS/DFT variants. The PNO-ROCIS method can deliver calculated metal K-, L-, and M-edge XAS spectra orders of magnitude faster than ROCIS while maintaining an accuracy with calculated spectral parameters better than 1% relative to the original ROCIS method (referred to as canonical ROCIS). The method is of a black box character, as it does not require any user adjustments, while it scales quadratically with the system size. It is shown that for large systems, the size of the virtual molecular orbital (MO) space is reduced by more than 90% with respect to the canonical ROCIS method. This allows one to compute the X-ray absorption spectra of a variety of large "real-life" chemical systems featuring hundreds of atoms using a first-principles wave-function-based approach. Examples chosen from the fields of bioinorganic and solid-state chemistry include the Co K-edge XAS spectrum of aquacobalamin [H 2 OCbl] + , the Fe L-edge XAS spectrum of deoxymyoglobin (DMb), the Ti L-edge XAS spectrum of rutile TiO 2 , and the Fe M-edge spectrum of α-Fe 2 O 3 hematite. In the largest calculations presented here, molecules with more than 700 atoms and cluster models with more than 50 metal centers were employed. In all the studied cases, very good to excellent agreement with experiment is obtained. It will be shown that the PNO-ROCIS method provides an unprecedented performance of wave-function-based methods in the field of computational X-ray spectroscopy.

  8. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    Science.gov (United States)

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  9. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP at 775 nm and 1550 nm

    Directory of Open Access Journals (Sweden)

    Jessica Steinlechner

    2013-01-01

    Full Text Available The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP at 1,550 nm and 775 nm. Themeasurement results are (84±40 ppm/cmand (127±24 ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

  10. Active feedback regulation of a Michelson interferometer to achieve zero-background absorption measurements.

    Science.gov (United States)

    Lundin, Patrik; Guan, Zuguang; Svanberg, Sune

    2011-01-20

    An active phase-controlling scheme based on a proportional-integral-derivative-controlled piezoelectric transducer is presented with the purpose of stabilizing a quasi-zero-background absorption spectrometer. A fiber-based balanced Michelson interferometer is used, and absorption due to a gas sample in one of its arms results in an increased light signal to a detector, which otherwise, thanks to destructive interference, experiences a very low light level. With the presented approach, the sensitivity of already potent absorption measurement techniques, e.g., based on modulation, could be improved even further.

  11. Data for moisture measurements during vertical absorption in building porous materials such as brick and limestone.

    Science.gov (United States)

    Evangelides, Chris; Arampatzis, George

    2018-04-01

    This article contains the datasets obtained from experiments in laboratory related to moisture propagation in building porous materials. The datasets contain moisture measurements and corresponding time measurements during vertical infiltration experiment in brick and limestone samples. Moisture measurements were carried out using a γ-ray device and water volume absorption was recorded by a computer controlled digital scale.

  12. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree

  13. Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats.

    Science.gov (United States)

    Zilversmit, D B; Hughes, L B

    1974-09-01

    Several methods for measuring cholesterol absorption in the rat have been compared. After administration of an oral dose of labeled cholesterol ((14)C or (3)H) and an intravenous dose of colloidal labeled cholesterol ((3)H or (14)C) the ratio of the two labels in plasma or whole blood 48 hr or more after dosing compared closely to the ratio of areas under the respective specific activity-time curves. The area ratio method is independent of a time lag between the appearance of oral and intravenous label in the bloodstream. Both measures of cholesterol absorption agree fairly well with a method based on measuring the unabsorbed dietary cholesterol in a pooled fecal sample. The plasma isotope ratio method gave more reproducible results than the fecal collection method when the measurement was repeated in the same animals 5 days after the first measurement. Cholesterol absorption was overestimated by the use of Tween 20-solubilized labeled cholesterol for the intravenous dose. The plasma disappearance curves of injected labeled colloidal cholesterol and cholesterol-labeled chylomicrons infused intravenously over a 3.5-hr period in the same animal coincided within experimental error from the first day until 75 days after injection. The plasma isotope ratio method for cholesterol absorption gave the same results in rats practicing coprophagy as in those in which this practice was prevented. The addition of sulfaguanidine to the diet lowered cholesterol absorption as measured by the plasma isotope ratio to the same degree as that measured by the fecal collection method.

  14. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  15. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements.

    Science.gov (United States)

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2014-03-24

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications.

  16. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  17. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-01

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  18. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  19. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  20. A whole image approach using field measurements for transforming EO1 Hyperion hyperspectral data into canopy reflectance spectra

    Science.gov (United States)

    Ramsey, Elijah W.; Nelson, G.

    2005-01-01

    To maximize the spectral distinctiveness (information) of the canopy reflectance, an atmospheric correction strategy was implemented to provide accurate estimates of the intrinsic reflectance from the Earth Observing 1 (EO1) satellite Hyperion sensor signal. In rendering the canopy reflectance, an estimate of optical depth derived from a measurement of downwelling irradiance was used to drive a radiative transfer simulation of atmospheric scattering and attenuation. During the atmospheric model simulation, the input whole-terrain background reflectance estimate was changed to minimize the differences between the model predicted and the observed canopy reflectance spectra at 34 sites. Lacking appropriate spectrally invariant scene targets, inclusion of the field and predicted comparison maximized the model accuracy and, thereby, the detail and precision in the canopy reflectance necessary to detect low percentage occurrences of invasive plants. After accounting for artifacts surrounding prominent absorption features from about 400nm to 1000nm, the atmospheric adjustment strategy correctly explained 99% of the observed canopy reflectance spectra variance. Separately, model simulation explained an average of 88%??9% of the observed variance in the visible and 98% ?? 1% in the near-infrared wavelengths. In the 34 model simulations, maximum differences between the observed and predicted reflectances were typically less than ?? 1% in the visible; however, maximum reflectance differences higher than ?? 1.6% (

  1. Further validation of the plasma isotope ratio method for measurement of cholesterol absorption in man.

    Science.gov (United States)

    Samuel, P; McNamara, D J; Ahrens, E H; Crouse, J R; Parker, T

    1982-03-01

    Recently we evaluated an isotope ratio method (IRM) for measurement of cholesterol absorption in 14 patients (15 experiments) hospitalized in the metabolic ward by comparing it to simultaneous measurements with a fecal radioactivity method (FRM) and found good to excellent agreement between two procedures (Samuel, P., J. R. Crouse, and E. H. Ahrens, Jr. 1978 J. Lipid Res. 19: 82-93). This comparison has now been extended to additional studies carried out in eight hospitalized patients (19 experiments). Of the 34 comparisons between the IRM and the FRM in our hands, 29 were technically acceptable (chromic oxide fecal recovery >/=80%): percent cholesterol absorption was 43.1 +/- 12% by the FRM and 46.0 +/- 11% by the IRM, exhibiting an accuracy within 3.5% at the 95% and 4.7% at the 99% confidence levels. In addition, various procedural modifications of the IRM were studied in out-patients. The measurement of isotope ratios in a single blood sample (analyzed in sextuplicate) on the third day (or later) following the tests gave identical results to those obtained from six to eight daily blood samplings. Blood samples drawn at any time during the day gave cholesterol absorption values similar to those obtained from samples drawn following an overnight fast. Absorption tests carried out before and 1 hr after breakfast, lunch, or dinner, or giving the oral isotope in three divided daily doses all yielded identical results with tests carried out in the am in the fasting state. Cholesterol absorption was markedly reduced when the oral radiolabeled cholesterol was administered in orange juice vs. liquid formula, milk or a solution of glucose and amino acids, consistent with the well-known fact that gallbladder contraction is a critical requirement of cholesterol absorption. A meal high in cholesterol consumed on the day of the test did not influence the results of the absorption measurements. Furthermore, addition of three eggs per day (~750mg cholesterol) for 3 weeks to a

  2. Infrared Light Absorption Computed Tomography Measurements for Gaseous Hydrocarbon Fuel Concentration

    Science.gov (United States)

    Kawazoe, Hiromitsu; Emi, Yasuyuki; Nakamura, Yoshiaki

    A system to measure gaseous fuel distribution was devised, which is based on infra-red light absorption by carbon-hydrogen stretch mode of vibration and the computed tomography method (IR-CT method). Since the incident light intensity from an infra-red laser fluctuated temporally, the effect was diminished by dividing the beam to two, one of which was monitored for better measurement accuracy. It was found that the error due to the laser fluctuation was within 0.8% and the feasibility of the IR-CT method was confirmed by applying the system to the measurements of the methane fuel concentration in an internal combustion engine model and a burner with diffusion flame. Furthermore, calibration to determine absorptivity was undertaken, which was used for the conversions from the measured line absorption coefficients to spatial fuel concentration in the combustion field.

  3. The concept of measurement of thermal neutron absorption cross section in small samples

    International Nuclear Information System (INIS)

    Czubek, J.A.

    1980-01-01

    Theoretical principles of the method of measurement of the absorption cross section for thermal neutrons are presented in the one velocity approach. In consecutive measurements the sample investigated is enveloped in shells of a known moderator of varying thickness and irradiated with the pulsed beam of fast neutrons. The die-away rate of thermal neutrons escaping from such a system is measured. The absorption cross section of the unknown sample is found as the intersection of the experimental curve (die-away rate viz. thickness of the moderator) with the theoretical one calculated for the case of the zero value of the material buckling of the sample. (author)

  4. Capturing Absorptive Capacity: Concepts, Determinants, Measurement Modes and Role in Open Innovation

    Directory of Open Access Journals (Sweden)

    Lewandowska Małgorzata Stefania

    2015-03-01

    Full Text Available Absorptive capacity (ACAP enables firm to adjust to a rapidly changing environment and achieve sustained competitive advantage. This study contributes to the existing body of knowledge on ACAP by providing a comprehensive literature review of the various conceptual attributes of the construct, its determinants, outcomes, and positive and negative consequences of using its input-oriented, output-oriented, and perceptive measurement modes. Proposals for constructing ACAP based on the Community Innovation Survey (CIS empirically illustrate for the conceptual part of the paper. Additionally, combining concepts of absorptive capacity and open innovation (which is still rare in the literature provides a new perspective on the role of absorptive capacity in opening up the innovation process. This advances the understanding of both inter-related proposals. The article also identifies key problems and formulates future research directions to improve the multi-level characteristics of absorptive capacity.

  5. The use of a reference absorber for absorption measurements in a reverberation chamber

    DEFF Research Database (Denmark)

    Nolan, Melanie; Vercammen, Martijn; Jeong, Cheol-Ho

    2014-01-01

    will be used for qualification of the room and correction of the results. The present research establishes the requirements for a proper design of such an absorber and its reference absorption data. The diffuse field factor was used to quantify the diffuse sound field in several reverberation rooms......The statistical incidence absorption coefficient is measured in a reverberation room according to ISO 354. This absorption coefficient is referred to as Sabine absorption coefficient, which assumes the chambe r to be completely diffuse. It is known that the reproducibility of these results is poor...... and the differences in the results between laboratories are much larger than can be accepted from a jurisdictional point of view. Actions should therefore be taken to reduce the spread. The intention of this paper is to set requirements on the diffusivity of the sound field and to apply a reference absorber, which...

  6. Measurement of absorption with a p-u sound intensity probe in an impedance tube

    DEFF Research Database (Denmark)

    Liu, Yang; Jacobsen, Finn

    2005-01-01

    An alternative method of measuring the normal-incidence sound absorption of a sample of material in an impedance tube is examined. The method is based on measurement of the sound pressure and the normal component of the particle velocity using a "p-u" sound intensity probe. This technique...

  7. A numerical study of a method for measuring the effective in situ sound absorption coefficient

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Ysbrand H.; de Boer, A

    2012-01-01

    The accuracy of a method [Wijnant et al., “Development and applica- tion of a new method for the in-situ measurement of sound absorption”, ISMA 31, Leuven, Belgium (2010).], for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane

  8. Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Martens, Harald; Pram Nielsen, Jesper

    2002-01-01

    A new extended method for separating, e.g., scattering from absorbance in spectroscopic measurements, extended inverted signal correction (EISC), is presented and compared to multiplicative signal correction (MSC) and existing modiŽ cations of this. EISC preprocessing is applied to near-infrared...... transmittance (NIT) spectra of single wheat kernels with the aim of improving the multivariate calibration for protein content by partial least-squares regression (PLSR). The primary justiŽ cation of the EISC method is to facilitate removal of spectral artifacts and interferences that are uncorrelated to target...... of the EISC was found to be comparable to a more complex dual-transformation model obtained by Ž rst calculating the second derivative NIT spectra followed by MSC. The calibration model based on EISC preprocessing performed better than models based on the raw data, second derivatives, MSC, and MSC followed...

  9. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  10. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  11. Calculational analysis of errors for various models of an experiment on measuring leakage neutron spectra

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Deeva, V.V.; Prokof'eva, Z.A.

    1990-01-01

    Analysis is made for the effect of mathematical model accuracy of the system concerned on the calculation results using the BRAND program system. Consideration is given to the impact of the following factors: accuracy of neutron source energy-angular characteristics description, various degrees of system geometry approximation, adequacy of Monte-Carlo method estimation to a real physical neutron detector. The calculation results analysis is made on the basis of the experiments on leakage neutron spectra measurement in spherical lead assemblies with the 14 MeV-neutron source in the centre. 4 refs.; 2 figs.; 10 tabs

  12. Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data

    Science.gov (United States)

    Downie, John D.

    1998-01-01

    If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.

  13. Measuring thermal neutron spectra of RIEN-1 reactor with a chopper

    International Nuclear Information System (INIS)

    Jesus Vilar, G. de.

    1977-03-01

    The setting up of a time-of-flight spectrometer (Fermi Chopper) and its use in measurements of thermal neutron spectra in the irradiation channels of the Argonaut Reactor(Instituto de Engenharia Nuclear, Brazil), is described. These distributions are obtained using a multichannel analyser with the necessary corrections being made for counting losses in the analyser, dectector efficiency experimental resolution and chopper transmission function. The results obtained show that the thermal neutron flux emerging from the canal J-9 can be approximately described by a Maxwellian distribution with and associated characteristic temperature fo 430+-30 0 K [pt

  14. Study of the continuum in heavy ion inelastic spectra by light particle coincidence measurements

    International Nuclear Information System (INIS)

    Scarpaci, J.A.; Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Roynette, J.C.; Suomijarvi, T.; Van der Woude, A.; Alamanos, N.; Fernandez, B.; Gillibert, A.; Van der Woude, A.; Lepine, A.

    1990-01-01

    The continuum in heavy ion inelastic spectra contains, in addition to the excitation of target nucleus states, contributions from pick-up break-up and knock out reactions. In the case of the 40 Ca + 40 Ca collision at 50 MeV/N these contributions are separated and their relative importance assessed by the measurement of light charged particles in coincidence with the inelastically scattered fragments. The pick-up break-up contribution is found to make up less than half of the cross section at high excitation energies, conversely, the knock out process is important

  15. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  16. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  17. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment

  18. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  19. Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Poruba, Aleš; Purkrt, Adam; Remeš, Zdeněk; Vaněček, Milan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2167-2170 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 EU Projects: European Commission(XE) 19670 - ATHLET; European Commission(XE) 38885 - SE-POWERFOIL; European Commission(XE) 509178 - LPAMS Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * solar cells * band structure * defects * optical properties * absorption * FTIR measurements * photoconductivity * medium-range order Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  20. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs.

    Science.gov (United States)

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-07-21

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs.