WorldWideScience

Sample records for absorption root

  1. Economic strategies of plant absorptive roots vary with root diameter

    Science.gov (United States)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis perspective on our understanding of the root economics spectrum.

  2. Distribution of radiosodium in the various organs of Sorghum after root absorption

    International Nuclear Information System (INIS)

    The kinetics of Na22 migration corroborate the distribution pattern of the non-radioactive element after root absorption: the sodium content of the leaf laminae is very low whereas a building-up is observed in the conductive tissues, particularly in the roots. After absorption, sodium seems to be rapidly translocated to all the organs, then moves downwards to accumulate in the roots; this phenomenon may be a way, for the plant, to fight sodium intoxication. The absorption of radiosodium is independent of the specific activity of the nutrient solution and appears to be related to its volumic activity. Thus, sodium is not taken up selectively by the roots of Sorghum; its translocation mechanism is therefore of the passive type

  3. Irradiation seed treatment reduces scald, common root rot and increases phosphorus absorption of barley

    International Nuclear Information System (INIS)

    The effect of low doses of gamma irradiation on severity of barley to scald and common root rot diseases, and phosphorus absorption was studied seeds were exposed to doses of 0, 10, 15, 20, 30, 40 and 50 Gy. A stimulatory effect was observed at irradiation doses of 30 and 40 Gy, which decreased the severity of barley to scald by 34% and 31% respectively. On the other hand, doses 20 and 30 Gy decreased the severity to CRR by 54% and 49% respectively, whereas, phosphorus absorption was significantly increased at doses of 15 and 20 Gy

  4. Absorption, distribution and utilization of radioactive phosphorus in healthy and root (wilt) diseased coconut palms

    International Nuclear Information System (INIS)

    Radioactive KH2P32O4 was fed to coconut leaves and palms under laboratory and field conditions. In healthy palms the absorption of phosphorus by roots and its accumulation in spindle and first fully opened leaves was found to be significantly higher till 9th hr as compared to that of diseased palms, but at later stages the reverse pattern was observed. The time required for 32P to reach the spindle (top-most leaf) situated at 9.5 m height in both diseased and healthy palm was found to be 3 hr only. In contrast to the leaves, the activity of 32P differed insignificantly in stem and roots of healthy and diseased palms and also the native P remained higher in the stem and roots of former palms as compared to latter. The analysis of total different fractions of phosphorus and entry of 32P in the different forms of organic phosphorus indicated that although total P was more in the case of diseased palms but the organic phosphorus especially the nucleic acid P was significantly less as compared to healthy ones. This revealed less utilization of absorbed P in the synthesis of P-constituted organic substances in diseased palms. (auth.)

  5. Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions

    Institute of Scientific and Technical Information of China (English)

    WU Qiangsheng; XIA Renxue

    2006-01-01

    The effects of the arbuscular mycorrhizal (AM)fungus Glomus mosseae on plant growth,leaf solutes and root absorption area of trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings were studied in potted culture under water stress conditions.Inoculation with G.mosseae increased plant height,stem diameter,leaf area,shoot dry weight,root dry weight and plant dry weight,when the soil water content was 20%,16% and 12%.AM inoculation also promoted the active and total absorption area of root system and absorption of phosphorus from the rhizosphere,enhanced the content of soluble sugar in leaves and roots,and reduced proline content in leaves.AM seedlings had higher plant water use efficiency and higher drought tolerance than non-AM seedlings.Effects of G.mosseae inoculation on trifoliate orange seedlings under 20% and 16% soil water content were more significant than under 12% soil water content.AM infection was severely restrained by 12% soil water content.Thus,effects of AM fungi on plants were probably positively related to the extent of root colonization by AM fungi.The mechanism of AM fungi in enhancing drought resistance of host plants ascribed to greater osmotic adjustment and greater absorption area of root system by AM colonization.

  6. Evaluation of absorption of radionuclides via roots of plants at different growth stages

    Energy Technology Data Exchange (ETDEWEB)

    Ambe, Shizuko [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1999-03-01

    For the environmental risk assessment of radionuclides and toxic elements which were released by nuclear power plants and factories, the absorption of trace elements by plants has been studied by a multitracer technique. The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides. The selective absorption coefficients of some elements varied greatly in experimental runs. Therefore, the selective absorption coefficients of radionuclides by komatsuna at different growth stages were determined. Moreover, the soil-to-plant transfer of radionuclides in komatsuna at different growth stages was studied. Extraction of the radionuclides from the soil was carried out in order to study the correlation between the transfer factor and the aging effect of the radionuclides in soil. The effect of soil acidity on the absorption of radionuclides in soybean and tomato was studied using the plants at different growth stages. (author)

  7. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  8. Isolation and Expression Analysis of Novel Silicon Absorption Gene from Roots of Mangrove (Rhizophora apiculata via Suppression Subtractive Hybridization

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2014-01-01

    Full Text Available Silicon (Si is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots’ cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes in Rhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2 for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene of serine-rich protein.

  9. Effect of crop competition and herbicides on yellow nutsedge (Cyperus esculentus L. ) and root absorption, translocation, and metabolism of alachlor and metolachlor by yellow nutsedge

    Energy Technology Data Exchange (ETDEWEB)

    Chamblee, R.W.

    1985-01-01

    Field studies were conducted in 1980, 1981, and 1982 to compare management programs involving different cultural practices, at-planting herbicides, and postemergence herbicides to reduce yellow nutsedge (Cyperus esculentus L.) populations, in a soybean (Glycine max (L.) Merr. Ransom)-corn (Zea mays L. Pioneer 3161 and Pioneer 3358) rotation. In laboratory studies, alachlor and metolachlor toxicity, absorption, translocation, and metabolism were investigated in different sized yellow nutsedge plants. Exposure to herbicides was restricted to plant roots. Plant sizes evaluated were 4 to 6, 10 to 15, and 18 to 22-cm tall at experiment initiation. Concentrations of greater than 0.1 ppm of both alachlor and metolachlor reduced small yellow nutsedge plant size by more than 50%. At concentrations greater than 0.2 ppm increased growth reduction was seen from metolachlor but not from alachlor. Ten to 15-cm plants exposed to 1.6 ppm of alachlor and metolachlor had plant size reductions of 48 and 62%, respectively, after 12 days. There was no difference in root absorption of /sup 14/C alachlor or /sup 14/C metolachlor from nutrient solutions. After 8 days, greater than 40, 58, and 76% of available /sup 14/C was absorbed by small, medium and large plants, respectively. After 4 and 8 days of exposure, small yellow nutsedge plants had translocated 2.6 times as much /sup 14/C metolachlor to plant shoots than /sup 14/C alachlor. Larger plants translocated the herbicides equally. Small sized plants treated with /sup 14/C metolachlor retained greater than 23% of the parent material.

  10. Characteristics of Potassium-Enriched, Flue-Cured Tobacco Genotype in Potassium Absorption,Accumulation,and In-Ward Potassium Currents of Root Cortex

    Institute of Scientific and Technical Information of China (English)

    YNAG Tie-zhao; LU Li-ming; XIA Wei; FAN Jin-hua

    2007-01-01

    This study was to investigate the main traits of potassium-enriched,flue-cured tobacco genotypes related to potassium absorption,accumulation,and in-ward potassium currents of the root cortex.Hydroponic methods,K+-depletion methods,and patch-clamp,whole-cell recordings were conducted to study the accumulation of dry matter and potassium in different organs,and to measure potassium absorption and dynamic and in-ward potassium currents in potassium-enriched,fluecured tobacco genotypes.The average dry weights of leaves and whole plant of potassium-enriched,flue-cured tobacco genotype ND202 were 10.20,and 14.85g,respectively,higher than JYH(8.50 and 13.11g,respectively)and NC2326(8.39 and 12.72g,respectively),when potassium concentration in the solution ranged from 0.1 to 50mmol L-1.Potassium accumulation in the leaves of ND202 was 18.6% higher than JYH and 34% higher than NC2326 when potassium concentration in the solution was superior to 0.5mmol L-1.The Vmax(the maximum velocity)of ND202 was 118.11μmol FW g-1h-1,obviously higher than that of JYH(58.87 μmol FW g-1 h-1)and NC2326(64.40μmol FW g-1 h-1).In the in-ward potassium currents,the absolute value of current density(pA/pF)of ND202 was 60,higher than that of JYH(50)and NC2326(40).Potassium concentration in leaves,Vmax and in-ward potassium currents,could be used to screen potassium-enriched,flue-cured tobacco genotypes.

  11. Studies on N, P and K Absorption Characteristics of Rice Root System and Its Simulation Model%水稻根系氮磷钾吸收特性及其模拟模型研究

    Institute of Scientific and Technical Information of China (English)

    李娟; 章明清; 林琼; 颜明娟; 孔庆波

    2011-01-01

    The water culture and soil culture pot experiments were carried out for quantitative studies of N, P and K absorption characteristics during the whole growth period of rice. The results showed that there were 29 simulation models achieving significant level among 30 models of seven varieties of rice, which indicated the simulation model could be good fit for the nutrient absorption dynamics at different growth stages. According to simulation model,characteristic parameters, such as the nutrient uptaking constant of rice roots, the greatest rate of nutrient absorption,and the maximum nutrient uptake and their time of emergence, were obtained. The average value of root nutrient absorption constant was K> N> P; there was greater difference among potassium absorption constant of different varieties of rice while the difference among nitrogen or phosphorus was smaller. The calculation results of the greatest rate of nutrient absorption and the maximum nutrient uptake and their time of emergence showed that the absorption process of N and K was basically synchronous while that of phosphorus was later. Soil culture experiment showed that nutrient absorption constant, the greatest rate of nitrogen, phosphorus and potassium absorption and the maximum nutrient uptake were improved by balanced fertilization. The absorptive capacity of the nitrogen, phosphorus and potassium of the root was significantly increased.%为定量研究水稻一个生长周期的氮磷钾吸收特性,开展水培和土培盆栽试验.结果表明,7个水稻品种的30个模拟模型中,有29个模型达到统计显著水平,说明提出的模拟模型能很好地拟合水稻不同生育期的养分吸收动态.由模拟模型分析可得到水稻根系养分吸收常数、最大养分吸收速率和最大养分吸收量及其出现的时间等养分吸收特征参数.根系养分吸收常数平均值是K>N>P;不同品种间根系钾吸收常数有较大差异,氮和磷的差异则较小.养分

  12. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  13. Roots Revisited.

    Science.gov (United States)

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  14. Effects of Mn on the ion absorption and activity of antioxidant enzymes system in the roots of grape%锰对葡萄根中离子吸收及抗氧化酶系统的影响

    Institute of Scientific and Technical Information of China (English)

    尹文彦; 姚银安

    2012-01-01

    以2个葡萄品种(金手指、康拜尔)为材料,采用温室沙培实验,研究不同浓度Mn处理对葡萄根中离子吸收及抗氧化酶活性的影响.结果表明,随着Mn2+浓度的增大,葡萄根中元素含量呈现不同的变化,总体上看Ca和Mg的含量降低,Mn、Cu和Zn的含量增加,Fe含量则随锰处理浓度增加呈先下降后略有升高的趋势.在抗氧化系统中POD活性随 Mn浓度的升高而逐渐降低,而CAT和APX酶活性呈先升高后降低的趋势,SOD活性变化不大,说明保护酶系统形成了一定的适应高锰胁迫的机制,这些抗氧化酶活性的增强能够提高葡萄适应和抵抗重金属胁迫的能力.%Taking two grape varieties (Gold Finger and Campbell) as material, a sand culture experiment in greenhouse was carried out to study effects of various Mn stress on ion absorption and antioxidant enzyme system of grape roots. The results showed that with the increase concentrations of Mn + , the element content in grape roots showed different changes, in general, the contents of Ca and Mg were low levels, contents of Mn, Cu and Zn increased, while the Fe content declined first and then rose slightly with the rising of manganese concentration. The activity of POD with the rising of Mn concentration was decreasing, while the CAT and APX enzyme activities rose first and then declined. SOD maintained stability.

  15. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  16. Square Root +

    Science.gov (United States)

    Frederiksen, John G.

    1969-01-01

    A rational presentation of the so-called long division method for extracting the square root of a number. Diagrams are used to show relationship of this technique to the binomial theorem. Presentation exposes student to many facets of mathematics in addition to the mechanics of funding square root and cube root. Geometry, algebraic statements,…

  17. 有机酸与根表铁膜对茶树吸收和富集氟的影响%Effects of organic acids and iron plaque outside roots on absorption and accumulation of fluoride in tea plants

    Institute of Scientific and Technical Information of China (English)

    刘腾腾; 赵强; 郜红建; 宛晓春; 张正竹

    2013-01-01

    The effects of Fe2+ concentration,Fe2+ incubation time,pH and organic acids including oxalic acid,malic acid and citric acid on iron plaque on root surfaces and fluoride absorption and accumulation in tea plants were investigated in the hydroponics condition. Results showed that most of the iron plaque induced on tea roots was concentrated between 0. 2 cm and 0. 5 cm from the root tip. As the Fe2+ concentration and incubation time increased, the amount of iron plaque increased, but negative relationships were found when pH as well as organic acids concentrations increased. When the amount of iron plaque was 2.40 to 13. 60 mg·g-1,there was a positive relationship between fluoride adsorption and accumulation in tea plants and the iron plaque. Compared with CK1 without iron plaque and organic acids treatment, the amount of fluoride accumulated in tea plants increased between 42. 3% and 103. 7% with only Fe2+ treated. And it increased from 101.7% to 243.0% as the organic acids and Fe2+were added into the hydroponics solution together.%采用溶液培养法,研究了Fe2+质量浓度、Fe2+诱导时间、pH值、外源有机酸(草酸、苹果酸、柠檬酸)对根表铁膜形成及茶树吸收、富集氟的影响.结果表明:茶树根表铁膜主要集中在离根尖0.2~0.5 cm区域;茶树根表铁膜含量随Fe2+诱导时间的延长呈现先升高后降低的趋势,随Fe2+质量浓度的增加显著升高,与溶液pH、有机酸浓度呈负相关.当铁膜含量为2.40 ~ 13.60 mg·g-1,根表铁膜含量与茶树吸收、富集氟的能力呈正相关.与根表无铁膜的茶树单加氟处理的对照(CK1)相比,加Fe2+诱导形成铁膜后,茶树体内氟的含量增加了42.3% ~ 103.7%;有机酸与Fe2+共同作用时,茶树体内氟含量显著增加了101.7% ~243.0%.

  18. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi.

  19. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher a

  20. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    -an ectodermal tissue layer (Malassez′s epithelium), a middle layer-composed by the collagen-mesodermal tissue layer, and an innermost root-close innervation layer. Abnormalities in one of these tissue layers are thought to cause inflammatory processes in the periodontal membrane comparable to inflammatory...... formerly been demonstrated how demyelinization of the myelin sheaths in the peripheral nerves close to the root provoke resorption. Accordingly, conditions affecting these tissue layers can be associated not only with different morphologies but also with general symptoms and diseases (e.g., ectodermal...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...

  1. Root canal

    Science.gov (United States)

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  2. Absorção e infiltração de água por raízes de batata-doce, através de ferimentos durante a lavagem Water absorption and infiltration in sweet-potato wound roots during washing

    Directory of Open Access Journals (Sweden)

    Adonai Gimenez Calbo

    2000-09-01

    changes of root volume. Partially submerged intact roots and segments were less subject to intercellular water infiltration than the completely submerged ones. The mass increase of submerged intact roots was caused mainly by water absorption, a process which is known to exclude molecules with a size larger than a few nanometers. In transversely segmented roots most water entered by intercellular volume infiltration, which may introduce fungi spores and bacteria and other particles inside the damaged organ.

  3. 水分、养分和寄主对檀香幼苗根系生长及营养吸收的影响%Effects of water, nutrient and host on root growth and nutrient absorption of Santalum album seedling

    Institute of Scientific and Technical Information of China (English)

    李双喜; 杨曾奖; 徐大平; 张宁南; 刘小金

    2015-01-01

    Effects of water ( relative water content 30%, 50% and 70% in substrate ) , nutrient (fertilizer amount per plant 0. 00, 150. 00 and 300. 00 mg) and host (Kuhnia rosmarnifolia Vent.) on root growth indexes (including total length, surface area, dry weight and average diameter of root), root/shoot ratio and nutrient absorption indexes ( including contents of total N, total P and total K in whole plant) of Santalum album Linn. seedling were researched by pot experiment. The results show that with enhancing of relative water content in substrate and fertilizer amount per plant, in general, total length, surface area and dry weight of root of S. album seedling increase, average diameter of root decreases, and contents of total N, total P and total K in whole plant increase. Compared with treatment group without host, planting host can obviously promote increasing of total length, surface area and dry weight of root, and contents of total N, total P and total K in whole plant of S. album seedling. Before root haustorium formation (the 30th day of treatment) and after root haustorium formation (the 80th day of treatment) , average diameter of root of S. album seedling planted together with host decreases, while average diameter of root increases at the 130th day of treatment. At the 130th day of treatment, under conditions of relative water content 70% in substrate and fertilizer amount per plant 300. 00 mg, root/shoot ratio of S. album seedling planted together with host is the lowest only with a value of 0. 19. The result of variance analysis shows that water, nutrient and host can significantly affect total length, surface area, dry weight and average diameter of root, root/shoot ratio and contents of total N, total P and total K in whole plant of S. album seedling. It is suggested that keeping higher relative water content in substrate, higher fertilizer amount per plant and planted together with host can promote root growth, nutrient absorption and above-ground part

  4. Locally Finite Root Supersystems

    OpenAIRE

    YOUSOFZADEH, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  5. A Pharmacology Study on the Absorption of Lead and Zinc in Roots of Arabis alpinal var.Parviflora Franch%小花南芥根(Arabis alpinal var.parviflora Franch)对铅锌吸收的药理学研究

    Institute of Scientific and Technical Information of China (English)

    王吉秀; 太光聪; 祖艳群; 李元; 陈海燕

    2011-01-01

    以药理学的方法进行水培试验,研究小花南芥根对铅锌的吸收机理.结果表明:小花南芥在50 μm01/L的解偶联剂DNP处理12 h、24 h和36 h后与对照相比根中铅的浓度分别增加了4.4倍,7.1倍和1.7倍,ATP酶抑制剂Na3VO4作用下,则下降了O.64倍,0.76倍和0.69倍;而小花南芥在50μmol/L的解偶联剂DNP处理24 h和36 h后与对照相比根中锌的浓度分别下降了8.8%和5.4%,ATP酶抑制剂Na3VO4处理对小花南芥根吸收锌不产生影响.钾离子通道抑制剂TEA处理,小花南芥根吸收铅受到明显的抑制作用,不同处理与对照相比下降范围在0.51~0.82倍之间,钙离子通道抑制剂LaC13处理,下降范围在0.50~0.97倍之间,而小、花南芥根吸收锌在TEA处理12 h和24 h后与对照相比下降了0.94倍和0.58倍,LaC13处理24 h和36 h后与对照相比下降了6.6%倍和9.4%.从上述分析知,能量代谢和离子通道抑制剂对于小花南芥根部铅的吸收产生的影响大于锌的吸收.%The water culture experiment is to study the mechanism of Arabis alpinal Var.parviflora Franch's absorption in Lead and Zinc with a pharmacological approach.The findings show that after the 50 μmol/L uncoupler DNP treatment 12 h, 24 h and 36 h, the concentration of lead of Arabis alpinal Var.panrviflora Franch' s roots increases by 4.4 times, 7.1 times and 1.7 times compared with the control ones.Under the action of ATP inhibitors Na3VO4, the concentration decreases 0.64 times, 0.76 times and 0.69 times.However,after the 50 μmol/L uncoupler DNP treatment 12 h, 24 h and 36 h, the concentration of zinc of Arabis alpinal Var.parviflora Franch' s roots decreases by 8.8 times and 5.4 times.The action of ATP inhibitors Na3VO4 has no impact on the zinc absorption of Arabis alpinal Var.parviflora Franch.Under the potassium channel inhibitor TEA treatment, Arabis alpinal Var.parviflora Franch' s root absorption of lead was significantly restrained.The decreased range is between

  6. Afrokoko Roots

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Give us a little background information about Afrokoko Roots.How long have you been performing together?It's an international Afrobeat outfit that I founded in Beijing three years ago.I founded it in order to show Chinese people that Africa is beyond what they see and hear on TV.For the purpose of cultural exchange,I hope it can help the Chinese learn about African culture,music,fashion,history and much more.Our band features two dancers,two backup singers,two percussionists,four brass players,a keyboard player,a guitar player and a drummer- and me as the lead vocal,drummer and dancer,which makes for live performances that are equally exciting sonically as they are visually.We have been traveling around,and so far,we have toured and performed in many Chinese cities such as Dalian (Liaoning Province),Hohhot (Inner Mongolia Autonomous Region) and Haikou (Hainan Province).

  7. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  8. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    Science.gov (United States)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  9. Root canal irrigants

    OpenAIRE

    Kandaswamy Deivanayagam; Venkateshbabu Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  10. Identiifcation and validation of root-speciifc promoters in rice

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-yu; ZHANG Fan; QIN Qiao; WANG Wen-sheng; ZHANG Ting; FU Bin-ying

    2015-01-01

    Novel promoters that confer root-speciifc expression would be useful for engineering resistance against problems of nutrient and water absorption by roots. In this study, the reverse transcriptase polymerase chain reaction was used to identify seven genes with root-speciifc expression in rice. The isolation and characterization of upstream promoter regions of ifve selected genes rice root-speciifc promoter (rRSP) 1 to 5 (rRSP1-rRSP5) and A2P (the promoter ofOsAct2) revealed that rRSP1, rRSP3, and rRSP5 are particularly important with respect to root-speciifc activities. Furthermore, rRSP1, rRSP3, and rRSP5 were observed to make different contributions to root activities in various species. These three promoters could be used for root-speciifc enhancement of target gene(s).

  11. Investigation of VEGGIE Root Mat

    Science.gov (United States)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  12. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  13. Root Graded Lie Superalgebras

    OpenAIRE

    Yousofzadeh, Malihe

    2015-01-01

    We define root graded Lie superalgebras and study their connection with centerless cores of extended affine Lie superalgebras; our definition generalizes the known notions of root graded Lie superalgebras.

  14. Using Square Roots

    Science.gov (United States)

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  15. WHY ROOTING FAILS.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  16. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  17. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  18. Mercury content of sprouts and harvested roots from treated sweet potato mother roots. [Ipomoea batatas

    Energy Technology Data Exchange (ETDEWEB)

    Huisingh, D.; Nielsen, L.W.

    1972-01-01

    Mercury containing fungicides have been used extensively for seed and root disease control, but data on the fate of the mercury (Hg) are scarce. Experiments were designed to see if Hg applied to propagative sweet potato roots increased the Hg-content of edible roots. Roots were treated with Semesan Bel(hydroxymercurinitrophenol + hydroxymercurichlorophenol), Mertect (Thiabendazole: 2-(4-Thiazolyl)-benzimidazole), or Botran (2,6-Dichloro-4-nitroanaline) at recommended rates or with water. Treated roots were bedded into sandy loam soil, and the plants were harvested at 2 and 3 months after bedding. Some sprouts transplanted at 2 months were grown to maturity, and the harvested roots were analyzed. Hg analyses were performed by flameless atomic absorption. Roots treated prior to planting with Semesan Bel, Mertect, Botran, and water contained 23.0, 0.05, 0.03 and 0.03 ..mu..g/g dry wt, respectively. At the 2-month harvest, the leaves and stems of the Semesan Bel-treated plants contained 5 times more Hg than those of the other treatments. By the 3-month harvest, the amount of Hg in plant leaves and stems from Hg-treated roots was 2 to 3 times that of the others. Fall harvested fleshy roots contained 0.03, 0.02, 0.03, and 0.03 ..mu..g/g dry wt Hg for the Semesan Bel, Mertect, Botran, and water treatments, respectively. This demonstrates that the Hg applied to the mother root was translocated to the new plant, but little if any was translocated to the new fleshy roots.

  19. Effects of Nitrogen of Different Forms on Sorghum Sudanense Root Morphology and Characteristics of Lead Absorption and Accumulation Under Lead Stress%不同氮形态对铅胁迫下苏丹草根系形态及铅吸收富集特征的影响

    Institute of Scientific and Technical Information of China (English)

    袁菊红; 胡绵好; 殷乾亮; 陈祎

    2012-01-01

    Effect of nitrogen of different forms on Sorghum sudanense root morphology and lead(Pb) absorption and accumulation under Pb stress were studied using hydroponics experiment,addressing the interaction between the plant and different nitrogen forms and heavy metals for phytoremediation application.The results indicate that the different N forms had some insignificant effects on the root morphology of S.sudanense with Pb pollution level of 0.5 mmol/L.However,the MDA(Malon dialde hyde)contents of the roots and the biomass of each organ of S.sudanense were significantly(p0.05) influenced: the MDA content of S.sudanense root in the NH4—N culture solution was 4.6 and 1.6 times higher than those in NO3—N and NO2—N culture solutions,and the root,stem and leave biomasses in the NO3—N culture solution were higher than those in NH4—N culture solution by 28.7%,19.6% and 23.9%,and higher than those in NO2—N culture solution by 37.6%,30.9% and 36.7%,respectively.With Pb pollution level of 0.5 mmol/L,the root in NO3—N treatment had the largest enrichment coefficients and Pb concentration that was over 2 times higher than that in NH4—N culture solution,and Pb concentration of the stem in the NO2—N treatment was over 8 times higher than that of NH4—N treatment,indicating a high transport capability of Pb.This suggests that if the existence of different forms of nitrogen in the eutrophication water with heavy metal pollution may to some extent weaken the toxic effect of the heavy metal on the remediating plant,and increase the environment capacity of the water.%为进一步研究富营养化水体中不同氮形态和重金属对修复植物的交互作用,通过水培试验研究了水体中不同形态氮培养对铅胁迫下苏丹草根系形态及其对铅吸收富集的影响。结果表明,水体Pb(0.5mmol/L)污染时,不同氮形态培养虽然对苏丹草根系形态有一定的影响,但没达到显著性差异,然而对苏丹草根系

  20. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  1. Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots.

    Science.gov (United States)

    Zadworny, Marcin; Eissenstat, David M

    2011-04-01

    Not all roots born as first-order branches are the same and this has important consequences for overall function. We hypothesized that, compared with fibrous roots, pioneer roots are built to live longer at the expense of absorptive capacity. We tested this hypothesis by investigating pioneer and fibrous roots in their first 14 d of life in the arbuscular mycorrhizal tree species: Acer negundo, Acer saccharum, Juglans nigra, Liriodendron tulipifera and Populus tremuloides. Root observations were made with root-access boxes that allowed roots to be sampled at known ages in field-grown trees. Compared to fibrous roots, pioneer roots had larger diameter, lower specific root length, greater average length and a lack of mycorrhizal or nonmycorrhizal fungal colonization. Pioneer roots < 14 d old had more layers of hypodermis with a lower percentage of putative passage cells and more protoxylem groups than similar age fibrous roots. Our results suggest that pioneer roots are constructed for defense against biotic and abiotic challenges, exploration of soil distal to the stem, high fibrous root branching and secondary development with high axial hydraulic conductivity at the expense of mycorrhizal colonization and high absorptive capacity for water and nutrients.

  2. Anomalous water absorption in porous materials

    CERN Document Server

    Lockington, D A

    2003-01-01

    The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuentz and Lavallee (2001) discuss the anomalous b...

  3. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  4. Nitrogen uptake and assimilation by corn roots

    International Nuclear Information System (INIS)

    The site of nitrogen uptake in the apical root zone of corn was experimentally investigated. Two experiments were performed. The one is to see the assimilation of nitrate and ammonium and the effects of low temperature on it. The 4-day-old roots were treated with 15N-labelled inorganic nitrogen of 20 ppm N in 5 x 10-4M CaSO4 solution at 30 deg. C and 0 deg. C. The other is to see the nitrogen uptake at apical root zone and the utilization of newly absorbed nitrogen at the root top. The 4-day-old roots were transferred into 5 x 10-4M CaSO4 solution containing 15N-labelled ammonium nitrate of 40 ppm N. As a result, the effect of low temperature on the nitrogen uptake appeared to be more drastic in the case of nitrate than ammonium. The 15N content of amino acids indicates that ammonium is assimilated into amino acids even at 0 deg. C, but nitrate is not. The ammonium nitrogen seemed to be absorbed at both cell dividing and elongating zones. On the other hand, nitrate nitrogen seemed to be strongly absorbed at cell elongating zone. The nitrogen in the apical part may be supplied not only by direct absorption but also by translocation from the basal part. The clear difference was found in the utilization of nitrate and ammonium nitrogen at the root top when the root was elongating. This may be due to the difference of assimilation products of inorganic nitrogen. Newly absorbed ammonium nitrogen is more utilizable for the growth of root top than nitrate nitrogen. (Iwakiri, K.)

  5. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  6. Root canal irrigants

    Directory of Open Access Journals (Sweden)

    Kandaswamy Deivanayagam

    2010-01-01

    Full Text Available Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ′root canal irrigants′ and ′endodontic irrigants.′ The reference lists of each article were manually checked for additional articles of relevance.

  7. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  8. Roots and routes

    DEFF Research Database (Denmark)

    Christensen, Ann-Dorte; Jensen, Sune Qvotrup

    2011-01-01

    arguing that there is a dynamic interplay between roots and routes in people's lives. The empirical point of departure is narratives about roots and routes by ethnic minorities settled in Aalborg East, an underprivileged neighbourhood in northern Denmark. One of the main findings is a gap between the...... somewhat paradoxical finding is that it appears to be more difficult for transnational migrants to maintain their roots in the country of origin when they go back than it was to establish new roots in the host country...

  9. Roots of Dehn twists

    OpenAIRE

    McCullough, Darryl; Rajeevsarathy, Kashyap

    2009-01-01

    D. Margalit and S. Schleimer found examples of roots of the Dehn twist about a nonseparating curve in a closed orientable surface, that is, homeomorphisms whose nth power is isotopic to the Dehn twist. Our main theorem gives elementary number-theoretic conditions that describe the values of n for which an nth root exists, given the genus of the surface. Among its applications, we show that n must be odd, that the Margalit-Schleimer roots achieve the maximum value of n among the roots for a gi...

  10. Experimental study on the response of extracellular electric potential difference of plant during the water absorption of root%植物细胞外电势差信号对根系吸水过程的响应特征

    Institute of Scientific and Technical Information of China (English)

    杨磊; 周启友; 吴世艳

    2011-01-01

    植物细胞外电势差信号能够反映植物生理信息,通过插入黄杨树干和土壤金属电极,然后测定这种细胞外电势差,并借助小波变换方法,探究其对根系吸水过程的响应.结果表明:加水后必然产生动作电位信号,在土壤含水量相似的条件下,加水量越大,动作电位信号越强,而在加水量相当的条件下,土壤含水量越低,动作电位信号越强;树干-土壤之间的电势差在加水后波动幅度增加,并呈衰减趋势,当波动幅度衰减到几毫伏量级时,树干-土壤之间的电势差出现日变化规律,即在正午左右电势差出现极值.%Previous studies have shown that extracellular electric potential difference signals could reveal the physiological information of plant.When the plant is stimulated by the change of environment,such as water absorption and temperature variation,electrical signals that could be obtained by the instruments will generate and transport by cells.In this study,metal electrodes are inserted into a boxtree trunk and the soil around the tree to capture the action potential(AP).Water irrigation is chosen as a stimulation method and irrigation events are repeated in different soil conditions.Since the measured electrical signal is slightly disturbed by noise and the plant electrical signal has a property of low frequency,wavelet transform method is applied to seek the information of AP transmission.During the AP signal is transporting,electric potential difference is measured in high frequency at the same time to catch the AP,with the aim to explore the electrical response of water absorption of root.The results indicate that: Irrigation events with different volume of water give rise to action potential under various conditions of soil condition.When the volume of irrigation water is similar,the larger volume creates the stronger action signal.Meanwhile,while the water amount is close,the lower soil moisture content brings the stronger

  11. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  12. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result is...

  13. Nutrition and magnesium absorption.

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium abs

  14. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    Science.gov (United States)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  15. ROOT User Workshop 2013

    CERN Document Server

    2013-01-01

    Since almost two decades, ROOT has established itself as the framework for HENP data processing and analysis. The LHC upgrade program and the new experiments being designed at CERN and elsewhere will pose even more formidable challenges in terms of data complexity and size. The new parallel and heterogeneous computing architectures that are either announced or already available will call for a deep rethinking of the code and the data structures to be exploited efficiently. This workshop, following from a successful series of such events, will allow you to learn in detail about the new ROOT 6 and will help shape the future evolution of ROOT.

  16. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

    Science.gov (United States)

    McCormack, M Luke; Dickie, Ian A; Eissenstat, David M; Fahey, Timothy J; Fernandez, Christopher W; Guo, Dali; Helmisaari, Heljä-Sisko; Hobbie, Erik A; Iversen, Colleen M; Jackson, Robert B; Leppälammi-Kujansuu, Jaana; Norby, Richard J; Phillips, Richard P; Pregitzer, Kurt S; Pritchard, Seth G; Rewald, Boris; Zadworny, Marcin

    2015-08-01

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.

  17. Quantitative measurements of root water uptake and root hydraulic conductivities

    Science.gov (United States)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  18. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh R.

    2011-01-01

    Full Text Available Ashwagandha (Withania somnifera is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant and crude fiber content exhibited strong association among them and showed significant positive genotypic correlation with yield. Starch-fiber ratio (SFR, determinant of brittle root texture showed strong negative association with root yield. The total alkaloid content had positive genotypic correlation with root yield. So genetic upgradation should aim at optimum balance between two divergent groups of traits i.e. root yield traits (root morphometric traits and crude fiber content and root textural quality traits (starch content and SFR to develop superior genotypes with better yield and quality.

  19. Modeling root reinforcement using root-failure Weibull survival function

    Directory of Open Access Journals (Sweden)

    M. Schwarz

    2013-03-01

    Full Text Available Root networks contribute to slope stability through complicated interactions that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamic of root turnover, the quantification of root reinforcement on steep slope is challenging and consequently the calculation of slope stability as well. Although the considerable advances in root reinforcement modeling, some important aspect remain neglected. In this study we address in particular to the role of root strength variability on the mechanical behaviors of a root bundle. Many factors may contribute to the variability of root mechanical properties even considering a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw. The results show that, for both laboratory and field datasets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the tensile force and the elasticity of the roots are the most important equations, as well as the root distribution. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root

  20. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  1. Particle-in-a-Box Model of Exciton Absorption and Electroabsorption in Conjugated Polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2001-01-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces...... a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed....

  2. Seven-effect absorption refrigeration

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  3. Produção de matéria seca, crescimento radicular e absorção de cálcio, fósforo e alumínio por coffea canephora e coffea arabica sob influência da atividade do alumínio em solução Dry matter production, root growth and calcium, phosphorus and aluminum absorption by coffea canephora and coffea arabica under influence of aluminum activity in solution

    Directory of Open Access Journals (Sweden)

    Edson Marcio Mattiello

    2008-02-01

    Full Text Available Este trabalho teve como objetivo avaliar a produção de matéria seca, o crescimento radicular e a absorção e distribuição do Ca, P e Al nas folhas, no caule e nas raízes de dois clones de café conilon (Coffea canephora (Mtl 25 e Mtl 27 e de uma variedade de café Catuaí Amarelo (Coffea arabica, cultivados em solução nutritiva com atividade crescente de Al3+. As plantas foram cultivadas em vasos com capacidade para 5 L, contendo solução nutritiva de Hoagland & Arnon, modificada. Após oito dias de adaptação, as plantas foram submetidas a concentrações de Al de 0, 500, 1.000 e 2.000 µmol L-1, que corresponderam a atividades de Al3+ em solução, estimadas pelo software GEOCHEM, de 20,68, 50,59, 132,9 e 330,4 µmol L-1, respectivamente. Foram determinados os teores de Ca, Al e P na planta. O sistema radicular foi separado, para determinação da área e do comprimento. A variedade Catuaí Amarelo (Coffea arabica apresentou-se menos sensível ao Al3+, quando comparada aos clones de conilon (Coffea canephora. O clone de conilon Mtl 25 foi menos sensível ao Al3+ em relação ao Mtl 27. O aumento da atividade de Al3+ promoveu redução nos teores de P e Ca nas folhas e raízes do cafeeiro, especialmente nos clones Mtl 25 e Mtl 27. O acúmulo de Al no sistema radicular e a restrição do transporte para a parte aérea são importantes fatores na tolerância de plantas ao Al3+.This study had the objective of evaluating the dry matter production, root growth, and the absorption and distribution of Ca, P and Al in the leaves, stem and roots of two Conilon (Coffea canephora coffee clones (Mtl 25 and Mtl 27 and the coffee variety Catuaí Amarelo (Coffea arabica grown in nutrient solution with increasing Al3+ activity. The plants were cultivated in 5 L pots, containing modified Hoagland & Arnold nutrient solution. After eight days of adaptation, the plants were subjected to Al concentrations of 0, 500, 1.000 and 2.000 mol L-1, which

  4. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  5. QTL analysis of rice (O. Sativa L.) root vitality in a double halpoid population derived from anther culture of an indica/japonica cross

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The functions of rice roots are absorption of water and nutrition, synthesis of amino acid and homone, and transportation of these substrates to overground parts. Rice root vitality is very important to the development of overground parts and yield. So far, many studies on the relationship between physiology condition and the root vitality, and their influence on the yield have been undertaken, and some QTLs for root growth characteristics, such as root length and root thick, have been identified. But the genetic base of the root vitality is still not clear.

  6. Root development under drought stress

    OpenAIRE

    Franco Leemhuis, José Antonio

    2011-01-01

    Serving as interfaces between plant and the soil, roots are much more exposed to drought stress than the upper plant parts. Therefore, the root system can be as affected, or even more affected, than the aerial parts of the plant for drought stress (Franco et al., 2011). Nevertheless, the influence of this stress on root activity and development has been much less studied. Undoubtedly, this is due to limitations on accessibility for root observations; being studies on root system dynamics espe...

  7. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系%Relationships of Rice Root Morphology and Physiology with the Formation of Grain Yield and Quality and the Nutrient Absorption and Utilization

    Institute of Scientific and Technical Information of China (English)

    杨建昌

    2011-01-01

    Roots are an integral part of plant organs and involved in acquisition of nutrients and water, synthesis of plant hormones, organic acids and amino acids, and anchorage of plants. Root morphology and physiology are closely associated with the growth and development of above-ground part of plant. In this review, the relationships of root morpho-physiological traits with the formation of grain yield and the absorbtion of water and nutrients in rice were summerized. Recent advances in research on the role of the root chemical signals, such as hormones and organic acids, in the formation of grain quality of rice and the relation of ultra-structure of root tip cells with the growth and development of above-ground part of plant were intruduced. The existing problems and futher studies on rice roots were discussed.%植物根系既是水分和养分吸收的主要器官,又是多种激素、有机酸和氨基酸合成的重要场所,其形态和生理特性与地上部的生长发育有密切联系.本文综述了水稻根系形态生理与产量形成及水分养分吸收利用的关系,介绍了根系化学信号(激素、有机酸等)对稻米品质形成的作用及根尖细胞超微结构与地上部生长发育关系的最新研究进展,讨论了水稻根系研究存在的问题和今后研究的重点.

  8. Discussion on Photoreceptor for Negative Phototropism in Rice Roots

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-xia; WANG Zhong; SUO Biao; GU Yun-jie; WANG Hui-hui; CHEN Yong-hui; DAI Yun-xia

    2007-01-01

    To properly explore the photoreceptor for the negative phototropism in rice (Oryza sativa L.) root, lights with different wavelengths were applied to investigate the effect of light quality on phototropic bending. The phototropic bending could be induced prominently by blue/ultraviolet light, whereas not by red or far-red light. The absorption spectrum of the extracted solution from rice root cap had two peaks at 350 nm and 450 nm, respectively, and the molecular weight of the 120 kD protein in the root cap under unilateral light was larger than that under the dark. It suggested that the blue light receptor might be the photoreceptor for the negative phototropism in rice root.

  9. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  10. Auxin, the organizer of the environmental/hormonal signals for root hair growth

    Directory of Open Access Journals (Sweden)

    Hyung-Taeg eCho

    2013-11-01

    Full Text Available The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth.

  11. Percutaneous absorption from soil.

    Science.gov (United States)

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  12. Root Morphology and Zn2+ Uptake Kinetics of the Zn Hyperaccumulator of Sedum alfredii Hance

    Institute of Scientific and Technical Information of China (English)

    Ting-Qiang LI; Xiao-E YANG; Zhen-Li HE; Jin-Yan YANG

    2005-01-01

    Root morphology and Zn2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500 μmol/L Zn2+. The concentrations of Zn2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for 65Zn2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for 65Zn2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.

  13. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  14. Absorption driven focus shift

    Science.gov (United States)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  15. ZINC ABSORPTION BY INFANTS

    Science.gov (United States)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  16. Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. perviridis)

    International Nuclear Information System (INIS)

    The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides by a multitracer technique. Komatsuna, Brassica rapa var. perviridis, was hydroponically cultivated in a nutrient solution containing a multitracer for 1 day. Nutrient concentration dependence of the selective absorption coefficient of various elements from Be to Re was obtained separately for leaves and roots. The selective absorption coefficients of these elements were, in general, found to decrease with an increase in the concentration of nutrient solutions. Regression equations of the power function for the selective absorption coefficients and the concentration of nutrient solutions were obtained for the leaves and roots. The effects of photon flux and growth stage of plants on the selective absorption coefficients were also studied. It was found that the photon flux influenced the accumulation of radionuclides in the roots but had no significant effect on the selective absorption coefficients for the leaves in 1-day cultivation with the multitracer. The selective absorption coefficients of Mn and Zn in the leaves of the plants at the development stage were higher than those at the maturation stage. For the other elements, no significant effects of the growth stage on the selective absorption coefficients were observed. (author)

  17. Integrated numerical model of nitrogen transportation, absorption and transformation by two-dimension in soil-crop system

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-qi; SHU Yan; QI Yong-qiang; ZHANG Jun

    2005-01-01

    A series of simulation experiments of nitrogen transportation, absorption and transformation were conducted, and the different cropping patterns of winter wheat and wastewater irrigation plans were taken into consideration. Based on the experiments, an integrated model of crop growth, roots distribution, water and nitrogen absorption by roots, water and nitrogen movement and transformation in soilcrop system by two-dimension was developed. Parameters and boundary conditions were identified and an effective computing method for optimizing watering and wastewater irrigating plans was provided.

  18. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  19. Root discrimination of closely related crop and weed species using FT MIR-ATR spectroscopy.

    Science.gov (United States)

    Meinen, Catharina; Rauber, Rolf

    2015-01-01

    Root discrimination of species is a pre-condition for studying belowground competition processes between crop and weed species. In this experiment, we tested Fourier transform mid-infrared (FT MIR)-attenuated total reflection (ATR) spectroscopy to discriminate roots of closely related crop and weed species grown in the greenhouse: maize/barnyard grass, barley/wild oat, wheat/blackgrass (Poaceae), and sugar beet/common lambsquarters (Chenopodiaceae). Fresh (moist) and dried root segments as well as ground roots were analyzed by FT MIR-ATR spectroscopy. Root absorption spectra showed species specific peak distribution and peak height. A clear separation according to species was not possible with fresh root segments. Dried root segments (including root basis, middle section, and root tip) of maize/barnyard grass and sugar beet/common lambsquarters formed completely separated species clusters. Wheat and blackgrass separated in species specific clusters when root tips were removed from cluster analysis. A clear separation of dried root segments according to species was not possible in the case of barley and wild oat. Cluster analyses of ground roots revealed a 100% separation of all tested crop and weed species combinations. Spectra grouped in Poaceae and Chenopodiaceae clusters. Within the Poaceae cluster, C3 and C4 species differed significantly in heterogeneity. Thus, root spectra reflected the degree of kinship. To quantify species proportion in root mixtures, a two- and a three-species model for species quantification in root mixtures of maize, barnyard grass, and wild oat was calculated. The models showed low standard errors of prediction (RMSEP) and high residual predictive deviation values in an external test set validation. Hence, FT MIR-ATR spectroscopy seems to be a promising tool for root research even between closely related plant species. PMID:26483799

  20. Root discrimination of closely related crop and weed species using FT MIR-ATR spectroscopy

    Directory of Open Access Journals (Sweden)

    Catharina eMeinen

    2015-09-01

    Full Text Available Root discrimination of species is a pre-condition for studying belowground competition processes between crop and weed species. In this experiment, we tested Fourier transform mid-infrared (FT MIR-attenuated total reflection (ATR spectroscopy to discriminate roots of closely related crop and weed species grown in the greenhouse: maize/barnyard grass, barley/wild oat, wheat/blackgrass (Poaceae, and sugar beet/common lambsquarters (Chenopodiaceae. Fresh (moist and dried root segments as well as ground roots were analyzed by FT MIR-ATR spectroscopy. Root absorption spectra showed species specific peak distribution and peak height. A clear separation according to species was not possible with fresh root segments. Dried root segments (including root basis, middle section and root tip of maize/barnyard grass and sugar beet/common lambsquarters formed completely separated species clusters. Wheat and blackgrass separated in species specific clusters when root tips were removed from cluster analysis. A clear separation of dried root segments according to species was not possible in the case of barley and wild oat. Cluster analyses of ground roots revealed a 100 % separation of all tested crop and weed species combinations. Spectra grouped in Poaceae and Chenopodiaceae clusters. Within the Poaceae cluster, C3 and C4 species differed significantly in heterogeneity. Thus, root spectra reflected the degree of kinship. To quantify species proportion in root mixtures, a two- and a three-species model for species quantification in root mixtures of maize, barnyard grass, and wild oat was calculated. The models showed low standard errors of prediction (RMSEP and high residual predictive deviation (RPD values in an external test set validation. Hence, FT MIR-ATR spectroscopy seems to be a promising tool for root research even between closely related plant species.

  1. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. PMID:25615607

  2. Advances in root reinforcement experiments

    Science.gov (United States)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  3. The Gaudi Framework and ROOT

    CERN Document Server

    Couturier, B; Clemencic, M

    2013-01-01

    The Gaudi framework, at the core of LHCb applications, relies on many features of ROOT, from the Mathematical libraries, to the tools for reflection and persistency. While Gaudi's architecture is under review in order to fulfill the LHCb computing requirements after LS1 and upgrade, significant changes are also announced for ROOT 6. This talk will review the usage of ROOT within Gaudi and LHCb applications, in order to present the features needed by LHCb to migrate to the new ROOT.

  4. Study on the dynamics in absorption of 32P by hybrid wheat at elongate stage

    International Nuclear Information System (INIS)

    The dynamics of absorbing 32P of hybrid wheat at elongate stage is studied under pot culture conditions. The results show that the absorption capacity of hybrid wheat to 32P is in agreement with regression equation. The increased extent of absorption for them is greater than that for parent with time, and the reduction rate of absorption is lower than the parent significantly. Their root activity is much higher than that of the parent, too. The overall heterotic vigor of hybrid wheat on the absorption capacity to 32P is the sum of that of all organs

  5. Root canal retained restorations: 3. Root-face attachments.

    Science.gov (United States)

    Dummer, P M; Edmunds, D H; Gidden, J R

    1990-10-01

    It has been common practice for many years to use retained roots to provide support and stability for partial or full dentures. The retention of such overdentures is greatly enhanced if the remaining roots are modified and restored with posts and root-face attachments. The final article in this series on root canal retained restorations classifies and describes some of the root-face attachments currently available, and also describes a number of prefabricated post systems with integral overdenture attachments. Guidelines for clinical and laboratory procedures are given. PMID:2097234

  6. Nitrogen contributions of legume roots to cabbage nutrition

    Directory of Open Access Journals (Sweden)

    Thiago de Oliveira Vargas

    2013-12-01

    Full Text Available The effects of roots are generally not considered in studies assessing crop responses to green manure. However, measuring such effects can contribute to a better understanding of crop rotation. In two experiments, we evaluated the content of legume-N in crop tissue and the fertilizer value of the roots and shoots of two legume species. Roots, shoots, or whole plants of the legumes sunhemp (Crotalaria juncea and jack beans (Canavalia ensiformis were cropped as green manure to supply nitrogen to cabbage crops (Brassica oleracea var. capitata. The principle of the A-value technique was applied to estimate the fertilizer value of each plant part. In a pot experiment, both the content of legume-N in cabbage and the fertilizer value of the whole plant was higher than the shoots, which was in turn higher than that of the roots. In field condition, roots had a decreasing effect on the N content of cabbage plants. Growing cabbage on legume root residue resulted in an increased absorption of 15N-urea, resulting in negative values ​​for legume-N content: -13.59 g kg-1 and -3.51 g kg-1 for sunhemp and jack beans, respectively. Suggesting both low N supply by roots and N immobilization in soil organic matter or microbial biomass. Future research should focus on estimating the net N acquisition by plants from root residues under field conditions, where rooting patterns and biomass distribution differ from those in pot experiments, therefore giving a more realistic quantitative estimate.

  7. Absorptive Capacity and Diversity

    DEFF Research Database (Denmark)

    Kristinsson, Kári

    that contribute to the neo-Schumpeterian economics literature and hopefully inspires further research into this area. The main findings of the dissertation can be divided into four distinct parts. First, diversity of individuals within firms is associated with firm innovative performance. This is in line......One of the most influential contributions to neo-Schumpeterian economics is Cohen and Levinthal‘s papers on absorptive capacity. Since their publication in the late 1980s and early 1990s the concept absorptive capacity has had substantial impact on research in economics and management, including...... international business, organizational economics, strategic management, technology management and last but not least neo-Schumpeterian economics. The goal of this dissertation is to examine what many consider as neglected arguments from the work by Cohen and Levinthal and thereby illuminate an otherwise...

  8. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  9. Acoustic absorption by sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.C.; Labonte, B.J.; Duvall, T.L. Jr.

    1987-08-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity. 10 references.

  10. Negative phototropism of rice root

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@It is often believed that the stem of higher plants has characteristics of positive phototropism, and the root shows no phototropism or no sensitivity to light though the root of Arabdopsis was reported possessing characteristics of negative phototropism. In this study, a distinct negative phototropism of the root system of rice seedlings was observed.

  11. Diagravitropism in corn roots

    Science.gov (United States)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  12. Roots of Financial Literacy

    OpenAIRE

    Grohmann, Antonia; Kouwenberg, Roy; Menkhoff, Lukas

    2014-01-01

    Our study aims to uncover the roots of financial literacy. Better financial literacy predicts more informed savings and borrowing decisions in our sample, covering the urban middle-class in an emerging economy. We then test education at school, family background, parental teaching, and childhood experiences with money as potential determinants of financial literacy. In addition to risk tolerance and having basic numeracy skills, we find that family variables matter most, in particular better ...

  13. Mental Roots of Terror

    OpenAIRE

    Saruhan, Müfit Selim

    2004-01-01

    In this article, I deal with mental and terror relationship. Mental roots of terror are being examined. Religion has nothing to do with terrorism. Terrorist tries to misuse religion. Mental with prejudice and lack of knowledge occupies the personality of individual and his ability to judge. Purification of mind from any external and internal prejudices is the unique solution of terrorism. Only within extensive education we can overcome terrorism. Terrorism could not apply to a religion or a n...

  14. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    Science.gov (United States)

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.

  15. Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice

    Institute of Scientific and Technical Information of China (English)

    XU Chun-mei; WANG Dan-ying; CHEN Song; CHEN Li-ping; ZHANG Xiu-fu

    2013-01-01

    In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.

  16. Growth, Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction

    Institute of Scientific and Technical Information of China (English)

    Liang-zheng Xu; Jun-fang Niu; Chun-jian Li; Fu-suo Zhang

    2009-01-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  17. Do roots mind the gap?

    OpenAIRE

    A. Carminati; Vetterlein, D; Koebernick, N.; Blaser, S; Weller, U; Vogel, H.-J.

    2012-01-01

    Roots need to be in good contact with the soil to take up water and nutrients. However, when the soil dries and roots shrink, air-filled gaps form at the root-soil interface. Do gaps actually limit the root water uptake, or do they form after water flow in soil is already limiting?Four white lupins were grown in cylinders of 20 cm height and 8 cm diameter. The dynamics of root and soil structure were recorded using X-ray CT at regular intervals during one drying/wetting cycle. Tensiometers we...

  18. CRECIMIENTO, ABSORCIÓN DE FÓSFORO Y MORFOLOGÍA DE LA RAÍZ EN ESPÁRRAGOS INOCULADOS CON HONGOS MICORRIZALES Y PSEUDOMONAS FLUORESCENTES GROWTH, PHOSPHORUS ABSORPTION AND ROOT MORPHOLOGY OF ASPARAGUS INOCCULATED WITH MYCORRHIZAL FUNGI AND FLUORESCENT PSEUDOMONAS

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérez Naranjo

    2004-12-01

    Full Text Available En un experimento bajo invernadero se evaluaron los efectos de la aplicación de fósforo (P y la inoculación con Glomus fistulosum y Pseudomonas aeruginosa sobre el crecimiento, la longitud de la raíz y la absorción de P por plantas de espárrago sembradas en un Alic Melanudand. La inoculación con G. fistulosum incrementó significativamente la masa seca de la parte aérea y de raíces, la longitud de raíces primarias y secundarias y la absorción de P por las plantas. La aplicación de P aumentó significativamente el P disponible en el suelo (Bray II; sin embargo, a pesar de tal incremento no hubo aumento significativo del crecimiento de las plantas. La inoculación con P. aeruginosa no tuvo efecto significativo sobre las variables estudiadas, ni se encontraron interacciones significativas entre los factores.A greenhouse experiment evaluated the effects of phosphorus (P application and inoculation with Glomus fistulosum and Pseudomonas aeruginosa on growth, root length, and P uptake of Asparagus officinalis grown on Alic Melanudand. Inoculation with G. fistulosum significantly increased shoot and root dry weight, primary and secondary root lengths, and plant P uptake. Phosphorus application significantly increased extractable P in the soil (Bray II, but despite this increase, there was no significant increase in plant growth. Inoculation with P. aeruginosa had no significant effect on the variables studied, nor were there significant interactions among the factors.

  19. Pion absorption processes

    International Nuclear Information System (INIS)

    Proton and deuteron production from low-energy pion absorption in light nuclei leading to discrete and continuum states were measured. The LEP beam line at LAMPF was used with a stack of 8 intrinsic germanium crystals. The proton energy spectra are in general characterized by a broad bump at an energy approximately corresponding to π+d → pp reaction kinematics, suggestive of pion absorption on 2 nucleons. The energy-integrated cross-section for production of deuterons has an angular distribution similar to that for production of protons. The dependence of the total pion absorption cross-section on A is explained using a semi-classical model for pion transport in nuclei. The (π+,p) as well as (π+,d) reactions generally favor transitions involving larger angular momentum transfer to the residual nucleus when states of similar nuclear structure are considered. The low-energy excitation spectra from the (π+,p) reaction are similar to the spectra from (p,d) reaction on 12C and 13C. However, a calculation of the (π+,p) cross-section using the measured (p,d) reaction with the formulation of Wilkin to relate the two reactions is in moderate disagreement with the measured (π+,p) cross-sections. The excitation spectra from the (π+,p) reaction indicte the importance of two-step processes for the reaction. The (π+,d) reaction leading to the ground state of -- residual nucleus has been seen for 7Li, 12C, and 13C targets. The measured cross section for the 12C(π+,d)10C reaction to the 2+ state is much higher than that for the ground state. For the case of 18O, no counts were seen for excitation energy of +,d) reaction

  20. Absorption heat pumps

    Science.gov (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  1. Scattering with absorptive interaction

    Science.gov (United States)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  2. Absorption in dielectric models

    CERN Document Server

    Churchill, R J

    2015-01-01

    We develop a classical microscopic model of a dielectric. The model features nonlinear interaction terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found to act as a pseudo-reservoir, giving broadband absorption of electromagnetic radiation without the addition of damping terms in the dynamics. The effective permittivity is calculated using a perturbative iteration method and is found to have the form associated with real dielectrics. Spatial dispersion is naturally included in the model and we also calculate the wavevector dependence of the permittivity.

  3. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  4. The Roots of Beowulf

    Science.gov (United States)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  5. Philosophical Roots of Cosmology

    Science.gov (United States)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  6. Absorption Spectra of Astaxanthin Aggregates

    CERN Document Server

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  7. Electromagnetically-enhanced saturable absorption

    CERN Document Server

    Su, Chun-Hsu; Beausoleil, Raymond G; Hollenberg, Lloyd C L; Munro, William J; Nemoto, Kae; Spiller, Timothy P

    2009-01-01

    Electromagnetically-induced transparency (EIT) exploits quantum coherence to burn subnatural linewidth holes within a spectral line. It is typically discussed in the context of a pump-probe configuration in a three-level L system, where the pump is often significantly stronger than the probe. Here we remove such restrictions on the relative intensities of pump and probe fields, and furthermore show that the absorptive properties associated with EIT can be of benefit in absorptive nonlinear processes, especially saturable absorption. We show that in a three-level medium near the EIT condition, we can generate saturable absorption qualitatively similar to two-state saturable absorption. The difference is that we can explore saturable absorption against the ground-state dephasing, rather than spontaneous emission. This has the advantages of significantly more controllability, and more importantly, different intensity scalings in the absorption. Such effects could prove useful for signal regeneration at very low ...

  8. Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: A XAS and TEM study

    International Nuclear Information System (INIS)

    Uranium mobilization in surface waters and soils is highly dependent on its speciation. Links between U speciation and in plants mobility remain unclear, although understanding this relationship is essential in a view to properly develop efficient phyto remediation strategies. To address this question, we used X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) to determine U speciation and distribution in plant roots and leaves when exposed to U in the form of different chemical species. Our results indicate that U complexation with endogenous phosphate residues leads to its precipitation and fixation in plant organs, avoiding translocation from roots to leaves. We also show that complexation with a strong ligand such as citrate in exposure solution circumvents this precipitation, and enhances root-to-shoot translocation, in a U-carboxylate complex form. These results highlight correlations between U speciation in the environment and its mobility pattern in plants, which would help for phyto remediation purposes. (authors)

  9. ANALGESIC ACTIVITY OF ROOT EXTRACT OF SOLANUM MELONGENA LINN ROOT

    OpenAIRE

    Srivastava Ashish; Sanjay Yadav

    2011-01-01

    The present study was aimed at Pharmacognostic study and biological evaluation of analgesic activity of plants roots. The roots of plants were studies for Pharmacognostic characteristics namely, morphology, microscopy, physicochemical parameters, which can be of utilized in identification/authentication of the plant and/or its roots in crude drug form. The preliminary phytochemical screening of the dry residue was carried out by the chemical test and thin layer chromatographic method. The p...

  10. The HI absorption 'Zoo'

    CERN Document Server

    Gereb, K; Morganti, R; Oosterloo, T A

    2014-01-01

    We present an analysis of the HI absorption in a sample of 101 flux-selected radio AGN (S_1.4 GHz > 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). HI absorption is detected in 32 galaxies, showing a broad variety of widths, shapes and kinematical properties. We characterize the HI spectra of the individual detections using the busy function (Westmeier et al. 2014). With the goal of identifying different morphological structures of HI, we study the kinematical and radio source properties of the detections as function of their width. Narrow lines (FWHM = 500 km/s). These detections are good candidates for being HI outflows. The detection rate of HI outflows is 5 percent in the total radio AGN sample. This fraction represents a lower limit, however it could suggests that, if outflows are a characteristic phenomenon of all radio sources, they would have a short depletion timescale compared to the lifetime of the AGN. Blueshifted and broad/asymmetric lines are more often present among young...

  11. Geophysical Imaging of Root Architecture and Root-soil Interaction

    Science.gov (United States)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  12. Perennial roots to immortality.

    Science.gov (United States)

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. PMID:24563283

  13. Spatial distribution characteristics of fine roots of Populus euphratica in a desert riparian forest

    Institute of Scientific and Technical Information of China (English)

    Jianhua SI; Qi FENG; Jianlin LI; Jian ZHAO

    2008-01-01

    The soil-plant system is a very important sub-system of the soil-plant-atmosphere continuum (SPAC). The water uptake by plant roots is an important subject in the research on water transport in this SPAC and is also the most active study direction in the fields of ecology, hydrology and environment. The study of the spatial dis-tribution pattern of fine roots of plants is the basis of constructing a water absorption model of plant roots. Our study on the spatial distribution pattern of fine roots of Populus euphratica in a desert riparian forest shows that the density distribution of its root lengths can be expressed horizontally as a parabola. The fine roots are concen-trated within the range of 0-350 cm from the tree trunk and their amount accounts for 91.9% of the total root mass within the space of 0-500 cm. In the vertical dir-ection, the density distribution of the fine root lengths shows a negative exponential relation with soil depth. The fine roots are concentrated in the 0-80 cm soil layer, accounting for 96.8% of the total root mass in the 0-140 cm soil layer.

  14. Effect of soil moisture deficit in the upper root zone on growth and yield of soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Anwar-ul-Haq; Brown, D.A.

    Soybean producers in Arkansas frequently are confronted with drought conditions which limit yields. These moisture deficit periods result in decreased water and nutrient absorption which adversely affects root growth and distribution within the soil profile, bloom set, and seed-pod retention. Producers have attempted to eliminate this problem by irrigation, by the use of drought tolerant cultivars, and by chiseling to provide for greater root penetration into the subsoil.

  15. ROOT Tutorial for Summer Students

    CERN Document Server

    CERN. Geneva; Piparo, Danilo

    2015-01-01

    ROOT is a "batteries-included" tool kit for data analysis, storage and visualization. It is widely used in High Energy Physics and other disciplines such as Biology, Finance and Astrophysics. This event is an introductory tutorial to ROOT and comprises a front lecture and hands on exercises. IMPORTANT NOTE: The tutorial is based on ROOT 6.04 and NOT on the ROOT5 series.  IMPORTANT NOTE: if you have ROOT 6.04 installed on your laptop, you will not need to install any virtual machine. The instructions showing how to install the virtual machine on which you can find ROOT 6.04 can be found under "Material" on this page.

  16. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  17. Investigation of plant water relations with divided root systems of soybean.

    Science.gov (United States)

    Michel, B E; Elsharkawi, H M

    1970-11-01

    Soybean (Glycine max) was grown with root systems divided between adjacent cartons containing nutrient solution or soil. By adding polyethylene glycol (Carbowax 6000) to reduce solute potential or withholding water to reduce soil matric potential until water absorption from that side stopped, the root xylem water potential could be ascertained. Carbowax appeared to increase root resistance. An imbalance technique is described with which soil moisture contents of adjacent containers were followed individually. The patterns of water absorption obtained following repeated additions of water or addition of CaCl(2) solutions to one side indicated soil hydraulic conductivity became limiting at a soil water potential of -2 bars. A high concentration of CaCl(2) added to one side greatly reduced transpiration and produced severe plant injury. With part of the root system developing in nutrient solution, growth of roots into and water absorption from soil were slow; however, reduction of solute potential in the solution side greatly increased water absorption from the soil side. PMID:16657537

  18. Comparing Leaf and Root Insertion

    Directory of Open Access Journals (Sweden)

    Jaco Geldenhuys

    2010-07-01

    Full Text Available We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method, and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of comparisons required by leaf insertion.

  19. Feynman Diagrams and Rooted Maps

    CERN Document Server

    Prunotto, A; Czerski, P

    2013-01-01

    The {\\em Rooted Maps Theory}, a branch of the Theory of Homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the {\\em genus of a Feynman diagram}, which totally differs from the usual one, is given.

  20. On roots of Dehn twists

    CERN Document Server

    Monden, Naoyuki

    2009-01-01

    Margalit and Schleimer constructed nontrivial roots of the Dehn twist about a nonseparating curve. We prove that the conjugacy classes of roots of the Dehn twist about a nonseparating curve correspond to the conjugacy classes of periodic maps with certain conditions. Futhermore, we give data set which determine the conjugacy class of a root. As a consequence, we can find the minimum degree and the maximum degree, and show that the degree must be odd. Also, we give Dehn twist expression of the root of degree 3.

  1. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    XIANG FuYuan; LIANG ShunLin; LI AiGen

    2009-01-01

    The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  2. Diffuse interstellar absorption bands

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  3. The HI absorption "Zoo"

    Science.gov (United States)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1) detections, which are associated with gas-rich mergers, we find three new cases of profiles with blueshifted broad wings (with FW20 ≳ 500 km s-1) in high radio power AGN. These detections are good candidates for being HI outflows. Together with the known cases of outflows already included in the sample (3C 293 and

  4. Maximal rank root subsystems of hyperbolic root systems

    OpenAIRE

    Tumarkin, P.

    2003-01-01

    A Kac-Moody algebra is called hyperbolic if it corresponds to a generalized Cartan matrix of hyperbolic type. We study root subsystems of root systems of hyperbolic algebras. In this paper, we classify maximal rank regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras.

  5. Radiographing roots and shoots

    International Nuclear Information System (INIS)

    The effect of seed orientation on germination time and on shoot and root growth patterns is studied. Neutron radiography is used to observe the development of 4 types of plants, maize, greenpea, soya bean and padi. These plants were grown in varying orientations; sand sizes, sand thicknesses, and level of water content. Radiography of the seeds and plants were obtained for time exposure ranging from 3-12 hours and at reactor thermal power level, ranging from 500-750 kilowatts. Results obtained showed that seeds planted in varying orientations need different length of time for shoot emergence. Neutron radiography is now developed to other areas of non-industrial applications in Malaysia. (A.J.)

  6. Absorption intestinale des vitamines liposolubles

    OpenAIRE

    Reboul Emmanuelle

    2011-01-01

    The molecular mechanisms of fat-soluble vitamin intestinal absorption remain partly unknown, despite the fact that a better understanding of this process would certainly allow to improve their bioavailability. If their digestion-absorption process follows the fate of lipids globally, the recent discovery of membranes proteins involved in their absorption questioned the established dogmas. These new data should be taken into account to avoid dietary or drug interactions that may limit some fat...

  7. Compensatory Root Water Uptake of Overlapping Root Systems

    Science.gov (United States)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  8. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. Tibial avulsion fracture of the posterior root of the medial meniscus in children

    DEFF Research Database (Denmark)

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2012-01-01

    Few reports have described avulsion fractures of the posterior root of the medial meniscus in skeletally immature patients. This lesion should not be overlooked as it damages the load absorptive (distributive) function of the meniscus, increasing the risk of cartilage degeneration. Two cases of...... displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures with a...

  10. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    Science.gov (United States)

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  11. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat.

    Science.gov (United States)

    Ji, Hongtao; Liu, Ling; Li, Kexue; Xie, Qingen; Wang, Zhijuan; Zhao, Xuhua; Li, Xia

    2014-09-01

    Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress.

  12. Properties of Estimated Characteristic Roots

    DEFF Research Database (Denmark)

    Nielsen, Bent; Nielsen, Heino Bohn

    Estimated characteristic roots in stationary autoregressions are shown to give rather noisy information about their population equivalents. This is remarkable given the central role of the characteristic roots in the theory of autoregressive processes. In the asymptotic analysis the problems appear...

  13. Project Work on Plant Roots.

    Science.gov (United States)

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  14. Cassava root membrane proteome reveals activities during storage root maturation.

    Science.gov (United States)

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  15. Absorption of volatile ruthenium

    International Nuclear Information System (INIS)

    Phase equilibrium and mass transfer measurements for the absorption of ruthenium tetroxide (RuO4) in aqueous and nitric acid solutions have been completed. Low concentration phase equilibrium measurements confirm that the system obeys Henry's law across 4 orders of magnitude in concentration. Mass transfer measurements from turbulent gas flow indicate that the diffusivity of RuO4 in air may increase slightly as its concentration is reduced by 5-6 orders of magnitude. The reaction of RuO4 with nitrous acid and nitrites in solution results in precipitated or colloidal RuO2. Initial, immediate decomposition of ∼ 50% of the RuO4 occurs at RuO4: HNO2 mole ratios between 10:1 and 1:2, and does not vary systematically with mole ratio in this range. A mathematical model of the RuO4 decontamination performance of a packed bed scrubber has been developed, and validated experimentally with a laboratory QVF system. A survey of modelling approaches for predicting the ruthenium decontamination performance of off-gas condensers has been carried out. (author)

  16. Medico-legal aspects of vertical root fractures in root filled teeth

    DEFF Research Database (Denmark)

    Rosen, E; Tsesis, I; Tamse, A;

    2012-01-01

    To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT).......To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT)....

  17. Cadmium absorption inhibitors for soil

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.

    1974-05-25

    Cadmium absorption by soil is one cause of soil pollution. Cadmium adsorption inhibitors were prepared by mixing alginic acid which contained brown algae (Ascophyllum nodosum) and an inorganic material, shell fossils. This mixture was highly effective in preventing cadmium absorption by the soil.

  18. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  19. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  20. Gravisensing in roots

    Science.gov (United States)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  1. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    OpenAIRE

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength we...

  2. Balancing Absorptive Capacity and Inbound Open Innovation for Sustained Innovative Performance

    DEFF Research Database (Denmark)

    Bongsun, Kim; Kim, Eonsoo; Foss, Nicolai Juul

    2016-01-01

    How can a firm develop new ideas and turn them into profitable innovations on a sustained basis? We address this fundamental issue in a novel way by developing an integrative framework of absorptive capacity (AC) and inbound open innovation that is rooted in the attention-based view of the firm. We...

  3. Ecological adaptation of Reaumuria soongorica root system architecture to arid environments

    Institute of Scientific and Technical Information of China (English)

    LiShan Shan; Yi Li; DongMei Geng; QiuLian Dong

    2014-01-01

    The architectural parameters of Reaumuria soongorica root system in different habitats of Gansu Province, China were analyzed to examine its ecological adaptability to arid environments. Results show that:(1) Topological indices of R. Soongorica root sys-tem are small in all habitats, and root branching pattern tends to be dichotomous. Also, the indices gradually increase in the Min-qin windblown sand region and the Zhangye Gobi region in Hexi Corridor, which indicates that drought tends to produce her-ringbone-like root branching patterns. (2) Fractal dimension values of R. Soongorica root system are small and not obvious in the Minqin windblown sand region and the Zhangye Gobi region in Hexi Corridor, with values of 1.1778 and 1.1169, respectively. Fractal dimension values are relatively large in Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau, which indicates that the R. Soongorica root system has better fractal characteristics in this region than in the other regions. (3) Total branching ra-tios of the R. Soongorica root system in arid regions of Hexi Corridor are smaller than that in the Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau. This shows that root branching ability in the semi-arid region is stronger, and it decreases to some degree with increased drought. (4) The root connection lengths of R. soongorica root system are long in all habitats, but there are significant length differences between the different habitats. The root connection length at the Minqin windblown sand region is the longest. It is concluded that R. soongorica adapts to arid environments by decreasing root branching, decreasing root overlap and increasing root connection length, which makes its root branching pattern tend to be herringbone-like to reduce com-petition in root internal environment for nutrients and to enhance root absorption rate of nutrients, and ensure effective nutrition space. Thus the roots can absorb enough water and nutrients

  4. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  5. Effect of parameter choice in root water uptake models – the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    OpenAIRE

    Bechmann, M.; Schneider, C; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A

    2014-01-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water...

  6. Root pruning reduces root competition in living mulch cropping systems

    OpenAIRE

    Båth, B.; Kristensen, Hanne Lakkenborg; Thorup-Kristensen, Kristian

    2009-01-01

    In intercropping systems with a cash crop and a living mulch intercrop, competition between the cash crop and the intercrop (the living mulch) often reduces the yield of the cash crop. This project investigated (1) the influence of root pruning of living mulches on aboveground biomass of white cabbage. Below-ground growth and competition were examined by measuring (2) root distribution in minirhizotrons and (3) uptake of 15N placed at different soil depths. Two field experiments were carried ...

  7. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  8. Towards a multidimensional root trait framework: a tree root review.

    Science.gov (United States)

    Weemstra, Monique; Mommer, Liesje; Visser, Eric J W; van Ruijven, Jasper; Kuyper, Thomas W; Mohren, Godefridus M J; Sterck, Frank J

    2016-09-01

    Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework. PMID:27174359

  9. Evaluation of absorption/stripping for second phase expansion of KG gas cracker

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

  10. Gastrointestinal citrate absorption in nephrolithiasis

    Science.gov (United States)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  11. Total light absorption in graphene

    CERN Document Server

    Thongrattanasiri, Sukosin; de Abajo, F Javier Garcia

    2011-01-01

    We demonstrate that 100% light absorption can take place in a single patterned sheet of doped graphene. General analysis shows that a planar array of small lossy particles exhibits full absorption under critical-coupling conditions provided the cross section of each individual particle is comparable to the area of the lattice unit-cell. Specifically, arrays of doped graphene nanodisks display full absorption when supported on a substrate under total internal reflection, and also when lying on a dielectric layer coating a metal. Our results are relevant for infrared light detectors and sources, which can be made tunable via electrostatic doping of graphene.

  12. Ultrasonic cleaning of root canals

    Science.gov (United States)

    Verhaagen, Bram; Boutsioukis, Christos; Jiang, Lei-Meng; Macedo, Ricardo; van der Sluis, Luc; Versluis, Michel

    2011-11-01

    A crucial step during a dental root canal treatment is irrigation, where an antimicrobial fluid is injected into the root canal system to eradicate all bacteria. Agitation of the fluid using an ultrasonically vibrating miniature file has shown significant improvement in cleaning efficacy over conventional syringe irrigation. However, the physical mechanisms underlying the cleaning process, being acoustic streaming, cavitation or chemical activity, and combinations thereof, are not fully understood. High-speed imaging allows us to visualize the flow pattern and cavitation in a root canal model at microscopic scales, at timescales relevant to the cleaning processes (microseconds). MicroPIV measurements of the induced acoustic streaming are coupled to the oscillation characteristics of the file as simulated numerically and measured with a laser vibrometer. The results give new insight into the role of acoustic streaming and the importance of the confinement for the cleaning of root canals.

  13. Root coverage with bridge flap

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Gingival recession in anterior teeth is a common concern due to esthetic reasons or root sensitivity. Gingival recession, especially in multiple anterior teeth, is of huge concern due to esthetic reasons. Various mucogingival surgeries are available for root coverage. This case report presents a new bridge flap technique, which allows the dentist not only to cover the previously denuded root surfaces but also to increase the zone of attached gingiva at a single step. In this case, a coronally advanced flap along with vestibular deepening technique was used as root coverage procedure for the treatment of multiple recession-type defect. Here, vestibular deepening technique is used to increase the width of the attached gingiva. The predictability of this procedure results in an esthetically healthy periodontium, along with gain in keratinized tissue and good patient′s acceptance.

  14. Root Patterns in Heterogeneous Soils

    Science.gov (United States)

    Dara, A.; Moradi, A. B.; Carminati, A.; Oswald, S. E.

    2010-12-01

    Heterogeneous water availability is a typical characteristic of soils in which plant roots grow. Despite the intrinsic heterogeneity of soil-plant water relations, we know little about the ways how plants respond to local environmental quality. Furthermore, increasing use of soil amendments as partial water reservoirs in agriculture calls for a better understanding of plant response to soil heterogeneity. Neutron radiography is a non-invasive imaging that is highly sensitive to water and root distribution and that has high capability for monitoring spatial and temporal soil-plant water relations in heterogeneous systems. Maize plants were grown in 25 x 30 x 1 cm aluminum slabs filled with sandy soil. On the right side of the compartments a commercial water absorbent (Geohumus) was mixed with the soil. Geohumus was distributed with two patterns: mixed homogeneously with the soil, and arranged as 1-cm diameter aggregates (Fig. 1). Two irrigation treatments were applied: sufficient water irrigation and moderate water stress. Neutron radiography started 10 days after planting and has been performed twice a day for one week. At the end of the experiment, the containers were opened, the root were removed and dry root weight in different soil segments were measured. Neutron radiography showed root growth tendency towards Geohumus treated parts and preferential water uptake from Geohumus aggregates. Number and length of fine lateral roots were lower in treated areas compared to the non-treated zone and to control soil. Although corn plants showed an overall high proliferation towards the soil water sources, they decreased production of branches and fine root when water was more available near the main root parts. However there was 50% higher C allocation in roots grown in Geohumus compartments, as derived by the relative dry weight of root. The preferential C allocation in treated regions was higher when plants grew under water stress. We conclude that in addition to the

  15. Roots of unity in orders

    OpenAIRE

    Lenstra Jr., H. W.; Silverberg, A.

    2015-01-01

    We give deterministic polynomial-time algorithms that, given an order, compute the primitive idempotents and determine a set of generators for the group of roots of unity in the order. Also, we show that the discrete logarithm problem in the group of roots of unity can be solved in polynomial time. As an auxiliary result, we solve the discrete logarithm problem for certain unit groups in finite rings. Our techniques, which are taken from commutative algebra, may have further potential in the ...

  16. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...

  17. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain

    Energy Technology Data Exchange (ETDEWEB)

    Topa, M.A.

    1984-01-01

    Seedlings of pond, and loblolly pines were grown in a non-circulating, continuously-flowing solution culture under anaerobic (0.75 mg/1 O/sub 2/) conditions to determine the effects of anaerobiosis on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root was demonstrated via rhizosphere oxidation experiments using indigo-carmine dye solutions and polarography. Stem and root collar lenticels were found to be the major sites of atmospheric O/sub 2/ entry for submerged roots. Longitudinal and radial pathways for gas diffusion via intercellular spaces in the pericycle and ray parenchyma, respectively, were elucidated histologically. Lenticel and aerenchyma development, and rhizosphere oxidation in roots of anaerobically-grown sand pine seedlings were minimal. Elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term /sup 32/P uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass. Phosphorus absorption rates were negatively correlated with internal tissue phosphorus concentrations, and root and shoot biomass. 315 refs., 25 figs., 14 tabs.

  18. OZONE ABSORPTION IN RAW WATERS

    Directory of Open Access Journals (Sweden)

    LJILJANA TAKIĆ

    2008-03-01

    Full Text Available The ozone absorption in raw water entering the main ozonization step at the Belgrade drinking water supply plant was investigated in a continuous stirred tank reactor (CSTR. A slow chemical reaction rate of dissolved ozone and pollutants present in raw water have been experimentally determined. The modified Hatta number was defined and calculated as a criterion which determines whether and to which extent the reactions of ozone and pollutants influence the rate of the pure physical ozone absorption.

  19. Incomplete intestinal absorption of fructose.

    OpenAIRE

    Kneepkens, C M; Vonk, R J; Fernandes, J.

    1984-01-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children ...

  20. Absorption Of Dietary Lipid Components

    OpenAIRE

    Abdulkadir Hurşit

    2015-01-01

    Although the digestion and absorption of lipids that are necessary for the survival of living organisms are well known in general terms, nevertheless how different lipids to be digested, how it is distributed into the bloodstream, and how to be used by the cells, are unknown issues by most non specialist people. In recent years, knowledge of lipid digestion and absorption has expanded considerably. More insight has been gained in the mechanism of action of H + pump as a transport system in fa...

  1. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  2. Plant root-microbe communication in shaping root microbiomes.

    Science.gov (United States)

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production. PMID:26729479

  3. Plant root-microbe communication in shaping root microbiomes.

    Science.gov (United States)

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.

  4. Review on Mutation in Lateral Root of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; ZHANG Da; HAO Zaibin

    2011-01-01

    Rice roots include seminal roots, adventitious roots, lateral roots and root hairs, At present, progresses in the research of rice roots have been achieved in many aspects, such as root morphology, root activity, root reaction to various environmental factors as a contribution of root growth and rice yield, the relationship between root growth and stems/leaves/flowers/rice, genetic laws of root characters, etc. However, there are very few researches on lateral root mutant. This paper reviewed progresses of the lateral root mutant of rice from the perspectives of phytomorphology to plant physiology and biochemistry to the gene mapping, consisting of mechanism of developing lateral root of rice, gene cloning and functional analysis of lateral root development, the relationship between auxin and lateral roots, agronomic traits of lateral roots mutant, structure and morphology of root hairs, gravity anomaly of root, redox metabolism and proteomics researches of the mutation in lateral root of rice.

  5. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench).

    Science.gov (United States)

    Klug, Benjamin; Specht, André; Horst, Walter J

    2011-11-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10-20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation.

  6. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    OpenAIRE

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account ...

  7. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  8. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  9. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    Science.gov (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  10. Advances in experimental methods for root system architecture and root development

    Institute of Scientific and Technical Information of China (English)

    Jun-bang Wang; Xiu-juan Zhang; Chu Wu

    2015-01-01

    Plant roots play important roles in acquisition of water and nutrients, storage, anchoring, transport, and symbiosis with soil microorganisms, thus quantitative researches on root developmental processes are essential to understand root functions and root turnover in ecosystems, and at the same time such researches are the most difficult because roots are hidden underground. Therefore, how to investigate efficiently root functions and root dynamics is the core aspect in underground ecology. In this article, we reviewed some experimental methods used in root resear-ches on root development and root system architecture, and summarized the advantages and shortages of these meth-ods. Based on the analyses, we proposed three new ways to more understand root processes: (1) new experimental materials for root development; (2) a new observatory system comprised of multiple components, including many observatory windows installed in field, analysis software, and automatic data transport devices; (3) new techniques used to analyze quantitatively functional roots.

  11. Radiopacity of root filling materials

    International Nuclear Information System (INIS)

    A method for measuring the radiopacity of root filling materials is described. Direct measurements were made of the optic density values of the materials in comparison with a standard curve relating optic density to the thickness of an aluminium step wedge exposed simultaneously. By proper selection of film and conditions for exposure and development, it was possible to obtain a near-linear standard curve which added to the safety and reproducibility of the method. The technique of radiographic assessment was modified from clinical procedures in evaluating the obturation in radiographs, and it was aimed at detecting slits or voids between the dental wall and the filling material. This radiographic assessment of potensial leakage was compared with actual in vitro lekage of dye (basic fuchsin) into the roots of filled teeth. The result of the investigation show that root filling materials display a very wide range of radiopacity, from less than 3 mm to more than 12 mm of aluminium. It also seem that tooth roots that appear to be well obturated by radiographic evaluation, stand a good chance of beeing resistant to leakage in vitro, and that the type of filling material rather than its radiographic appearance, determines the susceptibility of the filled tooth to leakage in vitro. As an appendix the report contains a survey of radiopaque additives in root filling materials

  12. Root conditioning in periodontology — Revisited

    OpenAIRE

    Nanda, Tarun; Jain, Sanjeev; Kaur, Harjit; Kapoor, Daljit; Nanda, Sonia; Jain, Rohit

    2014-01-01

    Objective: Root surfaces of periodontitis-affected teeth are hypermineralized and contaminated with cytotoxic and other biologically active substances. To achieve complete decontamination of the tooth surfaces, various methods including root conditioning following scaling and root planning are present. The main objective of this article is to throw light on the different root conditioning agents used and the goals accomplished by root conditioning in the field of periodontology. Materials and...

  13. Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism

    OpenAIRE

    Aloni, R; ALONI, E.; Langhans, M.; ULLRICH, C. I.

    2006-01-01

    • Background and Aims Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce ...

  14. Effects of ridge tillage on photosynthesis and root characters of rice

    Directory of Open Access Journals (Sweden)

    Yao Yuan-zhi

    2015-03-01

    Full Text Available Rice (Oryza sativa L. is an important crop and breeding has not been able to improve yield. Root characteristics of hybrid rice 'Zhuliangyou 02' under conventional tillage and ridge tillage were studied in a Calcisols in Huaihua, China, from 2011 to 2013 to find better tillage methods to resolve massive water consumption, improve yield, and enhance productivity of agricultural labor for rice cultivation. Results showed ridge tillage increased photosynthetic parameters such as photosynthetic rate (P N, stomatal conductance (g s, and water use efficiency (WUE. It also significantly enhanced rice root number, root activity, and antioxidant enzyme activities; it also increased effective panicle number and actual yield by 22.12% and 15.18%, respectively, and enhanced aerenchymae during the early growth stage. Overall, ridge tillage could promote hybrid rice yields by enhancing root absorption, gas exchange, and reducing water consumption. It could be widely used in rice cultivation.

  15. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity

    NARCIS (Netherlands)

    M.M. Julkowska; H.C.J. Hoefsloot; S. Mol; R. Feron; G.J. de Boer; M.A. Haring; C. Testerink

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles i

  16. [Oat growth and cation absorption characteristics under salt and alkali stress].

    Science.gov (United States)

    Fan, Yuan; Ren, Chang-Zhong; Li, Pin-Fang; Ren, Tu-Sheng

    2011-11-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat. PMID:22303664

  17. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...... of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more...... nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification...

  18. Adventitious Roots and Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Hosakatte Niranjana Murthy; Eun Joo Hahn; Kee Yoeup Paek

    2008-01-01

    Plants are a rich source of valuable secondary metabolites and in the recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of these compounds. Adventitious roots have been successfully induced in many plant species and cultured for the production of high value secondary metabolites of pharmaceutical, nutraceutical and industrial importance. Adoption of elicitation methods have shown improved synthesis of secondary metabolites in adventitious root cultures. Development of large-scale culture methods using bioreactors has opened up feasibilities of production of secondary metabolites at the industrial levels. In the present review we summarize the progress made in recent past in the area of adventitious root cultures for the production of secondary metabolites.

  19. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    Directory of Open Access Journals (Sweden)

    Frédéric eDanjon

    2013-10-01

    Full Text Available Root systems of woody plants generally display a strong relationship between the cross-sectional area (CSA or cross-sectional diameter (CSD of a root and the dry weight of biomass (DWd or root volume (Vd that has grown (i.e., is descendent from that point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available.We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 yr from a stand. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots.CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots.The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  20. Detrending bootstrap unit root tests

    OpenAIRE

    Smeekes, S.

    2009-01-01

    The role of detrending in bootstrap unit root tests is investigated. When bootstrapping, detrending must not only be done for the construction of the test statistic, but also in the first step of the bootstrap algorithm. It is argued that the two points should be treated separately. Asymptotic validity of sieve bootstrap ADF unit root tests is shown for test statistics based on full sample and recursive OLS and GLS detrending. It is also shown that the detrending method in the first step of t...

  1. Absorption characteristics of bacteriorhodopsin molecules

    Indian Academy of Sciences (India)

    H K T Kumar; K Appaji Gowda

    2000-03-01

    The bacteriorhodopsin molecule absorbs light and undergoes a series of structural transformation following a well-defined photocycle. The complex photocycle is transformed to an equivalent level diagram by considering the lifetime of the intermediate states. Assuming that only and states are appreciably populated at any instant of time, the level diagram is further simplified to two-level system. Based on the rate equations for two-level system, an analytic expression for the absorption coefficient of bacteriorhodopsin molecule is derived. It is applied to study the behaviour of absorption coefficient of bacteriorhodopsin film in the visible wavelength region of 514 nm. The dependence of absorption coefficient of bacteriorhodopsin film on the thickness of the film, total number density of active molecules and initial number density of molecules in -state is presented in the graphical form.

  2. Absorption of focused light by spherical plasmas

    International Nuclear Information System (INIS)

    For light focused on spherical plasmas, we obtain new results giving the power absorbed by inverse bremsstrahlung and resonance absorption as a function of the focusing scheme. For a given beam profile and lens, there is an optimum focus to maximize total absorption. Linearly polarized beams lead to asymmetric absorption. Good agreement with experimental absorption and scattered light data is obtained

  3. Diabetic lipohypertrophy delays insulin absorption.

    Science.gov (United States)

    Young, R J; Hannan, W J; Frier, B M; Steel, J M; Duncan, L J

    1984-01-01

    The effect of lipohypertrophy at injection sites on insulin absorption has been studied in 12 insulin-dependent diabetic patients. The clearance of 125I-insulin from sites with lipohypertrophy was significantly slower than from complementary nonhypertrophied sites (% clearance in 3 h, 43.8 +/- 3.5 +/- SEM) control; 35.3 +/- 3.9 lipohypertrophy, P less than 0.05). The degree of the effect was variable but sufficient in several patients to be of clinical importance. Injection-site lipohypertrophy is another factor that modifies the absorption of subcutaneously injected insulin.

  4. Solar powered absorption air conditioning

    Science.gov (United States)

    Vardon, J. M.

    1980-04-01

    Artificial means of providing or removing heat from the building are discussed along with the problem of the appropriate building design and construction for a suitable heat climate inside the building. The use of a lithium bromide-water absorption chiller, powered by a hot water store heated by an array of stationary flat collectors, is analyzed. An iterative method of predicting the cooling output from a LiBr-water absorption refrigeration plant having variable heat input is described and a model allowing investigation of the performance of a solar collector and thermal storage system is developed.

  5. Quasistellar Objects Intervening Absorption Lines

    CERN Document Server

    Charlton, J C; Charlton, Jane C.; Churchill, Christopher W.

    2000-01-01

    We briefly review, at a level appropriate for graduate students and non-specialists, the field of quasar absorption lines (QALs). Emphasis is on the intervening absorbers. We present the anatomy of a quasar spectrum due to various classes of intervening absorption systems, and a brief historical review of each absorber class (Lyman-alpha forest and Lyman limit systems, and metal-line and damped Lyman-alpha absorbers). We also provide several heuristic examples on how the physical properties of both the intergalactic medium and the gaseous environments associated with earlier epoch galaxies can be inferred from QALs. The evolution of these environments from z=4 are discussed.

  6. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  7. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains......, where it serves as a storage molecule for phosphorous. Phytic acid is also associated with minerals. The minerals are bound by chelation to the negatively charged phosphate groups in phytic acid. Phytases catalyse the dephosphorylation of phytic acid, thus releasing bound minerals to make them available...

  8. New theories of root growth modelling

    Science.gov (United States)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  9. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Paglis

    2013-01-01

    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  10. Absorption capacity and toxicity of paper points after sterilization

    Directory of Open Access Journals (Sweden)

    Mirian Marubayashi Hidalgo

    2008-01-01

    Full Text Available Objective: To evaluate the influence of the sterilization process on paper cones as regards their absorption capacity, and consequently, root canal drying, in addition to the possible release of any antimicrobial or cytotoxic product. Methods: The cones used were of three of the brands found on the Brazilian market Dentsply (Dentsply Indústria e Comércio Ltda., Petrópolis, Brazil, Endopoints (Endopoints Indústria e Comércio Ltda., Paraíba do Sul, Brazil and Tanari (Tanari Industrial Ltda., São Paulo, Brazil. To evaluate the absorption capacity, the cones were submitted to four sterilization cycles, and the modified Holland technique was performed. The antimicrobial/cytotoxic capacity was verified by means of depositing the sterilized cones in Petri dishes containing Miller-Hinton Agar and Blood Agar, seeded with S.aureus and E. coli. Results: The Dentsply (Dentsply Indústria e Comércio Ltda., Petrópolis, Brazil and Tanari (Tanari Industrial Ltda., São Paulo, Brazilcones presented greater absorption after the first sterilization cycle, followed by a drop in the second and third cycles, and a new increase in the fourth cycle. For the Endopoints (Endopoints Indústria e Comércio Ltda., Paraíba do Sul, Brazil cones, the values were inverted, with a small drop in absorption after the first cycle, increase in the second and third cycles, and a new drop in the fourth cycle. None of the cones presented antimicrobial activity after the sterilization process. Conclusion: The sterilization process by damp heat does not alter the properties of absorption and there is no release of by-products from the tested paper cones.

  11. Measuring the efficacy of a root biobarrier with x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tollner, E.W.; Murphy, C.E. Jr. (Georgia Univ., Griffin, GA (USA). Dept. of Agricultural Engineering)

    1990-08-16

    X-ray computed tomography is a useful tool for investigating soil physical properties nondestructively. There is a need to develop proper calibration relationships between soil properties and the x-ray absorption coefficient. The objective of the work was to evaluate soil factors affecting the x-ray absorption coefficient. Based on a theoretical analysis, experimental data from five soils and on results of several other investigators, it was concluded that for many applications, one calibration relationship is applicable to a wide range of soils. The montmorillinitic clay used in the study required special handling due to the extreme shrinkage of this soil upon drying. Knowledge of chemical composition enables approximations but not exact predictions of the x-ray absorption coefficient. The results suggested some reasonable alternative to exhaustive calibration for each anticipated soil condition. Quantification of root activity in terms of root growth and indirectly through water uptake is necessary for understanding plant growth dynamics. X-ray computed tomography (CT) enables qualitative as well as two quantitative outputs, one of which can lead to conclusions regarding root activity. A greenhouse study involving soil columns (Lakeland sand, bulk density 1.4 Mg/m{sup 3}) planted to soybean, Bahiagras, and control (no vegetation) was conducted in 1989. A treflan based on chemical barrier was placed in half of the soil column of each species. The mean x-ray absorption correlated to water content. Results suggested that root presence can also be indirectly inferred based on water content drawn down during planned stress events. It was concluded that x-ray CT may have a niche in soil-water-plant relation studies, particularly when plant species have large roots. 35 refs., 13 figs., 8 tabs.

  12. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  13. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  14. Four cuspal maxillary second premolar with single root and three root canals: Case report

    Directory of Open Access Journals (Sweden)

    Parul Bansal

    2016-01-01

    Full Text Available Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps.

  15. Comparative pharmacognostical variations in stem, true root and aerial root of Tinospora cordifolia willd

    OpenAIRE

    Rohit Ajith Gokarn; Supriya Gokarn; Galib; Harisha, C. R.; Biswajyoti Patgiri

    2014-01-01

    Context: Amrita (Tinospora cordifolia Willd.) an often used perennial climber used in different clinical conditions and various researches are useful in understanding its potential, but comparative pharmacognostical study of stem, true root and aerial root is not available till date. Root of Amrita is often used in folklore medicine. As true root is not abundantly available, aerial roots may be considered in the place of true root. Objective: The present study was designed to evaluate the sim...

  16. Four cuspal maxillary second premolar with single root and three root canals: Case report.

    Science.gov (United States)

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  17. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  18. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  19. [Root arthrosis of the thumb].

    Science.gov (United States)

    Hautefeuille, P; Duquesnoy, B

    1991-12-15

    Root arthrosis of the thumb results from a degenerative lesion of the trapezometacarpal joint. It is particularly frequent in menopausal women. The often prolonged pain it produces sometimes raises therapeutic problems. Treatment is always medical at first, but when it fails several surgical operations will ensure permanent painlessness. PMID:1808686

  20. Contemporary root canal filling strategies

    NARCIS (Netherlands)

    A.T. Moinzadeh

    2016-01-01

    Currently, clinicians can choose from a wide range of root canal filling materials and techniques, some of which have been evaluated in this thesis. Methacrylate resin-based sealers suffer from polymerization shrinkage stresses. This limitation may partly be overcome by a two-step cementation proced

  1. Electromodulated absorption in smoky quartz

    NARCIS (Netherlands)

    Brom, W.E. van den; Volger, J.

    1974-01-01

    The optical absorption coefficient of “smoky” quartz (containing aluminium) can be modulated by applying an electric field. The effect saturates at high fields and low temperatures and reaches a maximum at 535 nm. The results are discussed in terms of a model consisting of a colour centre, dipolar i

  2. Exercise, Intestinal Absorption, and Rehydration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ KEYPOINTS 1. The proximal small intestine (duodenum & jejunum) is the primary site of fluid absorption. It absorbs about 50% to 60% of any given fluid load. The colon or large intestine absorbs approximately 80 to 90% of the fluid it receives, but accounts for only about 15% of the total fluid load.

  3. S matrix for absorptive Hamiltonians

    International Nuclear Information System (INIS)

    The existence of a matrix S such that SS = 1 in the presence of absorption is demonstrated. In the limit a of hermitian Hamiltonian the unitarity conditions SS = 1 is recovered. A dispersion relation for forward scattering is derived and the properties of the reactance matrices K and K are obtained. It is shown that K = K

  4. QSO Absorption Lines from QSOs

    CERN Document Server

    Bowen, D V; Ménard, B; Chelouche, D; Inada, N; Oguri, M; Richards, G T; Strauss, M A; Vanden Berk, Daniel E; York, D G; Bowen, David V.; Hennawi, Joseph F.; Menard, Brice; Chelouche, Doron; Inada, Naohisa; Oguri, Masamune; Richards, Gordon T.; Strauss, Michael A.; Berk, Daniel E. Vanden; York, Donald G.

    2006-01-01

    We present the results of a search for metal absorption lines in the spectra of background QSOs whose sightlines pass close to foreground QSOs. We detect MgII(2796,2803) absorption in Sloan Digital Sky Survey (SDSS) spectra of four z>1.5 QSOs whose lines of sight pass within 26-98 kpc of lower redshift (z~0.5-1.5) QSOs. The 100% [4/4 pairs] detection of MgII in the background QSOs is clearly at odds with the incidence of associated (z_abs ~ z_em) systems -- absorbers which exist towards only a few percent of QSOs. Although the quality of our foreground QSO spectra is not as high as the SDSS data, absorption seen towards one of the background QSOs clearly does not show up at the same strength in the spectrum of the corresponding foreground QSO. This implies that the absorbing gas is distributed inhomogeneously around the QSO, presumably as a direct consequence of the anisotropic emission from the central AGN. We discuss possible origins for the MgII lines, including: absorption by gas from the foreground QSO h...

  5. Bent Electro-Absorption Modulator

    DEFF Research Database (Denmark)

    2002-01-01

    components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contract may be modulated while keeping the absorption coefficient...... by bendng losses co-operates to provide more compact modulators with improved performance (extinction) and speed....

  6. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-05-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from –0.79 to –0.53 W m−2 (33% and all-sky from –0.47 to –0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  7. Absorptive capacity and smart companies

    Directory of Open Access Journals (Sweden)

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  8. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  9. Effects of Rooting Substrates on In Vitro Rooting of Anthurium andraeanum L. cv. Avanti

    Directory of Open Access Journals (Sweden)

    Wararat KEATMETHA

    2004-06-01

    Full Text Available A study was made of the effects of rooting substrates on in vitro rooting of Anthurium andraeanum L. cv. Avanti, orange flower. Initiation of root was attempted in several rooting substrates with modified ½ MS medium supplemented with 30 g/l sucrose. The cut end of the shoot was dipped in 2.5 g/l indole-3-butyric acid (IBA before insertion in substrates. After 4 weeks of culture, it was found that roots were markedly induced in 8 and 12 g/l agar with 86.67 and 73.33% in root induction rate, 14.62 and 12.41 mm in root length, with 3.54 and 3.91 roots in root number respectively. However, 93.33% of root induction rate with 3.00 roots, and 11.66 mm in root length were produced on medium containing 1.5 g/l phytagel while peat moss and vermiculite could induce rooting at 46.67% with 7.86 and 6.66 mm in length, with 1.00 and 1.86 roots respectively. Root could not be induced in sphagnum moss. Anatomical study of root showed no abnormality in all rooting substrates. The roots formed in high concentrations of agar at 12 and 16 g/l, 2.0 and 2.5 g/l phytagel, and peat moss were thicker than those formed in other rooting substrates. Especially, root formed in peat moss had the largest vascular diameter. However, roots formed in phytagel, peat moss, and vermiculite had more root hairs than those formed in agar substrate. Plantlets, rooted in peat moss and vermiculite, survived at 100% after acclimation in a mixture of soil and coconut husk.

  10. A Novel Approach for Oral Delivery of Insulin via Desmodium gangeticum Aqueous Root Extract

    OpenAIRE

    Kurian, GA; Seetharaman, AV; Subramanian, NR; Paddikkala, J.

    2010-01-01

    Many challenges are associated with the oral delivery of insulin, relating to the physical and chemical stability of the hormone, and its absorption and metabolism in the human body. The present study aims to demonstrate the oral delivery of insulin in both normal and steptozotocin (STZ)-induced diabetic rats with the help of the aqueous extract of Desmodium gangeticum (DG) root. Human insulin was mixed with the aqueous extract of DG root (0.1 mg/ml) with human insulin (40 IU/ml) in ratio 1:1...

  11. ANALGESIC ACTIVITY OF ROOT EXTRACT OF SOLANUM MELONGENA LINN ROOT

    Directory of Open Access Journals (Sweden)

    Srivastava Ashish

    2011-05-01

    Full Text Available The present study was aimed at Pharmacognostic study and biological evaluation of analgesic activity of plants roots. The roots of plants were studies for Pharmacognostic characteristics namely, morphology, microscopy, physicochemical parameters, which can be of utilized in identification/authentication of the plant and/or its roots in crude drug form. The preliminary phytochemical screening of the dry residue was carried out by the chemical test and thin layer chromatographic method. The preliminary phytochemical screening of dry residue showed the presence of Saponins, Alkaloids, Glycoside, and Flavonoids in various extracts. However most of the medicinally potential phytoconstituents were present in methanolic and aqueous extracts. The Hydroalcoholic extract was selected for Biological screening due to high alcoholic-soluble extractive value, high yield of successive alcoholic extract and TLC results. The analgesic screening was done using Hot plate method, Tail immersion methods and acetic acid induced in rats and mice. Hydroalcoholic extract was administered orally at the acute doses of 200mg/kg and 400mg/kg b.w. Several activities on these doses have already been reported. Both the doses showed significant (p<0.05 analgesic activity.

  12. Meromorphic iterative roots of linear fractional functions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more difficult in non-monotone cases. Therefore, it is interesting to find iterative roots of linear fractional functions (abbreviated as LFFs), a class of non-monotone functions on R. In this paper, iterative roots of LFFs are studied on C. An equivalence between the iterative functional equation for non-constant LFFs and the matrix equation is given. By means of a method of finding matrix roots, general formulae of all meromorphic iterative roots of LFFs are obtained and the precise number of roots is also determined in various cases. As applications, we present all meromorphic iterative roots for functions z and 1/z.

  13. Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    HongLing LIU; Yong TAN; Monika NELL; Karin ZITTER-EGLSEER; Chris WAWSCRAH; Brigitte KOPP; ShaoMing WANG; Johannes NOVAK

    2014-01-01

    Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min-eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel-opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G. intraradices, G. cladoideum, G. microagregatum, G. caledonium and G. etunica-tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab-lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con-centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.

  14. Rhizosphere biophysics and root water uptake

    Science.gov (United States)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  15. Inhibition of strigolactones promotes adventitious root formation

    OpenAIRE

    Rasmussen, Amanda; Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate her...

  16. PHARMACOGNOSTIC EVALUATION OF KALANCHOE PINNATA ROOTS

    OpenAIRE

    Quazi Majaz A.; Sayyed Nazim; Shaikh Siraj; Shaikh Afsar; Patel M. Siddik

    2011-01-01

    The plant Kalanchoe pinnata is widely used in ayurvedic system of medicine as astringent, analgesic, carminative and also useful in diarrhea and vomiting. It is naturalized throughout the hot and moist parts of India. And lots of phytochemical and pharmacological work has done on leaves of plant but the root part is not focused. Hence we have selected roots for pharmacognostic analysis which will support further studies on the root. In this first roots are subjected to microscopic and macrosc...

  17. Root Cause Analysis, Part 2: STERILE COMPOUNDING.

    Science.gov (United States)

    Cabaleiro, Joe; Jackson, Kathleen

    2016-01-01

    When an adverse event or near miss occurs in a pharmacy, eliminating the root cause to prevent recurrence is critically important. Addressing the root cause of the problem reduces the recurrence of putting patients and the pharmacy at risk. This article proposes a method for performing Root Cause Analysis applicable to sterile compounding. PMID:27323421

  18. Root Cause Analysis: Methods and Mindsets.

    Science.gov (United States)

    Kluch, Jacob H.

    This instructional unit is intended for use in training operations personnel and others involved in scram analysis at nuclear power plants in the techniques of root cause analysis. Four lessons are included. The first lesson provides an overview of the goals and benefits of the root cause analysis method. Root cause analysis techniques are covered…

  19. Automatic schema evolution in Root

    International Nuclear Information System (INIS)

    ROOT version 3 (spring 2001) supports automatic class schema evolution. In addition this version also produces files that are self-describing. This is achieved by storing in each file a record with the description of all the persistent classes in the file. Being self-describing guarantees that a file can always be read later, its structure browsed and objects inspected, also when the library with the compiled code of these classes is missing. The schema evolution mechanism supports the frequent case when multiple data sets generated with many different class versions must be analyzed in the same session. ROOT supports the automatic generation of C++ code describing the data objects in a file

  20. Retention of Root Canal Posts

    DEFF Research Database (Denmark)

    Sahafi, A; Benetti, Ana Raquel; Flury, S;

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc...... received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement......, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention...

  1. Quantum Roots in Geometry: I

    CERN Document Server

    Wanas, M I

    2003-01-01

    In the present work, it is shown that the geometerization philosophy has not been exhausted. Some quantum roots are already built in non-symmetric geometries. Path equations in such geometries give rise to spin-gravity interaction. Some experimental evidences (the results of the COW-experiment) indicate the existence of this interaction. It is shown that the new quantum path equations could account for the results of the COW-experiment. Large scale applications, of the new path equations, admitted by such geometries, give rise to tests for the existence of this interaction on the astrophysical and cosmological scales. As a byproduct, it is shown that the quantum roots appeared explicitly, in the path equations, can be diffused in the whole geometry using a parameterization scheme.

  2. Automatic Schema Evolution in Root

    Institute of Scientific and Technical Information of China (English)

    ReneBrun; FonsRademakers

    2001-01-01

    ROOT version 3(spring 2001) supports automatic class schema evolution.In addition this version also produces files that are self-describing.This is achieved by storing in each file a record with the description of all the persistent classes in the file.Being self-describing guarantees that a file can always be read later,its structure browsed and objects inspected.also when the library with the compiled code of these classes is missing The schema evolution mechanism supports the frequent case when multiple data sets generated with many different class versions must be analyzed in the same session.ROOT supports the automatic generation of C++ code describing the data objects in a file.

  3. Theory of graphene saturable absorption

    CERN Document Server

    Marini, A; de Abajo, F J Garcia

    2016-01-01

    Saturable absorption is a non-perturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a non-perturbative single-particle approach, describing conduction-electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics non-perturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. The results are in excellent agreement with atomistic quantum-mechanical simulations including high...

  4. The intestinal absorption of folates.

    Science.gov (United States)

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  5. Contemporary root canal filling strategies

    OpenAIRE

    Moinzadeh, A.T.

    2016-01-01

    Currently, clinicians can choose from a wide range of root canal filling materials and techniques, some of which have been evaluated in this thesis. Methacrylate resin-based sealers suffer from polymerization shrinkage stresses. This limitation may partly be overcome by a two-step cementation procedure. This alternative placement technique results in an increase and homogenization of the adhesion of the material to intraradicular dentin. Subsequent research should aim at developing sealers wi...

  6. Evaluation of bacterial leakage of four root- end filling materials: Gray Pro Root MTA, White Pro Root MTA, Root MTA and Portland Cement (type I

    Directory of Open Access Journals (Sweden)

    Zarabian M.

    2005-07-01

    Full Text Available Background and Aim: Today several materials have been used for root- end filling in endodontic surgery. Optimal properties of Pro Root MTA in in-vitro and in-vivo studies has been proven. On the other hand, based on some studies, Root MTA (Iranian Pro Root MTA and Portland cement are similar to Pro Root MTA in physical and biologic properties. The aim of this study was to evaluate bacterial leakage (amount and mean leakage time of four root- end filling materials. Materials and Methods: In this experimental in-vitro study, seventy six extracted single- rooted human teeth were randomly divided into six groups for root-end filling with gray Pro Root MTA, white Pro Root MTA, Root MTA (Iranian Pro Root MTA, Portland Cement (type I and positive and negative control groups. Root canals were instrumented using the step- back technique. Root- end filling materials were placed in 3mm ultra sonic retro preparations. Samples and microleakage model system were sterilized in autoclave. The apical 3-4 mm of the roots were immersed in phenol red with 3% lactose broth culture medium. The coronal access of each specimen was inoculated every 24h with a suspension of Streptococcus sanguis (ATCC 10556. Culture media were observed every 24h for colour change indicating bacterial contamination for 60 days. Statistical analysis was performed using log- rank test with P<0.05 as the limit of significance. Results: At the end of study 50%, 56.25%, 56.25% and 50% of specimens filled with Gray Pro Root MTA, White Pro Root MTA. Root MTA and Portland Cement (type I had evidence of leakage respectively. The mean leakage time was 37.19±6.29, 36.44±5.81, 37.69±5.97 and 34.81±6.67 days respectively. Statistical analysis of data showed no significant difference among the leakage (amount and mean leakage time of the four tested root- end filling materials (P=0.9958. Conclusion: Based on the results of this study, there were no significant differences in leakage among the four

  7. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    Science.gov (United States)

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  8. Photodetector with enhanced light absorption

    Science.gov (United States)

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  9. Chaos and multiple photon absorption

    International Nuclear Information System (INIS)

    An anharmonic vibrational mode of a molecule, driven by an intense infrared laser and coupled to a quasi-continuum of background modes, is found to undergo chaotic oscillations. This chaos leads to predominantly fluence-dependent rather than intensity-dependent multiple-photon absorption, as is found experimentally. The loss of coherence is associated with the decay of temporal correlation of background-mode oscillations

  10. Maximum-likelihood absorption tomography

    International Nuclear Information System (INIS)

    Maximum-likelihood methods are applied to the problem of absorption tomography. The reconstruction is done with the help of an iterative algorithm. We show how the statistics of the illuminating beam can be incorporated into the reconstruction. The proposed reconstruction method can be considered as a useful alternative in the extreme cases where the standard ill-posed direct-inversion methods fail. (authors)

  11. Printing Values In Interactive ROOT

    CERN Document Server

    Perovic, Boris

    2015-01-01

    This project report summarizes the work I have been performing during the past twelve weeks as a Summer Student intern working on ROOT project in the SFT group, PH department, under the supervision of Axel Naumann and Danilo Piparo. One of the widely requested features for ROOT was improved interactive shell experience as well as improved printing of object values. Solving this issue was the goal of this project. Primarily, we have enabled printing of the collections. Secondly, we have unified the printing interface, making it much more robust and extendible. Thirdly, we have implemented printing of nested collections in a flexible and user-friendly manner. Finally, we have added an interactive mode, allowing for paginated output. At the beginning of the report, ROOT is presented with examples of where it is used and how important it is. Then, the motivation behind the project is elaborated, by presenting the previous state of the software package and its potential for improvement. Further, the process in wh...

  12. ROOT Status and Future Developments

    CERN Document Server

    Brun, R; Canal, P; Rademakers, Fons; Goto, Masaharu; Canal, Philippe; Brun, Rene

    2003-01-01

    In this talk we will review the major additions and improvements made to the ROOT system in the last 18 months and present our plans for future developments. The additons and improvements range from modifications to the I/O sub-system to allow users to save and restore objects of classes that have not been instrumented by special ROOT macros, to the addition of a geometry package designed for building, browsing, tracking and visualizing detector geometries. Other improvements include enhancements to the quick analysis sub-system (TTree::Draw()), the addition of classes that allow inter-file object references (TRef, TRefArray), better support for templated and STL classes, amelioration of the Automatic Script Compiler and the incorporation of new fitting and mathematical tools. Efforts have also been made to increase the modularity of the ROOT system with the introduction of more abstract interfaces and the development of a plug-in manager. In the near future, we intend to continue the development of PROOF and...

  13. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape

    Science.gov (United States)

    Nakamura, Shin-ichi

    2013-01-01

    Glutathione is a tripeptide involved in various aspects of plant metabolism. This study investigated the effects of the reduced form of glutathione (GSH) applied to specific organs (source leaves, sink leaves, and roots) on cadmium (Cd) distribution and behaviour in the roots of oilseed rape plants (Brassica napus) cultured hydroponically. The translocation ratio of Cd from roots to shoots was significantly lower in plants that had root treatment of GSH than in control plants. GSH applied to roots reduced the Cd concentration in the symplast sap of root cells and inhibited root-to-shoot Cd translocation via xylem vessels significantly. GSH applied to roots also activated Cd efflux from root cells to the hydroponic solution. Inhibition of root-to-shoot translocation of Cd was visualized, and the activation of Cd efflux from root cells was also shown by using a positron-emitting tracer imaging system (PETIS). This study investigated a similar inhibitory effect on root-to-shoot translocation of Cd by the oxidized form of glutathione, GSSG. Inhibition of Cd accumulation by GSH was abolished by a low-temperature treatment. Root cells of plants exposed to GSH in the root zone had less Cd available for xylem loading by actively excluding Cd from the roots. Consequently, root-to-shoot translocation of Cd was suppressed and Cd accumulation in the shoot decreased. PMID:23364937

  14. Root caries, root surface restorations and lifestyle factors in adult Danes

    DEFF Research Database (Denmark)

    Christensen, Lisa Bøge; Jensen, Allan Bardow; Ekstrand, Kim;

    2015-01-01

    and restored root surface lesions, respectively. RESULTS: The prevalence of active root caries was 4%, while 26% displayed restored root surfaces. The sugar intake was not related to root caries. A multivariate logistic regression analysis revealed that, in subjects aged 45 or over, smoking and wearing....... In addition, oral health education should focus on the possible risks of smoking and a high alcohol intake....

  15. Comparative pharmacognostical variations in stem, true root and aerial root of Tinospora cordifolia willd

    Directory of Open Access Journals (Sweden)

    Rohit Ajith Gokarn

    2014-01-01

    Full Text Available Context: Amrita (Tinospora cordifolia Willd. an often used perennial climber used in different clinical conditions and various researches are useful in understanding its potential, but comparative pharmacognostical study of stem, true root and aerial root is not available till date. Root of Amrita is often used in folklore medicine. As true root is not abundantly available, aerial roots may be considered in the place of true root. Objective: The present study was designed to evaluate the similarities between stem, true root, aerial root and to substantiate the use of aerial root in place of true root. Materials and Methods: Macroscopic, microscopic and histochemical study of fresh samples of stem, aerial root and true root of Amrita was carried out. Results: The distinctive character of stem shows dominant pericyclic fibre and pith. True root is devoid of pith where as aerial root has condensed pith consisting of lignified parenchyma. Conclusion: Specific individual characters of stem and true root and similar characters of aerial root were evident.

  16. The quality of root fillings remaining in mandibular incisors after root-end cavity preparation

    NARCIS (Netherlands)

    Wu, MK; de Schwartz, FBC; van der Sluis, LWM; Wesselink, PR

    2001-01-01

    Aim The aim of this study was to determine the quality of root fillings remaining in mandibular incisors after root-end resection and root-end cavity preparation. Methodology Roots of 40 mandibular incisors. 12 mm in length. were divided into two groups and instrumented using a balanced force techni

  17. QED-driven laser absorption

    CERN Document Server

    Levy, M C; Ratan, N; Sadler, J; Ridgers, C P; Kasim, M; Ceurvorst, L; Holloway, J; Baring, M G; Bell, A R; Glenzer, S H; Gregori, G; Ilderton, A; Marklund, M; Tabak, M; Wilks, S C; Norreys, P A

    2016-01-01

    Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser illuminates optically-thick matter. It underpins important petawatt-scale applications today, e.g., medical-quality proton beam production. However, development of ultra-high-field applications has been hindered since no study so far has described absorption throughout the entire transition from the classical to the quantum electrodynamical (QED) regime of plasma physics. Here we present a model of absorption that holds over an unprecedented six orders-of-magnitude in optical intensity and lays the groundwork for QED applications of laser-driven particle beams. We demonstrate 58% efficient \\gamma-ray production at $1.8\\times 10^{25}~\\mathrm{W~ cm^{-2}}$ and the creation of an anti-matter source achieving $4\\times 10^{24}\\ \\mathrm{positrons}\\ \\mathrm{cm^{-3}}$, $10^{6}~\\times$ denser than of any known photonic scheme. These results will find applications in scaled laboratory probes of bla...

  18. Absorption and distribution of Zn by spring wheat in high zinc soil and effect of rhizosphere soil

    International Nuclear Information System (INIS)

    The isotope tracer technique was used to study the absorption and distribution of 65Zn by spring wheat in high zinc soil. The results showed that the distribution of 65Zn in the organs of spring wheat was in the order as stem leaf>grain>root>wheat husk; the specific activity of 65Zn and the transfer factor of 65Zn in the organs of spring wheat were in the order as root>grain>wheat husk>stem leaf. With added 65Zn increased, the absorption amount of 65Zn by spring wheat and the distribution of 65Zn in root increased. The 65Zn applied was enriched by rhizosphere soil of spring wheat

  19. Absorption of /sup 45/Ca during the immersion of the aerial organs of Salicornia stricta

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, J.; Vilquin, A.

    1971-04-01

    Immersion of the aerial organs of Salicornia stricta in a nutrient solution with added radioactive /sup 45/Ca resulted in the accumulation of /sup 45/Ca in the aerial organs. There was no accumulation when the roots were immersed in the nutrient solution. Absorption of minerals by the stems and leaves of Salicornia during periodic submersions in the brackish water surrounding the plants, is therefore possible. 17 references, 1 figure, 1 table.

  20. Variation in root activity with season and soil moisture in coconut

    International Nuclear Information System (INIS)

    An experiment was conducted at the College of Horticulture, Vellanikkara to study the effect of season and soil moisture regime on the physiological activity of roots in coconut. The experiment has been laid out in CRD with two replications at two different depths (20 and 75 cm) and moisture regimes (irrigated and rain fed) round the year. The 32P uptake was higher during wet season as compared to dry season in monocrop of coconut. The absorption was more from the surface layers during wet season and roots explored deeper soil layers during dry season. Irrigation in general improved absorption of 32P in coconut and resulted in higher uptake from the surface soil compared to that under rainfed condition. (author)

  1. Ectopic Expression of a Phytase Gene from Medicago truncatula Barrel Medic Enhances Phosphorus Absorption in Plants

    Institute of Scientific and Technical Information of China (English)

    Kai Xiao; Jian-Heng Zhang; Maria Harrison; Zeng-Yu Wang

    2006-01-01

    In the present study, the phosphorus-absorption capacity of transgenic Arabidopsis plants ectopically expressing a novel phytase gene from Medicago truncatula Barrel Medic was evaluated. A full-length cDNA encoding an extracellular form of phytase was isolated from the model legume M. truncatula. The phytase gene (MtPHY1) has an open reading frame of 1 632 bp predicted to encode 543 amino acids, including an Nterminal signal peptide of 27 amino acids. The genomic sequence of the MtPHY1 gene is 5 151 bp, containing seven exons interrupted by six introns. Under high-Pi (2 mmol/L) growth conditions, higher levels of MtPHY1transcripts accumulated in the leaf and stem than in the root. The transcript level was reduced in the stem and increased in the root, with no obvious changes in the hybridization signal detected in the leaf under lowPi (10 μmol/L) conditions. Chimeric transgenes were constructed by placing MtPHY1 under the control of the constitutive CaMV35S promoter and the root-specific MtPT1 promoter. Phytase activities in root apoplast of transgenic Arabidopsis were 12.3- to 16.2-fold of that in control plants. The phytase expressed was secreted into the rhizosphere, as demonstrated by HPLC analysis of phytate degradation by root exudates. Ectopic expression of MtPHY1 in Arabidopsis, leading to significant improvement in organic phosphorus absorption and plant growth, indicated that MtPHY1 has great potential for improving plant phosphorus absorption and phytoremediation.

  2. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2012-01-01

    Full Text Available Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  3. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  4. Transcriptional profile of maize roots under acid soil growth

    Directory of Open Access Journals (Sweden)

    Mattiello Lucia

    2010-09-01

    Full Text Available Abstract Background Aluminum (Al toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17 showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6. Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The

  5. Penis-root perception of Koro patients.

    Science.gov (United States)

    Chowdhury, A N

    1991-07-01

    Koro is an acute anxiety reaction in which the perception of decreased penis length because of intra-abdominal traction is the main feature. This study attempts to explore the penis-root perception of the Koro patients by a graphomotor projective test--the Draw-a-penis Test (DAPT). This controlled DAPT investigation shows that Koro patients perceived the penis as a detached organ with root-boundary definiteness as evidenced from their close penis-root perception. They also displayed reduced volumetric perception of penis-root than the normal subjects. These perceptual deviations in penis-root image are discussed in relation to their Koro vulnerability.

  6. Five Roots Pattern of Median Nerve Formation

    Directory of Open Access Journals (Sweden)

    Konstantinos Natsis

    2016-04-01

    Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.

  7. Asteroidal Quadruples in non Rooted Path Graphs

    Directory of Open Access Journals (Sweden)

    Gutierrez Marisa

    2015-11-01

    Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.

  8. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    Science.gov (United States)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  9. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.

    OpenAIRE

    Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi

    2010-01-01

    Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) wa...

  10. Assessment of the wetting behavior of three different root canal sealers on root canal dentin

    OpenAIRE

    Muralidhar Tummala; Veeramachaneni Chandrasekhar; A Shashi Rashmi; Kundabala, M; Vasudev Ballal

    2012-01-01

    Aim: The objective of the present study was to evaluate and compare the wetting behavior of three different root canal sealers on the root canal dentin surface treated with irrigants and their combination. Materials and Methods: Decoronation and apical third resections of 27 extracted single-rooted human mandibular premolars were done. The roots were then split longitudinally into two halves, and randomly assigned into three treatment groups (n=18). The root dentin surfaces in Group1, Gro...

  11. Nitrate reductase and acid phosphatase activities as affected by inorganic phosphate in corn roots

    OpenAIRE

    Marie Kummerova; Józef Buczek

    2014-01-01

    The deficieny of inorganic phosphate in nutrient solution reduces by about 50 per cent NO3- absorption in corn seedlings, it decreases both in vitro and in vivo nitrate reductase (NR) activity, as well the potential and actual NR level and has a very weak effect on NR induction. Acid phosphatases activities increase in corn roots when the plants are grown in nutrient solution without phosphorus. We suggest that inorganic phosphate is required mainly for maintenance of NR activity rather, than...

  12. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I.; Klemsdal, E. [Gaz de France (GDF), 75 - Paris (France); Le Goff, P.; Hornut, J.M. [LSGC-ENSIC, 54 - Nancy (France)

    1997-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  13. Resonant Optical Absorption in Semiconductor Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    YU Li-Yuan; CAO Jun-Cheng

    2004-01-01

    @@ We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.

  14. Optimal root arrangement of cereal crops

    Science.gov (United States)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  15. Root cap removal increases root penetration resistance in maize (Zea mays L).

    Science.gov (United States)

    Iijima, Morio; Higuchi, Toshifumi; Barlow, Peter W; Bengough, A Glyn

    2003-09-01

    The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact soil (1.4 g cm-3; penetration resistance 1.0 MPa), to evaluate the contribution of the cap to decreasing the impedance to root growth. Root elongation rate and diameter were the same for decapped and intact roots when the plants were grown in loose soil. In compacted soil, however, the elongation rate of decapped roots was only about half that of intact roots, whilst the diameter was 30% larger. Root penetration resistances of intact and decapped seminal axis were 0.31 and 0.52 MPa, respectively, when the roots were grown in compacted soil. These results indicated that the presence of a root cap alleviates much of the mechanical impedance to root penetration, and enables roots to grow faster in compacted soils.

  16. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  17. Structural sound absorption in liquid metals

    International Nuclear Information System (INIS)

    Present article is devoted to structural sound absorption in liquid metals. The study of sound absorption in liquid metals shown that in all studied objects the structural absorption of sound was observed. The mechanism of structural relaxation in molten metal was revealed.

  18. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  19. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    International Nuclear Information System (INIS)

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  20. Effects of Local Nitrogen Supply on Water Uptake of Bean Plants in a Split Root System

    Institute of Scientific and Technical Information of China (English)

    Shiwei Guo; Qirong Shen; Holger Brueck

    2007-01-01

    To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.)plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared:homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels.Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.

  1. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  2. [XPS analysis of tea plant leaf and root surface].

    Science.gov (United States)

    Fang, Jiang-yu; Wan, Xiao-chun

    2008-09-01

    , verifying more active chemical property on the root surface and more water and solute molecules passing. Again the protein content was in the order of root, abaxial and adaxial, indicating the same order of the wetness degree. Higher binding energy of Al than 73. 50 eV showed oxidized aluminum in tea plant surface, which might enhance the absorption, and more oxidized aluminum in the root meants that it has more powerful absorbability.

  3. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  4. Phytases for Improved Iron Absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Nyffenegger, Christian; Meyer, Anne S.

    2014-01-01

    Microbial phytases (EC 3.1.3.8) catalyse dephosphorylation of phytic acid, which is the primary storage compound for phosphorous in cereal kernels. The negatively charged phosphates in phytic acid chelate iron (Fe3+) and thus retards iron bioavailability in humans 1. Supplementation of microbial...... phytase can improve iron absorption from cereal-based diets 2. In order for phytase to catalyse iron release in vivo the phytase must be robust to low pH and proteolysis in the gastric ventricle. Our work has compared the robustness of five different microbial phytases, evaluating thermal stability...

  5. Xanthones from Garcinia propinqua Roots.

    Science.gov (United States)

    Meesakul, Pornphimol; Pansanit, Acharavadee; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Machana, Theeraphan; Cheenpracha, Sarot; Laphookhieo, Surat

    2016-01-01

    Phytochemical investigation of Garcinia propinqua roots led to the isolation and identification of a new xanthone, doitunggarcinone D (1), together with 15 known compounds (2-16). Their structures were elucidated by intensive analysis of spectroscopic data. Compounds 3, 6, 7, 14, 15 and 16 exhibited strong antibacterial activity against Bacillus subtilis TISTR 088 with MIC values in the range of 1-4 µg/mL. Compounds 3, 7, 10 and 14 also showed good antibacterial activity against B. cereus TISTR 688 with MIC values ranging from 4-8 µg/mL. PMID:26996028

  6. Water dimer absorption of visible light

    OpenAIRE

    Hargrove, J

    2007-01-01

    International audience Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm?1, ?H°301 K=?16...

  7. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    Science.gov (United States)

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  8. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics.

    Science.gov (United States)

    Stevens, Glen N; Jones, Robert H

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8-9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  9. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  10. Red-shift law of intense laser-induced electro-absorption in solids

    Science.gov (United States)

    Deng, Hong-Xiang; Zu, Hao-Yue; Wu, Shao-Yi; Sun, Kai; Zu, Xiao-Tao

    2014-02-01

    A theoretical study on the red-shift of laser-induced electro-absorption is presented. It is found that laser-induced red-shift scales with the cube root of the pump laser intensity in the optical tunneling regime and has an obvious deviation from this scale in the multi-photon regime. Our results show that in the optical tunneling regime, the laser-induced red shift has the same law as that in the direct current (DC) approximation. Though the scales are the same in the optical tunneling regime, the physical pictures in the two cases are quite different. The electro-absorption in the DC case is a tunneling-assisted transition process, while the laser-induced electro-absorption is a mixed multi-photon process.

  11. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  12. Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution

    Directory of Open Access Journals (Sweden)

    M. T. van Wijk

    2001-01-01

    Full Text Available In this modelling study differences in vertical root distributions measured in four contrasting forest locations in the Netherlands were investigated. Root distributions are seen as a reflection of the plant’s optimisation strategy, based on hydrological grounds. The 'optimal' root distribution is defined as the one that maximises the water uptake from the root zone over a period of ten years. The optimal root distributions of four forest locations with completely different soil physical characteristics are calculated using the soil hydrological model SWIF. Two different model configurations for root interactions were tested: the standard model configuration in which one single root profile was used (SWIF-NC, and a model configuration in which two root profiles compete for the same available water (SWIF-C. The root profiles were parameterised with genetic algorithms. The fitness of a certain root profile was defined as the amount of water uptake over a simulation period of ten years. The root profiles of SWIF-C were optimised using an evolutionary game. The results showed clear differences in optimal root distributions between the various sites and also between the two model configurations. Optimisation with SWIF-C resulted in root profiles that were easier to interpret in terms of feasible biological strategies. Preferential water uptake in wetter soil regions was an important factor for interpretation of the simulated root distributions. As the optimised root profiles still showed differences with measured profiles, this analysis is presented, not as the final solution for explaining differences in root profiles of vegetation but as a first step using an optimisation theory to increase understanding of the root profiles of trees. Keywords: forest hydrology, optimisation, roots

  13. Iron Absorption in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Fanis Missirlis

    2013-05-01

    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  14. Iron Absorption in Drosophila melanogaster

    Science.gov (United States)

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  15. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    OpenAIRE

    Friese, Daniel Henrik; Bast, Radovan; Ruud, Kenneth

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon abs...

  16. The Difference between the Micronutrients Content of Seeding's Root and Root Hair in Several Plant Species

    OpenAIRE

    Yamakawa, Takeo; Okuda, Naoko; Taira, Kenjiro

    2008-01-01

    It was reported in soybean that the content of Fe and Co microelements of the root hair invaded by rhizobium during the process of nodule formation was higher than that of the root. To confirm this point, a supplementary experiment was carried out using several applicable plants, soybeans, lupine, pea, corn and pumpkin. Root hair was separated in liquid nitrogen from the roots of those seedlings. The separated root hair of 20mg, or the residual root of 200mg was digested in a microwave wet...

  17. Seasonal changes of whole root system conductance by a drought-tolerant grape root system

    OpenAIRE

    Alsina, Maria Mar; Smart, David R.; Bauerle, Taryn; de Herralde, Felicidad; Biel, Carme; Stockert, Christine; Negron, Claudia; Save, Robert

    2010-01-01

    The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (A L:A R). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root...

  18. Root canal treatment of bilateral three-rooted maxillary first premolars

    Directory of Open Access Journals (Sweden)

    Bhavana Gandhi

    2012-01-01

    Full Text Available In endodontics, several anatomic variations occur in teeth, both externally and in the internal root morphology, which play a very significant role in the diagnosis and treatment outcome. A thorough knowledge of the root canal anatomy, careful interpretation of the angled radiographs, proper endodontic access cavity preparation, and exploration of the root canal are the prerequisites for endodontic success. In a maxillary first premolar, it is rare to find extra roots and canals, and the aim of the present article is to report a case about the successful diagnosis and clinical management of bilateral three-rooted maxillary first premolars, with three independent root canals.

  19. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  20. Unit roots, nonlinearities and structural breaks

    DEFF Research Database (Denmark)

    Haldrup, Niels; Kruse, Robinson; Teräsvirta, Timo;

    One of the most influential research fields in econometrics over the past decades concerns unit root testing in economic time series. In macro-economics much of the interest in the area originate from the fact that when unit roots are present, then shocks to the time series processes have a...... persistent effect with resulting policy implications. From a statistical perspective on the other hand, the presence of unit roots has dramatic implications for econometric model building, estimation, and inference in order to avoid the so-called spurious regression problem. The present paper provides a...... selective review of contributions to the field of unit root testing over the past three decades. We discuss the nature of stochastic and deterministic trend processes, including break processes, that are likely to affect unit root inference. A range of the most popular unit root tests are presented and...

  1. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    Root growth is an essential parameter regarding nitrogen (N) uptake efficiency, as more and deeper roots may improve the uptake from deeper soil layers and reduce nitrate leaching losses. During this PhD project, it was studied how different agronomic practices influence root growth and N relations...... in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...... fertilization was conducted in Canberra, Australia. Here the root studies were done by means of the core-break method and root washing....

  2. Springback and diagravitropism in Merit corn roots

    Science.gov (United States)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  3. Modelling root distribution and nitrogen uptake

    OpenAIRE

    Pedersen, Anders; Thorup-kristensen, Kristian

    2004-01-01

    Plant soil and atmosphere models are commonly used to predict crop yield and environmental consequence. Such models often include complex modelling modules for water movement, soil organic matter turnover and, above ground plant growth. However, the root modelling in these models are often very simple, partly due to a limited access to experimental data. We present a two-dimensional model for root growth and proliferation. The model focuses on annual crops, and attempt to model root gro...

  4. Root doctors as providers of primary care.

    Science.gov (United States)

    Stitt, V J

    1983-07-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two "root doctors." These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care.

  5. Root phenology in a changing climate.

    Science.gov (United States)

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. PMID:26931171

  6. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots.

    Science.gov (United States)

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc'h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A; Belko, Marème N; Bennett, Malcolm J; Gantet, Pascal; Wells, Darren M; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  7. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  8. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...... shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages...

  9. Designing new interfaces for ROOT data processing

    CERN Document Server

    Vuorinen, Kalle Elmer

    2016-01-01

    ROOT is a C++ framework for data analysis provided with a Python interface (PyRoot). ROOT is used in every Large Hadron Collider experiment. This project presents a way of reading ROOT TTree by using a new class called DataFrame, which allows the usage of cache and functional chains. Reading TTrees in Python has been quite slow compared to the C++ way of doing it and for this reason we also bring the possibility to read them with just-in-time (JIT) compiled C++ code, using another new Python class called TreeReader.

  10. Deriving the unit hydrograph by root selection

    Science.gov (United States)

    Turner, J. E.; Dooge, J. C. I.; Bree, T.

    1989-09-01

    De Laine's method of deriving the unit hydrograph from the common roots of polynomials corresponding to different storms is used as a basis for proposing a new procedure in which the unit hydrograph roots can be selected from among the polynomial roots for the runoff of a single storm. The selection is made on the basis that the complex unit hydrograph roots form a characteristic "skew circle" pattern when plotted on an Argand diagram. The application of the procedure to field data is illustrated for both a single-peaked and a double-peaked event.

  11. Devil's claw root: ulcers and gastrointestinal bleeding?

    Science.gov (United States)

    2013-12-01

    Harpagophytum procumbens, or devil's claw, is an African plant whose root is used to relieve minor joint symptoms. Several cases of gastrointestinal bleeding associated with the use of devil's claw root have been reported. A systematic review of the adverse effects of devil's claw root in about 20 randomised, double-blind, placebo-controlled clinical trials showed mainly gastrointestinal effects: gastralgia and dyspepsia. In practice, devil's claw root exposes patients to the risk of sometimes serious upper gastrointestinal disorders, yet has no established efficacy beyond a placebo effect. It is best avoided. PMID:24600731

  12. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus.

    Science.gov (United States)

    Schwambach, Joséli; Fadanelli, Cristina; Fett-Neto, Arthur G

    2005-04-01

    We characterized the adventitious rooting response of Eucalyptus globulus Labill. to various concentrations of calcium, nitrogen, phosphorus, iron, manganese, zinc, boron and copper. The parameters analyzed were percent rooting, root number, root length and mean rooting time. Root number and root length were significantly affected by mineral nutrition, whereas mean rooting time and rooting percentage seemed to be closely related to auxin availability. Root number was affected by calcium, nitrogen source and zinc, whereas root length was influenced by concentrations of phosphorus, iron and manganese, and by nitrogen source. Based on these results, we evaluated various combinations of several concentrations of these minerals in each rooting phase. Cuttings that were rooted in an optimized mineral nutrient medium and acclimatized to ex-vitro conditions for two months showed significantly higher survival after transplanting and drought stress than cuttings rooted in basal medium and treated in the same way.

  13. Graphene intracavity spaser absorption spectroscopy

    Science.gov (United States)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  14. Quantum-enhanced absorption refrigerators.

    Science.gov (United States)

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  15. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  16. HI Absorption in Merger Remnants

    Science.gov (United States)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  17. Transcriptional responses of maize seedling root to phosphorus starvation.

    Science.gov (United States)

    Lin, Hai-Jian; Gao, Jian; Zhang, Zhi-Ming; Shen, Ya-Ou; Lan, Hai; Liu, Li; Xiang, Kui; Zhao, Maojun; Zhou, Shufeng; Zhang, Yong-Zhong; Gao, Shi-Bin; Pan, Guang-Tang

    2013-09-01

    Maize (Zea mays) is the most widely cultivated crop around the world, however, it is commonly affected by phosphate (Pi) deficiency and the underlying molecular basis of responses mechanism is still unknown. In this study, the transcriptional response of maize roots to Pi starvation at 3 days after the onset of Pi deprivation was assessed. The investigation revealed a total of 283 Pi-responsive genes, of which 199 and 84 genes were found to be either up- or down-regulated respectively, by 2-fold or more. Pi-responsive genes were found to be involved in sugar and nitrogen metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. In addition, the expression patterns of maize inorganic phosphorus transporters, acid phosphatase, phytase, 2-deoxymugineic acid synthase1, POD and MYB transcription factor were validated in 178 roots response to low phosphorus stress. of which, two genes encoding phytase and acid phosphatase were significantly induced by Pi deficiency and may play a pivotal role in the process of absorption and re-utilization of Pi in Maize. These results not only enhance our knowledge about molecular processes associated with Pi deficiency, but also facilitate the identification of key molecular determinants for improving Pi use in maize. Moreover, this work sets a framework to produce Pi-specific maize microarrays to study the changes in global gene expression between Pi-efficient and Pi-inefficient maize genotypes. PMID:23670044

  18. ROOT TEMPERATURE EFFECT ON ROOT HYDRAULIC RESISTANCE IN CUCUMBER (CUCUMIS SATIVUS L.) AND FIGLEAF GOURD (CUCURBITA FICIFOLIA B.) PLANTS

    OpenAIRE

    Yoshida, Satoshi; Eguchi, Hiromi

    1990-01-01

    The effect of root temperature on total root resistance (hydraulic resistance in a whole root system) was examined in detached whole root systems of cucumber and figleaf gourd plants by applying the suction of 80kPa in root temperature region of 8 to 32℃. The total root resistances in both species became higher at lower root temperatures. From the fact that radial root resistance is about 80% of total root resistance, it could be conceivable that the temperature effect on the total root resis...

  19. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  20. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiangrong; WANG Zhengquan; HAN Youzhi; GU Jiacun; GUO Dali; MEI Li

    2007-01-01

    Fine root lifespan and turnover play an important role in carbon allocation and nutrient cycling in forest ecosystems.Fine roots are typically defined as less than 1 or 2mm in diameter.However,when categorizing roots by this diameter size,the position of an individual root on the complex lateral branching pattern has often been ignored,and our knowledge about relationships between branching order and root function thus remains limited.More recently,studies on root survivals found that longevity was remarkably different in the same branching level due to diameter variations.The objectives of this study were:(1) To examine variations of fine root diameter from the first-to fifth-orders in Fraxinus mandshurica Rupr and Larix gmelinii Rupr roots;and (2) To reveal how the season,soil nutrient,and water availability affect root diameter in different branch order in two species.This study was conducted at Maoershan Forest Research Station (45°21'-45°25'N,127°30'-127°34'E) owned by Northeast Forestry University in Harbin,northeast China.Both F.mandshurica and L.gmelinii were planted in 1986.In each plantation,fine roots of two species by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e.,0-10 and 10-20 cm)were obtained.The results showed that average diameters of fine roots were significantly different among the five branch orders.The first-order had the thinner roots and the fifth order had the thickest roots,the diameter increasing regularly with the ascending branch orders in both species.If the diameter of fine roots was defined as being smaller than 0.5 mm,the first three orders ofF.mandshurica roots and the first two orders of L.gmelinii roots would be included in the fine root population.The diameter ranges of the fine roots from first-order to fifth-order were 0.15-0.58,0.18-0.70,0.26-1.05,0.36-1.43,and 0.71-2.96 mm for F.mandshurica,and 0.17-0.76,0.23-1.02,0.26-1.10,0.38-1.77,and 0.84-2.80 mm for L

  1. Plant root research: the past, the present and the future

    OpenAIRE

    Lux, Alexander; Rost, Thomas L.

    2012-01-01

    This special issue is dedicated to root biologists past and present who have been exploring all aspects of root structure and function with an extensive publication record going over 100 years. The content of the Special Issue on Root Biology covers a wide scale of contributions, spanning interactions of roots with microorganisms in the rhizosphere, the anatomy of root cells and tissues, the subcellular components of root cells, and aspects of metal accumulation and stresses on root function ...

  2. Genetic ablation of root cap cells in Arabidopsis

    OpenAIRE

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  3. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    International Nuclear Information System (INIS)

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with [14C]SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a Mt of about 50,000 and high specificity towards UDP-glucose as the sugar donor (Km = 0.28 mM) and SA as the glucose acceptor (Km = 0.11 mM). 2-D PAGE of [35S]methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase

  4. Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency

    OpenAIRE

    Higa, Ataru; Miyamoto, Erika; Rahman, Laiq ur; Kitamura, Yoshie

    2008-01-01

    Hyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron deficient condition secreted riboflavin from root tips into the culture medium and the productivity depended on the number and size of root tips among the clones, although the addition of sucrose was essential for riboflavin production. A decline of pH was observed before riboflavin production and root development using either a ro...

  5. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    OpenAIRE

    Yuanjun Yang; Lihua Chen; Ning Li; Qiufen Zhang

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most ...

  6. Infrared absorption modeling of VOx microbolometer

    Science.gov (United States)

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  7. Lyman-alpha Absorption from Heliosheath Neutrals

    CERN Document Server

    Wood, B E; Linsky, J L; Malama, Y G; Wood, Brian E.; Izmodenov, Vladislav V.; Linsky, Jeffrey L.; Malama, Yury G.

    2006-01-01

    We assess what information HST observations of stellar Ly-alpha lines can provide on the heliosheath, the region of the heliosphere between the termination shock and heliopause. To search for evidence of heliosheath absorption, we conduct a systematic inspection of stellar Ly-alpha lines reconstructed after correcting for ISM absorption (and heliospheric/astrospheric absorption, if present). Most of the stellar lines are well centered on the stellar radial velocity, as expected, but the three lines of sight with the most downwind orientations relative to the ISM flow (Chi1 Ori, HD 28205, and HD 28568) have significantly blueshifted Ly-alpha lines. Since it is in downwind directions where heliosheath absorption should be strongest, the blueshifts are almost certainly caused by previously undetected heliosheath absorption. We make an initial comparison between the heliosheath absorption and the predictions of a pair of heliospheric models. A model with a complex multi-component treatment of plasma within the he...

  8. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    Science.gov (United States)

    Tomar, Ram Sewak Singh; Tiwari, Sushma; Vinod; Naik, Bhojaraja K; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S M S

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  9. Malformations of the tooth root in humans

    Directory of Open Access Journals (Sweden)

    Hans Ulrich eLuder

    2015-10-01

    Full Text Available The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on

  10. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  11. Absorptive capacity and regional patterns of innovation

    OpenAIRE

    Abreu, Maria; Grinevich, Vadim; Kitson, Michael; Savona, Maria

    2008-01-01

    Executive Summary This paper considers whether differences in absorptive capacity at the firm-level are determinants of regional variations in innovation performance. Differences in firms’ absorptive capacity are also due to sectoral and technological specificities. Both firms’ absorptive capacity and sectoral structure differ widely across regions: this analysis focuses on the former while controlling for the latter aspect in order to evaluate regional differences in firms’ propensity to...

  12. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  13. Assessment of the nonoperated root after apical surgery of the other root in mandibular molars

    DEFF Research Database (Denmark)

    Kraus, Riccardo D; von Arx, Thomas; Gfeller, David;

    2015-01-01

    INTRODUCTION: If a surgical approach is chosen to treat a multirooted tooth affected by persistent periapical pathosis, usually only the affected roots are operated on. The present study assessed the periapical status of the nonoperated root 5 years after apical surgery of the other root in mandi...

  14. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  15. Neural regulation of intestinal nutrient absorption.

    Science.gov (United States)

    Mourad, Fadi H; Saadé, Nayef E

    2011-10-01

    The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.

  16. Absorption events associated with solar flares

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    During the upward period of solar cycle 23, the imaging riometer at Zhongshan, Antarctica (geomag. lat. 74.5°S) was used to study the solar proton events and the X-ray solar flares which are associated with the absorption events. In our study, the relationship between the absorption intensity and X-ray flux is found in a power form which is consistent with the theoretical result. The imaging riometer absorption data at Ny-?lesund, Svalbard reconfirm the above relationship. We also argue that only M-class flares can generate a significant daytime absorption.

  17. Differential Photoacoustic Particle Absorption Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed a highly sensitive and compact instrument to directly measure particulate matter (PM) optical absorption. This device is based on differential...

  18. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    Science.gov (United States)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  19. Rapid phenotyping of alfalfa root system architecture

    Science.gov (United States)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  20. 33 CFR 117.1095 - Root River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  1. Roots, plant production and nutrient use efficiency.

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more complica

  2. Roots of crosscap slides and crosscap transpositions

    OpenAIRE

    Parlak, Anna; Stukow, Michał

    2016-01-01

    Let $N_{g}$ denote a closed nonorientable surface of genus $g$. For $g \\geq 2$ the mapping class group $\\mathcal{M}(N_{g})$ is generated by Dehn twists and one crosscap slide ($Y$-homeomorphism) or by Dehn twists and a crosscap transposition. Margalit and Schleimer observed that Dehn twists have nontrivial roots. We construct roots of crosscap slides and crosscap transpositions.

  3. On König's root finding algorithms

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    2003-01-01

    In this paper, we first recall the definition of a family of root-finding algorithms known as König's algorithms. We establish some local and some global properties of those algorithms. We give a characterization of rational maps which arise as König's methods of polynomials with simple roots. We...

  4. A new approach to root formation

    OpenAIRE

    Vatanpour, Mehdi; Zarei, Mina; Javidi, Maryam; Shirazian, Shiva

    2008-01-01

    In endodontics, treatment of an open apex tooth with necrotic pulp is a problem. It seems that with promotion of remnants of Hertwig’s epithelial sheath or rest of malassez accompany with a good irrigation of root canal we can expect root formation. (Iranian Endodontic Journal 2008;3:42-43)

  5. Layers of root nouns in Germanic

    DEFF Research Database (Denmark)

    Hansen, Bjarne Simmelkjær Sandgaard

    2015-01-01

    The root-noun declension became productive in early Germanic, containing (I) inherited root nouns, (IIa) original substrate or loan words, and transitions from other declensions in (IIb) Proto-Germanic and (III) North Germanic. As ablaut was abolished, the inherited type would display ablaut grad...

  6. Salt stress signals shape the plant root

    NARCIS (Netherlands)

    C.S. Galvan-Ampudia; C. Testerink

    2011-01-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avo

  7. Method for Constructing Standardized Simulated Root Canals.

    Science.gov (United States)

    Schulz-Bongert, Udo; Weine, Franklin S.

    1990-01-01

    The construction of visual and manipulative aids, clear resin blocks with root-canal-like spaces, for simulation of root canals is explained. Time, materials, and techniques are discussed. The method allows for comparison of canals, creation of any configuration of canals, and easy presentation during instruction. (MSE)

  8. The Complexity of Rooted Phylogeny Problems

    CERN Document Server

    Bodirsky, Manuel

    2011-01-01

    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted ph...

  9. Formation and separation of root border cells.

    Science.gov (United States)

    Driouich, Azeddine; Durand, Caroline; Vicré-Gibouin, Maïté

    2007-01-01

    Plant roots release a large number of border cells into the rhizosphere, which are believed to play a key role in root development and health. The formation and loss of these cells from the root cap region is a developmentally regulated process that is also controlled by phytohormones and environmental factors. The separation of border cells involves the complete dissociation of individual cells from each other and from root tissue. This process requires the activity of cell wall-degrading enzymes that solubilize the cell wall connections between cells. We present and discuss the solubilization process with an emphasis on pectin-degrading enzymes as well as the recently discovered root border-like cells of Arabidopsis thaliana.

  10. Clinical management of infected root canal dentin.

    Science.gov (United States)

    Love, R M

    1996-08-01

    Several hundred different species of bacteria are present in the human intraoral environment. Bacterial penetration of root canal dentin occurs when bacteria invade the root canal system. These bacteria may constitute a reservoir from which root canal reinfection may occur during or after endodontic treatment. The learning objective of this article is to review endodontic microbiology, update readers on the role of bacteria in pulp and periapical disease, and discuss the principles of management of infected root canal dentin. Complete debridement, removal of microorganisms and affected dentin, and chemomechanical cleansing of the root canal are suggested as being the cornerstones of successful endodontic therapy, followed by intracanal medication to remove residual bacteria, when required.

  11. Effect of lead on root growth.

    Science.gov (United States)

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development.

  12. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report.

    Science.gov (United States)

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  13. Effect of lipid/polysaccharide ratio on surface activity of model root mucilage in its solid and liquid states

    Science.gov (United States)

    Chen, Fengxian; Arye, Gilboa

    2016-04-01

    The rhizosphere can be defined as the volume of soil around living roots, which is influenced by root activity. The biological, chemical and physical conditions that prevail in the rhizosphere are significantly different from those of the bulk soil. Plant roots can release diverse organic materials in the rhizosphere which may have different effects on its bio-chemo-physical activity. Among these exudates is the root mucilage which can play a role on the maintenance of root-soil contact, lubrication of the root tip, protection of roots from desiccation and disease, stabilization of soil micro-aggregates and the selective absorption and storage of ions. The surface activity of the root mucilage at the liquid-air interface deduced from its surface tension depression relative to water, implying on its amphiphilic nature. Consequently as the rhizosphere dry out, hydrophobic functional groups may exhibit orientation at the solid-air interface and thus, the wettability of the rhizosphere may temporarily decrease. The major fraction of the root mucilage comprise of polysaccharides and to a much lesser extent, amino acids, organic acids, and phospholipids. The most frequent polysaccharide and phospholipids detected in root mucilage are polygalacturonic acid (PGA) and Phosphatidylcholine (PC), respectively. The latter, is thought to be main cause for the surface active nature of root mucilage. Nevertheless, the role and function of root mucilage in the rhizosphere is commonly studied based on model root mucilage that comprise of only one component, where the most frequent ones are PGA or PC (or lecithin). The main objective of this study was to quantify the effect of concentration and PGA/PC ratios on the wettability of a model rhizosphere soil and the surface tension of the model root mucilage at the liquid-air interface. The PGA/PC mixtures were measured for their equilibrium and dynamic surface tension using the Wilhelmy-Plate method. Quartz sand or glass slides were

  14. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.

    Science.gov (United States)

    Wang, Ping; Bi, Shuping; Ma, Liping; Han, Weiying

    2006-12-27

    Phytotoxicity of aluminum (Al) has become a serious problem in inhibiting plant growth on acid soils. Under Al stress, the changes of rhizosphere pH, root elongation, absorption of Al by wheat roots, organic acids exuded from roots, and some main factors related to Al-tolerant mechanisms have been studied using hydroponics, fluorescence spectrophotometry, and high performance liquid chromatography (HPLC). Two wheat cultivars, Brevor and Atlas66, differing in Al tolerance are chosen in the study. Accordingly, the rhizosphere pH has a positive effect on Al tolerance. Atlas66 (Al-tolerant) has higher capability to maintain high rhizosphere pH than Brevor (Al-sensitive) does. High pH can reduce Al3+ activity and toxicity, and increase the efficiency of exuding organic acids from the roots. More inhibition of root elongation has been found in Brevor because of the exposure of roots to Al3+ solution at low pH. Brevor accumulate more Al in roots than Atlas66 even at higher pH. Al-induced exudation of malic and citric acids has been found in Atlas66 roots, while no Al-induced organic acids have been found in Brevor. These results indicate that the Al-induced secretion of organic acids from Atlas66 roots has a positive correlation with Al tolerance. Comprehensive treatment of Al3+ and H+ indicates that wheat is adversely influenced by excess Al3+, rather than low pH. PMID:17177538

  15. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC).

    Science.gov (United States)

    Valizadeh, Rezvan; Mahdavian, Leila

    2016-01-01

    In recent years, use of plants for remediation of contaminated soils, especially removal of heavy metals, is considered. The current study tends to investigate the removal of lead and nickel ions by the Convolvulus tricolor (CTC), was grown for 30 days in different concentrations of lead and nickel ions. Then concentration of them in soil and different organs of the plant was measured by atomic absorption spectrometry. The highest absorbed of them occurred in concentration 0.001N, which highest Pb(2+) accumulation is in the aerial parts of the plant: leaf > stem > root and for Ni(2)+: root > stem > leaf. No ion was observed into the flowers and nickel ion absorption is more of lead ion in different plant organs of CTC. The experimental isotherm data were investigated using isotherms of Langmuir, Freundlich, BET, Temkin and Dubinin-Radushkevich (DRK). The correlation coefficient for all of them is calculated that show the best correlation coefficient for Ni(2+) adsorption is obtained BET model, whereas for Pb(2+) adsorption in root is Freundlich model but for its leaf and stem is BET model. The results show, CTC is suitable for Pb(2+) and Ni(2+) and this technique is in-situ method, simple, and low cost. PMID:26458024

  16. Infrared multiphoton absorption and decomposition

    International Nuclear Information System (INIS)

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  17. Aerenchyma Formed Under Phosphorus Deficiency Contributes to the Reduced Root Hydraulic Conductivity in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Mingshou Fan; Ruiqin Bai; Xuefeng Zhao; Jianhua Zhang

    2007-01-01

    Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied in maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots impede the radial transport of water in a root cylinder. Further evidence came from the variation in aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower in P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient piants.

  18. Getting to the roots of it: Genetic and hormonal control of root architecture

    Directory of Open Access Journals (Sweden)

    Janelle Kang Hui Jung

    2013-06-01

    Full Text Available Root system architecture (RSA--the spatial configuration of a root system--is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies (GWAS, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining root system architecture in response to both intrinsic and extrinsic (environmental response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.

  19. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  20. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    Science.gov (United States)

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.

  1. Accessory roots and root canals in human anterior teeth: a review and clinical considerations.

    Science.gov (United States)

    Ahmed, H M A; Hashem, A A

    2016-08-01

    Anterior teeth may have aberrant anatomical variations in the number of roots and root canals. A review of the literature was conducted using appropriate key words in major endodontic journals to identify the available reported cases as well as experimental and clinical investigations on accessory roots and root canals in anterior teeth. After retrieving the full text of related articles, cross-citations were identified, and the pooled data were then discussed. Results revealed a higher prevalence in accessory root/root canal variations in mandibular anterior teeth than in maxillary counterparts. However, maxillary incisor teeth revealed the highest tendency for accessory root/root canal aberrations caused by anomalies such as dens invaginatus and palato-gingival groove. Primary anterior teeth may also exhibit external and internal anatomical variations in the root, especially maxillary canines. Therefore, dental practitioners should thoroughly assess all teeth scheduled for root canal treatment to prevent the undesirable consequences caused by inadequate debridement of accessory configurations of the root canal system. PMID:26174943

  2. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    Science.gov (United States)

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  3. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    Directory of Open Access Journals (Sweden)

    Marc eLartaud

    2015-01-01

    Full Text Available We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex and central metaxylem vessels, number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt-stress responses of root anatomical parameters in rice (Oryza sativa L.. Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-old stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex but a decrease in external (peripheral tissues (sclerenchyma, exodermis and epidermis. Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

  4. Root phenology at Harvard Forest and beyond

    Science.gov (United States)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, pinfluenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear maximum growth period. In contrast, root

  5. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  6. On the absorption of alendronate in rats.

    Science.gov (United States)

    Lin, J H; Chen, I W; deLuna, F A

    1994-12-01

    Alendronate is an antiosteolytic agent under investigation for the treatment of a number of bone disorders. Since the compound is a zwitterion with five pKa values and is completely ionized in the intestine at the physiological pH, absorption is poor; less than 1% of an oral dose is available systemically in rats. In the present studies, absorption was found to be predominantly in the upper part of the small intestine. Administration of buffered solutions of alendronate (pH 2-11) did not improve absorption. Whereas food markedly impaired the absorption of alendronate, EDTA enhanced absorption in a dose-dependent manner. Pretreatment of rats with ulcerogenic agents, mepirizole, acetylsalicylic acid, or indomethacin, resulted in a 3-7-fold increase in the oral absorption of alendronate. The absorption of phenol red, added as an indicator of intestinal tissue damage, was also increased in rats with experimental peptic ulcers. The enhanced absorption of alendronate observed in rats with experimental peptic ulcers was attributed to the alteration of the integrity of the intestinal membrane. PMID:7891304

  7. Iron absorption from intrinsically-labeled lentils

    Science.gov (United States)

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  8. Absorption, bioavailability and metabolism of flavonoids

    NARCIS (Netherlands)

    Hollman, P.C.H.

    2004-01-01

    To unravel mechanisms of action of dietary flavonoids in their potential role in disease prevention, it is crucial to know the factors that determine their release from foods, their extent of absorption, and their fate in the organism. Research on absorption, metabolism, and bioavailability of flavo

  9. Determination of spectrophotometric absorptivity by analytical ultracentrifugation

    Directory of Open Access Journals (Sweden)

    M Senthilraja

    2011-01-01

    Full Text Available Rapid determination of the absorptivity for a recombinant IgG monoclonal antibody using the Beckman equipped with both Raleigh interference and UV absorbance optical systems. The analytical ultracentrifuge data for determining spectrophotometric absorptivities is compared to experimental data from quantitative amino acid analysis and an enzymatic digestion method.

  10. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    Science.gov (United States)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  11. Flue gas treatment with membrane gas absorption

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Dutch researchers from the TN0 Institute have developed a technique to carry out gas-liquid contacting operations using hollow fibre membranes in combination with an absorption liquid. The method known as membrane gas absorption, aims to combine the advantages of membrane technology (compactness, fl

  12. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika;

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor ...

  13. Enriching Absorptive Capacity through Social Interaction

    NARCIS (Netherlands)

    Hotho, Jasper J.; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    2012-01-01

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under-addressed. Th

  14. Time dependent effects of two absorption enhancers on the nasal absorption of growth hormone in rabbits

    DEFF Research Database (Denmark)

    Vermehren, C.; Hansen, Harald S.; Thomsen, M.K.

    1996-01-01

    Enhancer-based drug preparations allow absorption of peptide drugs. We investigated the reversibility with time of nasal absorption of human growth hormone (hGH) induced by the absorption enhancers didecanoylphosphatidylcholine (DDPC) and a-cyclodextrin (a-CD). Rabbits were dosed intranasally wit...

  15. Time dependent effects of two absorption enhancers on the nasal absorption of growth hormone in rabbits

    DEFF Research Database (Denmark)

    Vermehren, Charlotte; Hansen, H.S.; Thomsen, M.K.

    1996-01-01

    Enhancer-based drug preparations allow absorption of peptid drugs. We investigated the reversibility with time of nasal absorption of human growth hormone (hGH) induced by the absorption enhancers didecanoylhposphatidylcholine (DDPC) and Ó-cyclodextrin (Ó-CD). Rabbits were dosed intranasally...

  16. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  17. [Effect of altitude on iron absorption].

    Science.gov (United States)

    Pizarro, F; Zavaleta, N; Hertrampf, E; Berlanga, R; Camborda, L; Olivares, M

    1998-03-01

    Iron bioavailability was evaluated in people living in high altitudes. Absorption was estimated from a reference dose of ferrous ascorbate and from a standard diet of wheat flour, using extrinsic tag radioisotope technique of 55Fe and 59Fe. Twenty four volunteers, healthy women, with ages ranging from 28 to 45 years, participated. Of those, eleven lived at 3450 meters above sea level (m.a.s.l.) in Huancayo city-Peru (study group), and 13 lived in Santiago de Chile at 630 m.a.s.l. (control group). Iron absorption from reference dose of ferrous ascorbate was 32.0% and 31.1% in the study and control groups respectively. The geometric mean of iron absorption from the standard diet, corrected to 40% of absorption of reference dose, was 9.0% and 6.9% in the study and control groups respectively (NS). The results suggest that altitude does not produce a high iron absorption in highlander residents.

  18. Dust Sensitivity of Absorption-Line Indices

    CERN Document Server

    MacArthur, L A

    2004-01-01

    We investigate the effects of dust extinction on integrated absorption-line indices that are widely used to derive constraints on the ages and metallicities of composite stellar systems. Typically, absorption-line studies have been performed on globular clusters or elliptical galaxies, which are mostly dust-free systems. However, many recent studies of integrated stellar populations have focused on spiral galaxies which may contain significant amounts of dust. It is almost universally assumed that the effects of dust extinction on absorption-line measurements are entirely negligible given the narrow baseline of the spectral features, but no rigorous study has yet been performed to verify this conjecture. In this analysis, we explore the sensitivity of the standard set of Lick absorption-line indices, the higher-order Balmer line indices, the 4000 A break, the near-IR calcium triplet indices, and the Rose indices to dust absorption according to population synthesis models that incorporate a multi-component mod...

  19. Creating semiconductor metafilms with designer absorption spectra

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  20. Localization an speciation of Zn in mycorrhized roots by μSXRF and μEXAFS

    Science.gov (United States)

    Sarret, G.; Schroeder, W. H.; Marcus, M. A.; Geoffroy, N.; Manceau, A.

    2003-05-01

    Mycorrhizae are symbiotic associations between soil fungi and plant mots, which enhance mineral nutrition for the plant, and might play an important role in metals acquisition and accumulation. The processes allowing metals mobilizaiion in the soil, absorption by the root and/or the fungus, transfert or bioaccumulation we still poorly understood. However, the properties of mycorrhizal fungi could be used for phytoremediation, a soft technique using plants for the clean-up of metal polluted soils. In this work, mycorrhized roots of tomato plants grown in a Zn-contaminated sail were investigated. The distribution of metals and the speciation of Zn were studied at the micron scale using micro synchrotron-based X-ray fluorescence (μSXRF) and micro X-ray absorption spectroscopy (μEXAFS). Zn associated to the root was Zn malate and/or Zn citrate, and Zn associated to the fungus was Zn phyllosilicate. This study illustrates the great potential of X-ray microbeams for the study of biological samples containing various amounts of metals.

  1. Comparing irradiation parameters on disinfecting enterrecoccus faecalis in root canal disinfection

    Science.gov (United States)

    Sarp, Ayşe. S.; Gülsoy, Murat

    2016-02-01

    Although conventional method carries all the debris, studies on persisting infections in root canals show bacteria and their toxins spread from the root canal and contaminate the apical region. Thus developes apical periodontitis or symptoms, and loss of tooth. Even if the treatment has adequate success, anatomy of root canal system can be very complexwith accessory canals. The disinfecting effect of laser radiation has only recently been used in dentistry. Laser irradiation has a bactericidal effect. Each wavelength has its own advantages and limitations according to their different absorption characteristics, depending on their 'absorption coefficient'. The sterilizing efficiency of two types of wavelengths, a new fiber laser 1940- nm Thulium fiber Laser and an 2940 nm Er:YAG Laser were compared in this study. Irradiation with a power of 0.50 W with 1940- nm Thulium fiber Laser disinfected 95,15% of bacteria, however irradiation with same laser power with Er:YAG Laser caused a reduction of 96,48 %. But there was no significant difference in the disinfection effect of two different laser groups ( p < 0.05, Mann- U-Whitney Test). In addition to this, Er :YAG Laser caused three times more reduction from its own positive control group where 1940- nm Thulium fiber Laser caused 2,5 times effective disinfection.

  2. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  3. A thermodynamic formulation of root water uptake

    Science.gov (United States)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  4. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  5. How to bond to root canal dentin

    Science.gov (United States)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  6. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  7. A thermodynamic formulation of root water uptake

    Science.gov (United States)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  8. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  9. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    Science.gov (United States)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  10. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    Science.gov (United States)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  11. THttpServer class in ROOT

    Science.gov (United States)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  12. ANTIARTHRITIC ACTIVITY OF DESMODIUM GANGETICUM ROOT

    Directory of Open Access Journals (Sweden)

    Vedpal

    2013-09-01

    Full Text Available The present study is aimed to evaluate the in-vitro anti-arthritic activity of aqueous extract of Desmodium gangeticum root using inhibition of protein denaturation model and human red blood cell Membrane stabilization model. Diclofenac sodium was used as a standard drug. Results revealed that the aqueous extract of Desmodium gangeticum root at different concentrations possessed significant anti-arthritic activity as compared to standard drug used as Diclofenac sodium. The results obtained in the present investigation Indicate that aqueous extract of Desmodium gangeticum root showed anti-arthritic activity.

  13. Root activity pattern of eucalyptus camaldulensis dehnhardt

    International Nuclear Information System (INIS)

    The root activity pattern of a seven-year-old E. camaldulensis was studied by 32P capsule placement technique. The study revealed that nearly two-third of the roots of E. camaldulensis are confined to the top 60 cm of the soil layer. Laterally, one-third of the roots are confined within the 50 cm radial distance from the trunk of the tree and the remaining two-thirds are spread at a radial distance of 75 to 100 cm. (author)

  14. Complex root networks of Chinese characters

    Science.gov (United States)

    Lee, Po-Han; Chen, Jia-Ling; Wang, Po-Cheng; Chi, Ting-Ting; Xiao, Zhi-Ren; Jhang, Zih-Jian; Yeh, Yeong-Nan; Chen, Yih-Yuh; Hu, Chin-Kun

    There are several sets of Chinese characters still available today, including Oracle Bone Inscriptions (OBI) in Shang Dynasty, Chu characters (CC) used in Chu of Warring State Period, Small Seal Script in dictionary Shuowen Jiezi (SJ) in Eastern Han Dynasty, and Kangxi Dictionary (KD) in Qing Dynasty. Such as Chinese characters were all constructed via combinations of meaningful patterns, called roots. Our studies for the complex networks of all roots indicate that the roots of the characters in OBI, CC, SJ and KD have characteristics of small world networks and scale-free networks.

  15. A "square-root rule" for reinsurance

    Directory of Open Access Journals (Sweden)

    Michael R. Powers

    2006-12-01

    Full Text Available In previous work, the authors derived a mathematical expression for the optimal (or "saturation" number of reinsurers for a given number of primary insurers (see Powers and Shubik, 2001. In the current article, we show analytically that, for large numbers of primary insurers, this mathematical expression provides a "square-root rule"; i.e., the optimal number of reinsurers in a market is given asymptotically by the square root of the total number of primary insurers. We note further that an analogous "fourth-root rule" applies to markets for retrocession (the reinsurance of reinsurance.

  16. Negative phototropism of rice root and its influencing factors

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhong(王忠); MO; Yiwei(莫亿伟); QIAN; Shanqin(钱善勤); GU; Yunjie(顾蕴洁)

    2002-01-01

    Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (ⅰ) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ⅱ) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side. (ⅲ) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested. (ⅳ) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0-100μmol@m-2@s-1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root. (ⅴ) The growth increment and the curvature reached the maximum at 30℃ with the temperature treatment of 10-40℃. (ⅵ) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (ⅶ) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg@L-1.

  17. On rigidity of abstract root systems of Coxeter systems

    OpenAIRE

    Dyer, Matthew

    2010-01-01

    We introduce and study a combinatorially defined notion of root basis of a (real) root system of a possibly infinite Coxeter group. Known results on conjugacy up to sign of root bases of certain irreducible finite rank real root systems are extended to abstract root bases, to a larger class of real root systems, and, with a short list of (genuine) exceptions, to infinite rank irreducible Coxeter systems.

  18. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  19. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  20. Phosphate Availability Alters Lateral Root Anatomy and Root Architecture of Fraxinus mandshurica Rupr. Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chu WU; Xing WEI; Hai-Long SUN; Zheng-Quan WANG

    2005-01-01

    Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.

  1. The Root Cap Determines Ethylene-Dependent Growth and Development in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Achim Hahn; Roman Zimmermann; Dierk Wanke; Klaus Harter; Hans G.Edelmann

    2008-01-01

    Besides providing protection against mechanical damage to the root tip,the root cap is involved in the perception and processing of diverse external and internal stimuli resulting in altered growth and development.The transduction of these stimuli includes hormonal signaling pathways such as those of auxin,ethylene and cytokinin.Here,we show that the root cap is essential for the ethylene-induced regulation of elongation growth and root hair formation in maize.Exogenously applied ethylene is no longer able to inhibit elongation growth when the root cap has been surgically removed prior to hormone treatment.Reconstitution of the cap positively correlates with the developing capacity of the roots to respond to ethylene again.In contrast,the removal of the root cap does not per se affect growth inhibition controlled by auxin and cytokinin.Furthermore,our semi-quantitative RT-PCR results support earlier findings that the maize root cap is a site of high gene expression activity with respect to sensing and responding to hormones such as ethylene.From these data,we propose a novel function of the root cap which is the establishment of competence to respond to ethylene in the distal zones of the root.

  2. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  3. Rooting depths of plants relative to biological and environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  4. Understanding plant root system influences on soil strength and stability

    Science.gov (United States)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  5. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  6. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  7. Water dimer absorption of visible light

    Directory of Open Access Journals (Sweden)

    J. Hargrove

    2007-07-01

    Full Text Available Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm−1, ΔH°301 K=−16.6±2 kJ mol−1 and ΔS°301 K=−80±10 J mol−1 K−1. This transition peaks at 409.5 nm, could be attributed to the 8th overtone of water dimer and the 532 nm absorption to the 6th overtone. It is possible that some lower overtones previously searched for are less enhanced. These absorptions could increase water vapor feed back calculations leading to higher global temperature projections with currently projected greenhouse gas levels or greater cooling from greenhouse gas reductions.

  8. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species

    Directory of Open Access Journals (Sweden)

    Cornelia Marie Tobner

    2013-07-01

    Full Text Available Fine roots play an important role in nutrient and water absorption and hence overall tree performance. However, current understanding of the ecological role of belowground traits lags considerably behind those of aboveground traits. In this study, we used data on specific root length (SRL, fine root diameter (D and branching intensity (BI of two datasets to examine interspecific trait coordination as well as intraspecific trait variation across ontogenetic stage and soil conditions (i.e. plasticity. The first dataset included saplings of twelve North American temperate tree species grown in monocultures in a common garden experiment to examine interspecific trait coordination. The second dataset included adult and juvenile individuals of four species (present in both datasets co-occurring in natural forests on contrasting soils (i.e. humid organic, mesic and xeric podzolic. The three fine root traits investigated were strongly coordinated, with high SRL being related to low D and high BI. Fine root traits and aboveground life-strategies (i.e. relative growth rate were weakly coordinated and never significant. Intraspecific responses to changes in ontogenetic stage or soil conditions were trait dependent. SRL was significantly higher in juveniles compared to adults for A. balsamea and A. rubrum, but did not vary with soil condition. BI did not vary significantly with either ontogeny or soil conditions, while D was generally significantly lower in juveniles and higher in humid organic soils. D also had the least total (natural variation most of which was due to changes in the environment (plasticity. This study brings support for the emerging evidence for interspecific root trait coordination in trees. It also indicates that intraspecific responses to both ontogeny and soil conditions are trait dependent and less concerted. D appears to be a better indicator of environmental change than SRL and BI.

  9. Naine objektistab meest / Fideelia-Signe Roots

    Index Scriptorium Estoniae

    Roots, Fideelia-Signe, 1976-

    2009-01-01

    Fideelia-Signe Roots Eesti Kunstiakadeemias 2009. a. kevadsemestril enda poolt läbi viidud valikainekursusest "Kunstiteose anatoomiast mehe anatoomiani", mis lõppes näitusega "Tõuseb / ei tõuse" Eesti Tervishoiumuuseumis, avatud 31. maini

  10. An Improved Nonparametric Unit-Root Test

    OpenAIRE

    Jiti Gao; Maxwell King

    2012-01-01

    This paper proposes a simple and improved nonparametric unit-root test. An asymptotic distribution of the proposed test is established. Finite sample comparisons with an existing nonparametric test are discussed. Some issues about possible extensions are outlined.

  11. Elements with Square Roots in Finite Groups

    Institute of Scientific and Technical Information of China (English)

    M.S. Lucido; M.R. Pournaki

    2005-01-01

    In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.

  12. BGP reflection functors in root categories

    Institute of Scientific and Technical Information of China (English)

    XIAO; Jie; ZHANG; Guanglian; ZHU; Bin

    2005-01-01

    We define the BGP-reflection functors in the derived categories and the root categories. By Ringel's Hall algebra approach, the BGP-reflection functor is applicable to obtain the classical Weyl group action on the Lie algebra.

  13. DMA thermal analysis of yacon tuberous roots

    Science.gov (United States)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  14. Absorption of light dark matter in semiconductors

    OpenAIRE

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to e...

  15. Extraordinary Absorption of Decorated Undoped Graphene

    Science.gov (United States)

    Stauber, T.; Gómez-Santos, G.; de Abajo, F. Javier García

    2014-02-01

    We theoretically study absorption by an undoped graphene layer decorated with arrays of small particles. We discuss periodic and random arrays within a common formalism, which predicts a maximum absorption of 50% for suspended graphene in both cases. The limits of weak and strong scatterers are investigated, and an unusual dependence on particle-graphene separation is found and explained in terms of the effective number of contributing evanescent diffraction orders of the array. Our results can be important to boost absorption by single-layer graphene due to its simple setup with potential applications to light harvesting and photodetection based on energy (Förster) rather than charge transfer.

  16. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  17. Optical absorption in irradiated natural beryl

    International Nuclear Information System (INIS)

    Three species of beryl irradiated with γ-rays of 60Co were studied by optical absorption. One became yellow and the other two Maxixe's blue. The effects of heat treatments were determined by the thermal isochronal decays of the optical absorption bands. Activation energies and frequency factor were obtained through the first order process kinetic model. Discussions lend us to assign for the UV band-edge the model of absorption by a hole center stabilized by a Fe2+ (substituting Al3+) ion in a neighbour oxygen. (Author)

  18. Gastrointestinal absorption of uranium in man

    International Nuclear Information System (INIS)

    A method has been established for determining the fractional absorption of uranium directly in man. Measurements are made of the urinary excretion rates of uranium for individuals whose drinking water has a high 234U to 238U activity ratio and is the primary source of 234U in their diets. For two individuals, the values obtained for the fractional absorption of 234U were 0.004 and 0.006. The values obtained for the fractional absorption of 238U, using a literature value for the 238U intake from food, were 0.008 and 0.015. The present ICRP value is 0.20. 7 references, 1 table

  19. Nonlinear absorption in high reflector multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C.J.; Sarginson, T.G.; Taylor, J.R.

    1993-11-04

    Low absorption coatings were examined using a high repetition rate copper vapor laser to study the surface temperature as a function power. Nonlinear absorption was observed in some of the coatings as a result of increased incident power. A variety of commercial coating vendors using common dielectric oxide material combinations were surveyed. Wavelength, coating material, and coating vendor were varied to study their affects on the linearity of the absorption. The films were deposited by electron beam or ion beam sputtering technologies. Changes in the film characteristics were observed after exposure to high incident power. The nature of these changes and their permanency were also examined.

  20. Electric modulation of optical absorption in nanowires

    Science.gov (United States)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  1. The Driving Forces of Subsidiary Absorptive Capacity

    DEFF Research Database (Denmark)

    Schleimer, Stephanie C.; Pedersen, Torben

    2013-01-01

    The study investigates how a multinational corporation (MNC) can promote the absorptive capacity of its subsidiaries. The focus is on what drives the MNC subsidiary's ability to absorb marketing strategies that are initiated by the MNC parent, as well as how the subsidiary enacts on this absorptive...... as a purposeful response to this dual embeddedness. An analysis of marketing strategy absorptions undertaken by 213 subsidiaries reveals that MNCs can assist their subsidiaries to compete in competitive and dynamic focal markets by forming specific organizational mechanisms that are conducive to the development...

  2. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  3. Sound Absorption of Locally Resonant Sonic Materials

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Gang; LIU Yao-Zong; WEN Ji-Hong; YU Dian-Long; WANG Gang; WEN Xi-Sen

    2006-01-01

    @@ The acoustic properties of locally resonant sonic materials with viscosity are theoretically investigated by using the multiple-scattering approach. We find that the absorption of a two-layer slab dominates the wave attenuation in the resonant frequency region under the condition of moderate or high viscous level. The fundamental mechanism operating in local resonance for absorption is investigated for the viability by the mode translation in the scattering process of a single scatterer. Finally the absorption performance in a multi-layer system is discussed.

  4. Gas treating absorption theory and practice

    CERN Document Server

    Eimer, Dag

    2014-01-01

    Gas Treating: Absorption Theory and Practice provides an introduction to the treatment of natural gas, synthesis gas and flue gas, addressing why it is necessary and the challenges involved.  The book concentrates in particular on the absorption-desorption process and mass transfer coupled with chemical reaction. Following a general introduction to gas treatment, the chemistry of CO2, H2S and amine systems is described, and selected topics from physical chemistry with relevance to gas treating are presented. Thereafter the absorption process is discussed in detail, column hardware is explain

  5. Coherent absorption of N00N states

    CERN Document Server

    Roger, Thomas; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-01-01

    Recent results in deeply subwavelength thickness films demonstrated coherent control and logical gate operations with both classical and single photon light sources. However, quantum processing and devices typically involve more than one photon and non-trivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single or two photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features opening up applications in multiphoton spectroscopy and imaging.

  6. Coherent Absorption of N00N States

    Science.gov (United States)

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging.

  7. Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stage

    Institute of Scientific and Technical Information of China (English)

    YI LiangPeng; MA Jian; LI Yan

    2007-01-01

    Linkage between belowground and aboveground sections of ecological system is mainly depending on root system. But root system is the parts of plant that people less understand. The absorption function of root system is closely related to their morphology and activity. Moreover root system can interact with the environmental stress under the adverse situation, and adjust its system to take adaptation responses in morphology and physiology to strengthen its survival chance. This research is focused on three desert halophyte species of H. ammodendron (C.A.Mey.) Bge., S. physophora Pall., and S.nitraria Pall. under solution culture, to study the differences of their root system morphology and activity in the seedling stage under varying salt concentration conditions. The study results show that: A certain salt concentration can promote development of these three halophytes; but rather high salt concentration will restrain their growth, in particular inhibit the root system development. Under the same salt concentration condition, S. nitraria Pall. grows fast and accumulates the largest amount of biomass. Under relatively low salt concentration, the length of axial root and the total length of root system of these three halophyte species are all increased; and compared to the checking samples, S.physophora Pall. occupies the top place of root system growth, but the high salt concentration will restrain the increase of total root length; among them, the impact intensity on S. physophora Pall. is lighter than to H. ammodendron (C.A.Mey.) Bge. and S. nitraria Pall. is lighter; the salinity does not bring distinct influence on the average diameter of root system of these three plant species, but trends to reducing the size; under the solution culture conditions, the middle and lower parts of the axial root of H. ammodendron (C.A.Mey.) Bge. and S. physophora Pall. are rather equally distributed, but the central zone of S. nitraria Pall. root system is more significantly

  8. Root Resorption in Orthodontics - Genetic Susceptibility?

    OpenAIRE

    Ponces, MJ; Paula Vaz; Fred Pinheiro; Inês Côrte-Real; Purificação Tavares

    2011-01-01

    OBJECTIVES: External root resorption (ERR) is a condition that can be observed in association with orthodontic treatment. The etiology of root resorption is complex, related with several factors. Some inflammatory mediators, controlled by specific genes, have been associated with bone resorption and in the recruitment of osteoclasts during orthodontic movement (Lee et al., 2007; Abass et al., 2008; Bastos et al., 2009). Particularly the association between polymorphisms in the IL-1B gene and ...

  9. COMMODITY PRICES AND UNIT ROOT TESTS

    OpenAIRE

    Wang, Dabin; Tomek, William G.

    2004-01-01

    Endogenous variables in structural models of agricultural commodity markets are typically treated as stationary. Yet, tests for unit roots have rather frequently implied that commodity prices are not stationary. This seeming inconsistency is investigated by focusing on alternative specifications of unit root tests. We apply various specifications to Illinois farm prices of corn, soybeans, barrows and gilts, and milk for the 1960 through 2002 time span. The preponderance of the evidence sugges...

  10. Pain associated with root canal treatment

    OpenAIRE

    Segura-Egea, Juan José; Cisneros Cabello, Rafael; Llamas Carreras, José María; Velasco Ortega, Eugenio

    2009-01-01

    Our purpose was to determine the pain experienced by patients during root canal treatment and to correlate with age and gender, pulpal diagnosis, previous periapical status, dental characteristics and length of treatment. One hundred and seventy-six patients (68 men and 108 women), with ages ranged from 6 to 83 years, were randomly recruited. Patients completed a 10-cm visual analogue scale (VAS) that ranked the level of pain experienced during root canal treatment. The mean pain level during...

  11. ANTIARTHRITIC ACTIVITY OF DESMODIUM GANGETICUM ROOT

    OpenAIRE

    Vedpal; Santosh Kumar Gupta; Gupta, A K; Dhirendra Pakash; Amit Gupta

    2013-01-01

    The present study is aimed to evaluate the in-vitro anti-arthritic activity of aqueous extract of Desmodium gangeticum root using inhibition of protein denaturation model and human red blood cell Membrane stabilization model. Diclofenac sodium was used as a standard drug. Results revealed that the aqueous extract of Desmodium gangeticum root at different concentrations possessed significant anti-arthritic activity as compared to standard drug used as Diclofenac sodium. The results obtained in...

  12. Immunology of root resorption: A literature review

    Directory of Open Access Journals (Sweden)

    Silva Luciano

    2008-01-01

    Full Text Available Root resorption seems to be related to a complex combination of mechanical factors and biological activity, which comprehends the role of immunologic structures including specialized cells. The aim of this research was to explain the development of the process - from mineralization to the destruction of hard tissues - and the possible relationship between root resorption and immunology, along with discussing current concepts described in the literature.

  13. Heterobasidion root rot in Norway spruce

    OpenAIRE

    Thor, Magnus

    2005-01-01

    In spite of its biological and economic impact on Swedish forestry, root rot caused by Heterobasidion annosum (Fr.) Bref. sensu lato has received no or little attention in forest planning. This thesis summarizes and discusses two experiments involving prophylactic treatment of stumps, and three investigations on the modelling and simulation of root rot in coniferous stands with special emphasis on Norway spruce (Picea abies [L.] Karst.). In 14 previously unthinned stands of Norway spruce, the...

  14. Development of TRatioPlot in ROOT

    CERN Document Server

    Gessinger-Befurt, Paul

    2016-01-01

    The ROOT data analysis and visualization framework is a software package which is widely used in physics, especially in high energy physics. A common visualization which has so far been lacking a direct implementation is the ratio plot, as well as a few similar types of plots. The scope and goal of the summer student project at CERN was to implement a class in ROOT itself, that can take care of the most common types of calculations, and produces high quality visuals.

  15. Two root canals in maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Gomes

    2011-07-01

    Full Text Available Introduction and objective: The success of endodontic treatment requires the knowledge of tooth morphology and its variations. Case report: This clinical article reports an unusual root canal configuration that was detected in a maxillary central incisor with two root canals, demonstrated by radiographic and computerized tomography exams. Conclusion: Knowledge of endodontic anatomy as well as the obtainment of both preoperative radiographs and tomography is important to detect abnormal tooth morphology.

  16. Quadratic Interval Refinement for Real Roots

    CERN Document Server

    Abbott, John

    2012-01-01

    We present a new algorithm for refining a real interval containing a single real root: the new method combines characteristics of the classical Bisection algorithm and Newton's Iteration. Our method exhibits quadratic convergence when refining isolating intervals of simple roots of polynomials (and other well-behaved functions). We assume the use of arbitrary precision rational arithmetic. Unlike Newton's Iteration our method does not need to evaluate the derivative.

  17. EFFECT OF ROOT TEMPERATURE ON SINK STRENGTH OF TUBEROUS ROOT IN SWEET POTATO PLANTS (IPOMOEA BATATAS LAM.)

    OpenAIRE

    Eguchi, Toshihiko; Kitano, Masaharu; Eguchi, Hiromi

    1994-01-01

    Eflect of root temperature on sink strength of tuberous root in sweet potato plants was examined at root temperatures of 20 to 32℃ under a constant air condition of 28℃ and 70% RH. Dry weight, volume and dry matter content of tuberous root became higher at root temperatures of 24 to 26℃. However, sink strength of tuberous root, which was estimated by its dry weight per unit leaf area, was highest at a root temperature of 24℃ possibly because of lower sink activities at lower root temperatures...

  18. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  19. Effect of Exponential Fertilization on Biomass Allocation,Photosynthesis and Root Morphology of Padus maackii Seedlings%指数施肥对斑叶稠李苗木生物量分配、光合作用及根系形态的影响

    Institute of Scientific and Technical Information of China (English)

    郝龙飞; 王庆成; 刘婷岩; 许丽娟

    2014-01-01

    Biomass allocation,photosynthesis and root morphology of Padus maackii one-year-old bare-root seedlings under constant fertilization ( CF ) , exponential fertilization ( EF ) , doubled exponential fertilization ( DEF ) and no fertilization (CK) regimes were investigated. 1) By the end of the growing season,the root/shoot ratio of seedlings under EF treatment was maximum,and was 6. 7%,14. 3%,23. 1% greater than that with CK,CF and DEF treatment ( P DEF>CF>CK. Seedling height and collar diameter of EF treatment was 16. 6% and 28. 1% higher than those of CK,respectively ( PEF >CF >DEF. The number of first-order lateral root of EF was 19,and more than that with CK,CF,DEF treatment (P0. 05) greater than that with CK,CF and DEF treatment,respectively. 5) Compared with OF treatment, average length of first-order roots ( absorptive roots ) under EF and DEF treatment was 15 . 8%,16 . 7% higher ( P 0 . 05 ) ,respectively; Specific root length of first-order root under EF and DEF treatment was 13. 9%,14. 7% longer than that with CF treatment (P >0. 05),respectively. The fifth-order root of EF treatment had greater average length,average diameter and specific root length compared with CF treatment. Exponential fertilization regimes effectively promoted photosynthetic rate and improved root morphology, meanwhile, increased biomass accumulation and nutrient absorption in P. maackii seedlings.

  20. Getting to the roots of it: Genetic and hormonal control of root architecture

    OpenAIRE

    Janelle Kang Hui Jung; Susan Rutherford McCouch

    2013-01-01

    Root system architecture (RSA)--the spatial configuration of a root system--is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent developmen...

  1. Short-term tissue response to potential root-end filling materials in infected root canals.

    Science.gov (United States)

    Chong, B S; Pitt Ford, T R; Kariyawasam, S P

    1997-07-01

    The short-term tissue responses to two potential root-end filling materials, a light-cured glass ionomer cement (Vitrebond) and a reinforced zinc oxide-eugenol cement (Kalzinol), were compared with that to amalgam using a previously devised experimental model. In 24 premolar teeth of beagle dogs (47 roots), a collection of endodontic pathogenic bacteria was first inoculated into the root canals to induce periradicular lesions. On each root, an apicoectomy was performed and root-end cavities prepared to receive fillings of each material. The teeth and surrounding jaw were removed after 2 weeks (23 roots) and 1 week (24 roots); they were then prepared for histological examination. The tissue response to amalgam fillings after 2 weeks and 1 week was marked by moderate or severe inflammation on all roots, and extended to 0.5 mm in 15 out of 16 roots. In contrast, after 2 weeks, the majority of roots filled with Kalzinol showed little or moderate inflammation, while the tissue response to Vitrebond was the best of the three materials, and was also the least extensive. After 1 week, the overall best tissue response was with Vitrebond, followed by Kalzinol. The differences between materials for both time periods with either none or few inflammatory cells when compared with that with either moderate or severe inflammation were not statistically significant (P inflammation or inflammation extending inflammation extending > 0.2 mm ( 0.5 mm) were statistically significant (P inflammation adjacent to the root-end filling, even though there were intersample variations, there was little overall difference in the temporal and qualitative healing response to Vitrebond and Kalzinol. Both Vitrebond and Kalzinol have potential as root-end filling materials, as the tissue response was considerably more favourable than that to amalgam even in the short-term.

  2. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    Directory of Open Access Journals (Sweden)

    FRÖNER Izabel Cristina

    1999-01-01

    Full Text Available The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  3. Roots of Dehn twists about separating curves

    CERN Document Server

    Rajeevsarathy, Kashyap

    2011-01-01

    Let $C$ be a curve in a closed orientable surface $F$ of genus $g \\geq 2$ that separates $F$ into subsurfaces $\\widetilde {F_i}$ of genera $g_i$, for $i = 1,2$. We study the set of roots in $\\Mod(F)$ of the Dehn twist $t_C$ about $C$. All roots arise from pairs of $C_{n_i}$-actions on the $\\widetilde{F_i}$, where $n=\\lcm(n_1,n_2)$ is the degree of the root, that satisfy a certain compatibility condition. The $C_{n_i}$ actions are of a kind that we call nestled actions, and we classify them using tuples that we call data sets. The compatibility condition can be expressed by a simple formula, allowing a classification of all roots of $t_C$ by compatible pairs of data sets. We use these data set pairs to classify all roots for $g = 2$ and $g = 3$. We show that there is always a root of degree at least $2g^2+2g$, while $n \\leq 4g^2+2g$. We also give some additional applications.

  4. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  5. Vertical root fractures and their management

    Science.gov (United States)

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  6. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  7. Adaptive significance of root grafting in trees

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.; Jones, R.

    1988-12-31

    Root grafting has long been observed in forest trees but the adaptive significance of this trait has not been fully explained. Various authors have proposed that root grafting between trees contributes to mechanical support by linking adjacent root systems. Keeley proposes that this trait would be of greatest advantage in swamps where soils provide poor mechanical support. He provides as evidence a greenhouse study of Nyssa sylvatica Marsh in which seedlings of swamp provenance formed between-individual root grafts more frequently than upland provenance seedlings. In agreement with this within-species study, Keeley observed that arid zone species rarely exhibit grafts. Keeley also demonstrated that vines graft less commonly than trees, and herbs never do. Since the need for mechanical support coincides with this trend, these data seem to support his model. In this paper, the authors explore the mechanisms and ecological significance of root grafting, leading to predictions of root grafting incidence. Some observations support and some contradict the mechanical support hypothesis.

  8. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  9. The Effect of Humic Acid on Nutrient Composition in Broad Bean (Vicia faba L. Roots

    Directory of Open Access Journals (Sweden)

    Sener AKINCI

    2009-12-01

    Full Text Available Humic acids promote the conversion of mineral nutrients into forms available to plants. It also stimulates seed germination and viability, and its main effect usually being more prominent in the roots. The objective of this study was to determine of the influence of humic acid on broad bean (Vicia faba L. cultivar �Eresen 87� on root growth and development as well as nutrient uptake, during investigation in a pot experiment. Treatment with leonardite, as humic acid source positively affected both germination and harvesting, enhancing root length and biomass. Humic acid (HA caused significant increase of fresh (RFW and dry (RDW weights by 30.1% and 56.6% of broad bean roots, respectively. Flame photometer and atomic absorption spectrophotometry analyses revealed that K content was major nutrient among the tested elements. Humic acid increased the contents of Na and K significantly. The content of Ca and Fe was not significantly increased whereas Cu, Mn and Zn content decreased under HA treatment.

  10. Cr localization and speciation in roots of chromate fed Helianthus annuus L. seedlings using synchrotron techniques.

    Science.gov (United States)

    de la Rosa, Guadalupe; Castillo-Michel, Hiram; Cruz-Jiménez, Gustavo; Bernal-Alvarado, Jesús; Córdova-Fraga, Teodoro; López-Moreno, Laura; Cotte, Marine

    2014-01-01

    In order to gain knowledge on the potential use of Helianthus annuus L. for the remediation of Cr(VI) polluted waters, hydroponics experiments were set up to determine Cr uptake and tolerance in different Cr(VI)-sulfate conditions, and Cr biotransformations. Results indicated that Cr(VI) promoted seed germination, and plant tolerance was higher at younger plant stages. Cr uptake was dependent on sulfate concentrations. The highest Cr levels in roots and shoots (13,700 and 2,500 mg kg(-1) dry weight (DW), respectively) were obtained in 1 mM sulfate. The lowest Cr uptake in roots (10,600 mg kg(-1) DW) was observed in seedlings treated with no sulfate. In shoots, Cr concentration was of 1,500 mg kg(-1)DW for the 1 mM sulfate treatment, indicating a different level of interaction between chromate and sulfate in both tissues. For the first time, using micro X-ray florescence (muXRF), we demonstrated Cr reaches the root stele and is located in the walls of xylem vessels. Bulk and micro X-ray Absorption Near-Edge Structure (muXANES) results showed that Cr in the roots is mostly in the form of Cr(III) phosphate (80%), with the remainder complexed to organic acids. Our results suggest this plant species may serve for Cr(VI) rhizofiltration purposes. PMID:24933903

  11. Changes of Root Length and Root-to-Crown Ratio after Apical Surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Jensen, Simon S; Bornstein, Michael M

    2015-01-01

    the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS: In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47.......58 ± 1.43 mm (relative to the CBL). This amounted to a loss of 33.2% of clinical and 26% of anatomic root length. There was an overall significant difference between the tooth groups (P

  12. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 2: Mandibular Molars

    Directory of Open Access Journals (Sweden)

    Denzil Valerian Albuquerque

    2012-01-01

    Full Text Available Several terminologies have been employed in the dental literature to describe the roots and root canal systems of mandibular molars with no consensus being arrived at, thus far. The anatomical relation of roots and their root canals were identified and a naming system was formulated. The proposed nomenclature attempts to make certain essential modifications to the traditional approach to accommodate the naming of various aberrations presented in mandibular molars. A simple, yet extensive nomenclature system has been proposed that appropriately names the internal and external morphology of mandibular molars.

  13. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    Science.gov (United States)

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  14. A new Approach for Quantifying Root-Reinforcement of Streambanks: the RipRoot Model

    Science.gov (United States)

    Pollen, N. L.; Simon, A.

    2003-12-01

    Riparian vegetation plays an important role in controlling geotechnical and fluvial processes acting along and within streambanks through the binding effects of roots. Quantification of this mechanical effect is therefore essential to accurately model streambank stability. Until now, most attempts to include the effects of root reinforcement by riparian vegetation have used root-cohesion values estimated using the Wu et al. (1979) equation, requiring the tensile strengths and diameters of the roots crossing the potential shear-plane. However, the Wu et al. equation is a static model that assumes that all roots break, and that they all break simultaneously. Field observations and laboratory experiments have shown that in reality the roots do not all break simultaneously, and that the breaking of roots during mass failure is in fact a dynamic process. Static models such as the Wu et al. equation are therefore likely to produce overestimations of cohesion due to roots. As a response to this concern, a dynamic root reinforcement model (RipRoot) was developed, based on the concepts of fiber bundle models (FBM's) used in materials science. Within the model the root-soil system is loaded incrementally resulting in progressive root breaking and redistribution of stresses from the broken roots to the remaining intact roots in the soil matrix. The redistribution and loading process continues until either all of the roots have broken, or equilibrium is reached where the root network supports the driving force imposed on the bank. The increase in bank cohesion using the static Wu et al. equation are 18% to 38% higher than RipRoot for riparian tree species, including Black Willow, Sandbar Willow, Cottonwood, River Birch and Eastern Sycamore, and 49% higher for Switch Grass. These variations in cohesion values can have a significant impact on streambank Factor of Safety (Fs) values calculated using the Simon et al. (2000) bank-stability model. For example, a 3m high silt

  15. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates.

    Science.gov (United States)

    Chen, Bao; Zhang, Yibin; Rafiq, Muhammad Tariq; Khan, Kiran Yasmin; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-12-01

    Inoculating endophytic bacteria was proven as a promising way to enhance phytoremediation. By a hydroponic experiment, the role of this study was to clarify the effects of inoculating endophytic bacterium Sphingomonas SaMR12 on phytoremediation, with special emphasis on changes of cadmium uptake, plant growth, root morphology, and organic acids secretion at different cadmium treated levels (0, 5, 50, and 100 μM). The results showed that SaMR12 inoculation improved the accumulation of cadmium as well as plant biomass, length of roots, number of root tips, and root surface area. Root secretion of oxalic, citric, and succinic acids was also increased after inoculated, which may alleviate the cadmium toxicity to plant or inhibit the rising trend of oxidative stress of plant. The major finding of this work suggested that in the root, SaMR12 improves cadmium bioavailability and absorption facility by increasing root-soil contact area and root organic acid secretion; and in the shoot, SaMR12 increases cadmium tolerance by alleviating oxidative stress of plant, so as to enhance the capability of cadmium extraction by plant.

  16. High performance heat pump absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.; Rossetto, L.

    1988-10-01

    Absorption heat pumps can provide high performances when operating in suitable cycles with multiple effects. This report describes some multistage cycles and evaluates the coefficient of performance realistically obtainable both in winter and summer working conditions.

  17. Absorption mapping for characterization of glass surfaces.

    Science.gov (United States)

    Commandré, M; Roche, P; Borgogno, J P; Albrand, G

    1995-05-01

    The surface quality of bare substrates and preparation procedures take on an important role in optical coating performances. The most commonly used techniques of characterization generally give information about roughness and local defects. A photothermal deflection technique is used for mapping surface absorption of fused-silica and glass substrates. We show that absorption mapping gives specific information on surface contamination of bare substrates. We present experimental results concerning substrates prepared by different cleaning and polishing techniques. We show that highly polished surfaces lead to the lowest values of residual surface absorption. Moreover the cleaning behavior of surfaces of multicomponent glasses and their optical performance in terms of absorption are proved to be different from those of fused silica.

  18. Absorption chillers: Part of the solution

    International Nuclear Information System (INIS)

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs

  19. Enriching Absorptive Capacity Through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper Jaap; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within MNEs. But how individual behaviour translates to absorptive capacity at the subsidiary level, and exactly how this is contingent on subsidiaries’ social context, remains under-addressed. This not only...... their organization’s capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer initiative at two subsidiaries of the same MNE. The findings demonstrate that social interaction is a key requirement for subsidiary...... absorptive capacity as it enables employees to participate in the transformation of new knowledge to the local context. Second, the findings illustrate how organizational conditions at the subsidiary level can impact subsidiary absorptive capacity by enabling or constraining local interaction patterns...

  20. Molecular absorption in transition region spectral lines

    CERN Document Server

    Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah

    2014-01-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

  1. Iron absorption from typical Latin American diets.

    Science.gov (United States)

    Acosta, A; Amar, M; Cornbluth-Szarfarc, S C; Dillman, E; Fosil, M; Biachi, R G; Grebe, G; Hertrampf, E; Kremenchuzky, S; Layrisse, M

    1984-06-01

    The availability and daily absorption of iron was determined by the extrinsic label method in typical lower middle to lower class diets consumed in regions of Argentina, Brazil, Chile, Mexico, Peru, and Venezuela. Differences in iron absorption from meals up to 7-fold, could be attributed to the varying contents of absorption enhancers, eg, in meat, and of inhibitors in tea, vegetables, and wheat or maize bread. The total iron available in the diets from four countries did not meet the physiological requirements for normal subjects but deficient subjects fulfilled their requirements absorbing from 1.0 to 2.1 mg/day. In five diets heme iron (6 to 24% of the total) provided 34 to 73% of the iron absorbed. These data suggest that such absorption and utilization studies may be used to correlate the prevalence of iron deficiency in a population with certain diets and to guide fortification programs.

  2. Differential Photoacoustic Particle Absorption Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a highly sensitive and compact monitor to measure light absorption from particulate matters. The fundamental of the proposed device is based...

  3. Absorption of light dark matter in semiconductors

    CERN Document Server

    Hochberg, Yonit; Zurek, Kathryn M

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We show that the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in semiconductors such as germanium or silicon can exceed current astrophysical and terrestrial constraints, with only a moderate exposure.

  4. Inhibition of nitrate reductase and ATPase activities in Zea mays roots by tungsten and N, N'-dicyclohexylcarbodiimide

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-02-01

    Full Text Available The activity of soluble and membrane-bound ATPase obtained from corn roots was in vivo markedly inhibited by N,N' -dicyclohexylcanbodiimide (DCCD and W042- ions. DCCD (2.5 X 10-5 M added to the nutrient solution strongly decreased in vivo nitrate reductase (NR activity after 12-h growth of plants while it had no effect in experiments in vitro on NR activity. Tungsten in a concentration of 10-4 M completely blocked NR activity after 24 h. In the above used concentrations neither DCCD nor W042- inhibited completely N03- absorption by corn roots. The results suggest that there must exist in corn roots another or an additional mechanism of N03- assimilation apart from of that proposed by Butz and Jackson (1977.

  5. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  6. Systemic Absorption of Nanomaterials by Oral Exposure

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister;

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  7. Percutaneous absorption in diseased skin: an overview.

    Science.gov (United States)

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  8. Fluctuation sound absorption in quark matter

    CERN Document Server

    Kerbikov, B O

    2016-01-01

    We investigate the sound absorption in quark matter due to the interaction of the sound wave with the precritical fluctuations of the diquark-pair field above $T_c$. The soft collective mode of the pair field is derived using the time dependent Ginzburg-Landau functional with random Langevin forces. The strong absorption near the phase transition line may be viewed as a manifestation of the Mandelshtam-Leontovich slow relaxation time theory.

  9. Broadband absorption engineering of hyperbolic metafilm patterns

    OpenAIRE

    Ji, Dengxin; Song, Haomin; Zeng, Xie; Hu, Haifeng; Liu, Kai; Zhang, Nan; Gan, Qiaoqiang

    2014-01-01

    Perfect absorbers are important optical/thermal components required by a variety of applications, including photon/thermal-harvesting, thermal energy recycling, and vacuum heat liberation. While there is great interest in achieving highly absorptive materials exhibiting large broadband absorption using optically thick, micro-structured materials, it is still challenging to realize ultra-compact subwavelength absorber for on-chip optical/thermal energy applications. Here we report the experime...

  10. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  11. Enriching Absorptive Capacity through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper J.; Saka-Helmhout, Ayse; Becker-Ritterspach, Florian

    2012-01-01

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under-addressed.......Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under...... their organization's capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer at two subsidiaries of the same multinational enterprise. The findings demonstrate that social interaction is a prerequisite...... for subsidiary absorptive capacity as it enables employees to participate in the transformation of new knowledge to the local context and the development of local applications. The findings also illustrate how organizational conditions at the subsidiary level can impact subsidiary absorptive capacity by enabling...

  12. Spectral Absorption Properties of Atmospheric Aerosols

    Science.gov (United States)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  13. Reflection and absorption of electromagnetic waves obliquely incident on a half-space relativistic plasma

    International Nuclear Information System (INIS)

    Reflection and absorption characteristics of electromagnetic waves obliquely incident upon a half-space relativistic Vlasov plasma are investigated. Numerical results comparing the properties of the s- and p-polarized waves are given. It is shown that the response of plasma can be best understood by studying the locations of the roots kappa/sub t/ and kappa/sub l/ of the transversal and longitudinal dispersion functions in the complex wavenumber plane. In general, s-polarized waves are reflected and p-polarized waves are absorbed more efficiently by the plasma. Total reflection occurs when kappa/sub t/ becomes zero for the case of s-polarization and when kappa/sub l/ becomes zero for the case of p-polarization. Total penetration of p-waves is obtained for sufficiently large frequencies at the Brewster angle theta/sub B/. These waves exhibit a sharp absorption peak at the characteristic angle theta/sub c/ at which the transversal transmission terminates. For a given temperature, p-waves are totally absorbed in the plasma at a specific frequency at which theta/sub B/=theta/sub c/. Absorption peaks are broader at higher temperatures. If both transversal and longitudinal modes propagate undamped at some value of angle of incidence theta, there exists a secondary smooth and broad absorption peak at larger values of theta for the p-waves. The magnitude of the secondary peak can also be appreciable at the ultrarelativistic temperatures

  14. Determination of metal content in valerian root phytopharmaceutical derivatives by atomic spectrometry.

    Science.gov (United States)

    Arce, Silvia; Cerutti, Soledad; Olsina, Roberto; Gomez, María R; Martínez, Luis D

    2005-01-01

    Phytopharmaceuticals containing Valerian are used as mild sleep-inducing agents. The elemental composition of 3 different marks of Valeriana officinalis roots commercially available in the Argentinian market, their teas, and a commercial tincture have been studied. The content of Al, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, V, and Zn was determined in phytopharmaceuticals by flame atomic emission/absorption spectrometry, electrothermal atomic absorption spectrometry, and ultrasonic nebulization coupled to inductively coupled plasma-optical emission spectrometry. Prior to analyses of the samples, a digestion procedure was optimized. The analytical results obtained for Fe, Al, Ca, and V in the solid sample study were within the range 100-1000 mg/kg, and for Mn, Zn, and Pb within the range 10-100 mg/kg. Cadmium was found at levels up to 0.0125 mg/kg. PMID:15759744

  15. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    Science.gov (United States)

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  16. Tissue response to potential root-end filling materials in infected root canals.

    Science.gov (United States)

    Chong, B S; Ford, T R; Kariyawasam, S P

    1997-03-01

    The tissue responses to two potential root-end filling materials, a light-cured glass ionomer cement (Vitrebond) and a reinforced zinc oxide-eugenol cement (Kalzinol) were compared with that to amalgam. In 27 premolar teeth of beagle dogs (54 roots), a collection of endodontic pathogenic bacteria was first inoculated into the root canals to induce periapical lesions. On each root, an apicectomy was performed and root-end cavities prepared to receive fillings of each material. The teeth and surrounding jaw were removed after 8 weeks (24 roots) and 4 weeks (30 roots); and they were prepared for histological examination. The tissue response to amalgam fillings after 4 and 8 weeks was marked by moderate or severe inflammation on all roots, and extended > 0.5 mm in 10 out of 18 roots. In contrast, after 8 weeks, the majority of roots filled with Kalzinol showed little or moderate inflammation while the tissue response to Vitrebond was the best of the three materials, and was also less extensive. After 4 weeks, the overall best tissue response was with Kalzinol, followed closely by Vitrebond. The differences between materials for both time periods with either none or few inflammatory cells when compared with that with either moderate or severe inflammation were statistically significant (P inflammation or inflammation extending inflammation extending > 0.2 mm ( 0.5 mm) were statistically significant (P < 0.01). Both Vitrebond and Kalzinol have potential as root-end filling materials as the tissue response was considerably more favourable than that to amalgam.

  17. How can science education foster students' rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  18. Ecological Hypothesis of Dentin and Root Caries.

    Science.gov (United States)

    Takahashi, Nobuhiro; Nyvad, Bente

    2016-01-01

    Recent advances regarding the caries process indicate that ecological phenomena induced by bacterial acid production tilt the de- and remineralization balance of the dental hard tissues towards demineralization through bacterial acid-induced adaptation and selection within the microbiota - from the dynamic stability stage to the aciduric stage via the acidogenic stage [Takahashi and Nyvad, 2008]. Dentin and root caries can also be partly explained by this hypothesis; however, the fact that these tissues contain a considerable amount of organic material suggests that protein degradation is involved in caries formation. In this review, we compiled relevant histological, biochemical, and microbiological information about dentin/root caries and refined the hypothesis by adding degradation of the organic matrix (the proteolytic stage) to the abovementioned stages. Bacterial acidification not only induces demineralization and exposure of the organic matrix in dentin/root surfaces but also activation of dentin-embedded and salivary matrix metalloproteinases and cathepsins. These phenomena initiate degradation of the demineralized organic matrix in dentin/root surfaces. While a bacterial involvement has never been confirmed in the initial degradation of organic material, the detection of proteolytic/amino acid-degrading bacteria and bacterial metabolites in dentin and root caries suggests a bacterial digestion and metabolism of partly degraded matrix. Moreover, bacterial metabolites might induce pulpitis as an inflammatory/immunomodulatory factor. Root and dentin surfaces are always at risk of becoming demineralized in the oral cavity, and exposed organic materials can be degraded by host-derived proteases contained in saliva and dentin itself. New approaches to the prevention and treatment of root/dentin caries are required. PMID:27458979

  19. 21 CFR 872.3810 - Root canal post.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  20. Cold temperature delays wound healing in postharvest sugarbeet roots

    Science.gov (United States)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  1. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    Science.gov (United States)

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  2. How up- or downslope anchoring affects root reinforcement

    Science.gov (United States)

    Giadrossich, Filippo; Schwarz, Massimiliano; Cohen, Denis; Niedda, Marcello

    2016-04-01

    Root reinforcement is important for slope stability. In addition to the important contribution of roots to shear strength along the slip surface, root networks are also recognized to impart stabilization through lateral (parallel to slope) redistribution of forces under tension. The most common method to measure lateral root reinforcement is a pullout test where one root or a bundle of root is pulled out of the soil matrix. This condition represents the case where roots within the mass of a landslide slip out from the upper stable part of the slope. There is also, however, the situation where roots anchored in the upper stable part of the slope slip out from the sliding mass. In the latter it is difficult to quantify root reinforcement and no study has discussed this mechanism. We carried out a new series of laboratory and field experiments using Douglas fir (Pseudotsuga menziesii) roots to quantify how up- or downslope anchoring affects root reinforcement. In addition, we carried out new field pullout tests on coarse roots (larger that 2 mm in diameter, up to 47 mm). Then, considering the state-of-the-art of root reinforcement modeling (the Root Bundle Model), we integrated results from our measurements into the model to verify the magnitude of this effect on overall root reinforcement at the stand scale. Results indicate that the ratio between pullout force and force transferred to the root during soil slip ranges between 0.5 and 1. This indicates that measured pullout force always overestimate the contribution of lateral slipping out roots in situations where the soil slide from anchored roots. This is general the case for root with diameter up to 3-4 mm. Root-size distribution is also a key factor influencing root reinforcement at the forest-stand scale. As most coarse roots break along tension cracks while fine roots slip out, the effect discussed in this study on root reinforcement modeling is negligible when coarse-root diameter classes are represented. Our

  3. Two-wavelength absorption modulation spectroscopy of bandtail absorption in GaAs quantum wells

    International Nuclear Information System (INIS)

    We have discovered that below-band-gap photoexcitation produces large bleaching of the exciton absorption in GaAs quantum well heterostructures. We have used this effect to perform the first investigation of room-temperature bandtail absorption in these structures. We find that the below-band-gap absorption follows a spectral Urbach's rule. In addition, proton-bombarded samples show an Urbach energy correlated with bombardment-induced defects. This sensitive technique has enabled us to study samples as thin as 1 μm at energies where the absorption coefficient is approx.10 cm-1

  4. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods

    Institute of Scientific and Technical Information of China (English)

    Ming WEI; Jun QIAN; Qiuqiang ZHAN; Fuhong CAI; Arash GHARIBI; Sailing HE

    2009-01-01

    Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorp-tion OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.

  5. Effect of root canal preparation, type of endodontic post and mechanical cycling on root fracture strength

    Directory of Open Access Journals (Sweden)

    Marília Pivetta RIPPE

    2014-06-01

    Full Text Available Objective: To evaluate the impact of the type of root canal preparation, intraradicular post and mechanical cycling on the fracture strength of roots. Material and Methods: eighty human single rooted teeth were divided into 8 groups according to the instruments used for root canal preparation (manual or rotary instruments, the type of intraradicular post (fiber posts- FRC and cast post and core- CPC and the use of mechanical cycling (MC as follows: Manual and FRC; Manual, FRC and MC; Manual and CPC; Manual, CPC and MC; Rotary and FRC; Rotary, FRC and MC; Rotary and CPC; Rotary, CPC and MC. The filling was performed by lateral compactation. All root canals were prepared for a post with a 10 mm length, using the custom #2 bur of the glass fiber post system. For mechanical cycling, the protocol was applied as follows: an angle of incidence of 45°, 37°C, 88 N, 4 Hz, 2 million pulses. All groups were submitted to fracture strength test in a 45° device with 1 mm/ min cross-head speed until failure occurred. Results: The 3-way ANOVA showed that the root canal preparation strategy (p<0.03 and post type (p<0.0001 affected the fracture strength results, while mechanical cycling (p=0.29 did not. Conclusion: The root canal preparation strategy only influenced the root fracture strength when restoring with a fiber post and mechanical cycling, so it does not seem to be an important factor in this scenario.

  6. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.

    Science.gov (United States)

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  7. Pea-root exudates and their effect upon root-nodule bacteria

    NARCIS (Netherlands)

    Egeraat, van A.W.S.M.

    1972-01-01

    The main purpose of this investigation was to study the exudation (mechanism, sites) of various compounds by roots of pea seedlings in relation to the growth of Rhizobium leguminosarum.Chapter 1 gives a survey of the literature pertaining to plant-root exudates and their influence upon soil microorg

  8. Root system markup language: toward a unified root architecture description language.

    Science.gov (United States)

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow.

  9. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  10. Compensation in Root Water Uptake Models Combined with Three-Dimensional Root Length Density Distribution

    NARCIS (Netherlands)

    Heinen, M.

    2014-01-01

    A three-dimensional root length density distribution function is introduced that made it possible to compare two empirical uptake models with a more mechanistic uptake model. Adding a compensation component to the more empirical model resulted in predictions of root water uptake distributions simila

  11. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  12. Chronic nerve root entrapment: compression and degeneration

    Science.gov (United States)

    Vanhoestenberghe, A.

    2013-02-01

    Electrode mounts are being developed to improve electrical stimulation and recording. Some are tight-fitting, or even re-shape the nervous structure they interact with, for a more selective, fascicular, access. If these are to be successfully used chronically with human nerve roots, we need to know more about the possible damage caused by the long-term entrapment and possible compression of the roots following electrode implantation. As there are, to date, no such data published, this paper presents a review of the relevant literature on alternative causes of nerve root compression, and a discussion of the degeneration mechanisms observed. A chronic compression below 40 mmHg would not compromise the functionality of the root as far as electrical stimulation and recording applications are concerned. Additionally, any temporary increase in pressure, due for example to post-operative swelling, should be limited to 20 mmHg below the patient’s mean arterial pressure, with a maximum of 100 mmHg. Connective tissue growth may cause a slower, but sustained, pressure increase. Therefore, mounts large enough to accommodate the root initially without compressing it, or compliant, elastic, mounts, that may stretch to free a larger cross-sectional area in the weeks after implantation, are recommended.

  13. Etiology of phomopsis root rot in soybean

    Directory of Open Access Journals (Sweden)

    Valéria Cecília Ghissi

    2014-09-01

    Full Text Available In a survey of damages caused by soybean root rot to crops in the south of Brazil for several years, a root rot caused by Phomopsis sp has been found with increasing frequency. The primary symptoms are seen when the main root is cut longitudinally, including the death of the wood which shows white coloration and well-defined black lines that do not have a defined format. Thus, based on similarity, it has been called geographic root rot due to its aspect resembling irregular lines that separate regions on a map. In isolations, colonies and alpha spores of Phomopsis have prevailed. Pathogenicity test was done by means of inoculation in the crown of plants cultivated in a growth chamber. The geographic symptoms were reproduced in plants and the fungus Phomopsis sp. was reisolated. In soybean stems naturally infected with pod and stem blight, geographic symptoms caused by Phomopsis phaseoli are found. To the known symptoms on stems, pods and grains, that of root rot caused by P. phaseoli is now added.

  14. Rooting cuttings of yam (Dioscorea spp.

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Rocha e Silva

    2014-12-01

    Full Text Available The culture of yams (Dioscorea spp. has great importance for the entire Brazilian population, mainly in the Northeast, either by its nutritional or commercial value. This work aimed to study a new method of seedling production of yams by stem cuttings collected from plants with age of 120 days. The experiment was carried out in the CECA/UFAL, in a green house with intermittent fogging, in a fully randomized block design with a factorial 3 × 2 × 2, 12 treatments and 4 replications. Three factors were evaluated: height of the cuttings collection in plant (top, center and bottom, position of the cuttings on the branch (proximal and distal and concentration of Indolebutyric acid (IBA applied (0 and 1 mg/L. The cuttings were planted in plastic trays of 32 cells, containing commercial Bioplant ® substrate. After 30 days, the presence, the number and length of roots was acessed. All variables were subjected to analysis of variance and averages were compared by Tukey test. The results obtained in this study showed that the use of IBA (1 g/L did not influence the rooting process. Cuttings collected in the basal third of the plants in the proximal part of the branches, independent of the concentration of IBA, presented the best results for the percentage of rooting, root number and length of roots per stake.

  15. How tree roots respond to drought

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2015-07-01

    Full Text Available The ongoing climate change is characterised by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organisation and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signalling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field.

  16. Visualizing Rhizosphere Soil Structure Around Living Roots

    Science.gov (United States)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  17. Can Crops with Greater Rooting Systems Improve Nitrogen Retention and Mitigate Emissions of Nitrous Oxide?

    Science.gov (United States)

    Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan

    2016-04-01

    It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas

  18. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L. seedlings: passive or active uptake?

    Directory of Open Access Journals (Sweden)

    Jiang Ting-Hui

    2010-03-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE, a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L. seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM. The contribution of active uptake to total absorption was almost 40

  19. Evolution of Root Characters of Soybean Varieties Developed in Different Years

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-hong; WU Zong-pu; ZHANG Guo-dong

    2002-01-01

    It was studied that the evolution of root characteristics among 42 soybean varieties developed in Heilongjiang and Jilin Province in different years. The results showed that there were differences on the root characteristics among soybean varieties. From 1950s to 1990s, root fresh weight, root volume, root surface, root dry weight, lateral root length of main root characters tendedly increased with the variable development years. The root system of the varieties in 1990s was relatively well developed compared with that in the other years. The evolutionary trend of the root system of soybean varieties was increasing in root weight, root volume, root surface and length of lateral root.

  20. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots.

    Science.gov (United States)

    Straczek, Anne; Duquene, Lise; Wegrzynek, Dariusz; Chinea-Cano, Ernesto; Wannijn, Jean; Navez, Jacques; Vandenhove, Hildegarde

    2010-03-01

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 micromol U L(-1), distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot. PMID:20080323

  1. Partical replacement of the rooting procedure of Chrysanthenum merifolium cuttings by pre-rooting storage in the dark.

    OpenAIRE

    Pol, van der, J.P.

    1988-01-01

    Part of the rooting procedure of Chrysanthemum morifolium 'Pink Boston' and 'Refour' cuttings can be replaced by pre-rooting storage in the dark. Pre-rooting storage of 7 days at temperatures between 9° and 21°C was adequate. Longer periods of dark storage resulted in increase of root growth but also in severe senescence of the basal leaves.

  2. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    Science.gov (United States)

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  3. Methods for increasing the accuracy of approximate formulas for the roots of a cubic equation with complex conjugate roots

    International Nuclear Information System (INIS)

    Approximate formulas for determining the frequency and Q-factor of the complex conjugate roots, as well as the frequency of the real root, of the cubic equation for the case where the frequency of the complex-conjugate roots is close to the frequency of the real root have been presented in this work

  4. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    Energy Technology Data Exchange (ETDEWEB)

    Straczek, Anne; Duquene, Lise [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Wegrzynek, Dariusz [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chinea-Cano, Ernesto [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Wannijn, Jean [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Navez, Jacques [Royal Museum of Africa, Department of Geology, Leuvensesteenweg 13, 3080 Tervuren (Belgium); Vandenhove, Hildegarde, E-mail: hvandenh@sckcen.b [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2010-03-15

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 mumol U L{sup -1}, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  5. Modulation of root branching by a coumarin derivative

    OpenAIRE

    Li, Xiang; Gao, Ming-Jun

    2011-01-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integ...

  6. On Generalized m-th Root Finsler Metrics

    OpenAIRE

    Tayebi, A.; Peyghan, E.; M. Shahbazi

    2013-01-01

    In this paper, we characterize locally dually flat generalized m-th root Finsler metrics. Then we find a condition under which a generalized m-th root metric is projectively related to a m-th root metric. Finally, we prove that if a generalized m-th root metric is conformal to a m-th root metric, then both of them reduce to Riemannian metrics.

  7. Development of root observation method by image analysis system

    OpenAIRE

    Kim, Giyoung

    1995-01-01

    Knowledge of plant roots is important for determining plant-soil relationships, managing soil effectively, studying nutrient and water extraction, and creating a soil quality index. Plant root research is limited by the large amount of time and labor required to wash the roots from the soil and measure the viable roots. A root measurement method based on image analysis was proposed to reduce the time and labor requirement. A thinning algorithm-based image analysis method was us...

  8. Interactions between root canal irrigants, sealers and dentin

    OpenAIRE

    Neelakantan, P.

    2016-01-01

    The objective of this thesis was to determine the interactions between root filling materials and root dentin and to investigate if root canal irrigating solutions had an impact on these interactions. The following outcomes were assessed in the studies encompassed in this thesis: (i) dislocation resistance of an epoxy resin based root canal sealer and tricalcium silicate based root canal sealers, (ii) the influence of irrigation protocols on the sealing ability and chemical interactions with ...

  9. A NOTE ON THE STOCHASTIC ROOTS OF STOCHASTIC MATRICES

    Institute of Scientific and Technical Information of China (English)

    Qi-Ming HE; Eldon GUNN

    2003-01-01

    In this paper, we study the stochastic root matrices of stochastic matrices. All stochastic roots of 2×2 stochastic matrices are found explicitly. A method based on characteristic polynomial of matrix is developed to find all real root matrices that are functions of the original 3×3 matrix, including all possible (function) stochastic root matrices. In addition, we comment on some numerical methods for computing stochastic root matrices of stochastic matrices.

  10. Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency.

    Science.gov (United States)

    Higa, Ataru; Miyamoto, Erika; ur Rahman, Laiq; Kitamura, Yoshie

    2008-04-01

    Hyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron-deficient condition secreted riboflavin from the root tips into the culture medium and the productivity depended on the number and size of root tips among the clones. A decline of pH was observed before riboflavin production and root development. By studying effects of proton-pump inhibitors, medium acidification with external organic acid, and riboflavin addition upon pH change and riboflavin productivity, we indicate that riboflavin efflux is not directly connected to active pH reduction, and more significantly active riboflavin secretion occurs as a response to an internal requirement in H. albus hairy roots under iron deficiency. PMID:18367404

  11. The role of root hairs in cadmium acquisition by barley

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruilun; Li Huafen [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Jiang Rongfeng, E-mail: rfjiang@cau.edu.c [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Roemheld, Volker [Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart (Germany); Zhang Fusuo [Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-02-15

    The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley. - Research highlights: The Cd uptake efficiency was significantly lower in brb than in WT. Additions of phosphate to soil decreased Cd extractability and Cd uptake. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. Root hairs contribute significantly to Cd uptake by barley. - The Cd uptake efficiency based on total root length was 8-45% lower in a barley root hairless mutant than in its wild-type, indicating an important role of root hairs in Cd acquisition.

  12. Endodontic Microsurgical Treatment of a Three-rooted Mandibular First Molar with Separate Distolingual Root: Report of One Case.

    Science.gov (United States)

    Wang, Han Guo; Xu, Ning; Yu, Qing

    2016-01-01

    The separate distolingual (DL) roots of three-rooted mandibular first molars are thought to be too difficult for performing apical surgery. This article represents microsurgical treatment of a three-rooted mandibular first molar with a separate DL root. The procedure includes incision and flap retraction, osteotomy, apicoectomy, retropreparation and retrofilling of the root canal, using micro instruments, ultrasonic retrotips and mineral trioxide aggregate (MTA) under a dental operating microscope. Two mm in length of apical root resection, 2 mm in depth of root canal retropreparation with a personalised ultrasonic retrotip, and 2 mm in length of retrofilling with MTA are the key points for accomplishment of apical surgery on separate DL roots. The case was followed up for 15 months after surgery. Clinical and radiographic examinations revealed complete healing of periapical tissue. Separate DL roots of three-rooted mandibular first molars can be treated by endodontic microsurgery with modifications from standard protocol. PMID:27622221

  13. Absorption effects in diffusing wave spectroscopy.

    Science.gov (United States)

    Sarmiento-Gomez, Erick; Morales-Cruzado, Beatriz; Castillo, Rolando

    2014-07-20

    The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided. PMID:25090203

  14. Molecular hydrogen absorption systems in SDSS

    CERN Document Server

    Balashev, S A; Ivanchik, A V; Varshalovich, D A; Petitjean, P; Noterdaeme, P

    2014-01-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS) II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Ly$\\alpha$ forest can effectively mimic H$_2$ absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte-Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H$_2$ absorption systems can be confidently identified. We find that H$_2$ absorption systems with column densities $\\log {\\rm N_{H_2}} > 19$ can be detected in only less than 3% of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H$_2$ absorption systems ($\\log {\\rm N_{H_2}} > 19$) in Damped Ly-$\\alpha$ (DLA) systems to be about 7%. We provide a sample of ...

  15. Iron absorption from adequate Filipinos meals

    International Nuclear Information System (INIS)

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas, and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 +- 1.26%. Central Visayas, 6.3 +- 1.15% and Southern Mindanao, 6.4 +- 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P>0.01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry; and inhibitors: phytic acid and tannic acid, did not give significant results. The overall average of 6.4 +- 1.20% may be used as the iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976. (Auth.). 21 refs.; 3 tabs.; 3 annexes

  16. Iron absorption from adequate Filipino meals

    International Nuclear Information System (INIS)

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  17. [Intestinal absorption kinetics of flurbiprofen in rats].

    Science.gov (United States)

    Peng, Jun-Jie; Lin, Cong-Cong; Li, Jiang; Zhu, Zhi-Hong; Yang, Xing-Gang; Pan, Wei-San

    2013-03-01

    To study the in situ intestinal absorption kinetics of flrubiprofen in rats, the absorption of flurbiprofen in small intestine (duodenum, jejunum and ileum) and colon of rats was investigated using in situ single-pass perfusion method and the drug content was measured by HPLC. The effects of drug concentration on the intestinal absorption were investigated. The K(a) and P(app) values of flurbiprofen in the small intestine and colon had no significant difference (P > 0.05). Drug concentration (4.0, 10.0 and 16.0 mg x L(-1)) had no significant influence on the K(a) values (P > 0.05). However, when concentration was 4.0 mg x L(-1) and 10.0 mg x L(-1), significant effect on the P(app) values (P 0.05). The K(a) and P(app) values of flurbiprofen on the perfusion flow rate had significant difference (P Flurbiprofen could be absorbed at all segments of the intestine in rats and had no special absorption window. The absorption of flurbiprofen complies with the facilitated diffusion in the general intestinal segments, and accompany with the cytopsistransport mechanism probably. The perfusion flow rate had significant effect on the K(a) and P(app).

  18. Uranium GI absorption coefficients for young children

    International Nuclear Information System (INIS)

    Uranium is ubiquitously found in drinking water and food. The absorption fraction (f1) is an important parameter in risk assessment of uranium burdens from ingestion. Although absorption of uranium from the gastrointestinal tract (GI) has been studied extensively in both animals and humans in the past, human data among young children are rare. In a previous study based on measurements of uranium concentration in only 11 bone-ash samples collected by Health Canada, the GI absorption coefficient for uranium ingestion by infants, about 3 months of age were determined. The result was 0.256 which was much higher than the ICRP recommended f1 values of 0.04 for infants and 0.02 for anyone more than 1 year of age. To extend the study, a total of 73 bone-ash samples were selected for children ranging in age from 0 to 7 years. The estimated absorption coefficients were 0.093±0.113 for infants, and 0.050±0.032 for 1 - 7 years of age. This study provides human absorption coefficients of ingested uranium for young children of two age groups. (author)

  19. X-ray absorption spectroscopy of metalloproteins.

    Science.gov (United States)

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  20. Zinc absorption in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.