WorldWideScience

Sample records for absorption models linear

  1. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    Science.gov (United States)

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase. PMID:26575927

  2. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Hernández S, A., E-mail: h.s.alfonso@gmail.com, E-mail: meduardo2001@hotmail.com; Cano, M. E., E-mail: h.s.alfonso@gmail.com, E-mail: meduardo2001@hotmail.com [Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco (Mexico); Torres-Arenas, J., E-mail: torresare@gmail.com [Division de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato (Mexico)

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  3. Validity of the linear viscoelastic model for a polymer cylinder with ultrasonic hysteresis-type absorption in a nonviscous fluid

    CERN Document Server

    Mitri, F G

    2016-01-01

    A necessary condition for the validity of the linear viscoelastic model for a (passive) polymeric cylinder with an ultrasonic hysteresis-type absorption submerged in a non-viscous fluid requires that the absorption efficiency is positive (Qabs > 0) satisfying the law of the conservation of energy. This condition imposes restrictions on the values attributed to the normalized absorption coefficients for the compressional and shear-wave wavenumbers for each partial-wave mode n. The forbidden values produce negative axial radiation force, absorption and extinction efficiencies, as well as an enhancement of the scattering efficiency, not in agreement with the conservation of energy law. Numerical results for the radiation force, extinction, absorption and scattering efficiencies are performed for three viscoelastic (VE) polymer cylinders immersed in a non-viscous host liquid (i.e. water) with particular emphasis on the shear-wave absorption coefficient of the cylinder, the dimensionless size parameter and the par...

  4. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    different directional wave spectra. The wave generator displacement signals applied in the tests are generated by means of linear digital filtering of Gaussian white noise in the time domain. An absorbing wave generator for 2-D wave facilities (wave channels) is developed. The absorbing wave generator is......-D wave facilities (wave basins) based on a similar principle is developed. A conventional directional wave generator is converted into an absorbing directional wave generator based on this principle and applied to a series of physical model tests. The test results show that the absorbing directional...

  5. Linear and nonlinear optical absorption coefficients of spherical dome shells

    Science.gov (United States)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  6. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  7. Linear models with R

    CERN Document Server

    Faraway, Julian J

    2014-01-01

    A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

  8. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  9. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  10. Linear models: permutation methods

    Science.gov (United States)

    Cade, B.S.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  11. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak; Losada, M.; Puyol, J. I.

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  12. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated. The...

  13. Silver Nanoparticles with Broad Multiband Linear Optical Absorption

    KAUST Repository

    Bakr, Osman M.

    2009-07-06

    A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.

  14. A primer on linear models

    CERN Document Server

    Monahan, John F

    2008-01-01

    Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F

  15. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  16. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and...... computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear...

  17. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and......-linear Identifiable Multivariate modeling) and allowing for correlations between latent variables, called CSLIM (Correlated SLIM), for the temporal and/or spatial data. The source code and scripts are available from http://cogsys.imm.dtu.dk/ slim/. © 2011 Ricardo Henao and Ole Winther....

  18. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  19. Fuzzy linear regression forecasting models

    Institute of Scientific and Technical Information of China (English)

    吴冲; 惠晓峰; 朱洪文

    2002-01-01

    The fuzzy linear regression forecasting model is deduced from the symmetric triangular fuzzy number.With the help of the degree of fitting and the measure of fuzziness, the determination of symmetric triangularfuzzy numbers is changed into a problem of solving linear programming.

  20. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  1. The linear-quadratic model

    International Nuclear Information System (INIS)

    Several letters discuss the short-comings of the use of the linear quadratic model in fractionated radiotherapy and the validity of the prediction of hyperfractionation as the operational strategy for most human tumours. Particular points discussed are the absence of a time factor in the linear quadratic model, corrections in regard to OER and the clinical implications of isoeffect relationships for normal tissue damage. (U.K.)

  2. Decomposable log-linear models

    DEFF Research Database (Denmark)

    Eriksen, Poul Svante

    can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...

  3. New analytical solution to calculate linear absorption coefficients of beta radiations

    International Nuclear Information System (INIS)

    The paper deals with an alternative model of beta radiation transmissions through attenuation layers and brings another analytical description of this phenomenon. The model is validated with a reliable data set and brings a possibility to calculate characteristic material parameters with low uncertainties. Using no correction factors, these calculations can be considered fundamental and inspiring for further research in the field. - Highlights: • New analytical model of beta radiation transmission curve in 2π geometry has been proposed. • Linear absorption coefficients in aluminum and Mylar were calculated for 19 radionuclides. • An empirical relationship between the calculated range parameter and average energy of beta radiation emitted by radionuclides was established

  4. Parameterized Linear Longitudinal Airship Model

    Science.gov (United States)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  5. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several nonequi...

  6. Linear Sigma Models with Torsion

    CERN Document Server

    Quigley, Callum

    2011-01-01

    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.

  7. Linear modeling of glacier fluctuations

    NARCIS (Netherlands)

    Oerlemans, J.

    2012-01-01

    In this contribution a linear first-order differential equation is used to model glacier length fluctuations. This equation has two parameters describing the physical characteristics of a glacier: the climate sensitivity, expressing how the equilibrium glacier length depends on the climatic state, a

  8. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated that...

  9. High dimensional linear inverse modelling

    CERN Document Server

    Cooper, Fenwick C

    2015-01-01

    We introduce and demonstrate two linear inverse modelling methods for systems of stochastic ODE's with accuracy that is independent of the dimensionality (number of elements) of the state vector representing the system in question. Truncation of the state space is not required. Instead we rely on the principle that perturbations decay with distance or the fact that for many systems, the state of each data point is only determined at an instant by itself and its neighbours. We further show that all necessary calculations, as well as numerical integration of the resulting linear stochastic system, require computational time and memory proportional to the dimensionality of the state vector.

  10. Tunable Optical Limiting Action due to Non-linear Absorption in ZnO/Ag Nanocomposites

    Science.gov (United States)

    Radhu, S.; Vijayan, C.; Sandeep, Suchand; Philip, Reji

    2011-07-01

    ZnO/Ag nanocomposites with different silver concentration are successfully synthesized by solvothermal method. The characterization of the as- synthesized samples is done using XRD, UV-visible spectroscopy and HRTEM and the results indicate that the composites consist of silver nanoparticles attached to the ZnO nanoparticles. The optical non-linearity in these samples is studied using open aperture Z-scan technique and the experimental results agree well with a theoretical model involving two- photon absorption. It is found that the parameters of optical limiting can be tuned in a broad band by varying the silver concentration in the samples.

  11. Theory of Linear Optical Absorption in B_12 Clusters: Role of the geometry

    CERN Document Server

    Sahu, Sridhar

    2009-01-01

    Boron clusters have been widely studied theoretically for their geometrical properties and electronic structure using a variety of methodologies. An important cluster of boron is the B$_{12}$ cluster whose two main isomers have distinct geometries, namely, icosahedral ($I_{h}$) and quasi planar ($C_{3v}$). In this paper we investigate the linear optical absorption spectrum of these two B$_{12}$ structures with the aim of examining the role of geometry on the optical properties of clusters. The optical absorption calculations are performed using both the semi-empirical and the ab initio approaches. The semi-empirical approach uses a wave function methodology employing the INDO model Hamiltonian, coupled with large-scale configuration interaction (CI) calculations, to account for the electron-correlation effects. The \\emph{ab initio} calculations are performed within a time-dependent-density-functional-theory (TDDFT) methodology. The results for the two approaches are in very good qualitative agreement with eac...

  12. Time-dependent oral absorption models

    Science.gov (United States)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  13. Infrared absorption modeling of VOx microbolometer

    Science.gov (United States)

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  14. Influence of food matrix on absorption of flavour compounds by linear low-density polyethylene: proteins and carbohydrates

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2000-01-01

    The influence of oil and food components in real food products on the absorption of four flavour compounds (limonene, decanal, linalool and ethyl 2-methyl butyrate) into linear low-density polyethylene (LLDPE) was studied using a large volume injection GC in vial extraction method. Model food system

  15. Influence of food matrix on absorption of flavour compounds by linear low-density polyethylene: oil and real food products

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2000-01-01

    The influence of oil and food components in real food products on the absorption of four flavour compounds (limonene, decanal, linalool and ethyl 2-methyl butyrate) into linear low-density polyethylene (LLDPE) was studied using a large volume injection GC in vial extraction method. Model food system

  16. Linear Accelerating Superluminal Motion Model

    CERN Document Server

    Zhou, J F; Li, T P; Su, Y; Venturi, T

    2004-01-01

    Accelerating superluminal motions were detected recently by multi-epoch Very Long Baseline Interferometry (VLBI) observations. Here, a Linear Accelerating Superluminal Motion (LASM) model is proposed to interpret the observed phenomena. The model provides a direct and accurate way to estimate the viewing angle of a relativistic jet. It also predicts that both Doppler boosting and deboosting effects may take place in an accelerating forward jet. The LASM model is applied to the data of the quasar 3C 273, and the initial velocity, acceleration and viewing angle of its three components are derived through model fits. The variations of the viewing angle suggest that a supermassive black hole binary system may exist in the center of 3C273. The gap between the inner and outer jet in some radio loud AGNs my be explained in terms of Doppler deboosting effects when the components accelerate to ultra-relativistic speed.

  17. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  18. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    International Nuclear Information System (INIS)

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients

  19. Linear and non-linear perturbations in dark energy models

    OpenAIRE

    Escamilla-Rivera, Celia; Casarini, Luciano; Fabris, Julio C.; Alcaniz, Jailson S.

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all sc...

  20. Modeling and solving linear programming with R

    OpenAIRE

    Sallán Leyes, José María; Lordan González, Oriol; Fernández Alarcón, Vicenç

    2015-01-01

    Linear programming is one of the most extensively used techniques in the toolbox of quantitative methods of optimization. One of the reasons of the popularity of linear programming is that it allows to model a large variety of situations with a simple framework. Furthermore, a linear program is relatively easy to solve. The simplex method allows to solve most linear programs efficiently, and the Karmarkar interior-point method allows a more efficient solving of some kinds of linear programmin...

  1. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  2. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  3. The Linear Absorption and Pump-Probe Spectra of Cylindrical Molecular Aggregates

    NARCIS (Netherlands)

    Bednarz, Mariusz; Knoester, Jasper

    2001-01-01

    We study the optical response of Frenkel excitons in molecular J aggregates with a cylindrical geometry. Such aggregates have recently been prepared for a class of cyanine dyes and are akin to the rod- and ring-shaped light-harvesting systems found in certain bacteria. The linear absorption spectrum

  4. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  5. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    Science.gov (United States)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  6. Non-linear models: applications in economics

    OpenAIRE

    Albu, Lucian-Liviu

    2006-01-01

    The study concentrated on demonstrating how non-linear modelling can be useful to investigate the behavioural of dynamic economic systems. Using some adequate non-linear models could be a good way to find more refined solutions to actually unsolved problems or ambiguities in economics. Beginning with a short presentation of the simplest non-linear models, then we are demonstrating how the dynamics of complex systems, as the economic system is, could be explained on the base of some more advan...

  7. Composite Linear Models | Division of Cancer Prevention

    Science.gov (United States)

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |

  8. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  9. Bayes linear covariance matrix adjustment for multivariate dynamic linear models

    CERN Document Server

    Wilkinson, Darren J

    2008-01-01

    A methodology is developed for the adjustment of the covariance matrices underlying a multivariate constant time series dynamic linear model. The covariance matrices are embedded in a distribution-free inner-product space of matrix objects which facilitates such adjustment. This approach helps to make the analysis simple, tractable and robust. To illustrate the methods, a simple model is developed for a time series representing sales of certain brands of a product from a cash-and-carry depot. The covariance structure underlying the model is revised, and the benefits of this revision on first order inferences are then examined.

  10. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser.

    Science.gov (United States)

    Bergin, A G V; Hancock, G; Ritchie, G A D; Weidmann, D

    2013-07-15

    A cw distributed feedback quantum cascade laser (DFB-QCL) coupled to a two-mirror linear optical cavity has been used to successfully demonstrate optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) at 5.5 μm. The noise-equivalent absorption coefficient, α(min), was 2.4×10(-8) cm(-1) for 1 s averaging, limited by etalon-fringing. The temporal stability of the instrument allows NO detection down to 5 ppb in 2 s. PMID:23939085

  11. Radiolysis of linear model compounds of polyamide

    International Nuclear Information System (INIS)

    Polyamide oligomers of epsilon-aminocaproic acid (ACA) were used as model compounds. Six oligomers with the number of mers, 2-7, designated as K2-K7 were synthesized. The ACA oligomers were irradiated with 60Co gamma rays in an atmosphere of nitrogen and in air in a dose range from 0 to 1300 kGy. The concentration of the CHO, NH2 and COOH groups formed and the yields of gaseous products, hydrogen and carbon monoxide, as well as the absorption of oxygen, were determined. The polycaprolactam PA6 in the form of unstabilized fibres was investigated for comparison. The number of CHO groups increases with the dose for all oligomers; this value is, in air, for K5-K7 three times, for K3-K4 six times, and for K2 nine times as large as in the atmosphere of nitrogen. The number of NH2 groups goes through a maximum with increasing dose; in air the maximum is smaller and occurs at lower doses. The number of COOH groups changes only slightly with the dose; in air the number of COOH groups increases for longer oligomers (K5-K7). The concentration of hydrogen increases linearly with the dose both in the atmosphere of nitrogen and in air. In the latter case the radiation yields Gsub((H2)) are lower. (author)

  12. Recursive Linear Models of Dynamic Economies

    OpenAIRE

    Lars Peter Hansen; Sargent, Thomas J.

    1990-01-01

    This paper describes a class of dynamic stochastic linear quadratic equilibrium models. A model is specified by naming lists of matrices that determine preferences, technology, and the information structure. Aggregate equilibrium allocations and prices are computed by solving a social planning problem in the form of an optimal linear regulator. Heterogeneity among agents is permitted. Several examples are computed.

  13. Actuarial statistics with generalized linear mixed models

    NARCIS (Netherlands)

    K. Antonio; J. Beirlant

    2007-01-01

    Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

  14. On the Theory of the Shift Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    Science.gov (United States)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-05-01

    An occurrence of the current of the shift linear photovoltaic effect under two-photon absorption of light in semiconductors without a center of symmetry with a complex band structure is theoretically analyzed. The contributions both from the simultaneous absorption of two photons and successive absorption of two single photons to the photocurrent are taken into account.

  15. Photon emission within the linear sigma model

    CERN Document Server

    Wunderlich, F

    2015-01-01

    Soft-photon emission rates are calculated within the linear sigma model. The investigation is aimed at answering the question to which extent the emissivities map out the phase structure of this particular effective model of strongly interacting matter.

  16. Absorption Cross-section and Decay Rate of Rotating Linear Dilaton Black Holes

    CERN Document Server

    Sakalli, I

    2016-01-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  17. Linear and nonlinear fractional Voigt models

    OpenAIRE

    Chidouh, Amar; Guezane-Lakoud, Assia; Bebbouchi, Rachid; Bouaricha, Amor; Torres, Delfim F. M.

    2016-01-01

    We consider fractional generalizations of the ordinary differential equation that governs the creep phenomenon. Precisely, two Caputo fractional Voigt models are considered: a rheological linear model and a nonlinear one. In the linear case, an explicit Volterra representation of the solution is found, involving the generalized Mittag-Leffler function in the kernel. For the nonlinear fractional Voigt model, an existence result is obtained through a fixed point theorem. A nonlinear example, il...

  18. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  19. Rethinking the Lintnerian Linear Valuation Model

    OpenAIRE

    Shih-Cheng Lee; Jiun-Lin Chen; Shu-Chen Lu; Lei Xu

    2014-01-01

    This paper develops and tests a new valuation model. Callen and Morel (2000) apply the Lintner (1956) dividend model to the famous Ohlson (1995) valuation model and develop the Lintnerian linear accounting valuation model (henceforth, the CM model). However, Bauer and Bhattacharyya (2007) suggest that the Lintner dividend model does not fit firm dividend policy behaviour appropriately and decide to construct another dividend policy process. This study applies their dividend model to construct...

  20. Linear mixed models for longitudinal data

    CERN Document Server

    Molenberghs, Geert

    2000-01-01

    This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...

  1. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...... property of the suspension is studied and it demonstrated that significant part of the variation can be predicted from the dissipated power....

  2. On Estimation of Partially Linear Transformation Models

    OpenAIRE

    Lu, Wenbin; Zhang, Hao Helen

    2010-01-01

    We study a general class of partially linear transformation models, which extend linear transformation models by incorporating nonlinear covariate effects in survival data analysis. A new martingale-based estimating equation approach, consisting of both global and kernel-weighted local estimation equations, is developed for estimating the parametric and nonparametric covariate effects in a unified manner. We show that with a proper choice of the kernel bandwidth parameter, one can obtain the ...

  3. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  4. Piecewise linear car-following modeling

    CERN Document Server

    Farhi, Nadir

    2011-01-01

    We present a traffic model which extends the linear car-following model as well as the min-plus traffic model (a model based on the min-plus algebra). A discrete-time car-dynamics describing the traffic on a 1-lane road without passing is interpreted as a dynamic programming equation of a stochastic optimal control problem of a Markov chain. This variational formulation permits to characterize the stability of the car-dynamics and to calculte the stationary regimes when they exist. The model is based on a piecewise linear approximation of the fundamental traffic diagram.

  5. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  6. Linear mixed models in sensometrics

    DEFF Research Database (Denmark)

    Kuznetsova, Alexandra

    Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...... in terms of preferences. In sensory studies the aim is the collection of the data to better describe products and differences of the products according to a number of sensory attributes. Here trained persons, so-called assessors, score the products in terms of different characteristics such as smell...... papers and software tools facilitating the developed methodologies. The primary advantage of the ANOVA approach is that it gives confidence intervals and significance tests for the various effects including the background variables used in the model and consequently a fast and reliable assessment and...

  7. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  8. Some new progress on the light absorption properties of linear alkyl benzene solvent

    CERN Document Server

    Yu, Guang-You; Huang, Ai-Zhong; Yu, Lei; Loh, Chang-Wei; Wang, Wen-Wen; Qian, Zhi-Qiang; Yang, Hai-Bo; Huang, Huang; Xu, Zong-Qiang; Zhu, Xue-Yuan; Xu, Bin; Qi, Ming

    2015-01-01

    Linear alkyl benzene (LAB) will be used as the solvent of a liquid scintillator mixture for the JUNO antineutrino experiment in the near future. Its light absorption property should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the purpose of the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we have also presented in this work, a study on the carbon-hydrogen ratio and the relationship thereof with the attenuation length of the samples.

  9. MODELING DATA INTEGRITY UNDER STOCHASTIC LINEAR CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Lee-Pin Shing

    2015-06-01

    Full Text Available The most commonly used data integrity models today are Bibba, Wilson-Clark and Chinese models. These models are designed for both data integrity protection and confidentiality. Many optimization problems are related to linear programming. In practice, these variables involved are probabilistic. This paper proposes a data integrity model based on data anomalies assuming data are under stochastic linear constraints. An algorithm is constructed using the simplex method to find confidence intervals for the problem solutions. In the end the results from Monte Carlo simulation are compared with those from simplex method.

  10. Identification and Modelling of Linear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Stanislav Kocur

    2006-01-01

    Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.

  11. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    Science.gov (United States)

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  12. On Estimation of Partially Linear Transformation Models.

    Science.gov (United States)

    Lu, Wenbin; Zhang, Hao Helen

    2010-06-01

    We study a general class of partially linear transformation models, which extend linear transformation models by incorporating nonlinear covariate effects in survival data analysis. A new martingale-based estimating equation approach, consisting of both global and kernel-weighted local estimation equations, is developed for estimating the parametric and nonparametric covariate effects in a unified manner. We show that with a proper choice of the kernel bandwidth parameter, one can obtain the consistent and asymptotically normal parameter estimates for the linear effects. Asymptotic properties of the estimated nonlinear effects are established as well. We further suggest a simple resampling method to estimate the asymptotic variance of the linear estimates and show its effectiveness. To facilitate the implementation of the new procedure, an iterative algorithm is developed. Numerical examples are given to illustrate the finite-sample performance of the procedure. PMID:20802823

  13. Strong absorption model and its associated potential

    International Nuclear Information System (INIS)

    Using the example of 12C-208Pb elastic scattering at Elab=1449 MeV it is shown that, at sufficiently high energies, a full quantum mechanical inversion of heavy-ion scattering data can be performed. Furthermore it is pointed out that the strong absorption model as parametrized by McIntyre, Wang, and Becker is associated with a potential having strong repulsion at the origin. That repulsion is a remnant of the built-in point Coulomb S matrix. Finally, a systematic study is presented to define the necessary accuracy of experiment required to extend the knowledge of the nucleus-nucleus interaction to smaller radii

  14. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University of the...... Southern Denmark and in Medicine and Technology at the Technical University of Denmark. The note focus on the applicability to actually code routines with the purpose to analyze a geometrically or material non-linear problem. The note is tried to be kept on so brief a form as possible, with the main focus...

  15. Disc instantons in linear sigma models

    International Nuclear Information System (INIS)

    We construct a linear sigma model for open-strings ending on special Lagrangian cycles of a Calabi-Yau manifold. We illustrate the construction for the cases considered by Aganagic and Vafa (AV). This leads naturally to concrete models for the moduli space of open-string instantons. These instanton moduli spaces can be seen to be intimately related to certain auxiliary boundary toric varieties. By considering the relevant Gelfand-Kapranov-Zelevinsky (GKZ) differential equations of the boundary toric variety, we obtain the contributions to the world volume superpotential on the A-branes from open-string instantons. By using an ansatz due to Aganagic, Klemm and Vafa (AKV), we obtain the relevant change of variables from the linear sigma model to the non-linear sigma model variables--the open-string mirror map. Using this mirror map, we obtain results in agreement with those of AV and AKV for the counting of holomorphic disc instantons

  16. On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    Science.gov (United States)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-07-01

    The ballistic contribution to the current of linear photovoltaic effect under two-photon absorption of light is calculated and theoretically analyzed for the semiconductors of a tetrahedral symmetry with a complex band structure consisting of two closely spaced subbands. The transitions between the branches of one band in cases of the simultaneous absorption of two photons and successive absorption of two single photons are taken into account.

  17. On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    OpenAIRE

    Burgh, Eric B.; McCandliss, Stephan R.; Andersson, B-G; Feldman, Paul D.

    2000-01-01

    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to ...

  18. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  19. Introduction to general and generalized linear models

    CERN Document Server

    Madsen, Henrik

    2010-01-01

    IntroductionExamples of types of data Motivating examples A first view on the modelsThe Likelihood PrincipleIntroduction Point estimation theory The likelihood function The score function The information matrix Alternative parameterizations of the likelihood The maximum likelihood estimate (MLE) Distribution of the ML estimator Generalized loss-function and deviance Quadratic approximation of the log-likelihood Likelihood ratio tests Successive testing in hypothesis chains Dealing with nuisance parameters General Linear ModelsIntroduction The multivariate normal distribution General linear mod

  20. An R companion to linear statistical models

    CERN Document Server

    Hay-Jahans, Christopher

    2011-01-01

    Focusing on user-developed programming, An R Companion to Linear Statistical Models serves two audiences: those who are familiar with the theory and applications of linear statistical models and wish to learn or enhance their skills in R; and those who are enrolled in an R-based course on regression and analysis of variance. For those who have never used R, the book begins with a self-contained introduction to R that lays the foundation for later chapters.This book includes extensive and carefully explained examples of how to write programs using the R programming language. These examples cove

  1. Approximately exact calculations for linear mixed models

    OpenAIRE

    Lavine, Michael; Bray, Andrew; Hodges, Jim

    2015-01-01

    This paper is about computations for linear mixed models having two variances, $\\sigma^{2}_{e}$ for residuals and $\\sigma^{2}_{s}$ for random effects, though the ideas can be extended to some linear mixed models having more variances. Researchers are often interested in either the restricted (residual) likelihood $\\text{RL}(\\sigma_{e}^{2},\\sigma_{s}^{2})$ or the joint posterior $\\pi(\\sigma_{e}^{2},\\sigma_{s}^{2}\\,|\\,y)$ or their logarithms. Both $\\log\\text{RL}$ and $\\log\\pi$ can be multimodal...

  2. Dynamic modeling under linear-exponential loss

    OpenAIRE

    Stanislav Anatolyev

    2006-01-01

    We develop a methodology of parametric modeling of time series dynamics when the underlying loss function is linear-exponential (Linex). We propose to directly model the dynamics of the conditional expectation that determines the optimal predictor. The procedure hinges on the exponential quasi maximum likelihood interpretation of the Linex loss and nicely fits the multiple error modeling framework. Many conclusions relating to estimation, inference and forecasting follow from results already ...

  3. Ruin Probability in Linear Time Series Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lihong

    2005-01-01

    This paper analyzes a continuous time risk model with a linear model used to model the claim process. The time is discretized stochastically using the times when claims occur, using Doob's stopping time theorem and martingale inequalities to obtain expressions for the ruin probability as well as both exponential and non-exponential upper bounds for the ruin probability for an infinite time horizon. Numerical results are included to illustrate the accuracy of the non-exponential bound.

  4. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...

  5. Managing Clustered Data Using Hierarchical Linear Modeling

    Science.gov (United States)

    Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S.

    2012-01-01

    Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…

  6. Detailed Decompositions in Generalized Linear Models

    OpenAIRE

    Kaiser, Boris

    2013-01-01

    We propose a new approach for performing detailed decompositions of average outcome differentials, which can be applied to all types of generalized linear models. A simulation exercise demonstrates that our method produces more convincing results than existing methods. An empirical application to the immigrant-native wage differential in Switzerland is presented.

  7. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle; Vaandrager, Frits W.

    We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication of a...

  8. Linear and Nonlinear Optical Absorptions of a Hydrogenic Donor in a Quantum Dot Under a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2009-01-01

    The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.

  9. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area. PMID:26676015

  10. On Bayes linear unbiased estimation of estimable functions for the singular linear model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weiping; WEI Laisheng

    2005-01-01

    The unique Bayes linear unbiased estimator (Bayes LUE) of estimable functions is derived for the singular linear model. The superiority of Bayes LUE over ordinary best linear unbiased estimator is investigated under mean square error matrix (MSEM)criterion.

  11. Strong absorption model analysis of alpha scattering

    International Nuclear Information System (INIS)

    Angular distribution of alpha-particles at several energies, Eα = 21 ∼ 85.6 MeV from a number of nuclei between 20Ni and 119Sn, extending to wide angular range up to ∼ 160 deg. C in some cases, have been analyzed in terms of three-parameter strong absorption model of Frahn and Venter. Interaction radius and surface diffuseness are obtained from the parameter values rendering the best fit to the elastic scattering data. The inelastic scattering of alpha-particles from a number of nuclei, leading to quadrupole and octupole excitations has also been studied giving the deformation parameters βL. (author). 14 refs, 7 figs, 3 tabs

  12. Multiple Imputations for LInear Regression Models

    OpenAIRE

    Brownstone, David

    1991-01-01

    Rubin (1987) has proposed multiple imputations as a general method for estimation in the presence of missing data. Rubin’s results only strictly apply to Bayesian models, but Schenker and Welsh (1988) directly prove the consistency  multiple imputations inference~ when there are missing values of the dependent variable in linear regression models. This paper extends and modifies Schenker and Welsh’s theorems to give conditions where multiple imputations yield consistent inferences for bo...

  13. Linear Model Predictive Control of Induction Machine

    OpenAIRE

    Mynář, Z.

    2015-01-01

    This article presents new control algorithm for induction machine based on linear model predictive control (MPC). Controller works in similar manners as field oriented control (FOC), but control is performed in stator coordinates. This reduces computational demands as Park’s transformation is absent and induction machine mathematical model in stator coordinates contains less nonlinear elements. Another aim of proposed controller was to achieve fast torque response.

  14. Cosmological models with linearly varying deceleration parameter

    OpenAIRE

    Akarsu, Özgür; Dereli, Tekin; Oflaz, Neslihan

    2011-01-01

    arXiv:1102.0915v3 [gr-qc] 8 Sep 2011 Cosmological models with linearly varying deceleration parameter ¨O zg¨ur Akarsu Tekin Dereli † Department of Physics, Ko¸c University, 34450 ˙Istanbul/Turkey. Abstract We propose a new law for the deceleration parameter that varies linearly with time and covers Berman’s law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but al...

  15. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    CERN Document Server

    Sivarajah, I; Wells, J E; Narducci, F A; Smith, W W

    2013-01-01

    Linear Paul r.f. ion traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field.

  16. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

    NARCIS (Netherlands)

    Härdle, W.K.; Mammen, E.; Müller, M.D.

    1996-01-01

    We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e. m(

  17. Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores.

    Science.gov (United States)

    Ceymann, Harald; Rosspeintner, Arnulf; Schreck, Maximilian H; Mützel, Carina; Stoy, Andreas; Vauthey, Eric; Lambert, Christoph

    2016-06-28

    The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. PMID:27264847

  18. Absorptive Capacity of Information Technology and Its Conceptual Model

    Institute of Scientific and Technical Information of China (English)

    BI Xinhua; YU Cuiling

    2008-01-01

    In order to examine the problem of how to improve the use of information technology (IT) in enterprises, this paper makes an exploration from the perspective of organizational absorptive capacity. We propose the concept of IT absorptive capacity from an organizational level. A dynamic process model is developed to further analyze IT absorption. IT absorptive capacity of this process is embodied as six forms: identification, adoption, adaptation, acceptance, infusion, and knowledge management. By means of questionnaire surveys of 76 Chinese enterprises, the main factors that favor or disable the capacity of each stage are discovered. Using the method of system dynamics, a conceptual model of IT absorptive capacity is developed to analyze the action mechanism of the factors in detail. The model indicates that the critical factors are embodied in the aspect of management. Furthermore, it demonstrates that IT absorption is a spiral process, during which IT absorptive capacity evolves dynamically and, consequently, promotes IT use.

  19. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  20. Linear transport models for adsorbing solutes

    Science.gov (United States)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  1. Improved testing inference in mixed linear models

    CERN Document Server

    Melo, Tatiane F N; Cribari-Neto, Francisco; 10.1016/j.csda.2008.12.007

    2011-01-01

    Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B, 2000, 62, 827-838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report numerical evidence which shows that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presente...

  2. Nonlinear damping and quasi-linear modelling.

    Science.gov (United States)

    Elliott, S J; Ghandchi Tehrani, M; Langley, R S

    2015-09-28

    The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a 'quasi-linear' model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the nth power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system's response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated by the nonlinear damper, providing both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed: in microspeakers, vibration isolation, energy harvesting and the mechanical response of the cochlea. PMID:26303921

  3. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  4. Data perturbation analysis of a linear model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The linear model features were carefully studied in the cases of data perturbation and mean shift perturbation.Some important features were also proved mathematically. The results show that the mean shift perturbation is equivalentto the data perturbation, that is, adding a parameter to an observation equation means that this set of data is deleted fromthe data set. The estimate of this parameter is its predicted residual in fact

  5. From spiking neuron models to linear-nonlinear models.

    Directory of Open Access Journals (Sweden)

    Srdjan Ostojic

    Full Text Available Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF, exponential integrate-and-fire (EIF and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  6. On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    CERN Document Server

    Burgh, E B; Andersson, B G; Feldman, P D; Burgh, Eric B.; Candliss, Stephan R. Mc; Feldman, Paul D.

    2000-01-01

    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.

  7. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    International Nuclear Information System (INIS)

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity. (paper)

  8. Self-consistent dynamical linear response of atoms in quantum plasmas: photo-absorption and collective effects in dense plasmas

    International Nuclear Information System (INIS)

    In modeling dense and partially ionized matter, the treatment of the free electrons remains an important issue. Compared to bound electrons, the delocalized and non-discrete nature of these electrons is responsible to treat them differently, which is usually adopted in the modeling of radiative properties of plasmas. However, in order to avoid inconsistencies in the calculation of absorption spectra, all the electrons should be described in the same formalism. We use two variational average-atom models: a semi-classical and a quantum model, which allow this common treatment for all the electrons. We calculate the photo-extinction cross-section, by applying the framework of the linear dynamical response theory to each of these models of an atom in a plasma. For this study, we develop and use a self-consistent approach, of random-phase-approximation (RPA) type, which, while going beyond the independent electron response, permits to evaluate the collective effects by the introduction of the dynamical polarization. This approach uses the formalism of the time dependent density functional theory (TDDFT), applied in the case of an atomic system immersed in a plasma. For both models, semi-classical and quantum, we derive and verify in our calculations, a new sum rule, which allows the evaluation of the atomic dipole from a finite volume in the plasma. This sum rule turns out to be a crucial device in the calculation of radiative properties of atoms in dense plasmas. (author)

  9. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  10. Neural Network for Combining Linear and Non-Linear Modelling of Dynamic Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1994-01-01

    The purpose of this paper is to develop a method to combine linear models with MLP networks. In other words to find a method to make a non-linear and multivariable model that performs at least as good as a linear model, when the training data lacks information....

  11. Bayesian Discovery of Linear Acyclic Causal Models

    CERN Document Server

    Hoyer, Patrik O

    2012-01-01

    Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...

  12. The Key Solution Algorithm of Linear Programming Model

    OpenAIRE

    Liu Jun; Zhao Chuan Cheng; Ren Zhi Guo; Feng Zhong Yi; Zhu Zheng Ping

    2016-01-01

    Linear programming problem is a common problem, and to solve the linear model is more plagued. The paper generating algorithm is based on mathematical theory and composition. The design of feasible solution algorithm illustrates key linear programming model, then we can find a better way to solve the linear programming model solutions.

  13. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient

    International Nuclear Information System (INIS)

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements and the energy range 30- keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies

  14. Sparse Linear Modeling of Speech from EEG

    OpenAIRE

    Tiger, Mattias

    2014-01-01

    For people with hearing impairments, attending to a single speaker in a multi-talker background can be very difficult and something which the current hearing aids can barely help with. Recent studies have shown that the audio stream a human focuses on can be found among the surrounding audio streams, using EEG and linear models. With this rises the possibility of using EEG to unconsciously control future hearing aids such that the attuned sounds get enhanced, while the rest are damped. For su...

  15. The Piecewise Linear Reactive Flow Rate Model

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P; Souers, P C

    2005-07-22

    Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.

  16. Continuum Eigenmodes in Some Linear Stellar Models

    CERN Document Server

    Winfield, Christopher J

    2016-01-01

    We apply parallel approaches in the study of continuous spectra to adiabatic stellar models. We seek continuum eigenmodes for the LAWE formulated as both finite difference and linear differential equations. In particular, we apply methods of Jacobi matrices and methods of subordinancy theory in these respective formulations. We find certain pressure-density conditions which admit positive-measured sets of continuous oscillation spectra under plausible conditions on density and pressure. We arrive at results of unbounded oscillations and computational or, perhaps, dynamic instability.

  17. F-theory and linear sigma models

    CERN Document Server

    Bershadsky, M; Greene, Brian R; Johansen, A; Lazaroiu, C I

    1998-01-01

    We present an explicit method for translating between the linear sigma model and the spectral cover description of SU(r) stable bundles over an elliptically fibered Calabi-Yau manifold. We use this to investigate the 4-dimensional duality between (0,2) heterotic and F-theory compactifications. We indirectly find that much interesting heterotic information must be contained in the `spectral bundle' and in its dual description as a gauge theory on multiple F-theory 7-branes. A by-product of these efforts is a method for analyzing semistability and the splitting type of vector bundles over an elliptic curve given as the sheaf cohomology of a monad.

  18. Linear Stochastic Models of Nonlinear Dynamical Systems

    CERN Document Server

    Eyink, G L

    1998-01-01

    We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for the effective action of nonlinear dynamical systems started from random initial conditions. The present paper discusses only the case where the PDF-Ansatz employed in the variational calculation is ``Markovian'', i.e. is determined completely by the present values of the moment-averages. In this case we show that the Rayleigh-Ritz effective action of the complete set of moment-functions that are employed in the closure has a quadratic part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite realizability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the joint 2-time correlations of the moment-functions. We compare our method with the closely related formalism of principal oscillation patterns (POP), which, in the approach of C. Penl...

  19. Modeling hierarchical structures - Hierarchical Linear Modeling using MPlus

    CERN Document Server

    Jelonek, M

    2006-01-01

    The aim of this paper is to present the technique (and its linkage with physics) of overcoming problems connected to modeling social structures, which are typically hierarchical. Hierarchical Linear Models provide a conceptual and statistical mechanism for drawing conclusions regarding the influence of phenomena at different levels of analysis. In the social sciences it is used to analyze many problems such as educational, organizational or market dilemma. This paper introduces the logic of modeling hierarchical linear equations and estimation based on MPlus software. I present my own model to illustrate the impact of different factors on school acceptation level.

  20. Modeling patterns in data using linear and related models

    International Nuclear Information System (INIS)

    This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models

  1. Modeling water/lithium bromide absorption chillers in ASPEN Plus

    International Nuclear Information System (INIS)

    Highlights: → Single- and double-effect water/lithium bromide absorption chiller designs are numerically modeled using ASPEN. → The modeling procedure is described and the results are compared to published modeling data to access prediction accuracy. → Predictions for the single- and double-effect designs are within 3% and 5%, respectively of published data for all cycle parameters of interest. → The absorption cycle models presented allow investigation of using absorption chillers for waste heat utilization in the oil and gas industry. -- Abstract: Absorption chillers are a viable option for providing waste heat-powered cooling or refrigeration in oil and gas processing plants, thereby improving energy efficiency. In this paper, single- and double-effect water/lithium bromide absorption chiller designs are numerically modeled using ASPEN. The modeling procedure is described and the results are compared to published modeling data to access prediction accuracy. Predictions for the single- and double-effect designs are within 3% and 5%, respectively of published data for all cycle parameters of interest. The absorption cycle models presented not only allow investigation into the benefits of using absorption chillers for waste heat utilization in the oil and gas industry, but are also generically applicable to a wide range of other applications.

  2. Linear models in the mathematics of uncertainty

    CERN Document Server

    Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A

    2013-01-01

    The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data  is difficult to measure and an assumption of randomness and/or statistical validity is questionable.  We apply our methods to real world issues in international relations such as  nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...

  3. Interacting Dark Energy Models -- Scalar Linear Perturbations

    CERN Document Server

    Perico, E L D

    2016-01-01

    We extend the dark sector interacting models assuming the dark energy as the sum of independent contributions $\\rho_{\\Lambda} =\\sum_i\\rho_{\\Lambda i}$, associated with (and interacting with) each of the $i$ material species. We derive the linear scalar perturbations for two interacting dark energy scenarios, modeling its cosmic evolution and identifying their different imprints in the CMB and matter power spectrum. Our treatment was carried out for two phenomenological motivated expressions of the dark energy density, $\\rho_\\Lambda(H^2)$ and $\\rho_\\Lambda(R)$. The $\\rho_\\Lambda(H^2)$ description turned out to be a full interacting model, i.e., the dark energy interacts with everyone material species in the universe, whereas the $\\rho_\\Lambda(R)$ description only leads to interactions between dark energy and the non-relativistic matter components; which produces different imprints of the two models on the matter power spectrum. A comparison with the Planck 2015 data was made in order to constrain the free para...

  4. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  5. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  6. Numerical linearized MHD model of flapping oscillations

    Science.gov (United States)

    Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.

    2016-06-01

    Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.

  7. Admissibility for Linear Estimator of Parameter on Growth Curve Model with Respect to Linear Constraint

    Institute of Scientific and Technical Information of China (English)

    Ming-xiang Cao; Fan-chao Kong

    2009-01-01

    By using the vector-method of matrix,we study Growth Curve Model with respect to linear constraint.Under matrix loss function and vector loss function,we obtain necessary and sufficient conditions for admissibility of linear estimators of parameters in the inhomogeneous linear class.

  8. Nucleic acid vibrational circular dichroism, absorption, and linear dichroism spectra. II. A DeVoe theory approach.

    OpenAIRE

    Self, B D; Moore, D S

    1998-01-01

    The DeVoe polarizability theory is used to calculate vibrational circular dichroism (VCD) and infrared (IR) absorption spectra of four polyribonucleotides: poly(rA) x poly(rU), poly(rU) x poly(rA) x poly(rU), poly(rG) x poly(rC), and poly(rC+) x poly(rI) x poly(rC). This is the first report on the use of the DeVoe theory to calculate VCD, oriented VCD, IR absorption, and IR linear dichroism (LD) spectra of double- and triple-stranded polyribonucleotides. Results are reported for DeVoe theory ...

  9. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Alskär, Oskar; Bagger, Jonatan I; Røge, Rikke M;

    2015-01-01

    and gastric emptying after tests with varying glucose doses. The developed model's performance was compared to empirical models. To develop our model, data from oral and intravenous glucose challenges in patients with type 2 diabetes and healthy control subjects were used together with present knowledge...... of small intestinal transit time, glucose inhibition of gastric emptying, and saturable absorption of glucose over the epithelium to improve the description of gastric emptying and glucose absorption in the IGI model. Duodenal glucose was found to inhibit gastric emptying. The performance of the saturable...... glucose absorption was superior to linear absorption regardless of the gastric emptying model applied. The semiphysiological model developed performed better than previously published empirical models and allows better understanding of the mechanisms underlying glucose absorption. In conclusion, our new...

  10. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    Science.gov (United States)

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  11. Assessment of Linear and Non-Linear Two-Equation Turbulence Models for Aerothermal Turbomachinery Flows

    Institute of Scientific and Technical Information of China (English)

    Pascale KULISA; Cédric DANO

    2006-01-01

    Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- l model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k- l model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k- l models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.

  12. Hierarchical linear regression models for conditional quantiles

    Institute of Scientific and Technical Information of China (English)

    TIAN; Maozai

    2006-01-01

    The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.

  13. Non linear behaviour of cell tensegrity models

    Science.gov (United States)

    Alippi, A.; Bettucci, A.; Biagioni, A.; Conclusio, D.; D'Orazio, A.; Germano, M.; Passeri, D.

    2012-05-01

    Tensegrity models for the cytoskeleton structure of living cells is largely used nowadays for interpreting the biochemical response of living tissues to mechanical stresses. Microtubules, microfilaments and filaments are the microscopic cell counterparts of struts (microtubules) and cables (microfilaments and filaments) in the macroscopic world: the formers oppose to compression, the latters to tension, thus yielding an overall structure, light and highly deformable. Specific cell surface receptors, such as integrins, act as the coupling elements that transmit the outside mechanical stress state into the cell body. Reversible finite deformations of tensegrity structures have been widely demonstrated experimentally and in a number of living cell simulations. In the present paper, the bistability behaviour of two general models, the linear bar oscillator and the icosahedron, is studied, as they are both obtained from mathematical simulation, the former, and from larger scale experiments, the latter. The discontinuity in the frequency response of the oscillation amplitude and the lateral bending of the resonance curves are put in evidence, as it grows larger as the driving amplitude increases, respectively.

  14. Multiple Linear Regression Models in Outlier Detection

    Directory of Open Access Journals (Sweden)

    S.M.A.Khaleelur Rahman

    2012-02-01

    Full Text Available Identifying anomalous values in the real-world database is important both for improving the quality of original data and for reducing the impact of anomalous values in the process of knowledge discovery in databases. Such anomalous values give useful information to the data analyst in discovering useful patterns. Through isolation, these data may be separated and analyzed. The analysis of outliers and influential points is an important step of the regression diagnostics. In this paper, our aim is to detect the points which are very different from the others points. They do not seem to belong to a particular population and behave differently. If these influential points are to be removed it will lead to a different model. Distinction between these points is not always obvious and clear. Hence several indicators are used for identifying and analyzing outliers. Existing methods of outlier detection are based on manual inspection of graphically represented data. In this paper, we present a new approach in automating the process of detecting and isolating outliers. Impact of anomalous values on the dataset has been established by using two indicators DFFITS and Cook’sD. The process is based on modeling the human perception of exceptional values by using multiple linear regression analysis.

  15. Atmospheric Absorption Models for the Millimeter Wave Range

    OpenAIRE

    Kuhn, Thomas

    2003-01-01

    This thesis deals with absorption models of water vapor, oxygen and nitrogen which are part of the Atmospheric Radiative Transfer System, ARTS, which is a joint development of the Department of Radio and Space Science, Chalmers University of Technology, Göteborg and the Institute of Environmental Physics, University of Bremen. ARTS is designed to be used in remotely sensed data analysis. Since the absorption models are embedded in the broader frame of the radiative transfer equation, the main...

  16. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    Science.gov (United States)

    Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.

    2016-06-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.

  17. Design of experiments an introduction based on linear models

    CERN Document Server

    Morris, Max D

    2011-01-01

    IntroductionExample: rainfall and grassland Basic elements of an experimentExperiments and experiment-like studies Models and data analysisLinear Statistical ModelsLinear vector spaces Basic linear model The hat matrix, least-squares estimates, and design information matrixThe partitioned linear model The reduced normal equations Linear and quadratic forms Estimation and information Hypothesis testing and informationBlocking and informationCompletely Randomized DesignsIntroductionModels Matrix formulation Influence of design on estimation Influence of design on hypothesis testingRandomized Com

  18. Nucleic acid vibrational circular dichroism, absorption, and linear dichroism spectra. I. A DeVoe theory approach.

    OpenAIRE

    Self, B D; Moore, D S

    1997-01-01

    Infrared (IR) vibrational circular dichroism (VCD), absorption, and linear dichroism (LD) spectra of four homopolyribonucleotides, poly(rA), poly(rG), poly(rC), and poly(rU), have been calculated, in the 1750-1550 cm-1 spectral region, using the DeVoe polarizability theory. A newly derived algorithm, which approximates the Hilbert transform of imaginaries to reals, was used in the calculations to obtain real parts of oscillator polarizabilities associated with each normal mode. The calculated...

  19. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  20. Linearized Functional Minimization for Inverse Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wohlberg, Brendt [Los Alamos National Laboratory; Tartakovsky, Daniel M. [University of California, San Diego; Dentz, Marco [Institute of Environmental Assessment and Water Research, Barcelona, Spain

    2012-06-21

    Heterogeneous aquifers typically consist of multiple lithofacies, whose spatial arrangement significantly affects flow and transport. The estimation of these lithofacies is complicated by the scarcity of data and by the lack of a clear correlation between identifiable geologic indicators and attributes. We introduce a new inverse-modeling approach to estimate both the spatial extent of hydrofacies and their properties from sparse measurements of hydraulic conductivity and hydraulic head. Our approach is to minimize a functional defined on the vectors of values of hydraulic conductivity and hydraulic head fields defined on regular grids at a user-determined resolution. This functional is constructed to (i) enforce the relationship between conductivity and heads provided by the groundwater flow equation, (ii) penalize deviations of the reconstructed fields from measurements where they are available, and (iii) penalize reconstructed fields that are not piece-wise smooth. We develop an iterative solver for this functional that exploits a local linearization of the mapping from conductivity to head. This approach provides a computationally efficient algorithm that rapidly converges to a solution. A series of numerical experiments demonstrates the robustness of our approach.

  1. Checking for normality in linear mixed models

    Institute of Scientific and Technical Information of China (English)

    WU Ping; ZHU LiXing; FANG Yun

    2012-01-01

    Linear mixed models are popularly used to fit continuous longitudinal data,and the random effects are commonly assumed to have normal distribution.However,this assumption needs to be tested so that further analysis can be proceeded well.In this paper,we consider the Baringhaus-Henze-Epps-Pulley (BHEP) tests,which are based on an empirical characteristic function.Differing from their case,we consider the normality checking for the random effects which are unobservable and the test should be based on their predictors.The test is consistent against global alternatives,and is sensitive to the local alternatives converging to the null at a certain rate arbitrarily close to 1/(√)n where n is sample size.Furthermore,to overcome the problem that the limiting null distribution of the test is not tractable,we suggest a new method:use a conditional Monte Carlo test (CMCT) to approximate the null distribution,and then to simulate p-values.The test is compared with existing methods,the power is examined,and several examples are applied to illustrate the usefulness of our test in the analysis of longitudinal data.

  2. Joint reconstruction of absorption and refractive properties in propagation-based x-ray phase-contrast tomography via a non-linear image reconstruction algorithm

    Science.gov (United States)

    Chen, Yujia; Wang, Kun; Gursoy, Doga; Soriano, Carmen; De Carlo, Francesco; Anastasio, Mark A.

    2016-03-01

    Propagation-based X-ray phase-contrast tomography (XPCT) provides the opportunity to image weakly absorbing objects and is being explored actively for a variety of important pre-clinical applications. Quantitative XPCT image reconstruction methods typically involve a phase retrieval step followed by application of an image reconstruction algorithm. Most approaches to phase retrieval require either acquiring multiple images at different object-to-detector distances or introducing simplifying assumptions, such as a single-material assumption, to linearize the imaging model. In order to overcome these limitations, a non-linear image reconstruction method has been proposed previously that jointly estimates the absorption and refractive properties of an object from XPCT projection data acquired at a single propagation distance, without the need to linearize the imaging model. However, the numerical properties of the associated non-convex optimization problem remain largely unexplored. In this study, computer simulations are conducted to investigate the feasibility of the joint reconstruction problem in practice. We demonstrate that the joint reconstruction problem is ill-posed and sensitive to system inconsistencies. Particularly, the method can generate accurate refractive index images only if the object is thin and has no phase-wrapping in the data. However, we also observed that, for weakly absorbing objects, the refractive index images reconstructed by the joint reconstruction method are, in general, more accurate than those reconstructed using methods that simply ignore the object's absorption.

  3. Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption

    Science.gov (United States)

    Keshav, Walia; Sarabjit, Kaur

    2016-01-01

    In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.

  4. Model averaging for semiparametric additive partial linear models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.

  5. Water Transport Models of Moisture Absorption and Sweat Discharge Yarns

    Institute of Scientific and Technical Information of China (English)

    WANG Fa-ming; ZHOU Xiao-hong; WANG Shan-yuan

    2008-01-01

    An important property of moisture absorption and sweat discharge yams is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yams were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.

  6. High-Level Analogue Fault Simulation Using Linear and Non-Linear Models

    Directory of Open Access Journals (Sweden)

    I. Bell

    1999-12-01

    Full Text Available A novel method for analogue high-level fault simulation (HLFS using linear and non-linear high-level fault models is presented. Our approach uses automated fault model synthesis and automated model selection for fault simulation. A speed up compared with transistor-level fault simulation can be achieved, whilst retaining both behavioural and fault coverage accuracy. The suggested method was verified in detail using short faults in a 10k state variable bandpass filter.

  7. Linear attenuation (or absorption) coefficient of gamma radiation for dilute solutions of potassium chloride

    International Nuclear Information System (INIS)

    The mass attenuation and energy absorption coefficients are basic quantities used in calculations of photon energy transport and deposition for radiation dosimetry. This report describes a study of the concentration dependence of the attenuation of γ radiation of various energies by KCl solutions of different concentration. (author)

  8. Synthesis and linear and nonlinear absorption properties of dendronised ruthenium(II) phthalocyanine and naphthalocyanine.

    Science.gov (United States)

    Dasari, Raghunath R; Sartin, Matthew M; Cozzuol, Matteo; Barlow, Stephen; Perry, Joseph W; Marder, Seth R

    2011-04-21

    Ruthenium phthalocyanines and naphthalocyanines with axial dendronised pyridine ligands show high solubility in a variety of solvents, and exhibit solid-state absorption spectra that are comparable to those obtained in dilute solution, making them interesting candidates for optical limiting in the visible. PMID:21399800

  9. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models. PMID:26837750

  10. Admissibilities of linear estimator in a class of linear models with a multivariate t error variable

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper discusses admissibilities of estimators in a class of linear models,which include the following common models:the univariate and multivariate linear models,the growth curve model,the extended growth curve model,the seemingly unrelated regression equations,the variance components model,and so on.It is proved that admissible estimators of functions of the regression coefficient β in the class of linear models with multivariate t error terms,called as Model II,are also ones in the case that error terms have multivariate normal distribution under a strictly convex loss function or a matrix loss function.It is also proved under Model II that the usual estimators of β are admissible for p 2 with a quadratic loss function,and are admissible for any p with a matrix loss function,where p is the dimension of β.

  11. An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making the...

  12. Recent Updates to the GEOS-5 Linear Model

    Science.gov (United States)

    Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul

    2014-01-01

    Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.

  13. LINEAR MODEL FOR NON ISOSCELES ABSORBERS

    International Nuclear Information System (INIS)

    Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order

  14. UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY

    OpenAIRE

    Gaurav Singh Thakur; Anubhav Gupta; Ankur Bhardwaj; Biju R Mohan

    2014-01-01

    This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature ...

  15. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    Science.gov (United States)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  16. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

    2003-01-01

    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  17. Development of linear and nonlinear hand-arm vibration models using optimization and linearization techniques.

    Science.gov (United States)

    Rakheja, S; Gurram, R; Gouw, G J

    1993-10-01

    Hand-arm vibration (HAV) models serve as an effective tool to assess the vibration characteristics of the hand-tool system and to evaluate the attenuation performance of vibration isolation mechanisms. This paper describes a methodology to identify the parameters of HAV models, whether linear or nonlinear, using mechanical impedance data and a nonlinear programming based optimization technique. Three- and four-degrees-of-freedom (DOF) linear, piecewise linear and nonlinear HAV models are formulated and analyzed to yield impedance characteristics in the 5-1000 Hz frequency range. A local equivalent linearization algorithm, based upon the principle of energy similarity, is implemented to simulate the nonlinear HAV models. Optimization methods are employed to identify the model parameters, such that the magnitude and phase errors between the computed and measured impedance characteristics are minimum in the entire frequency range. The effectiveness of the proposed method is demonstrated through derivations of models that correlate with the measured X-axis impedance characteristics of the hand-arm system, proposed by ISO. The results of the study show that a linear model cannot predict the impedance characteristics in the entire frequency range, while a piecewise linear model yields an accurate estimation. PMID:8253830

  18. Integro-differential models for percutaneous drug absorption

    OpenAIRE

    Barbeiro, S.; Ferreira, J. A.

    2007-01-01

    In this paper we propose new mathematical models for percutaneous absorption of a drug. The new models are established by introducing, in the classical Fick's law, a memory term being the advection–diffusion equations of the classical models replaced by integro-differential equations. The well-posedness of the models is studied with Dirichlet, Neumann and natural boundary conditions. Methods for the computation of numerical solutions are proposed. Stability and convergence of the introduced m...

  19. Linear and Nonlinear Models of Agenda Setting in Television.

    Science.gov (United States)

    Brosius, Hans-Bernd; Kepplinger, Hans Mathias

    1992-01-01

    A content analysis of major German television news shows and 53 weekly surveys on 16 issues were used to compare linear and nonlinear models as ways to describe the relationship between media coverage and the public agenda. Results indicate that nonlinear models are in some cases superior to linear models in terms of explained variance. (34…

  20. Exact linear rational expectations models: specification and estimation

    OpenAIRE

    Lars Peter Hansen; Thomas J. Sargent

    1981-01-01

    This paper describes how to specify and estimate rational expectations models in which there are exact linear relationships among variables and expectations of variables that the econometrician observes.

  1. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    CERN Document Server

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  2. MODEL SELECTION FOR LOG-LINEAR MODELS OF CONTINGENCY TABLES

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lincheng; ZHANG Hong

    2003-01-01

    In this paper, we propose an information-theoretic-criterion-based model selection procedure for log-linear model of contingency tables under multinomial sampling, and establish the strong consistency of the method under some mild conditions. An exponential bound of miss detection probability is also obtained. The selection procedure is modified so that it can be used in practice. Simulation shows that the modified method is valid. To avoid selecting the penalty coefficient in the information criteria, an alternative selection procedure is given.

  3. Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models

    Directory of Open Access Journals (Sweden)

    Masudul Islam

    2012-10-01

    Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function  criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.

  4. Response of a rotorcraft model with damping non-linearities

    Science.gov (United States)

    Tongue, B. H.

    1985-11-01

    The linearized equations of motion of a helicopter in contact with the ground have solutions which can be linearly stable or unstable, depending on the system parameters. The present study includes physical non-linearities in the helicopter model. This allows one to determine if a steady-state response exists and, if so, what the frequency and amplitude of the oscillations will be. In this way, one can determine how serious the linearly unstable operating regime is and whether destructive oscillations are possible when the system is in the linearly stable regime. The present analysis applies to helicopters having fully articulated rotors.

  5. Injecting Abstract Interpretations into Linear Cost Models

    Directory of Open Access Journals (Sweden)

    David Cachera

    2010-06-01

    Full Text Available We present a semantics based framework for analysing the quantitative behaviour of programs with regard to resource usage. We start from an operational semantics equipped with costs. The dioid structure of the set of costs allows for defining the quantitative semantics as a linear operator. We then present an abstraction technique inspired from abstract interpretation in order to effectively compute global cost information from the program. Abstraction has to take two distinct notions of order into account: the order on costs and the order on states. We show that our abstraction technique provides a correct approximation of the concrete cost computations.

  6. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  7. UNDERSTANDING THE APPLICABILITY OF LINEAR & NON-LINEAR MODELS USING A CASE-BASED STUDY

    Directory of Open Access Journals (Sweden)

    Gaurav Singh Thakur

    2014-11-01

    Full Text Available This paper uses a case based study – “product sales estimation” on real-time data to help us understand the applicability of linear and non-linear models in machine learning and data mining. A systematic approach has been used here to address the given problem statement of sales estimation for a particular set of products in multiple categories by applying both linear and non-linear machine learning techniques on a data set of selected features from the original data set. Feature selection is a process that reduces the dimensionality of the data set by excluding those features which contribute minimal to the prediction of the dependent variable. The next step in this process is training the model that is done using multiple techniques from linear & non-linear domains, one of the best ones in their respective areas. Data Remodeling has then been done to extract new features from the data set by changing the structure of the dataset & the performance of the models is checked again. Data Remodeling often plays a very crucial and important role in boosting classifier accuracies by changing the properties of the given dataset. We then try to explore and analyze the various reasons due to which one model performs better than the other & hence try and develop an understanding about the applicability of linear & non-linear machine learning models. The target mentioned above being our primary goal, we also aim to find the classifier with the best possible accuracy for product sales estimation in the given scenario.

  8. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  9. Gauged linear sigma model for exotic five-brane

    International Nuclear Information System (INIS)

    We study an N=(4,4) supersymmetric gauged linear sigma model which gives rise to the nonlinear sigma model for multi-centered KK-monopoles. We find a new T-duality transformation of the model even in the presence of F-terms. Performing T-duality, we find the gauged linear sigma model whose IR limit describes the exotic 522-brane with B-field

  10. Incorporating tissue absorption and scattering in rapid ultrasound beam modeling

    Science.gov (United States)

    Christensen, Douglas; Almquist, Scott

    2013-02-01

    We have developed a new approach for modeling the propagation of an ultrasound beam in inhomogeneous tissues such as encountered with high-intensity focused ultrasound (HIFU) for treatment of various diseases. This method, called the hybrid angular spectrum (HAS) approach, alternates propagation steps between the space and the spatial frequency domains throughout the inhomogeneous regions of the body; the use of spatial Fourier transforms makes this technique considerably faster than other modeling approaches (about 10 sec for a 141 x 141 x 121 model). In HIFU thermal treatments, the acoustic absorption property of the tissues is of prime importance since it leads to temperature rise and the achievement of desired thermal dose at the treatment site. We have recently added to the HAS method the capability of independently modeling tissue absorption and scattering, the two components of acoustic attenuation. These additions improve the predictive value of the beam modeling and more accurately describes the thermal conditions expected during a therapeutic ultrasound exposure. Two approaches to explicitly model scattering were developed: one for scattering sizes smaller than a voxel, and one when the scattering scale is several voxels wide. Some anatomically realistic examples that demonstrate the importance of independently modeling absorption and scattering are given, including propagation through the human skull for noninvasive brain therapy and in the human breast for treatment of breast lesions.

  11. A Study of the Equivalence of the BLUEs between a Partitioned Singular Linear Model and Its Reduced Singular Linear Models

    Institute of Scientific and Technical Information of China (English)

    Bao Xue ZHANG; Bai Sen LIU; Chang Yu LU

    2004-01-01

    Consider the partitioned linear regression model A = (y, X1β1 + X2β2, σ2V) and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X1: X2) is an n× (p+q) known design matrix with rank(X) = r ≤ (p+q),andβ = (β'1:β'2)' withβ1 andβ2 being p × 1 and q × 1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M2X1β1under the model A and its best linear unbiased estimators under the reduced linear models of A are given,where M2 = I - X2X2+. Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M2X1β1 under the model A and those under its reduced linear models are established. Lastly, we also study the connections between the model A and its linear transformation model.

  12. A unifying review of linear gaussian models.

    Science.gov (United States)

    Roweis, S; Ghahramani, Z

    1999-02-15

    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models. PMID:9950734

  13. Model galactic coronae: Ionization structure and absorption-line spectra

    International Nuclear Information System (INIS)

    We describe a general model for a gaseous galactic corona, and demonstrate that it is in harmony with a variety of observational and theoretical constraints. We then compute the ionization equilibria of H, He, C, N, O, Si, and S atoms in the corona and determine the strengths of resonance absorption lines arising therein. To this end, we obtain approximate cross sections for ionization of the heavy-element ions by photons of energy E/sub γ/< or =100 eV.We use our results first to discuss the expected absorption spectrum of our Galaxy's corona. Subsequently, we discuss in detail the relevance of our computed equilibria to the suggestion that galactic coronae produce some redshift systems in quasar absorption spectra. Because our model coronae are not isothermal, the ionization structure existing along various lines of sight through them is not in accord with the concept of ''reasonable ionization equilibrium'': a concept assumed to be valid in most analyses of quasar spectra. However, our calculations indicate that typically one well-established redshift system in each quasar absorption spectrum could arise in the corona of an intervening galaxy. This is the number expected from statistical arguments if quasar redshifts are fully cosmological in origin

  14. Linear Latent Force Models using Gaussian Processes

    CERN Document Server

    Álvarez, Mauricio A; Lawrence, Neil D

    2011-01-01

    Purely data driven approaches for machine learning present difficulties when data is scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data driven modelling with a physical model of the system. We show how different, physically-inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology and geostatistics.

  15. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard;

    2015-01-01

    actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted to......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an...

  16. NON-LINEAR SOIL MODELS FOR PIPELINE AND RISER ANALYSIS

    OpenAIRE

    Irman, Arifian Agusta

    2015-01-01

    This thesis describes the development and application of non-linear soil models in pipeline and riser design. A non-linear soil model is typically employed when investigating a complex pipe-soil interaction problem. Two main pipe-soil interactions are frequently studied: the vertical pipe-soil interaction at the touchdown point of the steel catenary riser (SCR) during cyclic heave motion, and the lateral pipe-soil interaction during the pipeline s lateral buckling. Mathematical models for...

  17. Neural network modelling of non-linear hydrological relationships

    Science.gov (United States)

    Abrahart, R. J.; See, L. M.

    2007-09-01

    Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.

  18. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  19. Linear Sigma Models for Open Strings

    International Nuclear Information System (INIS)

    We formulate and study a class of massive N = 2 supersymmetric gauge field theories coupled to boundary degrees of freedom on the strip. For some values of the parameters, the infrared limits of these theories can be interpreted as open string sigma models describing D-branes in large-radius Calabi-Yau compactifications. For other values of the parameters, these theories flow to CFTs describing branes in more exotic, non-geometric phases of the Calabi-Yau moduli space such as the Landau-Ginzburg orbifold phase. Some simple properties of the branes (like large radius monodromies and spectra of worldvolume excitations) can be computed in our model. We also provide simple worldsheet models of the transitions which occur at loci of marginal stability, and of Higgs-Coulomb transitions

  20. Linear sigma models for open strings

    International Nuclear Information System (INIS)

    We formulate and study a class of massive N=2 supersymmetric gauge field theories coupled to boundary degrees of freedom on the strip. For some values of the parameters, the infrared limits of these theories can be interpreted as open string sigma models describing D-branes in large-radius Calabi-Yau compactifications. For other values of the parameters, these theories flow to CFTs describing branes in more exotic, non-geometric phases of the Calabi-Yau moduli space such as the Landau-Ginzburg orbifold phase. Some simple properties of the branes (like large radius monodromies and spectra of worldvolume excitations) can be computed in our model. We also provide simple worldsheet models of the transitions which occur at loci of marginal stability, and of Higgs-Coulomb transitions. (author)

  1. Model Reduction by Moment Matching for Linear Switched Systems

    DEFF Research Database (Denmark)

    Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal;

    2014-01-01

    A moment-matching method for the model reduction of linear switched systems (LSSs) is developed. The method is based based upon a partial realization theory of LSSs and it is similar to the Krylov subspace methods used for moment matching for linear systems. The results are illustrated by numerical...

  2. Non-linear protocell models: synchronization and chaos

    Science.gov (United States)

    Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.

    2010-09-01

    We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.

  3. Linear Time-Invariant Models of Non-Linear Time-Varying Systems

    OpenAIRE

    Ljung, Lennart

    2001-01-01

    The standard machinery for system identification of linear time invariant (LTI) models delivers a nominal model and a confidence (uncertainty) region around it, based on (second order moment) residual analysis and covariance estimation. In most cases this gives an uncertainty region that tends to zero as more and more data become available, even if the true system is non-linear and/or time-varying. In this paper, the reasons for this are displayed, and a characterization of the limit LTI mode...

  4. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  5. Random effect selection in generalised linear models

    DEFF Research Database (Denmark)

    Denwood, Matt; Houe, Hans; Forkman, Björn;

    We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...

  6. Extended Linear Models with Gaussian Priors

    DEFF Research Database (Denmark)

    Quinonero, Joaquin

    2002-01-01

    on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

  7. New analytical solution to calculate linear absorption coefficients of beta radiations.

    Science.gov (United States)

    Švec, Anton

    2015-08-01

    The paper deals with an alternative model of beta radiation transmissions through attenuation layers and brings another analytical description of this phenomenon. The model is validated with a reliable data set and brings a possibility to calculate characteristic material parameters with low uncertainties. Using no correction factors, these calculations can be considered fundamental and inspiring for further research in the field. PMID:25989183

  8. Genetic parameters for racing records in trotters using linear and generalized linear models.

    Science.gov (United States)

    Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

    2012-09-01

    Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success

  9. Forecasting telecommunications data with linear models

    OpenAIRE

    Madden, Gary G; Tan, Joachim

    2007-01-01

    For telecommunication companies to successfully manage their business, companies rely on mapping future trends and usage patterns. However, the evolution of telecommunications technology and systems in the provision of services renders imperfections in telecommunications data and impinges on a company’s’ ability to properly evaluate and plan their business. ITU Recommendation E.507 provides a selection of econometric models for forecasting these trends. However, no specific guidance is given....

  10. Remark on: the neutron spherical optical-model absorption.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  11. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    Science.gov (United States)

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  12. The Non-Linear Relationship between Silicate Absorption Depth and IR Extinction in Dense Clouds

    Science.gov (United States)

    Chiar, Jean E.; Pendleton, Y.; Ennico, K.; Boogert, A.; Greene, T.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-12-01

    Interstellar silicates are likely to be a part of all grains responsible for extinction in the diffuse interstellar medium (ISM) and dense clouds. A correlation between visual extinction (Av) and the depth of the 9.7 mu silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well mixed. In the diffuse ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233, 321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5146, Barnard 68, Chameleon I and Serpens dense clouds. To eliminate any uncertainties associated with adopting a specific extinction law, we investigated the relationship between tau(9.7) and E(J-K). Our data set spans E(J-K) between 0.3 and 8 mag (Av=between 2-35 mag.). All lines of sight show the 9.7 mu silicate feature. For E(J-K) greater than about 2 mag, tau(9.7) levels off, much like the trend observed in the Taurus data. There are two exceptions: one line of sight in Serpens, with E(J-K) 4 mag lies on the diffuse ISM line. Another line of sight with E(J-K) 8 mag, also in Serpens, lies well below the diffuse ISM line, but well above the “flat” trend of the other dense cloud sources. This particular line of sight also has a high ice column relative to the amount of visual/infrared extinction. The cause of the “flat” trend exhibited by most of the dense cloud points is undetermined. However, in general, it is unlikely that ice mantles would have any effect on the measured silicate feature since ices are transparent in the 10 mu region.

  13. The linear model and hypothesis a general unifying theory

    CERN Document Server

    Seber, George

    2015-01-01

    This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.

  14. Optimization for decision making linear and quadratic models

    CERN Document Server

    Murty, Katta G

    2010-01-01

    While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.

  15. On D-branes from gauged linear sigma models

    International Nuclear Information System (INIS)

    We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations

  16. Bootstrap and Wild Bootstrap for High Dimensional Linear Models

    OpenAIRE

    Mammen, Enno

    1993-01-01

    In this paper two bootstrap procedures are considered for the estimation of the distribution of linear contrasts and of F-test statistics in high dimensional linear models. An asymptotic approach will be chosen where the dimension p of the model may increase for sample size $n\\rightarrow\\infty$. The range of validity will be compared for the normal approximation and for the bootstrap procedures. Furthermore, it will be argued that the rates of convergence are different for the bootstrap proce...

  17. Hydrodynamic model, simulation and linear control for Cormoran-AUV

    OpenAIRE

    González Agudelo, Julián; Benezra, Andreina; Gomáriz Castro, Spartacus; Garcia, Albert

    2011-01-01

    This work shows the mathematic calculation for obtention of a Cormoran-AUV hydrodynamic model, it also shows a linar control design for a path tracking. The model has been simplified to three degrees of freedom of movement and the whole system has been simulated using Matlab Simulink Software. The system has been linearizated for different velocities to design a linear control for each one of them. However, all resulting systems can be controlled by a unique linear control due charac...

  18. Graphical Log-linear Models: Fundamental Concepts and Applications

    OpenAIRE

    Gauraha, Niharika

    2016-01-01

    We present a comprehensive study of graphical log-linear models for contingency tables. High dimensional contingency tables arise in many areas such as computational biology, collection of survey and census data and others. Analysis of contingency tables involving several factors or categorical variables is very hard. To determine interactions among various factors, graphical and decomposable log-linear models are preferred. First, we explore connections between the conditional independence i...

  19. Optimal Scaling of Interaction Effects in Generalized Linear Models

    OpenAIRE

    2007-01-01

    Multiplicative interaction models, such as Goodman's RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are only suitable for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of interaction effects in generalized linear models with any number of categorical predictor variables. This model, which we call the optimal scaling of interactio...

  20. Optimal Scaling of Interaction Effects in Generalized Linear Models

    OpenAIRE

    van Rosmalen, Joost; Koning, Alex; Groenen, Patrick

    2007-01-01

    textabstractMultiplicative interaction models, such as Goodman's RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are only suitable for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of interaction effects in generalized linear models with any number of categorical predictor variables. This model, which we call the optimal scaling o...

  1. An I(2) Cointegration Model with Piecewise Linear Trends

    DEFF Research Database (Denmark)

    Kurita, Takamitsu; Nielsen, Heino Bohn; Rahbek, Anders Christian

    This paper presents likelihood analysis of the I(2) cointegrated vector autoregression with piecewise linear deterministic terms. Limiting behavior of the maximum likelihood estimators are derived, which is used to further derive the limiting distribution of the likelihood ratio statistic for the...... cointegration ranks, extending the result for I(2) models with a linear trend in Nielsen and Rahbek (2007) and for I(1) models with piecewise linear trends in Johansen, Mosconi, and Nielsen (2000). The provided asymptotic theory extends also the results in Johansen, Juselius, Frydman, and Goldberg (2009) where...

  2. A diffusion-diffusion model for percutaneous drug absorption.

    Science.gov (United States)

    Kubota, K; Ishizaki, T

    1986-08-01

    Several theories describing percutaneous drug absorption have been proposed, incorporating the mathematical solutions of differential equations describing percutaneous drug absorption processes where the vehicle and skin are regarded as simple diffusion membranes. By a solution derived from Laplace transforms, the mean residence time MRT and the variance of the residence time VRT in the vehicle are expressed as simple elementary functions of the following five pharmacokinetic parameters characterizing the percutaneous drug absorption: kd, which is defined as the normalized diffusion coefficient of the skin, kc, which is defined as the normalized skin-capillary boundary clearance, the apparent length of diffusion of the skin 1d, the effective length of the vehicle lv, and the diffusion coefficient of the vehicle Dv. All five parameters can be obtained by the methods proposed here. Results of numerical computation indicate that: concentration-distance curves in the vehicle and skin approximate two curves which are simply expressed using trigonometric functions when sufficient time elapses after an ointment application; the most suitable condition for the assumption that the concentration of a drug in the uppermost epidermis can be considered unchanged is the case where the partition coefficient between vehicle and skin is small, and the constancy of drug concentration is even more valid when the effective length of the vehicle is large; and the amount of a drug in the vehicle or skin and the flow rate of the drug from vehicle into skin or from skin into blood becomes linear on a semilogarithmic scale, and the slopes of those lines are small when Dv is small, when the partition coefficient between vehicle and skin is small, when lv is large, or when kc is small. A simple simulation method is also proposed using a biexponential for the concentration-time curve for the skin near the skin-capillary boundary, that is, the flow rate-time curve for drug passing from skin

  3. Generalized linear mixed models modern concepts, methods and applications

    CERN Document Server

    Stroup, Walter W

    2012-01-01

    PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data

  4. Scaling and linear response in the GOY model

    NARCIS (Netherlands)

    Kadanoff, Leo; Lohse, Detlef; Schörghofer, Norbert

    1997-01-01

    The GOY model is a model for turbulence in which two conserved quantities cascade up and down a linear array of shells. When the viscosity parameter, small nu, Greek, is small the model has a qualitative behavior which is similar to the Kolmogorov theories of turbulence. Here a static solution to th

  5. Linear latent variable models: the lava-package

    DEFF Research Database (Denmark)

    Holst, Klaus Kähler; Budtz-Jørgensen, Esben

    2013-01-01

    An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features are...

  6. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation of...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used as a...

  7. Absorption lookup tables in the radiative transfer model ARTS

    International Nuclear Information System (INIS)

    We describe the lookup table approach that is used to store pre-calculated absorption data in the radiative transfer model ARTS. The table stores absorption cross sections as a function of frequency, pressure, temperature, and the water vapor volume mixing ratio, where the last dimension is only included for those gas species that require it. The table is used together with an extraction strategy, which uses polynomial interpolation, with recommended interpolation orders between five and seven. We also derived recommended default settings for grid spacings and interpolation orders, and verified that the approach gives very accurate results with these default settings. The tested instrument setups were for AMSU-B, HIRS, and Odin, three well-known satellite remote sensing instruments covering a wide range of frequencies and viewing geometries. Errors introduced by the lookup table were found to be always below a few millikelvin, in terms of the simulated brightness temperature.

  8. Models of ionospheric VLF absorption of powerful ground based transmitters

    OpenAIRE

    İnan, Umran Savaş; Cohen, M. B; Lehtinen, N. G

    2012-01-01

    Models of ionospheric VLF absorption of powerful ground based transmitters M. B. Cohen,1 N. G. Lehtinen,1 and U. S. Inan1,2 Received 5 November 2012; accepted 16 November 2012; published 29 December 2012. [1] Ground based Very Low Frequency (VLF, 3–30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric prop...

  9. A dynamic model of digestion and absorption in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, Andrzej

    2008-01-01

    The paper describes and evaluates the construction of a mathematical model to study the kinetics of digestion and absorption in growing pigs. The core of the model is based on a compartmental structure, which divides the gastro-intestinal tract into four anatomical segments: the stomach, two parts...... of the small intestine and the large intestine. Within the large intestine, a microbial sub compartment is also considered. In each of these segments, the major organic nutrients are considered: dietary protein, endogenous protein, amino acids, non-amino acid and non-protein nitrogen, lipids, fatty acids...

  10. Phase II monitoring of auto-correlated linear profiles using linear mixed model

    Science.gov (United States)

    Narvand, A.; Soleimani, P.; Raissi, Sadigh

    2013-05-01

    In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocorrelation within observations which is gathered on phase II of the monitoring process. We undertake that the structure of correlated linear profiles simultaneously has both random and fixed effects. The work enhanced a Hotelling's T 2 statistic, a multivariate exponential weighted moving average (MEWMA), and a multivariate cumulative sum (MCUSUM) control charts to monitor process. We also compared their performances, in terms of average run length criterion, and designated that the proposed control charts schemes could effectively act in detecting shifts in process parameters. Finally, the results are applied on a real case study in an agricultural field.

  11. Quasilinear electron cyclotron absorption in a slab model for TBR-2

    International Nuclear Information System (INIS)

    The electron cyclotron radiation generated by a gyrotron of operating frequency f = 35 GHz and power of 60 kW is used for heating and current drive experiments in the tokamak TBR-2 a project currently under study. A quasilinear code, that contains a self-consistent diffusion coefficient for electron cyclotron waves, averaged over tokamak magnetic surfaces, and includes collisions by means of a linearized Fokker-Planck collison term was developed. This code is applied to a slab model for TBR-2, supposed with an initial current presenting features of lower hybrid generated currents. A numerical analysis of two situations with good absorption is done. (author)

  12. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm

    Directory of Open Access Journals (Sweden)

    Antonio Gasparrini

    2011-08-01

    Full Text Available Distributed lag non-linear models (DLNMs represent a modeling framework to flexibly describe associations showing potentially non-linear and delayed effects in time series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space expressed by the combination of two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. This framework is implemented in the R package dlnm, which provides functions to perform the broad range of models within the DLNM family and then to help interpret the results, with an emphasis on graphical representation. This paper offers an overview of the capabilities of the package, describing the conceptual and practical steps to specify and interpret DLNMs with an example of application to real data.

  13. Simultaneous effects of hydrostatic pressure and spin–orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring

    International Nuclear Information System (INIS)

    In this paper the simultaneous effect of hydrostatic pressure and Rashba spin–orbit interaction on intraband linear and nonlinear light absorption has been investigated in cylindrical quantum ring. The one electron energy spectrum has been found using the effective mass approximation and diagonalization procedure. We have found that the Rashba interaction can lead both to the blue- or to the red-shift of the absorption spectrum depending on the transitions character, while the only red-shift is observed due to the hydrostatic pressure. - Highlights: ► The effects of hydrostatic pressure and spin–orbit coupling are investigated for quantum ring. ► The non-linear absorption coefficient is calculated. ► The hydrostatic pressure leads to the decrease in the absorption coefficient. ► Spin–orbit coupling weakens some transitions and strengthens others.

  14. Linear approximation model network and its formation via evolutionary computation

    Indian Academy of Sciences (India)

    Yun Li; Kay Chen Tan

    2000-04-01

    To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked through output or parameter interpolation. The linear models are valid for the entire operating trajectory and hence overcome the local validity of LMN models, which impose the predetermination of a scheduling variable that predicts characteristic changes of the nonlinear system. LAMs can be evolved fromsampled step response data directly, eliminating the need forlocal linearisation upon a pre-model using derivatives of the nonlinear system. The structural difference between a LAM network and an LMN isthat the overall model of the latteris a parameter-varying system and hence nonlinear,while the formerremains linear time-invariant (LTI). Hence, existing LTI and transfer function theory applies to a LAM network, which is therefore easy to use for control system design. Validation results show that the proposed method offers a simple, transparent and accurate multivariable modelling technique for nonlinear systems.

  15. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM......-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is...

  16. Computer modeling of batteries from non-linear circuit elements

    Science.gov (United States)

    Waaben, S.; Federico, J.; Moskowitz, I.

    1983-01-01

    A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.

  17. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  18. Vaccination strategies for SEIR models using feedback linearization. Preliminary results

    CERN Document Server

    De la Sen, M; Alonso-Quesada, S

    2011-01-01

    A linearization-based feedback-control strategy for a SEIR epidemic model is discussed. The vaccination objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero. The disease controlpolicy is designed based on a feedback linearization technique which provides a general method to generate families of vaccination policies with sound technical background.

  19. Performance modeling and prediction for linear algebra algorithms

    OpenAIRE

    Iakymchuk, Roman

    2012-01-01

    This dissertation incorporates two research projects: performance modeling and prediction for dense linear algebra algorithms, and high-performance computing on clouds. The first project is focused on dense matrix computations, which are often used as computational kernels for numerous scientific applications. To solve a particular mathematical operation, linear algebra libraries provide a variety of algorithms. The algorithm of choice depends, obviously, on its performance. Performance of su...

  20. Confirming the Lanchestrian linear-logarithmic model of attrition

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.

  1. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    Science.gov (United States)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  2. Linear mixed models a practical guide using statistical software

    CERN Document Server

    West, Brady T; Galecki, Andrzej T

    2006-01-01

    Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo

  3. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  4. Forecasting Realized Volatility with Linear and Nonlinear Models

    NARCIS (Netherlands)

    M.J. McAleer (Michael); M.C. Medeiros (Marcelo)

    2009-01-01

    textabstractIn this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is comput

  5. BRST symmetries in SU(3) linear sigma model

    International Nuclear Information System (INIS)

    We study the BRST symmetries in the SU(3) linear sigma model which is constructed through the introduction of a novel matrix for the Goldstone boson fields satisfying geometrical constraints embedded in a SU(2) subgroup. To treat these constraints we exploit the improved Dirac quantization scheme. We also discuss phenomenological aspects in the mean field approach to this model. (orig.)

  6. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments. The relevant algorithms are also provided. Simulation results manifest the soundness and effectiveness of the proposed model.

  7. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS

    Directory of Open Access Journals (Sweden)

    Oana CHIVU

    2013-05-01

    Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

  8. CONSISTENCY OF LS ESTIMATOR IN SIMPLE LINEAR EV REGRESSION MODELS

    Institute of Scientific and Technical Information of China (English)

    Liu Jixue; Chen Xiru

    2005-01-01

    Consistency of LS estimate of simple linear EV model is studied. It is shown that under some common assumptions of the model, both weak and strong consistency of the estimate are equivalent but it is not so for quadratic-mean consistency.

  9. Logical consistency and sum-constrained linear models

    NARCIS (Netherlands)

    van Perlo -ten Kleij, Frederieke; Steerneman, A.G.M.; Koning, Ruud H.

    2006-01-01

    A topic that has received quite some attention in the seventies and eighties is logical consistency of sum-constrained linear models. Loosely defined, a sum-constrained model is logically consistent if the restrictions on the parameters and explanatory variables are such that the sum constraint is a

  10. Supersparse Linear Integer Models for Predictive Scoring Systems

    OpenAIRE

    Ustun, Berk; Traca, Stefano; Rudin, Cynthia

    2013-01-01

    We introduce Supersparse Linear Integer Models (SLIM) as a tool to create scoring systems for binary classification. We derive theoretical bounds on the true risk of SLIM scoring systems, and present experimental results to show that SLIM scoring systems are accurate, sparse, and interpretable classification models.

  11. A Linearized Convective Overturning Model for Prediction of Thunderstorm Movement.

    Science.gov (United States)

    Marroquin, Adrian; Raymond, David J.

    1982-01-01

    A linearized model of convective overturning in shear for prediction of storm propagation is presented. Good correspondence between the model and observation is found for a number of case studies of real storms. Supercell storms, however, are an exception-the tendency to move to the right of the mean winds is not reproduced.

  12. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; de Vries, C. P.; Zatsarinny, O.

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  13. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects

    DEFF Research Database (Denmark)

    Holst, René; Jørgensen, Bent

    2015-01-01

    The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains a ma...... multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish.......The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains a...... marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids the...

  14. Daily Reference Evapotranspiration Estimation using Linear Regression and ANN Models

    Science.gov (United States)

    Mallikarjuna, P.; Jyothy, S. A.; Sekhar Reddy, K. C.

    2012-12-01

    The present study investigates the applicability of linear regression and ANN models for estimating daily reference evapotranspiration (ET0) at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar regions of Andhra Pradesh. The climatic parameters influencing daily ET0 were identified through multiple and partial correlation analysis. The daily temperature, wind velocity, relative humidity and sunshine hours mostly influenced the study area in the daily ET0 estimation. Linear regression models in terms of the climatic parameters influencing the region and, optimal neural network architectures considering these influencing climatic parameters as input parameters were developed. The models' performance in the estimation of ET0 was evaluated with that estimated by FAO-56 Penman-Montieth method. The regression models showed a satisfactory performance in the daily ET0 estimation for the regions selected for the present study. The optimal ANN (4,4,1) models, however, consistently showed an improved performance over regression models.

  15. Modelling and measurement of a moving magnet linear compressor performance

    International Nuclear Information System (INIS)

    A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified

  16. A Mathematical Theory of the Gauged Linear Sigma Model

    CERN Document Server

    Fan, Huijun; Ruan, Yongbin

    2015-01-01

    We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.

  17. Regularization Paths for Generalized Linear Models via Coordinate Descent

    Directory of Open Access Journals (Sweden)

    Jerome Friedman

    2010-02-01

    Full Text Available We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multi- nomial regression problems while the penalties include ℓ1 (the lasso, ℓ2 (ridge regression and mixtures of the two (the elastic net. The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

  18. Precise Asymptotics of Error Variance Estimator in Partially Linear Models

    Institute of Scientific and Technical Information of China (English)

    Shao-jun Guo; Min Chen; Feng Liu

    2008-01-01

    In this paper, we focus our attention on the precise asymptoties of error variance estimator in partially linear regression models, yi = xTi β + g(ti) +εi, 1 ≤i≤n, {εi,i = 1,... ,n } are i.i.d random errors with mean 0 and positive finite variance q2. Following the ideas of Allan Gut and Aurel Spataru[7,8] and Zhang[21],on precise asymptotics in the Baum-Katz and Davis laws of large numbers and precise rate in laws of the iterated logarithm, respectively, and subject to some regular conditions, we obtain the corresponding results in partially linear regression models.

  19. Categorical Models for a Semantically Linear Lambda-calculus

    OpenAIRE

    Marco Gaboardi; Mauro Piccolo

    2010-01-01

    This paper is about a categorical approach to model a very simple Semantically Linear lambda calculus, named Sll-calculus. This is a core calculus underlying the programming language SlPCF. In particular, in this work, we introduce the notion of Sll-Category, which is able to describe a very large class of sound models of Sll-calculus. Sll-Category extends in the natural way Benton, Bierman, Hyland and de Paiva's Linear Category, in order to soundly interpret all the constructs of Sll-calculu...

  20. A variational formulation for linear models in coupled dynamic thermoelasticity

    International Nuclear Information System (INIS)

    A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author)

  1. Modeling the diffusion/absorption response of a nanopore coated microporous silicon interface

    Science.gov (United States)

    Baker, C.; Laminack, W.; Gole, J. L.

    2016-03-01

    We outline a modeling study of an extrinsic semiconductor interface formed from the interaction of nanostructured metal oxide decorated porous silicon and used for sensing gas phase analytes. We consider simple conductometric sensors that operate at room temperature and atmospheric pressure. Nanostructured metal oxide deposition provides a matrix of responses to various analytes, facilitating the extraction of ambient gas concentrations from sensor responses. The sensors are simulated in four stages with an emphasis to the continual improvement of the modeling effort. Stage 1 focuses solely on the diffusion mechanics of an analyte gas into and out of a micro/nanoporous interface and the observed linear response at low concentrations. Stage 2 focuses on the non-linearity resulting primarily from the quenching of sensor response at higher concentrations and introduces an absorption response mechanism. Here, stage 3 demonstrates how the consideration of charge carrier density leads to the development of a new Fermi-distribution based response mechanism. Stage 4 establishes a combined absorption-Fermi-distribution response mechanism.

  2. Forecasting Realized Volatility with Linear and Nonlinear Models

    OpenAIRE

    McAleer, Michael; Medeiros, Marcelo

    2010-01-01

    textabstractIn this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in the paper.

  3. Inference of High-dimensional Autoregressive Generalized Linear Models

    OpenAIRE

    Hall, Eric C.; Raskutti, Garvesh; Willett, Rebecca

    2016-01-01

    Vector autoregressive models characterize a variety of time series in which linear combinations of current and past observations can be used to accurately predict future observations. For instance, each element of an observation vector could correspond to a different node in a network, and the parameters of an autoregressive model would correspond to the impact of the network structure on the time series evolution. Often these models are used successfully in practice to learn the structure of...

  4. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy.

    Science.gov (United States)

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-09-01

    The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions. PMID:22704663

  5. Functional linear models for association analysis of quantitative traits.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. PMID:24130119

  6. Neighborhood approximations for non-linear voter models

    CERN Document Server

    Schweitzer, Frank

    2016-01-01

    Non-linear voter models assume that the opinion of an agent depends on the opinions of its neighbors in a non-linear manner. This allows for voting rules different from majority voting. While the linear voter model is known to reach consensus, non-linear voter models can result in the coexistence of opposite opinions. Our aim is to derive approximations to correctly predict the time dependent dynamics, or at least the asymptotic outcome, of such local interactions. Emphasis is on a probabilistic approach to decompose the opinion distribution in a second-order neighborhood into lower-order probability distributions. This is compared with an analytic pair approximation for the expected value of the global fraction of opinions and a mean-field approximation. Our reference case are averaged stochastic simulations of a one-dimensional cellular automaton. We find that the probabilistic second-order approach captures the dynamics of the reference case very well for different non-linearities, i.e for both majority an...

  7. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    Science.gov (United States)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  8. Multikernel linear mixed models for complex phenotype prediction.

    Science.gov (United States)

    Weissbrod, Omer; Geiger, Dan; Rosset, Saharon

    2016-07-01

    Linear mixed models (LMMs) and their extensions have recently become the method of choice in phenotype prediction for complex traits. However, LMM use to date has typically been limited by assuming simple genetic architectures. Here, we present multikernel linear mixed model (MKLMM), a predictive modeling framework that extends the standard LMM using multiple-kernel machine learning approaches. MKLMM can model genetic interactions and is particularly suitable for modeling complex local interactions between nearby variants. We additionally present MKLMM-Adapt, which automatically infers interaction types across multiple genomic regions. In an analysis of eight case-control data sets from the Wellcome Trust Case Control Consortium and more than a hundred mouse phenotypes, MKLMM-Adapt consistently outperforms competing methods in phenotype prediction. MKLMM is as computationally efficient as standard LMMs and does not require storage of genotypes, thus achieving state-of-the-art predictive power without compromising computational feasibility or genomic privacy. PMID:27302636

  9. Evolution of linear perturbations in spherically symmetric dust models

    CERN Document Server

    February, Sean; Clarkson, Chris; Pollney, Denis

    2013-01-01

    We present a new numerical code to solve the master equations describing the evolution of linear perturbations in a spherically symmetric but inhomogeneous background. This code can be used to simulate several configurations of physical interest, such as relativistic corrections to structure formation, the lensing of gravitational waves and the evolution of perturbations in a cosmological void model. This paper focuses on the latter problem, i.e. structure formation in a Hubble scale void in the linear regime. This is considerably more complicated than linear perturbations of a homogeneous and isotropic background because the inhomogeneous background leads to coupling between density perturbations and rotational modes of the spacetime geometry, as well as gravitational waves. Previous analyses of this problem ignored this coupling in the hope that the approximation does not affect the overall dynamics of structure formation in such models. We show that for a giga-parsec void, the evolution of the density cont...

  10. Analytic Formulation for the Sound Absorption of a Panel Absorber under the Effects of Microperforation, Air Pumping, Linear Vibration and Nonlinear Vibration

    Directory of Open Access Journals (Sweden)

    Y. Y. Lee

    2014-01-01

    Full Text Available This study includes the first work about the absorption of a panel absorber under the effects of microperforation, air pumping, and linear and nonlinear vibrations. In practice, thin perforated panel absorber is backed by a flexible wall to enhance the acoustic performance within the room. The panel is easily excited to vibrate nonlinearly and the wall can vibrate linearly. However, the assumptions of linear panel vibration and no wall vibration are adopted in many research works. The development of the absorption formula is based on the classical approach and the electroacoustic analogy, in which the impedances of microperforation, air pumping, and linear and nonlinear vibrations are in parallel and connected to that of the air cavity in series. Unlike those finite element, numerical integration, and multiscale solution methods and so forth, the analytic formula to calculate the absorption of a panel absorber does not require heavy computation effort and is suitable for engineering calculation purpose. The theoretical result obtained from the proposed method shows reasonable agreement with that from a previous numerical integration method. It can be concluded that the overall absorption bandwidth of a panel absorber with an appropriate configuration can be optimized and widened by making use of the positive effects of microperforation, air pumping, and panel vibration.

  11. A linear model of stationary elevator traveling and compensation cables

    Science.gov (United States)

    Zhu, W. D.; Ren, H.

    2013-06-01

    Based on a recent asymptotic analysis of a nonlinear model of a slack cable, a computationally efficient, linear model is developed for calculating the natural frequencies, mode shapes, and dynamic responses of stationary elevator traveling and compensation cables. The linear cable model consists of two vertical cable segments connected by a half-circular lower loop. The two vertical cable segments are modeled as a string with a variable tension due to the weight of the cable. The horizontal displacements of the cable segments consist of boundary-induced displacements and relative elastic displacements, where the boundary-induced displacements are interpolated from the displacements of the two lower ends of the cable segments, and the relative elastic displacements satisfy the corresponding homogeneous boundary conditions of the cable segments. The horizontal displacement of the lower loop is interpolated from those of the two lower ends of the two cable segments, and the bending stiffness of the lower loop is modeled by a spring with a constant stiffness, which can be calculated from the nonlinear model. Given a car position, the natural frequencies and mode shapes of an elevator traveling or compensation cable are calculated using the linear model and compared with those from the nonlinear model. The calculated natural frequencies are also compared with those from a full-scale experiment. In addition, the dynamic responses of a cable under a boundary excitation are calculated and compared with those from the nonlinear model. There is a good agreement between the predictions from the linear and nonlinear models and between the measured natural frequencies from the full-scale experiment and the corresponding calculated ones.

  12. The determination of third order linear models from a seventh order nonlinear jet engine model

    Science.gov (United States)

    Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex

    1989-01-01

    Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.

  13. Modelling of Rotational Capacity in Reinforced Linear Elements

    DEFF Research Database (Denmark)

    Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob

    2011-01-01

    rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well as the...

  14. Linear Reranking Model for Chinese Pinyin-to-Character Conversion

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2014-02-01

    Full Text Available Pinyin-to-character conversion is an important task for Chinese natural language processing tasks. Previous work mainly focused on n-gram language models and machine learning approaches, or with additional hand-crafted or automatic rule-based post-processing. There are two problems unable to solve for word n-gram language model: out-of-vocabulary word recognition and long-distance grammatical constraints. In this study, we proposed a linear reranking model trying to solve these problems. Our model uses minimum error learning method to combine different sub models, which includes word and character n-gram LMs, part-of-speech tagging model and dependency model. Impact of different sub models on the conversion are fully experimented and analyzed. Results on the Lancaster Corpus of Mandarin Chinese show that our new model outperforms word n-gram language model.

  15. Managing Creativity for Absorptive Capacity: The NIH Syndrome and the Implementation of Open Innovation Business Model

    DEFF Research Database (Denmark)

    Cokpekin, Özge

    The benefits of the open innovation business model and the absorptive capacity necessary to acquire and utilize external knowledge have been discussed extensively. An emerging literature stream has identified certain intra-organizational antecedents of absorptive capacity. However how firms...

  16. Tests of risk premia in linear factor models

    NARCIS (Netherlands)

    F.R. Kleibergen

    2005-01-01

    We show that inference on risk premia in linear factor models that is based on the Fama-MacBeth and GLS risk premia estimators is misleading when the ß’s are small and/or the number of assets is large. We propose some novel statistics that remain trustworthy in these cases. The inadequacy of Fama-Ma

  17. Tests of risk premia in linear factor models

    NARCIS (Netherlands)

    F. Kleibergen

    2009-01-01

    We show that statistical inference on the risk premia in linear factor models that is based on the Fama-MacBeth (FM) and generalized least squares (GLS) two-pass risk premia estimators is misleading when the β’s are small and/or the number of assets is large. We propose novel statistics, that are ba

  18. The Moduli Space in the Gauged Linear Sigma Model

    CERN Document Server

    Fan, Huijun; Ruan, Yongbin

    2016-01-01

    This is a survey article for the mathematical theory of Witten's Gauged Linear Sigma Model, as developed recently by the authors. Instead of developing the theory in the most general setting, in this paper we focus on the description of the moduli.

  19. Some remarks on permutation type tests in linear models

    Czech Academy of Sciences Publication Activity Database

    Hušková, Marie; Picek, J.

    2004-01-01

    Roč. 24, č. 1 (2004), s. 151-181 R&D Projects: GA ČR GA201/03/0945; GA ČR GA201/02/0049 Institutional research plan: CEZ:AV0Z1075907 Keywords : hypotheses testing * linear regression models * Ll- and L2- procedures Subject RIV: BB - Applied Statistics, Operational Research

  20. Non-linear duality invariant partially massless models?

    OpenAIRE

    Cherney, D.; Deser, S.; Waldron, A; Zahariade, G.

    2016-01-01

    We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.

  1. On loop contributions in the linear sigma model

    International Nuclear Information System (INIS)

    Quantum loops ares studied in the linear sigma model with scalar and pseudoscalar multiplets and a planar interaction term λTr[ΣΣ+ΣΣ+]. It is shown how quantum loops break the OZI rule and the tree-level octet-singlet degeneracy, and how the Goldstone theorem can be maintained also in an iterative scheme including some multiloop diagrams

  2. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    Science.gov (United States)

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  3. Evaluating Faculty Salary Equity Using Hierarchical Linear Modeling.

    Science.gov (United States)

    Stapleton, Laura M.; Lissitz, Robert W.

    This paper presents results from a comparison of the multiple regression (MR) approach to examining faculty salary equity (with clusters for the various disciplines) and hierarchical linear modeling (HLM) for the same problem. The comparison was done in two steps. First, a practical example of applying both techniques, using empirical data, is…

  4. Semiclassical approximations in non-linear σω models

    International Nuclear Information System (INIS)

    Extended Thomas-Fermi calculations up to second order in ℎ have been performed for relativistic non-linear σω models and compared with the corresponding Hartree calculations. In several respects, the relativistic phenomenology quite resembles the one previously found in the non-relativistic context using Skyrme forces. (orig.)

  5. Linear EV model with replicate observations on independent variables

    Institute of Scientific and Technical Information of China (English)

    LIU; Jixue; ZHANG; Sanguo; CHEN; Xiru

    2006-01-01

    This paper studies the linear EV model when replicate observations are made only on independent variables. We construct the estimates of regression coefficients and prove the consistency and asymptotic normality under some proper conditions. Results obtained reveal the difference between the case where the independent and dependent variables are observed repeatedly and simultaneously and the case studied in this article.

  6. Plane answers to complex questions the theory of linear models

    CERN Document Server

    Christensen, Ronald

    1987-01-01

    This book was written to rigorously illustrate the practical application of the projective approach to linear models. To some, this may seem contradictory. I contend that it is possible to be both rigorous and illustrative and that it is possible to use the projective approach in practical applications. Therefore, unlike many other books on linear models, the use of projections and sub­ spaces does not stop after the general theory. They are used wherever I could figure out how to do it. Solving normal equations and using calculus (outside of maximum likelihood theory) are anathema to me. This is because I do not believe that they contribute to the understanding of linear models. I have similar feelings about the use of side conditions. Such topics are mentioned when appropriate and thenceforward avoided like the plague. On the other side of the coin, I just as strenuously reject teaching linear models with a coordinate free approach. Although Joe Eaton assures me that the issues in complicated problems freq...

  7. Non-linear sigma models with generalized geometry

    International Nuclear Information System (INIS)

    In this paper it is shown that the bosonic non-linear sigma model with algebraically extended world-sheet geometry is locally equivalent to the usual theory, but differs from the latter globally in that world-sheet instantons do not destabilize axions and in that it has a different critical dimension

  8. EMPIRICAL LIKELIHOOD FOR LINEAR MODELS UNDER m-DEPENDENT ERRORS

    Institute of Scientific and Technical Information of China (English)

    QinYongsong; JiangBo; LiYufang

    2005-01-01

    In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors. It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples.

  9. Identifiability Results for Several Classes of Linear Compartment Models.

    Science.gov (United States)

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology. PMID:26337290

  10. Comparing resonant 2p X-ray absorption of size-selected cobalt clusters on Cu(100) and in a linear Paul Trap

    Energy Technology Data Exchange (ETDEWEB)

    Zamudio-Bayer, Vicente; Hirsch, Konstantin; Klar, Philipp; Langenberg, Andreas; Lofink, Fabian; Richter, Robert; Rittmann, Jochen; Vogel, Marlene; Moeller, Thomas; Lau, J. Tobias [Technische Universitaet Berlin (Germany). Institut fuer Optik und Atomare Physik; Glaser, Leif; Wurth, Wilfried [Universitaet Hamburg (Germany). Institut fuer Experimentalphysik; von Issendorff, Bernd [Albert-Ludwigs-Universitaet Freiburg (Germany). Fakultaet fuer Physik/FMF

    2008-07-01

    Its element specificity makes resonant X-ray absorption spectroscopy an ideal tool to study deposited clusters at low coverage. At the 2p absorption edges of small, size-selected cobalt clusters on Cu(100), two separate sets of lines are observed which can be interpreted in terms of atomic-like multiplet splitting. For very small clusters (n=1,2,3), these absorption lines show a strong size dependence. The size evolution of 2p X-ray absorption will be discussed in comparison to size-selected free cobalt clusters, recorded recently on mass selected cluster ions in a linear Paul trap at BESSY. Direct comparison of free and deposited clusters under well defined conditions allows to distinguish size-specific properties from cluster-substrate interaction effects. A shift to higher photon energies in deposited clusters indicates screening by substrate valence electrons.

  11. A model for partitioning particulate absorption into phytoplanktonic and detrital components

    Science.gov (United States)

    Cleveland, J. S.; Perry, M. J.

    1994-01-01

    A model for partitioning total particulate absorption, measured on glass fiber filters, into phytoplanktonic and detrital components is developed. The model reconstructs absorption spectra for living phytoplankton using total particulate absorption at the red absorption maxima for chlorophylls a and b, concentrations of chlorophyll a and pheopigment, and mean normalized absorption spectra for laboratory-grown algal cultures. The model was developed in stages for two types of phytoplankton assemblages. Section A of the model applies to waters dominated by eukaryotic algae and is based on absorption spectra for chromophytic (phytoplankton containing chlorophyll c) and chlorophytic (containing chlorophyll b) species. Section B of the model, allowing more variability in spectral shape, was developed for algal communities with more diverse pigmentation. All spectra are processed through Section A, with an internal evaluation determining whether processing continues through Section B. Detrital spectra, generated as the difference between total particulate and modelled phytoplanktonic spectra, included pheopigment absorption and had high blue absorption. Blind tests on samples of known composition predicted absorption within 8-10% at 436 nm and 1-13% when averaged from 400 to 700 nm, which is within the expected accuracy of the glass fiber filter method. No true measure of phytoplankton absorption in field samples is available for testing the model, but results from methanol-extractions were used for comparison despite inclusion of pheopigment absorption as "phytoplankton". For samples collected from coastal waters of Washington State, the Sargasso Sea and coastal waters of Norway, modelled absorption (averaged over 400-700 nm) ranged from 25% lower to 0.5% higher than the methanol-extraction results; pheopigment absorption inappropriately included in the phytoplankton component accounts for the higher phytoplanktonic absorption estimated by the methanol technique

  12. Prediction of Typhoon Tracks Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-Tae SOHN; H. Joe KWON; Ae-Sook SUH

    2003-01-01

    This paper presents a study on the statistical forecasts of typhoon tracks. Numerical models havetheir own systematic errors, like a bias. In order to improve the accuracy of track forecasting, a statisticalmodel called DLM (dynamic linear model) is applied to remove the systematic error. In the analysis oftyphoons occurring over the western North Pacific in 1997 and 2000, DLM is useful as an adaptive modelfor the prediction of typhoon tracks.

  13. Kinematic Modeling, Linearization and First-Order Error Analysis

    OpenAIRE

    Pott, Andreas; Hiller, Manfred

    2008-01-01

    The contribution describes a general method for kinematic modeling of many wide-spread parallel kinematic machines, i.e. for the Stewart-Gough-platform, the Delta-robot, and Linaglide machines. The kinetostatic method is applied for a comprehensive kinematic analysis of these machines. Based on that model, a general method is proposed to compute the linearization of the transmission behaviour from geometric parameters to the endeffector motion of these machines. By applying the force transmis...

  14. Bootstrap tests in linear models with many regressors

    OpenAIRE

    Patrick Richard

    2014-01-01

    This paper is concerned with bootstrap hypothesis testing in high dimensional linear regression models. Using a theoretical framework recently introduced by Anatolyev (2012), we show that bootstrap F, LR and LM tests are asymptotically valid even when the numbers of estimated parameters and tested restrictions are not asymptotically negligible fractions of the sample size. These results are derived for models with iid error terms, but Monte Carlo evidence suggests that they extend to the wild...

  15. One-loop dimensional reduction of the linear σ model

    International Nuclear Information System (INIS)

    We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

  16. Deterministic operations research models and methods in linear optimization

    CERN Document Server

    Rader, David J

    2013-01-01

    Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

  17. Performance Models for the Spike Banded Linear System Solver

    OpenAIRE

    Murat Manguoglu; Faisal Saied; Ahmed Sameh; Ananth Grama

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterati...

  18. lmdme: Linear Models on Designed Multivariate Experiments in R

    Directory of Open Access Journals (Sweden)

    Cristóbal Fresno

    2014-01-01

    Here, we present an R implementation for ANOVA decomposition with PCA/PLS analysis that allows the user to specify (through a flexible formula interface, almost any linear model with the associated inference on the estimated effects, as well as to display functions to explore results both of PCA and PLS. We describe the model, its implementation and two high-throughput microarray examples: one applied to interaction pattern analysis and the other to quality assessment.

  19. A Review of Linear Mixed Models and Small Area Estimation

    OpenAIRE

    Kubokawa, Tatsuya

    2009-01-01

    The linear mixed models (LMM) and the empirical best linear unbiased predictor (EBLUP) induced from LMM have been well studied and extensively used for a long time in many applications. Of these, EBLUP in small area estimation has been recognized as a useful tool in various practical statistics. In this paper, we give a review on LMM and EBLUP from a aspect of small area estimation. Especially, we explain why EBLUP is likely to be reliable. The reason is that EBLUP possesses the shrinkage fun...

  20. Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution.

    Science.gov (United States)

    Sytina, Olga A; Novoderezhkin, Vladimir I; van Grondelle, Rienk; Groot, Marie Louise

    2011-11-01

    Protochlorophyllide (Pchlide) is a natural porphyrin, a precursor of chlorophyll, synthesized by plants for its photosynthetic apparatus. The pigment spontaneously forms aggregates when dissolved in neat water solution. We present here calculations of the transient absorption spectra and its comprising components (ground-state bleach, stimulated emission, and excited-state absorption) for a strongly excitonically coupled linear chain of four Pchlide chromophores, using exciton theory with phenomenological Gaussian line shapes and without energetic disorder. A refined multiexciton model that includes static disorder is applied to fit the experimental power-dependent transient absorption spectra of aqueous protochlorophyllide and the kinetics for delay times up to 20 ps after photoexcitation. We show that population up to the 4-exciton manifold is sufficient to explain the pronounced saturation of the bleaching and the shape changes in the instantaneous, t = 0.2 ps transient spectra when the pulse energy is increased from 10 to 430 nJ per pulse. The decay of the multiexciton manifold is relatively slow and is preceded by a spectroscopically distinct process. We suggest that the exciton states in the Pchlide aggregates are mixed with charge-transfer states (CTS) and that the population and repopulation of the CTS coupled to the exciton states explains the relatively slow decay of the multiexciton manifold. The relevance of our results to the optical properties and dynamics of natural photosynthetic complexes and the possible physical origin of CTS formation are discussed. PMID:21936513

  1. Finite element modeling of nanotube structures linear and non-linear models

    CERN Document Server

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  2. Optimal sampling and estimation strategies under the linear model

    OpenAIRE

    Nedyalkova, Desislava; Tillé, Yves

    2016-01-01

    In some cases model-based and model-assisted inferences can lead to very different estimators. These two paradigms are not so different if we search for an optimal strategy rather than just an optimal estimator, a strategy being a pair composed of a sampling design and an estimator. We show that, under a linear model, the optimal model-assisted strategy consists of a balanced sampling design with inclusion probabilities that are proportional to the standard deviations of the errors of th...

  3. Can the Non-linear Ballooning Model describe ELMs?

    Science.gov (United States)

    Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.

    2015-11-01

    The explosive, filamentary plasma eruptions described by the non-linear ideal MHD ballooning model is tested quantitatively against experimental observations of ELMs in MAST. The equations describing this model were derived by Wilson and Cowley for tokamak-like geometry which includes two differential equations: the linear ballooning equation which describes the spatial distribution along the field lines and the non-linear ballooning mode envelope equation, which is a two-dimensional, non-linear differential equation which can involve fractional temporal-derivatives, but is often second-order in time and space. To employ the second differential equation for a specific geometry one has to evaluate the coefficients of the equation which is non-trivial as it involves field line averaging of slowly converging functions. We have solved this system for MAST, superimposing the solutions of both differential equations and mapping them onto a MAST plasma. Comparisons with the evolution of ELM filaments in MAST will be reported in order to test the model. The support of the EPSRC for the FCDT (Grant EP/K504178/1), of Euratom research and training programme 2014-2018 (No 633053) and of the RCUK Energy Programme [grant number EP/I501045] is gratefully acknowledged.

  4. The quasi deuteron model for low energy pion absorption

    International Nuclear Information System (INIS)

    In this thesis pion absorption in complex nuclei is studied in the quasi-deuteron model in which the pion is absorbed on a nucleon pair in the nucleus. The mechanism is studied in the low-energy domain since then the in-medium (pi→NN) operator turns out to be of simple character. In Ch. 2 and 3 this operator is constructed and analytical expressions are derived for (pi,NN) distributions in a plane wave impulse approximation for nuclei. The results turn out to be very useful for developing insight in the possibilities inherent in the QDM and the interpretation of the results in later chapters. Ch. 4 to 6 are devoted to the more realistic distorted wave calculations. In Ch. 4 the formal framework is presented and the calculational details are discussed. Ch.5 and 6 contain the comparison to stopped pion and in-flight data respectively. In Ch. 7 the main results are summarized. (Auth.)

  5. Modelling the Absorption Measurement Distribution (AMD) for Mrk 509

    Science.gov (United States)

    Adhikari, T.; Rozanska, A.; Sobolewska, M.; Czerny, B.

    2015-07-01

    Absorption Measurement Distribution (AMD) measures the distribution of absorbing column over a range of ionization parameters of the X-ray absorbers in Seyfert galaxies. In this work, we modeled the AMD in Mrk 509 using its recently published broad band Spectral Energy Distribution (SED). This SED is used as an input for radiative transfer computations with full photoionization treatment using the photoionization codes Titan and Cloudy. Assuming a photoionized medium with a uniform total pressure (gas+radiation), we reproduced the discontunity in the observed AMD distribution which is usually described as the region of thermal instability of the absorber. We also studied the structure and properties of the warm absorber in Mrk 509.

  6. Modeling and analysis of linear hyperbolic systems of balance laws

    CERN Document Server

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  7. Synthesis of chromophores with porphyrin core and triphenylamine branching effect on the properties of linear/two-photon absorption

    Science.gov (United States)

    Fan, Congbin; Wang, Xiaomei; Wang, Xiaohong; Luo, Jianfang

    2012-02-01

    The synthesis of a serial new triphenylamine-multibranching chromophores with porphyrins "core" were reported and UV-vis absorption, one/two-photon fluorescence and two-photon absorption (TPA) cross-section were investigated. The triphenylamine-branching effect on their properties, including the different branches numbers and different generational multibranches were investigated in detail. The results show the different branches numbers and the different generational multibranches had a remarkable effect on the absorption and one/two-photon fluorescence properties of these chromophores. The two-photon absorption cross-section value ( σ s) of the higher generational multibranched triphenylamine chromophore TPP-(G2X) 3 is 1058.25 GM, which is three times bigger than the others. Comparatively, the higher generational multibranched triphenylamine effect shows more significant contribution to two-photon absorption enhancement and obviously improves two-photon absorption cross-section behavior. This is greatly valuable for designing and synthesizing novel TPA materials.

  8. Linear models for joint association and linkage QTL mapping

    Directory of Open Access Journals (Sweden)

    Fernando Rohan L

    2009-09-01

    Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.

  9. An R2 Statistic for Fixed Effects in the Linear Mixed Model

    OpenAIRE

    Edwards, Lloyd J.; Muller, Keith E.; Wolfinger, Russell D; QAQISH, BAHJAT F.; Schabenberger, Oliver

    2008-01-01

    Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R2 statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R2 statistic for the linear mixed model by using only a single model. The proposed R2 statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model...

  10. Classifying linearly shielded modified gravity models in effective field theory.

    Science.gov (United States)

    Lombriser, Lucas; Taylor, Andy

    2015-01-23

    We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime. PMID:25658988

  11. Category-theoretic models of linear Abadi & Plotkin Logic

    DEFF Research Database (Denmark)

    Birkedal, Lars; Møgelberg, Rasmus Ejlers; Lerchedahl Petersen, Rasmus

    2008-01-01

    This paper presents a sound and complete category-theoretic notion of models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for reasoning about parametricity in combination with recursion. A subclass of these called parametric LAPL structures can be seen as an...... axiomatization of domain theoretic models of parametric polymorphism, and we show how to solve general (nested) recursive domain equations in these. parametric LAPL structures constitute a general notion of model of parametricity in a setting with recursion. In future papers we will demonstrate this by showing...

  12. Linear No-Threshold Model VS. Radiation Hormesis

    OpenAIRE

    Doss, Mohan

    2013-01-01

    The atomic bomb survivor cancer mortality data have been used in the past to justify the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mortality dose-response data shows that the data no longer support the LNT model but are consistent with a radiation hormesis model when a correction is applied for a likely bias in the baseline cancer mortality rate. If the validity of t...

  13. Estimation in partial linear EV models with replicated observations

    Institute of Scientific and Technical Information of China (English)

    CUI Hengjian

    2004-01-01

    The aim of this work is to construct the parameter estimators in the partial linear errors-in-variables (EV) models and explore their asymptotic properties. Unlike other related References, the assumption of known error covariance matrix is removed when the sample can be repeatedly drawn at each designed point from the model. The estimators of interested regression parameters, and the model error variance, as well as the nonparametric function, are constructed. Under some regular conditions, all of the estimators prove strongly consistent. Meanwhile, the asymptotic normality for the estimator of regression parameter is also presented. A simulation study is reported to illustrate our asymptotic results.

  14. A Graphical User Interface to Generalized Linear Models in MATLAB

    Directory of Open Access Journals (Sweden)

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  15. Linear Reranking Model for Chinese Pinyin-to-Character Conversion

    OpenAIRE

    Xinxin Li; Xuan Wang; Lin Yao; Muhammad Waqas Anwar

    2014-01-01

    Pinyin-to-character conversion is an important task for Chinese natural language processing tasks. Previous work mainly focused on n-gram language models and machine learning approaches, or with additional hand-crafted or automatic rule-based post-processing. There are two problems unable to solve for word n-gram language model: out-of-vocabulary word recognition and long-distance grammatical constraints. In this study, we proposed a linear reranking model trying to solve these problems. Our ...

  16. Linear chaos for the Quick-Thinking-Driver model

    OpenAIRE

    Conejero, J. A.; Arcila, M. Murillo; Seoane-Sepúlveda, J. B.

    2015-01-01

    In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars \\cite{google_driverless_cars}. Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then cha...

  17. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  18. Self-consistent quasi-linear modelling of Lower Hybrid Current Drive in ITER and DEMO

    International Nuclear Information System (INIS)

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modelled by coupling the ray tracing equations for the wave phase and amplitude with the quasi-linear evolution of the electron distribution function. A system of coupled ordinary differential equations for each Fourier component of the spectrum radiated by the LH antenna is derived and solved when considering both 1D/2D Fokker-Planck model for the electron distribution function. This allows to reconstruct and to evolve the quasi-linear diffusion coefficient consistently with the wave propagation, to calculate the power deposition profile and the amount of current driven by the wave. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor like ITER or DEMO, because the high electron temperature would enhance the wave absorption and then limit the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work by extensively using this self-consistent modelling for the propagation and absorption of the LH wave, a parametric study on the wave spectrum (and consequently on the antenna design) as spectrum width, peak value, secondary lobes etc. has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor, but also in order to reconsider the feasibility of steady state regime

  19. Difference in oral absorption of ginsenoside Rg1 between in vitro and in vivo models

    Institute of Scientific and Technical Information of China (English)

    Min HAN; Xiao-ling FANG

    2006-01-01

    Aim:To clarify the cause of poor oral absorption of ginsenoside Rg1 (Rg1) ,the active ingredient in Panax notoginseng saponins (PNS) used for treating hemorrhage.Methods:Caco-2 cell monolayers were used as an in vitro model to study the transport mechanism of Rg1 across the intestinal mucosa.Moreover,the serum concentration-time profiles after peroral (po) ,intraduodenal (id) ,portal venous (pv) and tail venous (iv) administration of Rg1 in rats were compared to evaluate the first-pass effects in the stomach.intestine,and liver.Results:Uptake of Rg1 by Caco-2 cell monolayers was temperature-dependent,but was not influenced by cyclosporin A.The change in the apical pH produced no obvious effect on the uptake of Rg1.The uptake and transport of Rg1 was non-saturable;whereas the flux from the apical compartment to the basolateral compartment (A-B) increased in a linear manner with the increase in concentration,indicating passive transport.An apparent permeability coefficient of (2.59±0.17)×10-7 cm/s (C0=1mg/mL) predicted incomplete absorption.A significant difference was observed between the po (Fpo was 3.29% at a dose of 1500 mg/kg) ,id (Fid was 6.60% at a dose of 1200 mg/kg) and pv (Fpv was 50.56%) administration methods,and the barrier function of the intestine was more significant than those of the stomach and liver in the absorption process.Conclusion:Elimination in the stomach.large intestine and liver contributed to the low oral bioavailability of Rg,but low membrane permeability might be a more important factor in determining the extent of absorption.

  20. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.;

    2004-01-01

    illustrate linear, non-linear and time-depending terms in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher blade mode shapes are considered in the analysis, the equations of motion of the rotor-blades system are still general enough for the purpose of the......This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig...... the test rig by attaching the rigid rotor to a flexible foundation. The blades are modeled as Euler-Bernoulli beams. Using three different approaches to describe the beam deformation one achieves: (a) a linear model; (b) a linear beam model with second order terms; (c) a fully non-linear model. Tip...

  1. Confidence Intervals of Variance Functions in Generalized Linear Model

    Institute of Scientific and Technical Information of China (English)

    Yong Zhou; Dao-ji Li

    2006-01-01

    In this paper we introduce an appealing nonparametric method for estimating variance and conditional variance functions in generalized linear models (GLMs), when designs are fixed points and random variables respectively. Bias-corrected confidence bands are proposed for the (conditional) variance by local linear smoothers. Nonparametric techniques are developed in deriving the bias-corrected confidence intervals of the (conditional) variance. The asymptotic distribution of the proposed estimator is established and show that the bias-corrected confidence bands asymptotically have the correct coverage properties. A small simulation is performed when unknown regression parameter is estimated by nonparametric quasi-likelihood. The results are also applicable to nonparametric autoregressive times series model with heteroscedastic conditional variance.

  2. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina

    2012-08-03

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  3. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  4. Neurofuzzy evolutionary models applied to non-linear systems identification

    International Nuclear Information System (INIS)

    Neurofuzzy models are attractive to system identification to combine learning and structural features of neural network and the exposition based in rules associated to fuzzy systems. Genetic programming is a genetic algorithm extension where individuals are computer programs. It was proposed a modeling scheme where it's created, through genetic programming, a population of neurofuzzy systems capable to identify a given non-linear system. The data obtained when applying the resulting system to the identification of a simple non-linear function allows to conclude the technique has a quite promising application potential, and that are necessary improvements so that solutions can be obtained with a smaller number of generations and consequently in a smaller space of time. (author)

  5. Posterior consistency in linear models under shrinkage priors

    CERN Document Server

    Armagan, Artin; Lee, Jaeyong; Bajwa, Waheed U

    2011-01-01

    We investigate posterior consistency in linear models with a diverging number of parameters. We first propose a parameter-free multivariate generalized double Pareto distribution as a default prior choice that preserves some of the desired characteristics of a joint double exponential distribution with multivariate Cauchy-like tails. We give sufficient conditions for consistency when $p/n\\rightarrow 0$ and then investigate the behavior of the posterior under normal, double exponential and multivariate generalized double Pareto priors.

  6. The linear Ising model and its analytic continuation, random walk

    OpenAIRE

    B. H. Lavenda

    2004-01-01

    A generalization of Gauss's principle is used to derive the error laws corresponding to Types II and VII distributions in Pearson's classification scheme. Student's $r$-pdf (Type II) governs the distribution of the internal energy of a uniform, linear chain, Ising model, while analytic continuation of the uniform exchange energy converts it into a Student $t$-density (Type VII) for the position of a random walk in a single spatial dimension. Higher dimensional spaces, corresponding to larger ...

  7. Continuous elliptical and exponential power linear dynamic models

    OpenAIRE

    Gómez Villegas, Miguel A.; Marín Diazaraque, Juan Miguel

    2002-01-01

    This paper shows a practical and easy to compute generalization of the linear dynamic model, made by assuming a continuous elliptical joint distribution for the parameters and errors. Updated distribution and probabilistic characteristics of the current and future vector of state and observations are given. As a particular simple submodel, the one with a multidimensional exponential power initial distribution is developed. An example to show its use is given

  8. Microfoundations for the Linear Demand Product Differentiation Model, with Applications

    OpenAIRE

    Stephen Martin

    2009-01-01

    This paper shows (1) that the Spence-Dixit-Vives model of linear demand for differentiated varieties is implied if supplies of substitutes reduce individual consumers' reservation prices as indicated in the paper, (2) that for the micro-foundation-based version SDV demand and endogenous sunk costs, the equilibrium number of varieties is independent of the number of consumers in the market and the marginal cost of a variety of unit quality, and (3) that with endogenous sunk cost, if demand doe...

  9. Linear delta expansion applied to the O'Raifeartaigh model

    International Nuclear Information System (INIS)

    We reassess the method of the linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules in the framework of the O'Raifeartaigh model for spontaneous supersymmetry breaking. The effective potential is calculated using both the fastest apparent convergence and the principle of minimal sensitivity criteria and the consistency and efficacy of the method are checked in deriving the Coleman-Weinberg potential.

  10. Bayesian Inference and Optimal Design in the Sparse Linear Model

    OpenAIRE

    Seeger, Matthias; Steinke, Florian; Tsuda, Koji

    2007-01-01

    The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal de...

  11. Linear $\\sigma$ model for the Goldstone Higgs - Experimental tests

    CERN Document Server

    Saa, Sara

    2016-01-01

    In order to explore a possible dynamical nature for the Higgs field (such as its being a pseudo-Goldstone boson) we develop a renormalizable Lagrangian based on the minimal $SO(5)$ linear $\\sigma$-model with the symmetry softly broken to $SO(4)$, including gauge bosons and fermions. We then present the phenomenological implications and constraints from precision observables and the impact on present and future LHC data.

  12. Comparison of Linear Prediction Models for Audio Signals

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.

  13. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  14. Evaluation and Modeling of the Digestion and Absorption of Novel Manufacturing Technology in Food Enterprises

    OpenAIRE

    Kerong Zhang; Wuyi Liu

    2015-01-01

    The food industry is more and more in need of importing and absorption new technologies. Focusing on all the possible issues of contradiction and difficulty to improve the digestion and absorption of novel manufacturing technology, a set of customized dynamic quantitative evaluation models were put forward that made it easy to model and supervise the usages, digestion and absorption of novel manufacturing technology in food enterprises. According to the proposed set of evaluation models, anyo...

  15. A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation

    Science.gov (United States)

    Huber, Christian; Shafei, Babak; Parmigiani, Andrea

    2014-01-01

    Pore-scale processes exert a strong control on the transport of reactants in porous media at the continuum scale. As such, pore-scale numerical models can offer a more quantitative understanding of the coupling between transport and reaction and yield parameterized constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. In the present study, we present a new pore-scale model for the advection and diffusion of reactants in porous media with complex topologies. The model is based on the lattice Boltzmann method and couples a fluid flow solver to an optimal advection-diffusion transport model. Internal solid-fluid boundaries (grain boundaries) are explicitly part of the numerical domain, which allows the algorithm to solve for surface reactions independently from the surface shape and orientation of the grains. Thus, the approach is well suited for the treatment of heterogeneous reactions in complex pore structures. We present single and multispecies reactive transport applications of the model. In the first application we study the permeability change of a porous medium associated with a given porosity change during dissolution and precipitation using linear reaction kinetics. We show that, for a given porous medium, the correlation between porosity and permeability changes depends on the transport regime (the ratio of advective to diffusive transport) and the reaction rate. Finally, we carry out simulations of multispecies reactive transport, focusing on the case of calcium carbonate dissolution/precipitation. Our results highlight the difference between pH dependent and independent reaction rates for heterogeneous reactions in complex geometries at the pore scale.

  16. On the Development of Parameterized Linear Analytical Longitudinal Airship Models

    Science.gov (United States)

    Kulczycki, Eric A.; Johnson, Joseph R.; Bayard, David S.; Elfes, Alberto; Quadrelli, Marco B.

    2008-01-01

    In order to explore Titan, a moon of Saturn, airships must be able to traverse the atmosphere autonomously. To achieve this, an accurate model and accurate control of the vehicle must be developed so that it is understood how the airship will react to specific sets of control inputs. This paper explains how longitudinal aircraft stability derivatives can be used with airship parameters to create a linear model of the airship solely by combining geometric and aerodynamic airship data. This method does not require system identification of the vehicle. All of the required data can be derived from computational fluid dynamics and wind tunnel testing. This alternate method of developing dynamic airship models will reduce time and cost. Results are compared to other stable airship dynamic models to validate the methods. Future work will address a lateral airship model using the same methods.

  17. H∞ /H2 model reduction through dilated linear matrix inequalities

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...... not satisfactorily approximates the original system, an iterative algorithm based on dilated LMIs is proposed to significantly improve the approximation bound. The effectiveness of the method is accessed by numerical experiments. The method is also applied to the $H_2$ order reduction of a flexible...

  18. Model-Checking Linear-Time Properties of Quantum Systems

    CERN Document Server

    Ying, Mingsheng; Yu, Nengkun; Feng, Yuan

    2011-01-01

    We define a formal framework for reasoning about linear-time properties of quantum systems in which quantum automata are employed in the modeling of systems and certain closed subspaces of state (Hilbert) spaces are used as the atomic propositions about the behavior of systems. We provide an algorithm for verifying invariants of quantum automata. Then automata-based model-checking technique is generalized for the verification of safety properties recognizable by reversible automata and omega-properties recognizable by reversible Buechi automata.

  19. Linear and optimization Hamiltonians in clustered exponential random graph modeling

    International Nuclear Information System (INIS)

    Exponential random graph theory is the complex network analog of the canonical ensemble theory from statistical physics. While it has been particularly successful in modeling networks with specified degree distributions, a naïve model of a clustered network using a graph Hamiltonian linear in the number of triangles has been shown to undergo an abrupt transition into an unrealistic phase of extreme clustering via triangle condensation. Here we study a nonlinear graph Hamiltonian that explicitly forbids such a condensation and show numerically that it generates an equilibrium phase with specified intermediate clustering

  20. Approximate Bayesian Recursive Estimation of Linear Model with Uniform Noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    Brussels: IFAC, 2012, s. 1803-1807. ISBN 978-3-902823-06-9. [16th IFAC Symposium on System Identification The International Federation of Automatic Control. Brussels (BE), 11.07.2012-13.07.2012] R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : recursive parameter estimation * bounded noise * Bayesian learning * autoregressive models Subject RIV: BC - Control System s Theory http://library.utia.cas.cz/separaty/2012/AS/pavelkova-approximate bayesian recursive estimation of linear model with uniform noise.pdf

  1. Jet propagation within a Linearized Boltzmann Transport model

    International Nuclear Information System (INIS)

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile

  2. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  3. Jet propagation within a Linearized Boltzmann Transport Model

    CERN Document Server

    Luo, Tan; Wang, Xin-Nian; Zhu, Yan

    2015-01-01

    A Linear Boltzmann Transport (LBT) model has been developed for the study of jet propagation inside a quark-gluon plasma. Both leading and thermal recoiled partons are transported according to the Boltzmann equations to account for jet-induced medium excitations. In this talk, we present our study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate elastic energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons are found to have significant influences on the jet energy loss and transverse profile.

  4. A linear model for the dynamics of fish larvae

    Directory of Open Access Journals (Sweden)

    Noureddine Ghouali

    2004-11-01

    Full Text Available We consider a linear model for the growth and the dispersion of fish larvae of certain species. Dispersion is modeled as entailed by the combination of transport and vertical diffusion. We generalize the work of Boushaba, Arino and Boussouar [5,6] in the sense that horizontal velocities are uniform throughout the water column; but we deal with vertical component velocity and vertical diffusion depending on the space variables and on time, which was not the case in [5,6]. This new vision leads us to non-autonomous problems, the aim of this work is to show the existence, uniqueness, and positivity of solutions.

  5. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  6. First class models from linear and nonlinear second class constraints

    Science.gov (United States)

    Dehghani, Mehdi; Mardaani, Maryam; Monemzadeh, Majid; Nejad, Salman Abarghouei

    2015-10-01

    Two models with linear and nonlinear second class constraints are considered and gauged by embedding in an extended phase space. These models are studied by considering a free non-relativistic particle on the hyperplane and hypersphere in the configuration space. The gauged theory of the first model is obtained by converting the very second class system to the first class one directly. In contrast, the first class system related to the free particle on the hypersphere is derived with the help of the infinite Batalin-Fradkin-Tyutin (BFT) embedding procedure. We propose a practical formula, based on the simplified BFT method, which is practical in gauging linear and some nonlinear second class systems. As a result of gauging these two models, we show that in the conversion of second class constraints to the first class ones, the minimum number of phase space degrees of freedom for both systems is a pair of phase space coordinates. This pair is made up of a coordinate and its conjugate momentum for the first model, but the corresponding Poisson structure of the embedded non-relativistic particle on hypersphere is a nontrivial one. We derive infinite correction terms for the Hamiltonian of the nonlinear constraints and an interacting gauged Hamiltonian is constructed by summing over them. At the end, we find an open algebra for three first class objects of the embedded nonlinear system.

  7. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  8. Modelling millimetre wave propagation and absorption in a high resolution skin model: the effect of sweat glands

    International Nuclear Information System (INIS)

    The aim of this work was to investigate the potential effect of sweat gland ducts (SGD) on specific absorption rate (SAR) and temperature distributions during mm-wave irradiation. High resolution electromagnetic and bio-heat transfer models of human skin with SGD were developed using a commercially available simulation software package (SEMCAD X(TM)). The skin model consisted of a 30 μm stratum corneum, 350 μm epidermis and papillary dermis (EPD) and 1000 μm dermis. Five SGD of 60 μm radius and 300 μm height were embedded linearly with 370 μm separation. A WR-10 waveguide positioned 20 μm from the skin surface and delivering 94 GHz electromagnetic radiation was included in the model. Saline conductivity was assigned inside SGD. SAR and temperatures were computed with and without SGD. Despite their small scale, SAR was significantly higher within SGD than in the EPD without SGD. Without SGD, SAR and temperature maxima were in the dermis near EPD. With SGD, SAR maximum was inside SGD while temperature maximum moved to the EPD/stratum-corneum junction. Since the EPD participates actively in perception, the effect of SGD should be taken into account in nociceptive studies involving mm-waves. This research represents a significant step towards higher spatial resolution numerical modelling of the skin and shows that microstructures can play a significant role in mm-wave absorption and induced temperature distributions.

  9. Comment on "Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field"

    Science.gov (United States)

    Yuan, Jian-Hui; Zhang, Zhi-Hai

    2015-12-01

    Guo and Du (2013) reported theirs result for the linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. We find both the energy and the corresponding wavefunction for the low-lying state are wrong to applied in their works. For the same set of parameters studied by Guo and Du, we obtain new and reliable results via the differential method.

  10. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    Science.gov (United States)

    Cardinali, A.; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-01

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n∥crit and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the "raystar" code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  11. Comparison of linear and non-linear soft tissue models with post-operative CT scan in maxillofacial surgery

    CERN Document Server

    Chabanas, M; Marecaux, C; Swider, P; Boutault, F; Chabanas, Matthieu; Payan, Yohan; Marecaux, Christophe; Swider, Pascal; Boutault, Franck

    2004-01-01

    A Finite Element model of the face soft tissue is proposed to simulate the morphological outcomes of maxillofacial surgery. Three modelling options are implemented: a linear elastic model with small and large deformation hypothesis, and an hyperelastic Mooney-Rivlin model. An evaluation procedure based on a qualitative and quantitative comparison of the simulations with a post-operative CT scan is detailed. It is then applied to one clinical case to evaluate the differences between the three models, and with the actual patient morphology. First results shows in particular that for a "simple" clinical procedure where stress is less than 20%, a linear model seams sufficient for a correct modelling.

  12. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  13. Solution of a linearized kinetic model for an ultrarelativistic gas

    International Nuclear Information System (INIS)

    A linearized model of the Boltzmann equation for a relativistic gas is shown to be reducible, in the ultrarelativistic limit and for (1 plus 1) dimensional problems, to a system of three uncoupled transport equations, one of which is well known. A general method for solving these equations is recalled, with a few new details, and applied to the solution of two boundary value problems. The first of these describes the propagation of an impulsive change in a half space and is shown to give an explicit example of the recently proved result that no signal can propagate with speed larger than the speed of light, according to the relativistic Boltzmann equation. The second problem deals with steady oscillations in a half space and illustrates the meaning of certain recent results concerning the dispersion relation for linear waves in relativistic gas

  14. Exactly soluble two-state quantum models with linear couplings

    Energy Technology Data Exchange (ETDEWEB)

    Torosov, B T; Vitanov, N V [Department of Physics, Sofia University, James Bourchier 5 blvd, 1164 Sofia (Bulgaria)], E-mail: torosov@phys.uni-sofia.bg, E-mail: vitanov@phys.uni-sofia.bg

    2008-04-18

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of {pi}/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model.

  15. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  16. First class models from linear and nonlinear second class constraints

    CERN Document Server

    Dehghani, Mehdi; Monemzadeh, Majid; Abarghooeinejad, Salman

    2014-01-01

    Two models with linear and nonlinear second class constraints are considered and gauged by embedding in an extended phase space. These models are the free non-relativistic particle on a hyperplane and hyper sphere in configuration space. For the first model we construct its gauged corresponding by the condition of converting second class system to first class one, directly. In contrast the first class system related to the free particle on hyper sphere is derived by the BFT embedding procedure, where its steps are infinite. We give a practical formula for gauging linear and some of the nonlinear second class systems, based on the simplified BFT method. As a result of the gauging two models, we show that in the conversion of second class to the first class constraints the minimum number of phase space degrees of freedom for both systems is a pair of phase space coordinate. This pair for first system is a coordinate and its momentum conjugate, but Poisson structure of embedded non-relativistic particle on hyper...

  17. Linear models for multivariate, time series, and spatial data

    CERN Document Server

    Christensen, Ronald

    1991-01-01

    This is a companion volume to Plane Answers to Complex Questions: The Theory 0/ Linear Models. It consists of six additional chapters written in the same spirit as the last six chapters of the earlier book. Brief introductions are given to topics related to linear model theory. No attempt is made to give a comprehensive treatment of the topics. Such an effort would be futile. Each chapter is on a topic so broad that an in depth discussion would require a book-Iength treatment. People need to impose structure on the world in order to understand it. There is a limit to the number of unrelated facts that anyone can remem­ ber. If ideas can be put within a broad, sophisticatedly simple structure, not only are they easier to remember but often new insights become avail­ able. In fact, sophisticatedly simple models of the world may be the only ones that work. I have often heard Arnold Zellner say that, to the best of his knowledge, this is true in econometrics. The process of modeling is fundamental to understand...

  18. Linear mixed models a practical guide using statistical software

    CERN Document Server

    West, Brady T; Galecki, Andrzej T

    2014-01-01

    Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM.New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggest...

  19. Monthly pan evaporation modeling using linear genetic programming

    Science.gov (United States)

    Guven, Aytac; Kisi, Ozgur

    2013-10-01

    This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.

  20. Centering, Scale Indeterminacy, and Differential Item Functioning Detection in Hierarchical Generalized Linear and Generalized Linear Mixed Models

    Science.gov (United States)

    Cheong, Yuk Fai; Kamata, Akihito

    2013-01-01

    In this article, we discuss and illustrate two centering and anchoring options available in differential item functioning (DIF) detection studies based on the hierarchical generalized linear and generalized linear mixed modeling frameworks. We compared and contrasted the assumptions of the two options, and examined the properties of their DIF…

  1. Modeling Lateral and Longitudinal Control of Human Drivers with Multiple Linear Regression Models

    OpenAIRE

    Lenk, Jan; M, Claus

    2011-01-01

    In this paper, we describe results to model lateral and longitudinal control behavior of drivers with simple linear multiple regression models. This approach fits into the Bayesian Programming (BP) approach (Bessi

  2. A model for the spectral dependence of optically induced absorption in amorphous silicon

    Science.gov (United States)

    Lawandy, N. M.

    1990-01-01

    A model based on transitions from localized band tail states to states above the mobility edge is used to explain the broad band induced absorptions observed in recent pump-probe experiments. The model gives the observed decrease of absorption with frequency at subband gap photo energies and high carrier densities (of about 10 to the 20th/cu cm). At lower carrier densities, the absorption has a maximun which is sensitive to the spatial extent of the band tail states.

  3. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    Science.gov (United States)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  4. Tangent linear analysis of the Mosaic land surface model

    Science.gov (United States)

    Yang, Runhua; Cohn, Stephen E.; da Silva, Arlindo; Joiner, Joanna; Houser, Paul R.

    2003-01-01

    In this study, a tangent linear eigenanalysis is applied to the Mosaic land surface model (LSM) [, 1992] to examine the impacts of the model internal dynamics and physics on the land surface state variability. The tangent linear model (TLM) of the Mosaic LSM is derived numerically for two sets of basic states and two tile types of land condition, grass and bare soil. An additional TLM, for the soil moisture subsystem of this LSM, is derived analytically for the same cases to obtain explicit expressions for the eigenvalues. An eigenvalue of the TLM determines a characteristic timescale, and the corresponding eigenvector, or mode, describes a particular coupling among the perturbed states. The results show that (1) errors in initial conditions tend to decay with e-folding times given by the characteristic timescales; (2) the LSM exhibits a wide range of internal variability, modes mainly representing surface temperature and surface moisture perturbations exhibit short timescales, whereas modes mainly representing deep soil temperature perturbations and moisture transfer throughout the entire soil column exhibit much longer timescales; (3) the modes of soil moisture tend to be weakly coupled with other perturbed variables, and the mode representing the deep soil temperature perturbation has a consistent e-folding time across the experiments; (4) the key parameters include soil moisture, soil layer depth, and soil hydraulic parameters. The results agree qualitatively with previous findings. However, tangent linear eigenanalysis provides a new approach to the quantitative substantiation of those findings. Also, it reveals the evolution and the coupling of the perturbed land states that are useful for the development of land surface data assimilation schemes. One must be careful when generalizing the quantitative results since they are obtained with respect to two specific basic states and two simple land conditions. Also, the methodology employed here does not apply

  5. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  6. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  7. Automatic differentiation, tangent linear models, and (pseudo) adjoints

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, C.H.

    1993-12-31

    This paper provides a brief introduction to automatic differentiation and relates it to the tangent linear model and adjoint approaches commonly used in meteorology. After a brief review of the forward and reverse mode of automatic differentiation, the ADIFOR automatic differentiation tool is introduced, and initial results of a sensitivity-enhanced version of the MM5 PSU/NCAR mesoscale weather model are presented. We also present a novel approach to the computation of gradients that uses a reverse mode approach at the time loop level and a forward mode approach at every time step. The resulting ``pseudoadjoint`` shares the characteristic of an adjoint code that the ratio of gradient to function evaluation does not depend on the number of independent variables. In contrast to a true adjoint approach, however, the nonlinearity of the model plays no role in the complexity of the derivative code.

  8. Kalman filtering for linear wave equations with model error

    CERN Document Server

    Lee, Wonjung; Stuart, Andrew

    2011-01-01

    Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data is aquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. Numerical results are presented which corroborate the theory, and also to propose a computational approach which overcomes the inconsistency in the presence of mode...

  9. A reflectance spectra model of heavy metal stressed leaves: advances in the PROSPECT model adding specific absorption coefficients of heavy metal ion

    International Nuclear Information System (INIS)

    This article aims to investigate the reflectance model of heavy metal copper stressed crop. Forty-six groups of copper-treated leaves were measured during a laboratory experiment in order to obtain the leaf biochemical component information and its corresponding scanning electron microscopy image. Then a new reflectance spectral model was developed on the basis of the classical broadleaf radiative transfer model-PROSPECT. Comparing with the PROSPECT model, new models mainly consider adding specific absorption coefficient of copper ion. The scattering process is described by a refractive index (n) and a leaf structure parameter (N). Absorption is modeled using pigment concentration, water content, dry matter content, copper ion contamination and the corresponding specific spectral absorption coefficients (Kab, Kw, Kd, KCu). Thus, reflectance spectral modeling is an inversion procedure to calculate the above 6 parameters accurately. To validate the model 16 leaves were tested in laboratory experiment. This experiment showed that the inversion values of KCu had very strong agreement with the published absorption spectra of Cupric Chloride. The linear regression analysis between simulated and measured reflectance provides a correlation coefficient of 0.93 and a root mean squares of 0.067

  10. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes the d...... distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  11. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...... matrix has zero-mean iid Gaussian entries. Our derivation is based upon 1) deriving expectation-propagation-(EP)-like equations from the stationary-points equations of the Gibbs free energy under first- and second-moment constraints and 2) applying additive free convolution in free probability theory to...

  12. Linear electron stability for a bi-kinetic sheath model.

    OpenAIRE

    Badsi, Mehdi

    2016-01-01

    In this paper we establish the linear stability of an electron equilibrium for an electrostatic and collisionless plasma in interaction with a wall. The equilibrium we focus on, is called in plasma physics, a Debye sheath. Specifically, we consider a two species (ions and electrons) Vlasov-Poisson-Ampère system in a bounded and one dimensional geometry. The interaction between the plasma and the wall is modeled by original boundary conditions : On the one hand, ions are absorbed by the wall w...

  13. A linear model for flow over complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.

  14. Relativistic calculations of giant resonances with non-linear models

    International Nuclear Information System (INIS)

    The nuclear isoscalar and isovector giant resonances in stable and unstable nuclei are studied in the framework of the relativistic random phase approximation. The meson propagators with non-linear self-interactions are constructed in momentum space from the second variation of the action. It is found that relativistic models with relatively large values of the compression modulus can nevertheless describe satisfactorily the breathing mode energy in 208Pb. Results for isovector monopole resonances in closed shell nuclei, and for the giant dipole resonance in Argon isotopes are also discussed

  15. Investigation of $\\eta'N$ system using linear sigma model

    CERN Document Server

    Sakai, Shuntaro

    2016-01-01

    In this paper, we investigate the $\\eta'N$ system using the three-flavor linear sigma model including the effect of the flavor SU(3) symmetry breaking. The $\\eta'N$ bound state is found also in the case including the flavor symmetry braking and the coupling with the $\\eta N$ and $\\pi N$ channels. The $\\eta'N$ interaction becomes more attractive with the inclusion of the flavor symmetry breaking which causes the mixing between the singlet and octet scalar mesons. The existence of such a bound state would have some impact on the $\\eta'$-nucleus system, which is of interest from the theoretical and experimental viewpoint.

  16. Diffusion and wave behaviour in linear Voigt model

    CERN Document Server

    De Angelis, Monica

    2012-01-01

    A boundary value problem related to a third- order parabolic equation with a small parameter is analized. This equation models the one-dimensional evolution of many dissipative media as viscoelastic fluids or solids, viscous gases, superconducting materials, incompressible and electrically conducting fluids. Moreover, the third-order parabolic operator regularizes various non linear second order wave equations. In this paper, the hyperbolic and parabolic behaviour of the solution is estimated by means of slow time and fast time. As consequence, a rigorous asymptotic approximation for the solution is established.

  17. Adaptive quasi-likelihood estimate in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    CHEN Xia; CHEN Xiru

    2005-01-01

    This paper gives a thorough theoretical treatment on the adaptive quasilikelihood estimate of the parameters in the generalized linear models. The unknown covariance matrix of the response variable is estimated by the sample. It is shown that the adaptive estimator defined in this paper is asymptotically most efficient in the sense that it is asymptotic normal, and the covariance matrix of the limit distribution coincides with the one for the quasi-likelihood estimator for the case that the covariance matrix of the response variable is completely known.

  18. The Pentaquarks in the Linear Molecular Heptaquark Model

    CERN Document Server

    Bicudo, P J A

    2004-01-01

    In this talk, multiquarks are studied microscopically in a standard quark model. In pure ground-state pentaquarks the short-range interaction is computed and it is shown to be repulsive. An additional quark-antiquark pair is then considered, and this is suggested to produce linear molecular system, with a narrow decay width. The quarks assemble in three hadronic clusters, and the central hadron provides stability. The possible crypto-heptaquark hadrons with exotic pentaquark flavours, with strange, charmed and bottomed quarks, are predicted.

  19. Markov-random-field modeling for linear seismic tomography.

    Science.gov (United States)

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences. PMID:25375468

  20. Wannier-Stark ladder in the linear absorption of a random system with scale-free disorder

    NARCIS (Netherlands)

    Diaz, E.; Dominguez-Adame, F.; Kosevich, Yu. A.; Malyshev, V. A.

    2006-01-01

    We study numerically the linear optical response of a quasiparticle moving on a one-dimensional disordered lattice in the presence of a linear bias. The random site potential is assumed to be long-range correlated with a power-law spectral density S(k)similar to 1/k(alpha), alpha > 0. This type of c

  1. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  2. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period

  3. Low-energy limit of the extended Linear Sigma Model

    CERN Document Server

    Divotgey, Florian; Giacosa, Francesco; Rischke, Dirk H

    2016-01-01

    The extended Linear Sigma Model (eLSM) is an effective hadronic model based on the linear realization of chiral symmetry $SU(N_f)_L \\times SU(N_f)_R$, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the eLSM for $N_f=2$ flavors by integrating out all fields except for the pions, the (pseudo-)Nambu--Goldstone bosons of chiral symmetry breaking. We only keep terms entering at tree level and up to fourth order in powers of derivatives of the pion fields. Up to this order, there are four low-energy coupling constants in the resulting low-energy effective action. We show that the latter is formally identical to Chiral Perturbation Theory (ChPT), after choosing a representative for the coset space generated by chiral symmetry breaking and expanding up to fourth order in powers of derivatives of the pion fields. Two of the low-energy coupling constants of the eLSM are uniquely determined by a fit to hadron masses and decay widths. We find that thei...

  4. Linear versus quadratic portfolio optimization model with transaction cost

    Science.gov (United States)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  5. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  6. Pointwise Description for the Linearized Fokker-Planck-Boltzmann Model

    Science.gov (United States)

    Wu, Kung-Chien

    2015-09-01

    In this paper, we study the pointwise (in the space variable) behavior of the linearized Fokker-Planck-Boltzmann model for nonsmooth initial perturbations. The result reveals both the fluid and kinetic aspects of this model. The fluid-like waves are constructed as the long-wave expansion in the spectrum of the Fourier modes for the space variable, and it has polynomial time decay rate. We design a Picard-type iteration for constructing the increasingly regular kinetic-like waves, which are carried by the transport equations and have exponential time decay rate. The Mixture Lemma plays an important role in constructing the kinetic-like waves, this lemma was originally introduced by Liu-Yu (Commun Pure Appl Math 57:1543-1608, 2004) for Boltzmann equation, but the Fokker-Planck term in this paper creates some technical difficulties.

  7. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F4(-20), E6(-14), E7(-5) and E8(+8), respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  8. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  9. Linear and nonlinear growth models using mixed modeling: An application on European import volumes

    OpenAIRE

    MARKIANIDOU, Paresa; WEEREN, Arie

    2011-01-01

    The purpose of this paper is the identification of appropriate growth models for trade volumes as a policy tool. The methodology utilized is based on linear and nonlinear mixed modeling. The specifications tested are the linear, the exponential, the logarithmic and the logistic model. The focus lies on the imports of Europe from the world. We present two pilot cases corresponding to different levels of aggregation in terms of country groups and product categories, thus emphasizing the differe...

  10. Wave scattering through classically chaotic cavities in the presence of absorption: A maximum-entropy model

    Indian Academy of Sciences (India)

    Pier A Mello; Eugene Kogan

    2002-02-01

    We present a maximum-entropy model for the transport of waves through a classically chaotic cavity in the presence of absorption. The entropy of the -matrix statistical distribution is maximized, with the constraint $\\langle {\\rm Tr}SS^{\\dagger}\\rangle = n: n$ is the dimensionality of , and 0 ≤ ≤ 1. For = 1 the -matrix distribution concentrates on the unitarity sphere and we have no absorption; for = 0 the distribution becomes a delta function at the origin and we have complete absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential – Rayleigh statistics – even for = 1. For ≫ 1 Rayleigh statistics is attained even with no absorption; here we extend the study to < 1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. The success of the model for strong absorption is understood in the light of a central-limit theorem. For weak absorption, some important physical constraint is missing in the construction of the model.

  11. Selection between Linear Factor Models and Latent Profile Models Using Conditional Covariances

    Science.gov (United States)

    Halpin, Peter F.; Maraun, Michael D.

    2010-01-01

    A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…

  12. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set of...

  13. An Empirical Investigation into a Subsidiary Absorptive Capacity Process Model

    DEFF Research Database (Denmark)

    Schleimer, Stephanie; Pedersen, Torben

    2011-01-01

    literature. However, it remains to be surrounded by considerable ambiguity in terms of its actual meaning, the drivers influencing its evolution, and its impact on related outcomes. In this study, we take on some of the major criticisms and recent suggestions from the absorptive capacity literatu...

  14. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  15. Linear model applied to the evaluation of pharmaceutical stability data

    Directory of Open Access Journals (Sweden)

    Renato Cesar Souza

    2013-09-01

    Full Text Available The expiry date on the packaging of a product gives the consumer the confidence that the product will retain its identity, content, quality and purity throughout the period of validity of the drug. The definition of this term in the pharmaceutical industry is based on stability data obtained during the product registration. By the above, this work aims to apply the linear regression according to the guideline ICH Q1E, 2003, to evaluate some aspects of a product undergoing in a registration phase in Brazil. With this propose, the evaluation was realized with the development center of a multinational company in Brazil, with samples of three different batches composed by two active principal ingredients in two different packages. Based on the preliminary results obtained, it was possible to observe the difference of degradation tendency of the product in two different packages and the relationship between the variables studied, added knowledge so new models of linear equations can be applied and developed for other products.

  16. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed. PMID:26609741

  17. Feedbacks, climate sensitivity, and the limits of linear models

    Science.gov (United States)

    Rugenstein, M.; Knutti, R.

    2015-12-01

    The term "feedback" is used ubiquitously in climate research, but implies varied meanings in different contexts. From a specific process that locally affects a quantity, to a formal framework that attempts to determine a global response to a forcing, researchers use this term to separate, simplify, and quantify parts of the complex Earth system. We combine large (>120 member) ensemble GCM and EMIC step forcing simulations over a broad range of forcing levels with a historical and educational perspective to organize existing ideas around feedbacks and linear forcing-feedback models. With a new method overcoming internal variability and initial condition problems we quantify the non-constancy of the climate feedback parameter. Our results suggest a strong state- and forcing-dependency of feedbacks, which is not considered appropriately in many studies. A non-constant feedback factor likely explains some of the differences in estimates of equilibrium climate sensitivity from different methods and types of data. We discuss implications for the definition of the forcing term and its various adjustments. Clarifying the value and applicability of the linear forcing feedback framework and a better quantification of feedbacks on various timescales and spatial scales remains a high priority in order to better understand past and predict future changes in the climate system.

  18. Fourth standard model family neutrino at future linear colliders

    International Nuclear Information System (INIS)

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν4) and Majorana (N1) neutrinos at future linear colliders with √(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e+e-→ν4ν4(N1N1) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν4(N1)→μ±W±) provide cleanest signature at e+e- colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at √(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures

  19. Pharmacokinetic model for the absorption of subcutaneously injected soluble insulin and monomeric insulin analogues.

    Science.gov (United States)

    Trajanoski, Z; Wach, P; Kotanko, P; Ott, A; Skraba, F

    1993-09-01

    A subcutaneous insulin absorption model is presented for parameter estimation from the time course of plasma insulin. Modifications of a published model were made for the absorption of soluble insulin and monomeric insulin analogues in the range of therapeutic concentrations and volumes. The modified diffusion-dissociation model with distributed parameters was approximated by a multiple-compartment model. Subcutaneous absorption of soluble insulin and monomeric insulin analogues with various volumes, concentrations, and injection depths was simulated. The model for soluble insulin exhibits volume, concentration, and injection depth dependent absorption, as experimentally observed. It was found that binding of soluble insulin in the subcutaneous tissue is negligible for U-40 and U-100 strengths. The absorption of identical doses (10 U) of soluble U-40 insulin was markedly faster (T-50% = 159.4 min) than the absorption of U-100 (T-50% = 196.2 min). According to the simulation results, the absorption rate of monomeric analogues is not dependent on concentration. No significant chances of the absorption rate could also be observed by varying volume and injection depth of the monomeric analogues. PMID:8218870

  20. A linear geospatial streamflow modeling system for data sparse environments

    Science.gov (United States)

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  1. Modeling and optimization of CO2 capture processes by chemical absorption

    International Nuclear Information System (INIS)

    CO2 capture processes by chemical absorption lead to a large energy penalty on efficiency of coal-fired power plants, establishing one of the main bottleneck to its industrial deployment. The objective of this thesis is the development and validation of a global methodology, allowing the precise evaluation of the potential of a given amine capture process. Characteristic phenomena of chemical absorption have been thoroughly studied and represented with state-of-the-art models. The e-UNIQUAC model has been used to describe vapor-liquid and chemical equilibria of electrolyte solutions and the model parameters have been identified for four solvents. A rate-based formulation has been adopted for the representation of chemically enhanced heat and mass transfer in columns. The absorption and stripping models have been successfully validated against experimental data from an industrial and a laboratory pilot plants. The influence of the numerous phenomena has been investigated in order to highlight the most limiting ones. A methodology has been proposed to evaluate the total energy penalty resulting from the implementation of a capture process on an advanced supercritical coal-fired power plant, including thermal and electric consumptions. Then, the simulation and process evaluation environments have been coupled with a non-linear optimization algorithm in order to find optimal operating and design parameters with respect to energetic and economic performances. This methodology has been applied to optimize five process flow schemes operating with an monoethanolamine aqueous solution at 30% by weight: the conventional flow scheme and four process modifications. The performance comparison showed that process modifications using a heat pump effect give the best gains. The use of technical-economic analysis as an evaluation criterion of a process performance, coupled with a optimization algorithm, has proved its capability to find values for the numerous operating and design

  2. Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic

    DEFF Research Database (Denmark)

    Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe

    2008-01-01

    Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise to a...... combination with Rosolini and Simpson's computational adequacy result, can be used to prove consequences of parametricity for Lily. In particular, we show that one can solve domain equations in Lily up to ground contextual equivalence....

  3. More about vacuum structure of Linear Sigma Model

    CERN Document Server

    Sato, Tomomi

    2013-01-01

    In the study of critical phenomena of QCD, a linear sigma model (LSM) is often analyzed as it shares many properties with QCD. Motivated by recent arguments on effective restoration of the U_A(1) symmetry around the critical temperature, the renormalization group flow of U(2)$\\otimes$U(2) LSM with a small violation of the U_A(1) symmetry is examined in the traditional epsilon expansion in threedimensions. With a mass-dependent renormalization scheme, we investigate the attractive basin flowing into the O(4) LSM in the parameter space and its dependence on the size of the U_A(1) breaking. Special emphasis is put on how the decoupling of the heavier degrees of freedom occur as approaching the O(4) LSM.

  4. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACA

    2011-12-01

    Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

  5. Optimization in generalized linear models: A case study

    Science.gov (United States)

    Silva, Eliana Costa e.; Correia, Aldina; Lopes, Isabel Cristina

    2016-06-01

    The maximum likelihood method is usually chosen to estimate the regression parameters of Generalized Linear Models (GLM) and also for hypothesis testing and goodness of fit tests. The classical method for estimating GLM parameters is the Fisher scores. In this work we propose to compute the estimates of the parameters with two alternative methods: a derivative-based optimization method, namely the BFGS method which is one of the most popular of the quasi-Newton algorithms, and the PSwarm derivative-free optimization method that combines features of a pattern search optimization method with a global Particle Swarm scheme. As a case study we use a dataset of biological parameters (phytoplankton) and chemical and environmental parameters of the water column of a Portuguese reservoir. The results show that, for this dataset, BFGS and PSwarm methods provided a better fit, than Fisher scores method, and can be good alternatives for finding the estimates for the parameters of a GLM.

  6. Human visual modeling and image deconvolution by linear filtering

    International Nuclear Information System (INIS)

    The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented

  7. dglars: An R Package to Estimate Sparse Generalized Linear Models

    Directory of Open Access Journals (Sweden)

    Luigi Augugliaro

    2014-09-01

    Full Text Available dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013, developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004. The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013, and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012. The latter algorithm, as shown here, is significantly faster than the predictor-corrector algorithm. For comparison purposes, we have implemented both algorithms.

  8. Adaptive Unified Biased Estimators of Parameters in Linear Model

    Institute of Scientific and Technical Information of China (English)

    Hu Yang; Li-xing Zhu

    2004-01-01

    To tackle multi collinearity or ill-conditioned design matrices in linear models,adaptive biased estimators such as the time-honored Stein estimator,the ridge and the principal component estimators have been studied intensively.To study when a biased estimator uniformly outperforms the least squares estimator,some suficient conditions are proposed in the literature.In this paper,we propose a unified framework to formulate a class of adaptive biased estimators.This class includes all existing biased estimators and some new ones.A suficient condition for outperforming the least squares estimator is proposed.In terms of selecting parameters in the condition,we can obtain all double-type conditions in the literature.

  9. Baryon and meson phenomenology in the extended Linear Sigma Model

    International Nuclear Information System (INIS)

    The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.

  10. Statistical Inference for Partially Linear Regression Models with Measurement Errors

    Institute of Scientific and Technical Information of China (English)

    Jinhong YOU; Qinfeng XU; Bin ZHOU

    2008-01-01

    In this paper, the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors. Firstly,a bandwidth selection procedure is proposed, which is a combination of the difference-based technique and GCV method. Secondly, a goodness-of-fit test procedure is proposed,which is an extension of the generalized likelihood technique. Thirdly, a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares. Same as "Variable selection via nonconcave penalized like-lihood and its oracle properties" (J. Amer. Statist. Assoc., 96, 2001, 1348-1360), it is shown that the resulting estimator has an oracle property with a proper choice of regu-larization parameters and penalty function. Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.

  11. On relationship between coefficients of the different dimensions linear regression models

    OpenAIRE

    Panov, V. G.

    2011-01-01

    Considered two linear regression models of a given response variable with some predictor set and its subset. It is shown that there is a linear relationship between coefficients of these models. Some corollaries of the proved theorem is considered.

  12. K factor estimation in distribution transformers using linear regression models

    Directory of Open Access Journals (Sweden)

    Juan Miguel Astorga Gómez

    2016-06-01

    Full Text Available Background: Due to massive incorporation of electronic equipment to distribution systems, distribution transformers are subject to operation conditions other than the design ones, because of the circulation of harmonic currents. It is necessary to quantify the effect produced by these harmonic currents to determine the capacity of the transformer to withstand these new operating conditions. The K-factor is an indicator that estimates the ability of a transformer to withstand the thermal effects caused by harmonic currents. This article presents a linear regression model to estimate the value of the K-factor, from total current harmonic content obtained with low-cost equipment.Method: Two distribution transformers that feed different loads are studied variables, current total harmonic distortion factor K are recorded, and the regression model that best fits the data field is determined. To select the regression model the coefficient of determination R2 and the Akaike Information Criterion (AIC are used. With the selected model, the K-factor is estimated to actual operating conditions.Results: Once determined the model it was found that for both agricultural cargo and industrial mining, present harmonic content (THDi exceeds the values that these transformers can drive (average of 12.54% and minimum 8,90% in the case of agriculture and average value of 18.53% and a minimum of 6.80%, for industrial mining case.Conclusions: When estimating the K factor using polynomial models it was determined that studied transformers can not withstand the current total harmonic distortion of their current loads. The appropriate K factor for studied transformer should be 4; this allows transformers support the current total harmonic distortion of their respective loads.

  13. Simulation of non-linear coregionalization models by FFTMA

    Science.gov (United States)

    Liang, Min; Marcotte, Denis; Shamsipour, Pejman

    2016-04-01

    A fast and efficient method to simulate multivariate fields with non-linear models of coregionalization (N-LMC) is described. The method generalizes FFTMA to the multivariate simulation of the N-LMC with symmetric cross-covariances, hence the name GFFTMA. It allows us for example to use an exponential model as the direct covariance for the main variable, a Cauchy model for the secondary variable and a K-Bessel model for the cross-covariance. Each covariance and cross-covariance are Fast Fourier Transformed (FFT) to get the discrete spectral densities. Then the spectral matrix is eigen-decomposed at each frequency separately to provide the square root matrix and to enforce positive-definiteness in cases where small negative eigenvalues are found. Finally the simulated spectrum is obtained as multiplication of the root matrix and the white noise coefficients. The method is particularly fast for covariances having derivatives at the origin and/or for covariances with long range. Hence, two-variables' 2D fields of 100 million pixels with all-Gaussian or all-cubic covariances and cross-covariance are both simulated in less than 200 s. The CPU-time increases only as N log(N) (N, the number of points to simulate). Additional realizations are obtained at a low marginal cost as the eigen-decomposition step needs to be done only once for the first realization. The main limitation of the approach is its rather stringent memory requirement. Synthetic examples illustrate the simulations of N-LMC with two and three variables for different combinations of the seven available models. It shows that the theoretical models are all well reproduced. An illustrative case-study on overburden thickness simulation is provided where the secondary information consists of a latent Gaussian variable identifying the geological domain.

  14. Comparison of linear and non-linear soft tissue models with post-operative CT scan in maxillofacial surgery

    OpenAIRE

    Chabanas, Matthieu; Payan, Yohan; Marecaux, Christophe; Swider, Pascal; Boutault, Franck

    2004-01-01

    A Finite Element model of the face soft tissue is proposed to simulate the morphological outcomes of maxillofacial surgery. Three modelling options are implemented: a linear elastic model with small and large deformation hypothesis, and an hyperelastic Mooney-Rivlin model. An evaluation procedure based on a qualitative and quantitative comparison of the simulations with a post-operative CT scan is detailed. It is then applied to one clinical case to evaluate the differences between the three ...

  15. The Bargain Value Model and a Comparison of Managerial Implications with the Linear Learning Model

    OpenAIRE

    John W. Keon

    1980-01-01

    A new stochastic brand choice model, the Bargain Value Model, is introduced. Using consumer panel data, the model predicts an individual household's probability of purchasing various brands as a function of the prevailing price of those brands. Based on consumer behavior constructs, the model differs sharply from the Linear Learning Model in its behavioral interpretation. This difference leads the models to have divergent managerial policy implications. After describing the Bargain Value Mode...

  16. Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai...

  17. Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material

    Institute of Scientific and Technical Information of China (English)

    Marek Pawlikowski

    2014-01-01

    The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.

  18. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  19. Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models

    CERN Document Server

    Radice, David; Kellermann, Thorsten

    2010-01-01

    We consider the evolution in full general relativity of a family of linearly unstable isolated spherical neutron stars under the effects of very small, perturbations as induced by the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits a type-I critical behaviour, thus confirming the conclusions reached by Liebling et al. [1] for rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out a more in-depth study providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation of the putative critical solution as a spherical solution with the unstable mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical solution will distinguish the set of subcritical models migrating to the stable branch of the models of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how the dynamics changes when the numerically pertu...

  20. Phenomenology of charmed mesons in the extended linear sigma model

    International Nuclear Information System (INIS)

    We study the so-called extended linear sigma model for the case of four quark flavors. This model is based on global chiral symmetry and dilatation invariance and includes, besides scalar and pseudoscalar mesons, vector and axial-vector mesons. Most of the parameters of the model have been determined in previous work by fitting properties of mesons with three quark flavors. Only three new parameters, all related to the current charm quark mass, appear when introducing charmed mesons. Surprisingly, within the accuracy expected from our approach, the masses of open charmed mesons turn out to be in quantitative agreement with experimental data. On the other hand, with the exception of J/ψ, the masses of charmonia are underpredicted by about 10%. It is remarkable that our approach correctly predicts (within errors) the mass splitting between spin-0 and spin-1 negative-parity open charm states. This indicates that, although the charm quark mass breaks chiral symmetry quite strongly explicitly, this symmetry still seems to have some influence on the properties of charmed mesons. (orig.)

  1. Preconditioning the bidomain model with almost linear complexity

    Science.gov (United States)

    Pierre, Charles

    2012-01-01

    The bidomain model is widely used in electro-cardiology to simulate spreading of excitation in the myocardium and electrocardiograms. It consists of a system of two parabolic reaction diffusion equations coupled with an ODE system. Its discretisation displays an ill-conditioned system matrix to be inverted at each time step: simulations based on the bidomain model therefore are associated with high computational costs. In this paper we propose a preconditioning for the bidomain model either for an isolated heart or in an extended framework including a coupling with the surrounding tissues (the torso). The preconditioning is based on a formulation of the discrete problem that is shown to be symmetric positive semi-definite. A block LU decomposition of the system together with a heuristic approximation (referred to as the monodomain approximation) are the key ingredients for the preconditioning definition. Numerical results are provided for two test cases: a 2D test case on a realistic slice of the thorax based on a segmented heart medical image geometry, a 3D test case involving a small cubic slab of tissue with orthotropic anisotropy. The analysis of the resulting computational cost (both in terms of CPU time and of iteration number) shows an almost linear complexity with the problem size, i.e. of type nlog α( n) (for some constant α) which is optimal complexity for such problems.

  2. Optical Absorptivity versus Molecular Composition of Model Organic Aerosol Matter

    OpenAIRE

    Rincón, Angela G.; Guzmán, Marcelo I.; Hoffmann, Michael R.; Colussi, A. J.

    2009-01-01

    Aerosol particles affect the Earth’s energy balance by absorbing and scattering radiation according to their chemical composition, size, and shape. It is generally believed that their optical properties could be deduced from the molecular composition of the complex organic matter contained in these particles, a goal pursued by many groups via high-resolution mass spectrometry, although: (1) absorptivity is associated with structural chromophores rather than with molecular formulas, (2) compos...

  3. a Linear Model for Meandering Rivers with Arbitrarily Varying Width

    Science.gov (United States)

    Frascati, A.; Lanzoni, S.

    2011-12-01

    Alluvial rivers usually exhibit quite complex planforms, characterized by a wide variety of alternating bends, that have attracted the interest of a large number of researchers. Much less attention has been paid to another striking feature observed in alluvial rivers, namely the relatively regular spatial variations attained by the channel width. Actively meandering channels, in fact, generally undergo spatial oscillations systematically correlated with channel curvature, with cross sections wider at bends than at crossings. Some other streams have been observed to exhibit irregular width variations. Conversely, rivers flowing in highly vegetated flood plains, i.e. canaliform rivers, may exhibit an opposite behavior, owing to the combined effects of bank erodibility and floodplain depositional processes which, in turn, are strictly linked to vegetation cover. Similarly to streamline curvatures induced by bends, the presence of along channel width variations may have remarkable effects on the flow field and sediment dynamics and, thereby, on the equilibrium river bed configuration. In particular, spatial distribution of channel curvature typically determines the formation of a rhythmic bar-pool pattern in the channel bed strictly associated with the development of river meanders. Channel width variations are on the contrary characterized by a sequence of narrowing, yielding a central scour, alternated to the downstream development of a widening associated with the formation of a central bar. Here we present a morphodynamic model that predict at a linear level the spatial distribution of the flow field and the equilibrium bed configuration of an alluvial river characterized by arbitrary along channel distributions of both the channel axis curvature and the channel width. The mathematical model is averaged over the depth and describes the steady, non-uniform flow and sediment transport in sinuous channels with a noncohesive bed. The governing two-dimensional equations

  4. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter;

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The...... results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  5. Experimental heat transformer monitoring based on linear modelling and statistical control process

    International Nuclear Information System (INIS)

    In this paper the Statistical Process Control (SPC) methodology is used for first time to analyse the data obtained from an Absorption Heat Transformer (AHT), the aim in here is to define if the system was operated under statistical control using a Carnot Coefficient of Performance (COP) equal to 0.7 as an established specification. Data of a 10 kW prototype Single Stage Heat Transformer (SSHT) were analysed. Carrol/water mixture was used as a working pair in the thermodynamic cycle. The operating conditions of the SSHT under steady stated conditions show an energy recovery between 352.9 and 366.0 K, while waste energy is added from 339.1 to 361.9 K. Condenser temperature shows a process under statistical control; its Process Capability Ratio (Cp) is 1.15 dimensionless, and the Actual Process Capability Index (Cpk) is 1.11 dimensionless, as well. A linear modelling technique was used to control the SSHT. Finally, the COP variation is expressed as the absorber and generator linear functions, and evaporator temperatures are shown as techniques for SSHT control. The Cpk value indicates that the Condenser process has the ability to perform the specified operation of the SSHT. - Highlights: • This paper proposes a new way to monitoring absorption heat transformer components. • Potential and actual capacity values indicate an AHT capable process. • Waste heat at evaporator makes the recover absorber temperatures tend to 92.8 °C. • Condensation process was under statistic control at 24.7 °C in normal distribution. • Analysed steady state shows variations lower than 2% in each temperature component

  6. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A. [ENEA, Unità Tecnica Fusione, Via E Fermi 45 Rome (Italy)

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  7. Linear Models Based on Noisy Data and the Frisch Scheme*

    Science.gov (United States)

    Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen; Boyd, Stephen P.

    2016-01-01

    We address the problem of identifying linear relations among variables based on noisy measurements. This is a central question in the search for structure in large data sets. Often a key assumption is that measurement errors in each variable are independent. This basic formulation has its roots in the work of Charles Spearman in 1904 and of Ragnar Frisch in the 1930s. Various topics such as errors-in-variables, factor analysis, and instrumental variables all refer to alternative viewpoints on this problem and on ways to account for the anticipated way that noise enters the data. In the present paper we begin by describing certain fundamental contributions by the founders of the field and provide alternative modern proofs to certain key results. We then go on to consider a modern viewpoint and novel numerical techniques to the problem. The central theme is expressed by the Frisch–Kalman dictum, which calls for identifying a noise contribution that allows a maximal number of simultaneous linear relations among the noise-free variables—a rank minimization problem. In the years since Frisch’s original formulation, there have been several insights, including trace minimization as a convenient heuristic to replace rank minimization. We discuss convex relaxations and theoretical bounds on the rank that, when met, provide guarantees for global optimality. A complementary point of view to this minimum-rank dictum is presented in which models are sought leading to a uniformly optimal quadratic estimation error for the error-free variables. Points of contact between these formalisms are discussed, and alternative regularization schemes are presented. PMID:27168672

  8. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua

    2010-06-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  9. Transport coefficients from SU(3) Polyakov linearmodel

    International Nuclear Information System (INIS)

    In the mean field approximation, the grand potential of SU(3) Polyakov linearmodel (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σl and σs, respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δl,s and the chiral order-parameters Mb are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T4, the specific heat cv and speed of sound squared cs2 have been determined, as well as the temperature dependence of the normalized quark number density nq/T3 and the quark number susceptibilities χq/T2 at various values of the baryon chemical potential. The electric and heat conductivity, σe and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.

  10. Convergence results for a coarsening model using global linearization

    CERN Document Server

    Gallay, T; Gallay, Th.

    2002-01-01

    We study a coarsening model describing the dynamics of interfaces in the one-dimensional Allen-Cahn equation. Given a partition of the real line into intervals of length greater than one, the model consists in constantly eliminating the shortest interval of the partition by merging it with its two neighbors. We show that the mean-field equation for the time-dependent distribution of interval lengths can be explicitly solved using a global linearization transformation. This allows us to derive rigorous results on the long-time asymptotics of the solutions. If the average length of the intervals is finite, we prove that all distributions approach a uniquely determined self-similar solution. We also obtain global stability results for the family of self-similar profiles which correspond to distributions with infinite expectation. eliminating the shortest interval of the partition by merging it with its two neighbors. We show that the mean-field equation for the time-dependent distribution of interval lengths can...

  11. Radion Dynamics and Phenomenology in the Linear Dilaton Model

    CERN Document Server

    Cox, Peter

    2012-01-01

    We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to photons. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross...

  12. Application of Linear and Non-linear Programming Model to Assess the Sustainability of Water Resources in Agricultural Patterns

    OpenAIRE

    Seyed Abolghasem Mortazavi; Reza Hezareh; Sina Ahmadi Kaliji; Samira Shayan Mehr

    2014-01-01

    Water resources sustainability is one of the major issues in the agricultural sustainability. In this study sustainability of water resources has been investigated by use of linear and non-linear models in six models based on optimal utilization of water resources in the north parts farms of Iran because of incorrect use of agricultural water resources, from 2011 to 2012. Also “gross margin per a unit of water consumption†and “employment per a unit of water consumption†are used as ind...

  13. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. PMID:26774211

  14. Prediction of the Daily Mean PM10 Concentrations Using Linear Models

    OpenAIRE

    Pires, J. C. M.; Martins, F. G.; S. I.V. Sousa; M. C.M.A. Ferraz; M. C. Pereira

    2008-01-01

    The performance of five linear models to predict the daily mean PM10 concentrations was compared. The linear models proposed were: i) multiple linear regression; ii) principal component regression; iii) independent component regression; iv) quantile regression; and v) partial least squares regression. The study was based on data from an urban site in Oporto Metropolitan Area and the analysed period was from January 2003 to December 2005. The linear models were evaluated with two datasets of d...

  15. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    Science.gov (United States)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  16. Highly Selective Hg (II Ion Detection Based on Linear Blue-Shift of the Maximum Absorption Wavelength of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Ping Wu

    2012-01-01

    Full Text Available A new method of detecting Hg (II ion with silver nanoparticles (AgNPs is developed in this contribution. When Hg (II ions were added into AgNPs solution, the solution displayed rapid color change and blue shift of the maximum absorption wavelength (Δλ, which was in proportion to the Hg (II ion concentration over the range of 2.0 × 10−7–6.0 × 10−6 mol/L, with detection limit (3σ of 6.6 × 10−9 mol/L. Under the same experimental conditions, other metal ions did not interfere. Thus, we propose a rapid, simple and highly selective method for detecting Hg (II ion.

  17. Application of Linear and Non-linear Programming Model to Assess the Sustainability of Water Resources in Agricultural Patterns

    Directory of Open Access Journals (Sweden)

    Seyed Abolghasem Mortazavi

    2014-03-01

    Full Text Available Water resources sustainability is one of the major issues in the agricultural sustainability. In this study sustainability of water resources has been investigated by use of linear and non-linear models in six models based on optimal utilization of water resources in the north parts farms of Iran because of incorrect use of agricultural water resources, from 2011 to 2012. Also “gross margin per a unit of water consumption” and “employment per a unit of water consumption” are used as indicators for assessing the sustainability of cropping patterns. The results show that cropping pattern of fractional goal programming (FGP model has been near to current situation and has shown realistic conditions according to expertise and advantage of this area in cultivation of certain crops. So the FGP model has desirability in each of indicators than other five models.

  18. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    Science.gov (United States)

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, [Formula: see text] (0  conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed. PMID:27045815

  19. Penetration of laser light through biological materials - discrete models of reflection, absorption and scattering

    International Nuclear Information System (INIS)

    In this paper discrete models of absorption (DiMoScaLL) of laser light by biological materials are described. Individual models are integrated into a complex model - DiMoRAS. All the models are realized by finite automates (homogeneous structures) (Authors)

  20. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  1. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  2. Study of Electromagnetic Radiation and Specific Absorption Rate of Mobile Phones with Fractional Human Head Models via Green's Functions

    Directory of Open Access Journals (Sweden)

    Nookala S. Rao

    2011-01-01

    Full Text Available Problem statement: Electromagnetic Radiation from mobile hand set is identified as one of the side effects for increasing rate of brain tumor. Due to this reason, Mobile phone industries are attentive towards safety issues of human health. Specific Absorption Rate is one of the important parameter while modeling the radiation effect on human head. Brain material with homogeneity is treated as an equivalent model of human head. The radiation caused by antennas mounted on mobile set is assumed to be monopolar. Approach: Apart from the Specific Absorption Rate, period of exposure to radiation is an extremely important parameter while assessing the effects on brain tissue. Correlation between the amount of radiation versus spherical model of brain is a complex phenomena, addressed in various simulation models. In the present work the field distribution inside the head are modeled using Dyadic Greens Functions while describing the effect of radiation pattern. Multilayered homogeneous lossy spherical model is proposed as an equivalent to head. Results: In this paper we present the depth of penetration of radiation and its effect on brain tissue. In essence the amount of electromagnetic power absorbed by biological tissues for various exposure conditions and types of emitting sources, utilizing a detailed model of the human head. Conclusion: Bio-heat equation is used to predict heat distribution inside the brain when exposed to radiation. The medium is assumed to be homogeneous, isotropic, linear, non dispersive and stationary. A critical evaluation of the method is discussed.

  3. Detonation wave problems : modeling, numerical simulations and linear stability

    OpenAIRE

    Carvalho, Filipe; Soares, A. J.

    2012-01-01

    Traveling waves arising in detonation physics are described by the reactive Euler equations obtained in the fluid dynamical limit of the Boltzmann equation for a binary reactive mixture. The hydrodynamic linear stability of the detonation wave solution is investigated with a normal mode analysis. Numerical simulations are performed for both the detonation wave solution and its linear stability.

  4. Amplitude Relations in Non-linear Sigma Model

    CERN Document Server

    Chen, Gang

    2013-01-01

    In this paper, we investigate tree-level scattering amplitude relations in $U(N)$ non-linear sigma model. We use Calay parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Calay parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limit of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy $U(1)$-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total $2m$-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.

  5. Amplitude relations in non-linear sigma model

    Science.gov (United States)

    Chen, Gang; Du, Yi-Jian

    2014-01-01

    In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.

  6. Complex dynamics in the Oregonator model with linear delayed feedback

    Science.gov (United States)

    Sriram, K.; Bernard, S.

    2008-06-01

    The Belousov-Zhabotinsky (BZ) reaction can display a rich dynamics when a delayed feedback is applied. We used the Oregonator model of the oscillating BZ reaction to explore the dynamics brought about by a linear delayed feedback. The time-delayed feedback can generate a succession of complex dynamics: period-doubling bifurcation route to chaos; amplitude death; fat, wrinkled, fractal, and broken tori; and mixed-mode oscillations. We observed that this dynamics arises due to a delay-driven transition, or toggling of the system between large and small amplitude oscillations, through a canard bifurcation. We used a combination of numerical bifurcation continuation techniques and other numerical methods to explore the dynamics in the strength of feedback-delay space. We observed that the period-doubling and quasiperiodic route to chaos span a low-dimensional subspace, perhaps due to the trapping of the trajectories in the small amplitude regime near the canard; and the trapped chaotic trajectories get ejected from the small amplitude regime due to a crowding effect to generate chaotic-excitable spikes. We also qualitatively explained the observed dynamics by projecting a three-dimensional phase portrait of the delayed dynamics on the two-dimensional nullclines. This is the first instance in which it is shown that the interaction of delay and canard can bring about complex dynamics.

  7. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  8. Sampled-data models for linear and nonlinear systems

    CERN Document Server

    Yuz, Juan I

    2014-01-01

    Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: ·      the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; ·      although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and ·      the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...

  9. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...... using the auto-correlation function and cumulated periodogram. The proposed model which includes air-infiltration shows a significant improvement compared to previously proposed linear models. The model has subsequently been used in applications for provision of power system services, e.g. by providing...

  10. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    Science.gov (United States)

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  11. Modelling of the X-ray broad absorption features in Narrow-Line Seyfert 1s

    CERN Document Server

    Porquet, D; Dumont, A M

    2000-01-01

    We investigate the origin of the broad absorption features detected near 1-1.4 keV in several Narrow Line Seyfert 1 galaxies, by modelling the absorbing medium with various physical parameters, using the ionization code PEGAS. The observed properties of the X-ray absorption features can be reproduced by taking into account the peculiar soft X-ray excess which is well fitted by a blackbody plus an underlying power law. We equally stress that the emission coming from the absorbing medium (related to the covering factor) has a strong influence on the resulting X-ray spectrum, in particular on the apparent position and depth of the absorption features. A non-solar iron abundance may be required to explain the observed deep absorption. We also investigate the influence of an additional collisional ionization process (hybrid case) on the predicted absorption features.

  12. Modelling of the X-ray broad absorption features in Narrow-Line Seyfert 1s

    Science.gov (United States)

    Porquet, Delphine; Mouchet, Martine; Dumont Anne-Marie

    2000-09-01

    We investigate the origin of the broad absorption features detected near 1-1.4 keV in several Narrow-Line Seyfert 1 galaxies, by modelling the absorbing medium with various physical parameters, using the ionization code PEGAS. The observed properties of the X-ray absorption features can be reproduced by taking into account the peculiar soft X-ray excess which is well fitted by a blackbody plus an underlying power law. We equally stress that the emission coming from the absorbing medium (related to the covering factor) has a strong influence on the resulting X-ray spectrum, in particular on the apparent position and depth of the absorption features. A non-solar iron abundance may be required to explain the observed deep absorption. We also investigate the influence of an additional collisional ionization process ("hybrid case") on the predicted absorption features.

  13. Dynamic linear response of atoms in plasmas and photo-absorption cross-section in the dipole approximation

    Science.gov (United States)

    Caizergues, C.; Blenski, T.; Piron, R.

    2016-03-01

    We report results on the self-consistent linear response theory of quantum average-atoms in plasmas. The approach is based on the two first orders of the cluster expansion of the plasma susceptibility. A change of variable is applied, which allows us to handle the diverging free-free transitions contribution in the self-consistent induced electron density and potential. The method is first tested on the case of rare gas isolated neutral atoms. A test of the Ehrenfest-type sum rule is then performed in a case of an actual average-atom in a plasma. At frequencies much higher than the plasma frequency, the sum rule seems to be fulfilled within the accuracy of the numerical methods. Close to the plasma frequency, the method seems not to account for the cold-plasma dielectric function renormalization in the sum rule, which was correctly reproduced in the case of the Thomas-Fermi-Bloch self-consistent linear response. This suggests the need for a better accounting for the outgoing waves in the asymptotic boundary conditions.

  14. Simulation Model for Dynamic Operation of Double-Effect Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Ahmed Mojahid Sid Ahmed Mohammed Salih

    2014-07-01

    Full Text Available The development in the field of refrigeration and air conditioning systems driven by absorption cycles acquired a considerable importance recently. For commercial absorption chillers, an essential challenge for creating chiller model certainly is the shortage of components technical specifications. These kinds of specifications are usually proprietary for chillers producers. In this paper, a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations is presented. The chiller studied is Lithium bromide-water with capacity of 1250 RT (Refrigeration Tons. The governing equations of the dynamic operation of the chiller are developed. From available design information, the values of the overall heat transfer coefficients multiplied by the surface area are computed. The dynamic operation of the absorption chiller is simulated to study the performance of the system. The model is able to provide essential details of the temperature, concentration, and flow rate at each state point in the chiller.

  15. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    Science.gov (United States)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  16. Evolution of linear absorption and nonlinear optical properties in V-shaped ruthenium(II)-based chromophores.

    Science.gov (United States)

    Coe, Benjamin J; Foxon, Simon P; Harper, Elizabeth C; Helliwell, Madeleine; Raftery, James; Swanson, Catherine A; Brunschwig, Bruce S; Clays, Koen; Franz, Edith; Garín, Javier; Orduna, Jesús; Horton, Peter N; Hursthouse, Michael B

    2010-02-10

    In this article, we describe a series of complexes with electron-rich cis-{Ru(II)(NH(3))(4)}(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845-4859). They have been isolated as their PF(6)(-) salts and characterized by using various techniques including (1)H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities beta have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) and pi --> pi* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant beta(0) responses as high as ca. 600 x 10(-30) esu. These pseudo-C(2v) chromophores show two substantial components of the beta tensor, beta(zzz) and beta(zyy), although the relative significance of these varies with the physical method applied. According to HRS, beta(zzz) dominates in all cases, whereas the Stark analyses indicate that beta(zyy) is dominant in the shorter chromophores, but beta(zzz) and beta(zyy) are similar for the extended species. In contrast, finite field calculations predict that beta(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand pi-systems are extended. Such unusual

  17. Cyclic Linear Random Process As A Mathematical Model Of Cyclic Signals

    Directory of Open Access Journals (Sweden)

    Lupenko Sergiy

    2015-12-01

    Full Text Available In this study the cyclic linear random process is defined, that combines the properties of linear random process and cyclic random process. This expands the possibility describing cyclic signals and processes within the framework of linear random processes theory and generalizes their known mathematical model as a linear periodic random process. The conditions for the kernel are given and the probabilistic characteristics of generated process of linear random process in order to be a cyclic random process. The advantages of the cyclic linear random process are presented. It can be used as the mathematical model of the cyclic stochastic signals and processes in various fields of science and technology.

  18. Structural, thermal, linear and nonlinear optical studies of an organic optical limiter based on reverse saturable absorption

    Science.gov (United States)

    Menezes, Anthoni Praveen; Raghavendra, S.; Jayarama, A.; Sarveshwara, H. P.; Dharmaprakash, S. M.

    2016-09-01

    A new derivative of chalcone, 3-(4-bromophenyl)-1-(pyridin-4-yl) prop-2-en-1-one (4BP4AP), crystallizing in centrosymmetric structure has been synthesized using the Claisen-Schmidt condensation reaction method. The FTIR and FT-Raman spectral studies were carried out on 4BP4AP for structural conformation. The single crystals were grown using slow evaporation solution growth technique. The single crystal XRD of the crystal shows that the crystal system of 4BP4AP is triclinic with space group P-1. Scanning electron microscope images enunciate the surface smoothness and the two dimensional growth mechanisms in the crystal. The crystal is transparent in the entire visible region as indicated by the UV-VIS-NIR spectrum. The thermal stability and phase transition of the compound was studied by thermogravimetric and differential scanning calorimetric analysis and found to be stable up to 200 °C. By performing the open aperture z-scan experiment, nonlinear absorption and optical limiting behavior of the crystal were studied. The crystal can be used for optoelectronic application due to its excellent photo-physical properties.

  19. Design and Implementation Model for Linearization Sensor Characteristic by FPAA

    Directory of Open Access Journals (Sweden)

    Alaa Abdul Hussein Salman

    2015-11-01

    Full Text Available Linearization sensors characteristics becomes very interest field for researchers due to the importance in enhance the system performance, measurement accuracy, system design simplicity (hardware and software, reduce system cost, ..etc. in this paper, two approaches has been introduced in order to linearize the sensor characteristics; first is signal condition circuit based on lock up table (LUT which this method performed for linearize NTC sensor characteristic. Second is ratiometric measurement equation which this method performed for linearize LVDT sensor characteristic. The proposed methods has been simulated by MATLAB, and then implemented by using Anadigm AN221E04 Field Programmable Analog Array (FPAA development kit which several experiments performed in order to improve the performance of these approaches.

  20. ANALISYS OF GLOBAL FDI AND GDP – LINEAR REGRESSION MODEL

    OpenAIRE

    Ahmad Subagyo

    2016-01-01

    The aim of this study was to examine the relationship theoretically global Foreign Direct Investments (FDI) to the global GDP of all countries in the world. This study emphasizes the relationship between global GDP and global FDI in all countries in the world, whether in theory has a coherent nature with theoretical expectations. Multiple linear regression analysis applied in this study. According to the results of linear  regression test the evolution of global FDI in terms of changes i...

  1. On the SO2 Problem in Thermal Power Plants. 1. Absorption processes modeling

    Directory of Open Access Journals (Sweden)

    Chr. Boyadjiev,

    2015-10-01

    Full Text Available A theoretical analysis, of the processes for gas purification from low SO2 concentration in the thermal power plants, is presented. A new approach, for qualitative analysis (convection-diffusion type of model and quantitative description (average concentration model of the absorption processes in column apparatuses, is proposed. The theoretical analysis of the physical absorption, chemical absorption and absorption with two-phase absorbent, is shown. The presented theoretical analysis of the methods and apparatuses for waste gases purification from SО2, using two-phase absorbent (CaCO3 suspension, shows, that the process is physical absorption practically and the mass transfer resistances in the gas and liquid phases are 44% and 56% respectively. In these conditions a new patent is proposed, where the process optimization is realized in two-zone column, where the upper zone is physical absorption in gas-liquid drops system and the lower zone is physical absorption in liquid-gas bubbles system. The chemical reaction takes place in the column tank.

  2. A NON-LINEAR NUMERICAL MODEL FOR STRATIFIED TSUNAMI WAVES AND ITS APPLICATION

    OpenAIRE

    Monzur Alam Imteaz; Fumihiko Imamura

    2001-01-01

    A non-linear numerical model is developed for the computation of water level and discharge for the propagation of a unidirectional two-layered tsunami wave. Four governing equations, two for each layer, are derived from Euler’s equations of motion and continuity, assuming a long wave approximation, negligible friction and no interfacial mixing. A numerical model is developed using a staggered Leap-Frog scheme. The developed non- linear model is compared with an existing validated linear model...

  3. Models of reduced-noise, probabilistic linear amplifiers

    Science.gov (United States)

    Combes, Joshua; Walk, Nathan; Lund, A. P.; Ralph, T. C.; Caves, Carlton M.

    2016-05-01

    We construct an amplifier that interpolates between a nondeterministic, immaculate linear amplifier and a deterministic, ideal linear amplifier and beyond to nonideal linear amplifiers. The construction involves cascading an immaculate linear amplifier that has amplitude gain g1 with a (possibly) nonideal linear amplifier that has gain g2. With respect to normally ordered moments, the device has output noise μ2(G2-1 ) where G =g1g2 is the overall amplitude gain and μ2 is a noise parameter. When μ2≥1 , our devices realize ideal (μ2=1 ) and nonideal (μ2>1 ) linear amplifiers. When 0 ≤μ2devices work effectively only over a restricted region of phase space and with some subunity success probability p✓. We investigate the performance of our μ2 amplifiers in terms of a gain-corrected probability-fidelity product and the ratio of input to output signal-to-noise ratios corrected for success probability.

  4. Statistical Modeling and Analysis of Repeated Measures, using the Linear Mixed Effects Model.

    OpenAIRE

    Østgård, Eirin Tangen

    2011-01-01

    Our main objective for this thesis is to present and discuss the linear mixed effects model and, in particular, the different possible covariance structures for the random effects and the residuals. The linear mixed effects model is widely used in biology and medical research.We use data from a diet intervention study where the aim was to investigate the difference between a diet rich in carbohydrates and a diet rich in fat and protein. Data from $32$ participants were available. A series of ...

  5. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. PMID:22425566

  6. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    OpenAIRE

    Grajeda, LM; Ivanescu, A; Saito, M; Crainiceanu, C; Jaganath, D; Gilman, RH; Crabtree, JE; Kelleher, D; Cabrera, L.; Cama, V; Checkley, W

    2016-01-01

    Background Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and accelerati...

  7. In silico modelling of mass transfer & absorption in the human gut

    OpenAIRE

    Moxon, T.E.; Gouseti, O; Bakalis, S.

    2016-01-01

    An in silico model has been developed to investigate the digestion and absorption of starch and glucose in the small intestine. The main question we are aiming to address is the relative effect of gastric empting time and luminal viscosity on the rate of glucose absorption. The results indicate that all factors have a significant effect on the amount of glucose absorbed. For low luminal viscosities (e.g. lower than 0.1 Pas) the rate of absorption is controlled by the gastric emptying time. Fo...

  8. Modelling and data validation for the energy analysis of absorption refrigeration systems

    OpenAIRE

    Martínez Maradiaga, David Estéfano

    2013-01-01

    Data validation and reconciliation techniques have been extensively used in the process industry to improve the data accuracy. These techniques exploit the redundancy in the measurements in order to obtain a set of adjusted measurements that satisfy the plant model. Nevertheless, not many applications deal with closed cycles with complex connectivity and recycle loops, as in absorption refrigeration cycles. This thesis proposes a methodology for the steady-state data validation of absorption ...

  9. Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.

    Science.gov (United States)

    Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.

    2015-12-01

    Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (nnon-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.

  10. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Science.gov (United States)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  11. A model for absorption of solar radiation by mineral dust within liquid cloud drops

    Science.gov (United States)

    Zhang, Qing; Thompson, Jonathan E.

    2015-10-01

    Models of light scattering and absorption that consider the effect of insoluble inclusions present within liquid cloud droplets may assume the inclusion occupies random locations within the droplet. In certain cases, external forces can lead to certain orientations or alignments that are strongly preferred. Within this modeling study, we consider one such case in which an insoluble mineral dust inclusion (ρ=2.6 g/cm3) is placed within a liquid water drop (ρ=1.0 g/cm3). Such an instance mimics mineral dust aerosols being incorporated within cloud drops in Earth's atmosphere. Model results suggest super-micron mineral dust settles to the bottom of cloud droplets. However, Brownian motion largely randomizes the position of sub-micron mineral dust within the droplet. The inherent organization of the particles that result has important consequences for light absorption by mineral dust when present within a cloud drop. Modeled results suggest light absorption efficiency may be enhanced by as much as 4-6 fold for an isolated droplet experiencing direct solar illumination at solar zenith angles of diffuse rather than direct solar irradiation. In such cases, light absorption efficiency is decreased through including super-micron dust within water droplets. The study has important implications for modeling the absorption of sunlight by mineral dust aerosol within liquid water clouds. The angle of incidence dependence also reveals that experimental measurement of light absorption for cases in which particle alignment occurs may not always accurately reflect atmospheric absorption of sunlight. Therefore, care must be taken to extrapolate measurement data to climate models.

  12. A linear model of the Fast Breeder Test Reactor Plant

    International Nuclear Information System (INIS)

    A linear analysis of the Fast Breeder Test Reactor System, consisting of the reactor, intermediate heat exchanger, steam generator and connected piping is presented. The problem of variable boundaries in the steam generator is reduced to a problem of fixed boundaries by dividing the steam generator into six zones. Based upon this, one can obtain the transfer function of any input/output combination. Starting with the time domain non-linear partial differential equations, the problem is reduced to a system of linear equations in complex variables, which can be solved basically by Gaussian elimination process. The results of this work will be useful in determining a suitable control scheme for waterflow in the steam generator and the control parameters. (auth.)

  13. ADMISSIBILITY OF LINEAR ESTIMATORS IN A GROWTH CURVE MODEL SUBJECT TO AN INCOMPLETE ELLIPSOIDAL RESTRICTION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article considers the admissibility of the linear estimators for the regression coefficients in the growth curve model subject to an incomplete ellipsoidal restriction.The necessary and sufficient conditions for linear estimators to be admissible in classes of the homogeneous and non-homogeneous linear estimators, respectively, are obtained under the quadratic loss function. They are generalizations of some existing results in literature.

  14. Modelling the score of the sport match via dynamic generalized linear models

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr; Hejdušek, M.

    Lisabon: ISI International Statistical Institute, 2007, s. 1-4. [ISI 2007. Session of the International Statistical Institute /56./. Lisboa (PT), 22.08.2007-29.08.2007] R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : generalized linear model * Poisson distribution * sport statistics Subject RIV: BB - Applied Statistics, Operational Research

  15. An efficient piecewise linear model for predicting activity of caspase-3 inhibitors

    OpenAIRE

    Alireza Foroumadi; Eslam Pourbasheer; Sholeh Dehghani; Khadijeh Sadatnezhad; Loghman Firoozpour; Abbas Shafiee; Massoud Amanlou

    2012-01-01

    Abstract Background and purpose of the study Multimodal distribution of descriptors makes it more difficult to fit a single global model to model the entire data set in quantitative structure activity relationship (QSAR) studies. Methods The linear (Multiple linear regression; MLR), non-linear (Artificial neural network; ANN), and an approach based on “Extended Classifier System in Function approximation” (XCSF) were applied herein to model the biological activity of 658 caspase-3 inhibitors....

  16. Longitudinal Data Analyses Using Linear Mixed Models in SPSS: Concepts, Procedures and Illustrations

    OpenAIRE

    Daniel T. L. Shek; Ma, Cecilia M. S.

    2011-01-01

    Although different methods are available for the analyses of longitudinal data, analyses based on generalized linear models (GLM) are criticized as violating the assumption of independence of observations. Alternatively, linear mixed models (LMM) are commonly used to understand changes in human behavior over time. In this paper, the basic concepts surrounding LMM (or hierarchical linear models) are outlined. Although SPSS is a statistical analyses package commonly used by researchers, documen...

  17. A mathematical model of peritoneal fluid absorption in tissue.

    Science.gov (United States)

    Stachowska-Pietka, Joanna; Waniewski, Jacek; Flessner, Michael F; Lindholm, Bengt

    2005-01-01

    To investigate how water flow and interstitial pressure change in tissue during a peritoneal dwell with isotonic fluid, we developed a mathematical model of water transport in the tissue. Transport through muscle alone (M) and through muscle with intact skin (MS) were considered for the rat abdominal wall, using various parameters for muscle and skin. Based on the concept of distributed capillary and lymphatic systems, two main transport barriers were taken into account. capillary membrane and interstitium. We calculated the tissue hydrostatic pressure profiles and compared them with experimental data. The theoretic steady-state pressure distribution for model M is in good agreement with the experimental data. In model MS, the theoretic distribution diverges from the data in the subcutaneous layer. The transient times for fluid flow in the tissue for both model simulations are rather long (40 minutes in model M and 95 minutes in model MS) and depend on intraperitoneal pressure. The fraction of fluid absorbed from the tissue by the lymphatics increases with time from 10% to 97% of fluid flow from the peritoneal cavity. PMID:16686276

  18. The Simplest Complete Model of Choice Response Time: Linear Ballistic Accumulation

    Science.gov (United States)

    Brown, Scott D.; Heathcote, Andrew

    2008-01-01

    We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. The LBA is simpler than other models of choice response time, with independent accumulators that race towards a common response threshold. Activity in the accumulators increases in a linear and deterministic manner. The simplicity of the model allows…

  19. Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics

    DEFF Research Database (Denmark)

    Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    We present a procedure for reducing the number of continuous states of discrete-time linear switched systems, such that the reduced system has the same behavior as the original system for a subset of switching sequences. The proposed method is expected to be useful for abstraction based control s...

  20. Partial exact controllability for the linear thermo-viscoelastic model

    Directory of Open Access Journals (Sweden)

    Wei-Jiu Liu

    1998-06-01

    Full Text Available The problem of partial exact controllability for linear thermo-viscoelasticity is considered. Using classical multiplier techniques, a boundary observability inequality is established under smallness restrictions on coupling parameters and relaxation functions. Then, via the Hilbert Uniqueness method, the result of partial exact controllability is obtained with Dirichlet boundary controls acting on a part of the boundary of a domain.

  1. Effects of changing the amount of absorption in a computer model of Queen's Hall, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2006-01-01

    recording, and a final auralization is created by mixing all individual channel auralizations together. This study evaluates the objective and subjective effects of using four and thirteen channel IRs in an ODEON model of Queen’s Hall, a hall located in Copenhagen with variable absorption. Analyses of the...... results reveal great differences in the objective parameters of reverberation time (T30), clarity index (C50), sound pressure level (SPL) and lateral energy fraction (LF80) for each channel’s impulse response across the room absorption variations. Subjective studies were conducted to see the effect on...... auralizations of changing source orientation in various configurations of the room with different amounts of absorption. The results show that subjects could more easily identify source orientation with an increasing number of recording channels in the auralizations, but a significant effect with absorption was...

  2. Experimental measurement and modeling of the rate of absorption of carbon dioxide by aqueous ammonia

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J.M.; Fosbøl, Philip Loldrup;

    2011-01-01

    In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304K for 1 to 10wt% aqueous ammonia with loadings varying from 0 to 0.8mol......CO2/molNH3. The absorption rate in 30wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314K with loadings varying from 0 to 0.4 as comparison.It was found that at 304K, the rate of absorption of carbon dioxide by 10wt% NH3 solvent was comparable to the rates for 30wt% MEA at 294 and 314K (a.......The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings.The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict...

  3. Enhancement Factors in Ozone Absorption Based on the Surface Renewal Model and its Application

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the Danckwerts surface renewal model, a simple explicit expression of theenhancement factor in ozone absorption with a first order ozone self-decomposition and parallel secondorder ozonation reactions has been derived. The results are compared with our previous work based onthe film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancementfactor model in this paper.

  4. Comparison of a Reaction Front Model and a Finite Difference Model for the Simulation of Solid Absorption Process

    Institute of Scientific and Technical Information of China (English)

    ZikangWu; ArneJakobsen; 等

    1994-01-01

    The pupose of this paper is to investigate the validity of a lumped model,i.e.a reaction front model,for the simulation of solid absorption process.A distributed model is developed for solid absorption process,and a dimensionless RF number is suggested to predict the qualitative shape of reaction degree profile.The simulation results from the reaction front model are compared with those from the distributed model solved by a finite difference scheme,and it is shown that they are in good agreement in almost all cased.no matter whether there is reaction front or not.

  5. Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.

    2012-04-01

    This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

  6. In silico modelling of mass transfer & absorption in the human gut

    Science.gov (United States)

    Moxon, T.E.; Gouseti, O.; Bakalis, S.

    2016-01-01

    An in silico model has been developed to investigate the digestion and absorption of starch and glucose in the small intestine. The main question we are aiming to address is the relative effect of gastric empting time and luminal viscosity on the rate of glucose absorption. The results indicate that all factors have a significant effect on the amount of glucose absorbed. For low luminal viscosities (e.g. lower than 0.1 Pas) the rate of absorption is controlled by the gastric emptying time. For viscosities higher than 0.1 Pas a 10 fold increase in viscosity can result in a 4 fold decrease of glucose absorbed. Our model, with the simplifications used to develop it, indicate that for high viscosity luminal phases, gastric emptying rate is not the controlling mechanism for nutrient availability. Developing a mechanistic model could help elucidate the rate limiting steps that control the digestion process. PMID:27143811

  7. Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds

    International Nuclear Information System (INIS)

    The utility of sulfur K-edge X-ray absorption spectroscopy for the determination and quantification of sulfur forms in petroleum asphaltenes has been investigated. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were obtained for a selected group of model compounds and for several petroleum asphaltene samples. For the model compounds the sulfur XANES was found to vary widely from compound to compound and to provide a fingerprint for the form of sulfur involved. The use of third derivatives of the spectra enabled discrimination of mixtures of sulfidic and thiophenic model compounds and allowed approximate quantification of the amount of each component in the mixtures and in the asphaltene samples. These results represent the first demonstration that nonvolatile sulfur forms can be distinguished and approximately quantified by direct measurement

  8. Non-linear nuclear engineering models as genetic programming application

    International Nuclear Information System (INIS)

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

  9. Generation companies decision-making modeling by linear control theory

    International Nuclear Information System (INIS)

    This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)

  10. Strong consistency of M-estimates in linear models

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Lincheng(赵林城)

    2002-01-01

    The strong consistency of M-estimates of the regression coefficients in a linear modelunder some mild conditions is established, which is an essential improvement over the relevantresults in the literature on the moment condition. Especially, in some important circumstances, onlyE ψ(ek) q for some q>1 is needed, where ψ(eκ) is some score function of random error.

  11. Linear models based on noisy data and the Frisch scheme

    OpenAIRE

    Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen; Boyd, Stephen P.

    2013-01-01

    We address the problem of identifying linear relations among variables based on noisy measurements. This is a central question in the search for structure in large data sets. Often a key assumption is that measurement errors in each variable are independent. This basic formulation has its roots in the work of Charles Spearman in 1904 and of Ragnar Frisch in the 1930s. Various topics such as errors-in-variables, factor analysis, and instrumental variables all refer to alternative viewpoints on...

  12. The Linear Regression Model for setting up the Futures Price

    OpenAIRE

    Mario G.R. PAGLIACC; Janusz GRABARA; Madalina Gabriela ANGHEL; Cristina SACALA; Vasile Lucian ANTON

    2015-01-01

    To realize a linear regression, we have considered the computation method for futures prices that, according to economic culture, is based on the rate of the supporting asset and internal/external interest ratios, and also on the time period until maturity. The market price of a futures instrument is influenced by the demand and supply, that is the number of units traded within a certain period.

  13. Behavioral modeling and linearization of RF power amplifiers

    CERN Document Server

    Wood, John

    2014-01-01

    Wireless voice and data communications have made great improvements, with connectivity now virtually ubiquitous. Users are demanding essentially perfect transmission and reception of voice and data. The infrastructure that supports this wide connectivity and nearly error-free delivery of information is complex, costly, and continually being improved.This resource describes the mathematical methods and practical implementations of linearization techniques for RF power amplifiers for mobile communications. This includes a review of RF power amplifier design for high efficiency operation. Readers

  14. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    Science.gov (United States)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  15. Comparison of Approximation Capabilities of Neural Networks and Linear Models

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra

    Seňa : Pont, 2010 - (Pardubská, D.), s. 31-36 ISBN 978-80-970179-3-4. [ITAT 2010. Conference on Theory and Practice of Information Technologies. Smrekovica (SK), 21.09.2010-25.09.2010] R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural network approximation * linear approximation Subject RIV: IN - Informatics, Computer Science

  16. A Comparison of Alternative Estimators of Linearly Aggregated Macro Models

    Directory of Open Access Journals (Sweden)

    Fikri Akdeniz

    2012-07-01

    Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.

  17. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance

    Science.gov (United States)

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-01

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, {ρ\\text{c}}(ω )\\propto |ω -{μ\\text{F}}{{|}r} (0  energy {μ\\text{F}} . At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r  =  0 to r={{r}\\text{c}}law scalings from the well-known \\sqrt{T} or \\sqrt{V} form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  18. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements

    Science.gov (United States)

    Schwab, Hans-Martin; Beckmann, Martin F.; Schmitz, Georg

    2016-01-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669

  19. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  20. Model Identification for Industrial Coal Fired Boiler Based on Linear Parameter Varying Method

    Directory of Open Access Journals (Sweden)

    S.Vijayalakshmi

    2013-10-01

    Full Text Available System or process identification is a mathematical modeling of systems (processes from test or experimental data. Process models obtained from identification process can be used for process simulation, analysis, design of safety systems and control systems for the process. This paper presents the Linear Parameter Varying (LPV modeling of 210MW Industrial Coal Fired Boiler which is commonlyused in thermal power plants. LPV model is the interpolation of linear transfer function models at different operating conditions. The LPV model is adopted by considering the fact that the Industrial Coal Fired Boiler in the thermal power plant has several operating conditions due to the fluctuations in steam flow based on demands. By assuming that at every operating condition, there are changes in parameters, the LPV model is suitable for covering all operating conditions. The Industrial Coal Fired Boiler is modeled using the mass and energy balance equation in MATLAB / SIMULINK. Data needed foridentification of transfer function models is taken from first principle model of the process with sampling time of 1 second. LPV model is obtained for selected physical quantities of the process. At first, linear transfer function models are identified using the data at every operation conditions using Prediction error method and then the Linear Parameter Varying model is obtained by interpolating the linear models of different operating conditions using weighting functions. The simulation result of Linear Parameter Varying model shows reasonable fit with the First principle model response.

  1. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  2. Finite element analysis and modeling of water absorption by date pits during a soaking process

    OpenAIRE

    Waezi-Zadeh, Motahareh; Ghazanfari, Ahmad; Noorbakhsh, Shahin

    2010-01-01

    Date pits for feed preparation or oil extraction are soaked in water to soften before milling or extrusion. Knowledge of water absorption by the date pits helps in better managing the soaking duration. In this research, the process of water absorption by date pits was modeled and analyzed using Fick’s second law of diffusion, finite element approach, and Peleg model. The moisture content of the pits reached to its saturation level of 41.5% (wet basis) after 10 d. The estimated coefficient of ...

  3. MCMC for non-linear state space models using ensembles of latent sequences

    OpenAIRE

    Shestopaloff, Alexander Y.; Neal, Radford M.

    2013-01-01

    Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble ...

  4. Utility of low-order linear nuclear-power-plant models in plant diagnostics and control

    International Nuclear Information System (INIS)

    A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented

  5. Model Identification for Industrial Coal Fired Boiler Based on Linear Parameter Varying Method

    OpenAIRE

    S. Vijayalakshmi; D.Manamalli; T.Narayani

    2013-01-01

    System or process identification is a mathematical modeling of systems (processes) from test or experimental data. Process models obtained from identification process can be used for process simulation, analysis, design of safety systems and control systems for the process. This paper presents the Linear Parameter Varying (LPV) modeling of 210MW Industrial Coal Fired Boiler which is commonlyused in thermal power plants. LPV model is the interpolation of linear transfer function models at diff...

  6. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    International Nuclear Information System (INIS)

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the semiconductor material in standard solar cells. A computer model was developed to determine the thermal absorption factor of crystalline silicon solar cells. It was found that for a standard untextured solar cell with a silver back contact a relatively large amount of long wavelength irradiance is lost by reflection resulting in an absorption factor of only 74%. The model was then used to investigate ways to increase this absorption factor. One way is absorbing long wavelength irradiance in a second absorber behind a semi-transparent solar cell. According to the model this will increase the total absorption factor to 87%. The second way is to absorb irradiance in the back contact of the solar cell by using rough interfaces in combination with a non-standard metal as back contact. Theoretically the absorption factor can then be increased to 85%

  7. A comprehensive model of a miniature-scale linear compressor for electronics cooling

    OpenAIRE

    Bradshaw, Craig R; Groll, Eckhard A.; Garimella, S V

    2011-01-01

    A comprehensive model of a miniature-scale linear compressor for electronics cooling is presented. Linear compressors are appealing for refrigeration applications in electronics cooling. A small number of moving components translate to less theoretical frictional losses and the possibility that this technology could scale to smaller physical sizes better than conventional compressors. The model developed here incorporates all of the major components of the linear compressor including dynamics...

  8. Non-linear modelling of beat Cepheids: Resonant and non-resonant models

    CERN Document Server

    Smolec, R

    2010-01-01

    The phenomenon of double-periodic Cepheid pulsation is still poorly understood. Recently we rediscussed the problem of modelling the double-periodic pulsation with non-linear hydrocodes. We showed that the published non-resonant double-mode models are incorrect, because they exclude the negative buoyancy effects. Aims. We continue our efforts to verify whether the Kuhfuss one-equation convection model with negative buoyancy included can reproduce the double-periodic Cepheid pulsation. Methods. Using the direct time integration hydrocode, which implements the Kuhfuss convection model, we search for stable double-periodic Cepheid models. We search for models pulsating in both fundamental and first overtone modes (F+1O), as well as in the two lowest order overtones (1O+2O). In the latter case, we focus on reproducing double-overtone Cepheids of the Large Magellanic Cloud (LMC). Results. We have found full amplitude non-linear beat Cepheid models of both types, F+1O and 1O+2O. In the case of F+1O models, the beat...

  9. Generalized linear models for categorical and continuous limited dependent variables

    CERN Document Server

    Smithson, Michael

    2013-01-01

    Introduction and OverviewThe Nature of Limited Dependent VariablesOverview of GLMsEstimation Methods and Model EvaluationOrganization of This BookDiscrete VariablesBinary VariablesLogistic RegressionThe Binomial GLMEstimation Methods and IssuesAnalyses in R and StataExercisesNominal Polytomous VariablesMultinomial Logit ModelConditional Logit and Choice ModelsMultinomial Processing Tree ModelsEstimation Methods and Model EvaluationAnalyses in R and StataExercisesOrdinal Categorical VariablesModeling Ordinal Variables: Common Practice versus Best PracticeOrdinal Model AlternativesCumulative Mod

  10. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  11. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Science.gov (United States)

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  12. Measurements of the effective thermal neutron absorption cross-section in multi-grain models

    International Nuclear Information System (INIS)

    The effective macroscopic absorption cross-section Σaeff of thermal neutrons in a grained medium differs from the corresponding cross-section Σahom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co3O4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)

  13. Thermodynamic Modeling of an Ammonia-Water Absorption System Associated with a Microturbine

    Directory of Open Access Journals (Sweden)

    Edson Bazzo

    2009-03-01

    Full Text Available Thermodynamic modeling and Second Law analysis of a small-scale cogeneration system consisting of a 5 refrigerant ton absorption chiller connected by a thermosyphon heat exchanger to a 28 kWe natural gas microturbine are presented. The proposed configuration changes the heat source of the absorption chiller, replacing the original natural gas burning system. A computational algorithm was programmed to analyze the global efficiency of the combined cooling and power plant and the coefficient of performance of the absorption chiller. The results show the consistency of the proposed model and a good performance of the cogeneration system. The thermal efficiency of the combined cooling and power plant is approximately 41%, which represents a 67% increase relative to a single natural-gas microturbine.

  14. Finite element analysis and modeling of water absorption by date pits during a soaking process.

    Science.gov (United States)

    Waezi-Zadeh, Motahareh; Ghazanfari, Ahmad; Noorbakhsh, Shahin

    2010-07-01

    Date pits for feed preparation or oil extraction are soaked in water to soften before milling or extrusion. Knowledge of water absorption by the date pits helps in better managing the soaking duration. In this research, the process of water absorption by date pits was modeled and analyzed using Fick's second law of diffusion, finite element approach, and Peleg model. The moisture content of the pits reached to its saturation level of 41.5% (wet basis) after 10 d. The estimated coefficient of diffusion was 9.89x10(-12) m(2)/s. The finite element model with a proposed ellipsoid geometry for a single date pit and the analytical model fitted better to the experimental data with R(2) of 0.98. The former model slightly overestimated the moisture content of the pits during the initial stages of the soaking and the latter model generally underestimated this variable through the entire stages of soaking process. PMID:20593512

  15. Littlest Higgs model and pair production at international linear collider

    Indian Academy of Sciences (India)

    P Poulose

    2007-11-01

    Among the viable alternatives to the standard Higgs mechanism is the recently proposed Little Higgs model. The advantage here is that the model has an elementary light neutral scalar particle, which arises dynamically as against its ad hoc introduction in the standard model. The model also avoids hierarchy problem. We have investigated the pair production at ILC to study the littlest Higgs model using different observables. Specifically, polarization fraction of boson is expected to be measured very accurately at ILC. We use this to put limit on the scale parameter, , in the model.

  16. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  17. Non-linear coupled CNN models for multiscale image analysis

    OpenAIRE

    Corinto, Fernando; Biey, Mario; Gilli, Marco

    2006-01-01

    A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs,for approximating a large class of nonlinear isotropic and/or anisotropic PDEs. The global dynamics of spacediscrete polynomial CNN models is analyzed and compared with the dynamic behavior of the corresponding space-continuous PDE models. It is shown that in the isotropic case th...

  18. Optimal Scaling of Interaction Effects in Generalized Linear Models

    NARCIS (Netherlands)

    J.M. van Rosmalen (Joost); A.J. Koning (Alex); P.J.F. Groenen (Patrick)

    2007-01-01

    textabstractMultiplicative interaction models, such as Goodman's RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are only suitable for data sets with two or three predictor variables. Here, we discuss an op

  19. Mixed structured and unstructured uncertainty modeling method with application to Linear Tape-Open drives

    OpenAIRE

    Wang, Longhao

    2012-01-01

    Starting from multiple frequency domain measurements, this paper presents a procedure to formulate a dynamic model of a servo actuator that consists of a nominal model and an allowable model perturbation in the form of a parametric and unstructured uncertainty. A separation between parametric and unstructured uncertainty is achieved by first estimating low order linear parameter models via frequency domain curve fitting followed by a linear Principle Component Analysis (PCA) to bound the para...

  20. Characterization of a non linear fractional model of electrode-tissue impedance for neuronal stimulation

    OpenAIRE

    Kolbl, FLorian; Sabatier, Jocelyn; N'Kaoua, Gilles; Naudet, Frédéric; Faggiani, Emilie; Benazzouz, Abdelhamid; Renaud, Sylvie; Lewis, Noëlle

    2013-01-01

    International audience The design of neuro-stimulators must include a realistic model of electrode-tissue interface. Complex electrochemical phenomena associated to high levels of stimulation current give fractional and non linear behavior to this interface that simple linearized models fail to fit. This paper describes both a measurement protocol based on biphasic current-controlled solicitations and a modeling procedure relying on an original approach of multi-model, taking into account ...