WorldWideScience

Sample records for absorption model

  1. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    Science.gov (United States)

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-06

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  2. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  3. An in silico skin absorption model for fragrance materials.

    Science.gov (United States)

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  5. Two models for absorption by coloured dissolved organic matter (CDOM

    Directory of Open Access Journals (Sweden)

    Jill N. Schwarz

    2002-06-01

    Full Text Available The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440 ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440 ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 ± 0.0035, suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland. This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.

  6. An Empirical Investigation into a Subsidiary Absorptive Capacity Process Model

    DEFF Research Database (Denmark)

    Schleimer, Stephanie; Pedersen, Torben

    2011-01-01

    and empirically test a process model of absorptive capacity. The setting of our empirical study is 213 subsidiaries of multinational enterprises and the focus is on the capacity of these subsidiaries to successfully absorb best practices in marketing strategy from their headquarters. This setting allows us...... to explore the process model in its entirety, including different drivers of subsidiary absorptive capacity (organizational mechanisms and contextual drivers), the three original dimensions of absorptive capacity (recognition, assimilation, application), and related outcomes (implementation...... and internalization of the best practice). The study’s findings reveal that managers have discretion in promoting absorptive capacity through the application of specific organizational mechanism and that the impact of contextual drivers on subsidiary absorptive capacity is not direct, but mediated...

  7. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O; Feidt, M; Benelmir, R [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1998-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  8. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  9. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an act......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  10. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  11. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    Science.gov (United States)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  12. Modeling the thermal absorption factor of photovoltaic/thermal combi-panels

    International Nuclear Information System (INIS)

    Santbergen, R.; Zolingen, R.J.Ch. van

    2006-01-01

    In a photovoltaic/thermal combi-panel solar cells generate electricity while residual heat is extracted to be used for tap water heating or room heating. In such a panel the entire solar spectrum can be used in principle. Unfortunately long wavelength solar irradiance is poorly absorbed by the semiconductor material in standard solar cells. A computer model was developed to determine the thermal absorption factor of crystalline silicon solar cells. It was found that for a standard untextured solar cell with a silver back contact a relatively large amount of long wavelength irradiance is lost by reflection resulting in an absorption factor of only 74%. The model was then used to investigate ways to increase this absorption factor. One way is absorbing long wavelength irradiance in a second absorber behind a semi-transparent solar cell. According to the model this will increase the total absorption factor to 87%. The second way is to absorb irradiance in the back contact of the solar cell by using rough interfaces in combination with a non-standard metal as back contact. Theoretically the absorption factor can then be increased to 85%

  13. Simulation Model for Dynamic Operation of Double-Effect Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Ahmed Mojahid Sid Ahmed Mohammed Salih

    2014-07-01

    Full Text Available The development in the field of refrigeration and air conditioning systems driven by absorption cycles acquired a considerable importance recently. For commercial absorption chillers, an essential challenge for creating chiller model certainly is the shortage of components technical specifications. These kinds of specifications are usually proprietary for chillers producers. In this paper, a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations is presented. The chiller studied is Lithium bromide-water with capacity of 1250 RT (Refrigeration Tons. The governing equations of the dynamic operation of the chiller are developed. From available design information, the values of the overall heat transfer coefficients multiplied by the surface area are computed. The dynamic operation of the absorption chiller is simulated to study the performance of the system. The model is able to provide essential details of the temperature, concentration, and flow rate at each state point in the chiller.

  14. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  15. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    Science.gov (United States)

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  16. Different methods for modeling absorption heat transformer powered by solar pond

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kizilkan, Onder; Bezir, Nalan C.; Kalogirou, Soteris A.

    2007-01-01

    Solar ponds are a type of solar collector used for storing solar energy at temperature below 90 o C. Absorption heat transformers (AHTs) are devices used to increase the temperature of moderately warm fluid to a more useful temperature level. In this study, a theoretical modelling of an absorption heat transformer for the temperature range obtained from an experimental solar pond with dimensions 3.5 x 3.5 x 2 m is presented. The working fluid pair in the absorption heat transformer is aqueous ternary hydroxide fluid consisting of sodium, potassium and caesium hydroxides in the proportions 40:36:24 (NaOH:KOH:CsOH). Different methods such as linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5' rules, decision table and back propagation neural network (BPNN) are used for modelling the absorption heat transformer. The best results were obtained by the back propagation neural network model. A new formulation based on the BPNN is presented to determine the flow ratio (FR) and the coefficient of performance (COP) of the absorption heat transformer. The BPNN procedure is more accurate and requires significantly less computation time than the other methods

  17. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  18. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...... is avoided, and it becomes clear that opsin proteins induce blueshifts in the chromophore absorption rather than redshifts....

  19. Application of Peleg\\'s Equation to Model Water Absorption in ...

    African Journals Online (AJOL)

    Sorghum and millet water absorption characteristics at temperature range 20 to 500C were investigated using the Peleg\\'s model or equation. Two sorghum varieties and one pearl millet variety were used in this investigation. Water absorption characteristics of the grain were investigated by soaking samples of the grain in ...

  20. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  1. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  2. Models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...

  3. Modeling moisture absorption kinetics of barley grain using viscoelastic model and neural networks

    Directory of Open Access Journals (Sweden)

    M Kamali

    2015-09-01

    Full Text Available Introduction: Barley is one of the most important grains with high digestible starch making it a main source of energy in human nutrition as well as in livestock rations formulation and feeding. Starch is the main part of barley grain and it has an inverse relation with its protein. It has a digestible foodstuff of 80 to 84 percent of its dry matter content. Barley as livestock foodstuff should be processed and it is done in several ways. A customary method for processing barley in dairy farms is its size reduction by milling (Hunt, 1996. An alternative method of barley processing is steam rolling. However, because of the high cost of steam generators a method of soaking with heating has been considered as an alternative method for steam rolling (Yang et al., 2000. The rate of moisture absorption by grains during the soaking process varies considerably and depends on the size of the grain, water temperature and the length of soaking. High temperature water soaking is an ordinary way to reduce the time duration for reaching a high rate of moisture absorption during the soaking process (Kashaninejad et al., 2009. Various studies have shown that these models have adequate accuracy in analyzing drying and moisture absorption processes for most agricultural products (Abu-Ghannam and McKenna, 1997. Some researchers have modeled beans moisture absorption behavior using 14 mathematical models and found that the Weibull model had the most conformity with variations in experimental data (Shafaei and Masoumi, 2014c. Observations made by researchers indicate that the moisture absorption process in various materials encompasses a primary phase with a fast rate and a second phase with a lower rate. The second phase in moisture absorption is called the relaxation phase. The main problem with all the mathematical and experimental models is the lack of the model’s ability to evaluate the rate of moisture absorption in the secondary phase. Artificial Neural

  4. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  5. Dynamic model of an autonomous solar absorption refrigerator

    International Nuclear Information System (INIS)

    Ali Fellah; Tahar Khir; Ammar Ben Brahim

    2009-01-01

    The performance analysis of a solar absorption refrigerator operating in an autonomous way is investigated. The water/LiBr machine satisfies the air-conditioning needs along the day. The refrigerator performances were simulated regarding a dynamic model. For the solar driven absorption machines, two applications could be distinguished. The sun provides the thermal part of the useful energy. In this case, it is necessary to use additional energy as the electric one to activate the pumps, the fans and the control system. On the other hand, the sun provides all the necessary energy. Here, both photovoltaic cells and thermal concentrators should be used. The simulation in dynamic regime of the cycle requires the knowledge of the geometric characteristics of every component as the exchange areas and the internal volumes. Real characteristics of a refrigerator available at the applied thermodynamic research unit (ATRU) at the engineers' national school of Gabes are notified. The development of the thermal and matter balances in every component of the cycle has permitted to simulate in dynamic regime the performances of a solar absorption refrigerator operating with the water/LiBr couple for air-conditioning needs. The developed model could be used to perform intermittent refrigeration cycle autonomously driven. (author)

  6. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  7. FDTD modeling of solar energy absorption in silicon branched nanowires.

    Science.gov (United States)

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  8. Absorption band Q model for the earth

    International Nuclear Information System (INIS)

    Anderson, D.L.; Given, J.W.

    1982-01-01

    Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463

  9. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  10. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  11. Three-dimensional modelling of sound absorption in porous asphalt pavement for oblique incident waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Glorieux, C.

    2015-01-01

    Sound absorption of porous asphalt pavements is an important property when reducing tyre-road noise. A hybrid model has been developed to predict the sound absorption of porous roads. This model is a combination of an analytical analysis of the sound eld and a numerical approach, including both the

  12. Cheminformatics Modeling of Amine Solutions for Assessing their CO2 Absorption Properties.

    Science.gov (United States)

    Kuenemann, Melaine A; Fourches, Denis

    2017-07-01

    As stricter regulations on CO 2 emissions are adopted worldwide, identifying efficient chemical processes to capture and recycle CO 2 is of critical importance for industry. The most common process known as amine scrubbing suffers from the lack of available amine solutions capable of capturing CO 2 efficiently. Tertiary amines characterized by low heats of reaction are considered good candidates but their absorption properties can significantly differ from one analogue to another despite high structural similarity. Herein, after collecting and curating experimental data from the literature, we have built a modeling set of 41 amine structures with their absorption properties. Then we analyzed their chemical composition using molecular descriptors and non-supervised clustering. Furthermore, we developed a series of quantitative structure-property relationships (QSPR) to assess amines' CO 2 absorption properties from their structural characteristics. These models afforded reasonable prediction performances (e. g., Q 2 LOO =0.63 for CO 2 absorption amount) even though they are solely based on 2D chemical descriptors and individual machine learning techniques (random forest and neural network). Overall, we believe the chemical analysis and the series of QSPR models presented in this proof-of-concept study represent new knowledge and innovative tools that could be very useful for screening and prioritizing hypothetical amines to be synthesized and tested experimentally for their CO 2 absorption properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  14. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  15. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    Science.gov (United States)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  16. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  17. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Janine E. [National Energy Technology Lab. (NETL), Albany, OR (United States); Finn, Justin R. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2016-10-01

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology. To apply CO2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first

  18. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    Science.gov (United States)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  19. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Alskär, Oskar; Bagger, Jonatan I; Røge, Rikke M.

    2016-01-01

    The integrated glucose-insulin (IGI) model is a previously published semimechanistic model that describes plasma glucose and insulin concentrations after glucose challenges. The aim of this work was to use knowledge of physiology to improve the IGI model's description of glucose absorption and ga...... model provides a better description and improves the understanding of dynamic glucose tests involving oral glucose....... and gastric emptying after tests with varying glucose doses. The developed model's performance was compared to empirical models. To develop our model, data from oral and intravenous glucose challenges in patients with type 2 diabetes and healthy control subjects were used together with present knowledge...... glucose absorption was superior to linear absorption regardless of the gastric emptying model applied. The semiphysiological model developed performed better than previously published empirical models and allows better understanding of the mechanisms underlying glucose absorption. In conclusion, our new...

  20. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hadert Nicole

    2016-09-01

    Full Text Available Metallic implants in magnetic resonance imaging (MRI are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.

  1. Geometric model from microscopic theory for nuclear absorption

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-07-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  2. Geometric model for nuclear absorption from microscopic theory

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  3. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  4. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)

  5. DOUBLE-SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    International Nuclear Information System (INIS)

    OGDEN DM; KIRCH NW

    2007-01-01

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed

  6. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    Science.gov (United States)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  7. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  8. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  9. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    Science.gov (United States)

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  10. Measurements of the effective thermal neutron absorption cross-section in multi-grain models

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Igielski, A.; Krynicka, E.; Schneider, K.; Woznicka, U.

    2005-01-01

    The effective macroscopic absorption cross-section Σ a eff of thermal neutrons in a grained medium differs from the corresponding cross-section Σ a hom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co 3 O 4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)

  11. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  12. Absorption of beta-carotene and other carotenoids in humans and animal models : a review

    NARCIS (Netherlands)

    Vliet, T. van

    1996-01-01

    Objective: To review available information on absorption and further metabolism of different carotenoids in man and to discuss animal models and approaches in the study of carotenoid absorption and metabolism in man. Conclusions: Humans appear to absorb various carotenoids in a relatively

  13. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  14. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  15. Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam

    Science.gov (United States)

    Dupré, Patrick

    2018-01-01

    With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.

  16. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Science.gov (United States)

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Modelling and optimization of the sound absorption of wood-wool cement boards

    NARCIS (Netherlands)

    Botterman, B.; Doudart de la Grée, G.C.H.; Hornikx, M.C.J.; Yu, Q.; Brouwers, H.J.H.

    2018-01-01

    The present article aims to characterize and improve the sound absorption of wood-wool cement boards (WWCB) with varying strand widths, densities, thicknesses and applied with varying air cavity thicknesses by using impedance models. Different rigid-frame impedance models were analysed to predict

  18. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application

    DEFF Research Database (Denmark)

    Gong, M.; Zhang, Y.; Weschler, Charles J.

    2014-01-01

    A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin....... Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters...... and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation...

  19. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  20. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  1. Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

    Science.gov (United States)

    Jakubiak, Paulina; Wagner, Björn; Grimm, Hans Peter; Petrig-Schaffland, Jeannine; Schuler, Franz; Alvarez-Sánchez, Rubén

    2016-02-01

    Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling.

  2. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  3. An In Silico Knockout Model for Gastrointestinal Absorption Using a Systems Pharmacology Approach - Development and Application for Ketones.

    Directory of Open Access Journals (Sweden)

    Vittal Shivva

    Full Text Available Gastrointestinal absorption and disposition of ketones is complex. Recent work describing the pharmacokinetics (PK of d-β-hydroxybutyrate (BHB following oral ingestion of a ketone monoester ((R-3-hydroxybutyl (R-3-hydroxybutyrate found multiple input sites, nonlinear disposition and feedback on endogenous production. In the current work, a human systems pharmacology model for gastrointestinal absorption and subsequent disposition of small molecules (monocarboxylic acids with molecular weight < 200 Da was developed with an application to a ketone monoester. The systems model was developed by collating the information from the literature and knowledge gained from empirical population modelling of the clinical data. In silico knockout variants of this systems model were used to explore the mechanism of gastrointestinal absorption of ketones. The knockouts included active absorption across different regions in the gut and also a passive diffusion knockout, giving 10 gut knockouts in total. Exploration of knockout variants has suggested that there are at least three distinct regions in the gut that contribute to absorption of ketones. Passive diffusion predominates in the proximal gut and active processes contribute to the absorption of ketones in the distal gut. Low doses are predominantly absorbed from the proximal gut by passive diffusion whereas high doses are absorbed across all sites in the gut. This work has provided mechanistic insight into the absorption process of ketones, in the form of unique in silico knockouts that have potential for application with other therapeutics. Future studies on absorption process of ketones are suggested to substantiate findings in this study.

  4. A dynamic model of digestion and absorption in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, Andrzej

    2008-01-01

    The paper describes and evaluates the construction of a mathematical model to study the kinetics of digestion and absorption in growing pigs. The core of the model is based on a compartmental structure, which divides the gastro-intestinal tract into four anatomical segments: the stomach, two parts...... of the small intestine and the large intestine. Within the large intestine, a microbial sub compartment is also considered. In each of these segments, the major organic nutrients are considered: dietary protein, endogenous protein, amino acids, non-amino acid and non-protein nitrogen, lipids, fatty acids......, starch, sugars and dietary fibre. Besides a chemical description of the feed, the model further requires information about daily dry matter intake and feeding frequency....

  5. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium

    DEFF Research Database (Denmark)

    Portero, Ana; Remuñán-López, Carmen; Nielsen, Hanne Mørck

    2002-01-01

    To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used.......To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used....

  6. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    Science.gov (United States)

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it

  7. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    Science.gov (United States)

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  8. Non-isothermal effects on SO2 absorption by water droplets. I - Model development. II - Results and discussion

    Science.gov (United States)

    Reda, M.; Carmichael, G. R.

    1982-01-01

    An analytic model of SO2 absorption in a falling water droplet is developed and a simulation of SO2 washout is performed. Nonisothermic effects on drop growth, droplet physical parameters, reaction rates, and multicomponent diffusion are treated in the model. The gas-liquid interface is assumed to be at equilibrium, and interfacial resistance is negligible. Raindrops are simulated as falling from a 2 km height through an atmospheric region containing SO2. The droplets decrease in size from evaporation and cooling, and their slightly basic pH aids SO2 absorption. The simulation indicates higher SO2 absorption at higher altitudes, and desorption may occur at ground level. Isothermal effects are concluded to be significant, and quantification of effects will depend on further modelling.

  9. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    Science.gov (United States)

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  10. Managing Creativity for Absorptive Capacity: The NIH Syndrome and the Implementation of Open Innovation Business Model

    DEFF Research Database (Denmark)

    Cokpekin, Özge

    The benefits of the open innovation business model and the absorptive capacity necessary to acquire and utilize external knowledge have been discussed extensively. An emerging literature stream has identified certain intra-organizational antecedents of absorptive capacity. However how firms...... recognize potentially valuable external knowledge to be able to start the knowledge absorption process has not been discussed. This paper suggests creativity management and argues that stimulating meaningfully novel behavior positively influences the recognition ability and the communication it enhances...

  11. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    Science.gov (United States)

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  12. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  13. Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes

    Science.gov (United States)

    Rezaei-Zadeh, Mohammad; Darwish, Tamer K.

    2016-01-01

    Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…

  14. Experimental validation of a model for diffusion-controlled absorption of organic compounds in the trachea

    Energy Technology Data Exchange (ETDEWEB)

    Gerde, P. [National Inst. for Working Life, Solna (Sweden); Muggenburg, B.A.; Thornton-Manning, J.R. [and others

    1995-12-01

    Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipid membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled

  15. Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2010-08-15

    A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.

  16. Testing Disk-Wind Models with Quasar CIV 1549Å Associated Absorption Lines

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2012-01-01

    Narrow associated C IV 1549Å absorption lines (NALs) with a rest equivalent width EW =3 Å detected in z ˜ 2 radio-loud and radio-quiet quasars, (a) exhibit evidence of an origin in radiatively accelerated gas, and (b) may be closely related to broad absorption line (BAL) outflows. These NALs...... and the few BALs detected in this quasar sample obey key predictions of models of radiatively driven disk-winds in which (1) the local disk luminosity launches the wind, (2) the central UV radiation drives it outwards, and (3) the wind acceleration (i.e., terminal velocity) depends on the strength of the X...

  17. Modelling absorption and photoluminescence of TPD

    International Nuclear Information System (INIS)

    Vragovic, Igor; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C.; Gisslen, L.; Scholz, R.

    2008-01-01

    We analyse the optical spectra of N,N ' -diphenyl-N,N ' -bis(3-methyl-phenyl)-(1,1 ' -biphenyl)-4,4 ' -diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer

  18. Modeling and optimization of CO2 capture processes by chemical absorption

    International Nuclear Information System (INIS)

    Neveux, Thibaut

    2013-01-01

    CO 2 capture processes by chemical absorption lead to a large energy penalty on efficiency of coal-fired power plants, establishing one of the main bottleneck to its industrial deployment. The objective of this thesis is the development and validation of a global methodology, allowing the precise evaluation of the potential of a given amine capture process. Characteristic phenomena of chemical absorption have been thoroughly studied and represented with state-of-the-art models. The e-UNIQUAC model has been used to describe vapor-liquid and chemical equilibria of electrolyte solutions and the model parameters have been identified for four solvents. A rate-based formulation has been adopted for the representation of chemically enhanced heat and mass transfer in columns. The absorption and stripping models have been successfully validated against experimental data from an industrial and a laboratory pilot plants. The influence of the numerous phenomena has been investigated in order to highlight the most limiting ones. A methodology has been proposed to evaluate the total energy penalty resulting from the implementation of a capture process on an advanced supercritical coal-fired power plant, including thermal and electric consumptions. Then, the simulation and process evaluation environments have been coupled with a non-linear optimization algorithm in order to find optimal operating and design parameters with respect to energetic and economic performances. This methodology has been applied to optimize five process flow schemes operating with an monoethanolamine aqueous solution at 30% by weight: the conventional flow scheme and four process modifications. The performance comparison showed that process modifications using a heat pump effect give the best gains. The use of technical-economic analysis as an evaluation criterion of a process performance, coupled with a optimization algorithm, has proved its capability to find values for the numerous operating and design

  19. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller

    International Nuclear Information System (INIS)

    Zinet, Matthieu; Rulliere, Romuald; Haberschill, Philippe

    2012-01-01

    Highlights: ► Dynamic simulation of a new recirculation single-effect H 2 O/LiBr absorption chiller is developed. ► The chiller is driven by two heat sources and exclusively cooled by the ambient air. ► Heat and mass transfer in the absorber and the desorber are described according to a detailed physical model. ► Analyse of the dynamic behaviour of the chiller after sudden changes in operation. - Abstract: A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film evaporator–absorber, uses mixed recirculation and is exclusively cooled by the ambient air. Heat and mass transfer in the evaporator–absorber and in the desorber are described according to a physical model for vapour absorption based on Nusselt’s film theory. The other heat exchangers are handled using a simplified approach based on the NTU-effectiveness method. The model is then used to analyze the chiller response to a step drop of the heat recovery circuit flow rate, and to a sudden reduction of the cooling need in the conditioned space. In the latter case, a basic temperature regulation system is simulated. In both simulations, the performance of the chiller is well represented and consistent with expectations.

  20. Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches

    International Nuclear Information System (INIS)

    McMullin, Tami S.; Hanneman, William H.; Cranmer, Brian K.; Tessari, John D.; Andersen, Melvin E.

    2007-01-01

    Atrazine (ATRA) is metabolized by cytochrome P450s to the chlorinated metabolites, 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (ETHYL), 2-chloro-4-amino-6-isopropylamino-1, 3, 5-triazine (ISO), and diaminochlorotriazine (DACT). Here, we develop a set of physiologically based pharmacokinetic (PBPK) models that describe the influence of oral absorption and oxidative metabolism on the blood time course curves of individual chlorotriazines (Cl-TRIs) in rat after oral dosing of ATRA. These models first incorporated in vitro metabolic parameters to describe time course plasma concentrations of DACT, ETHYL, and ISO after dosing with each compound. Parameters from each individual model were linked together into a final composite model in order to describe the time course of all 4 Cl-TRIs after ATRA dosing. Oral administration of ISO, ETHYL and ATRA produced double peaks of the compounds in plasma time courses that were described by multiple absorption phases from gut. An adequate description of the uptake and bioavailability of absorbed ATRA also required inclusion of additional oxidative metabolic clearance of ATRA to the mono-dealkylated metabolites occurring in GI a tract compartment. These complex processes regulating tissue dosimetry of atrazine and its chlorinated metabolites likely reflect limited compound solubility in the gut from dosing with an emulsion, and sequential absorption and metabolism along the GI tract at these high oral doses

  1. Stopped pion absorption by medium and heavy nuclei in the cascade-exciton model

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1992-03-01

    A large variety of experimental data on stopped negative pion absorption by nuclei from C to Bi (energy spectra and multiplicities of n, p, d, t, 3 He and 4 He; angular correlations of two secondary particles; spectra of the energy release in the ''live'' 28 Si target on recording protons, deuterons and tritons in the energy range 40-70 MeV, 30-60 MeV and 30-50 MeV, respectively; isotope yields; momentum and angular momentum distributions of residual nuclei) are analyzed within the framework of the cascade-exciton model of nuclear reactions. Comparison is made with other up-to-date models of the process. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed. (author). 59 refs, 13 figs, 4 tabs

  2. EVALUATION OF THE STRUCTURAL FUNDS ABSORPTION RATE BY MEANS OF THE HERMIN MODEL

    Directory of Open Access Journals (Sweden)

    Opritescu Elena Madalina

    2012-07-01

    Full Text Available The main objective of this article is to highlight the main method that could quantify the impact of the structural funds on the Gross Domestic Product. I also presented the regional disparities situation and the European funds absorption rate. The HERMIN model has been designed considering the evolution of macro-variables throughout transition and pre-accession process, as well as out of the need to analyze the gradual alignment of Romania’s economic policies to those of EU. The fact that, initially, the HERMIN model was designed for the European Union’s less developed economies represented the cornerstone in choosing it, as it was the case for Romania, too. However, the quantitative evaluation must always be accompanied by a qualitative evaluation, in order to comprise factors which cannot be measured by the econometrical modeling. For this purpose, when the results of econometrical model based evaluation are used, it is important to be aware of the fact that models simplify reality, no matter the impressive mathematical calculations they employ. Also, we must not omit the fact that Romania’s major development needs and the current economic context imperatively demand a high as possible level of structural funds absorption, as well as their efficient use, meant to generate a significant impact at a national, regional and local level. One of the main instruments employed to sustain economic growth, while also reducing disparities between regions is represented by the structural funds. These funds, consisting in financial contributions of the member states, according to their level of development, are redistributed in compliance with an extremely complex regulating and procedural frame, to those EU states of regions which are fallen behind from a social and economical development perspective Nevertheless, when absorption capacity of a member state is evaluated, the used percentage from the allocated funds is not the only

  3. Modelling absorption and photoluminescence of TPD

    Energy Technology Data Exchange (ETDEWEB)

    Vragovic, Igor [Dpto. de Fisica Aplicada and Inst. Universitario de Materiales de Alicante, Universidad de Alicante, E-03080 Alicante (Spain)], E-mail: igor.vragovic@ua.es; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C. [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Germany); Gisslen, L.; Scholz, R. [Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2008-05-15

    We analyse the optical spectra of N,N{sup '}-diphenyl-N,N{sup '}-bis(3-methyl-phenyl)-(1,1{sup '}-biphenyl)-4,4{sup '}-diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer.

  4. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  5. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    Science.gov (United States)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  6. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  7. A model for analysis and design of H2O-LiBr absorption heat pumps

    International Nuclear Information System (INIS)

    Bakhtiari, Bahador; Fradette, Louis; Legros, Robert; Paris, Jean

    2011-01-01

    An experimental and simulation analysis of a laboratory single-stage H 2 O-LiBr absorption heat pump with a cooling capacity of 14 kW has been performed. Design characteristics of the machine are given and experimental results obtained from the variation of the five most influential parameters are presented. The machine performance, as described by the coefficient of performance (COP) and cooling capacity was then measured at different flow rates and temperatures of the external cool and hot water loops and for different temperatures of produced chilled water. A design and dimensioning model of H 2 O-LiBr absorption heat pumps was developed. First, the steady-state simulation results of the model were compared with experimental measurements. Close agreement between experimental and simulation results was found. Results also show that the heat pump can adequately operate over a wide range of generator input energy and chilled water temperature; the cooling water flow rate and temperature significantly affect the performance of the machine. Finally, the capability of the model is illustrated by dimensioning an absorption heat pump implemented in a Kraft process.

  8. Enhanced Water Vapor Absorption within Tropospheric Clouds: A Partial Explanation for Anomalous Absorption

    Science.gov (United States)

    Crisp, David; Zuffada, Cinzia

    1996-01-01

    Comparisons between solar flux measurements and predictions obtained from theoretical radiative transfer models indicate that most of these models underestimate the globally averaged solar energy absorbed by cloudy atmospheres by up to 25Wm&sup-2;.The origin of this anomalous absorption has not yet been established, but it has been attributed to a variety of sources including oversimplified or missing physical processes in the existing models, uncertainties in the input data, and even measurement errors. We used a sophisticated atmospheric radiative transfer model to provide improved constraints on the physical processes that contribute to the absorption of solar radiation by Earth's atmosphere. The results are described herein.

  9. A physiological toxicokinetic model for dermal absorption of waterborne pyrene by trout

    Energy Technology Data Exchange (ETDEWEB)

    Namdari, R.; Law, F.C.P. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

    1995-12-31

    A physiologically-based toxicokinetic (PB-TK) model was developed to describe the disposition of pyrene in trout following a bolus injection into the dorsal aorta. In the present study, the PB-TK model was adapted for dermal absorption of waterborne pyrene by trout. A skin compartment with transdermal flux described mathematically by the permeability-area-concentration product was added to the PB-TK model to allow prediction of pyrene concentrations in target organs and blood on the basis of exposure concentration at the skin surface. Physiologically relevant parameters e.g., organ volume, blood flow rate, and tissue/blood partitioning coefficient which were derived from the model were similar to those reported in the previous publication. The dermal PB-TK model was validated by exposing the trunk of trout (400--500 g) to stagnant water containing 24 ppm pyrene in a specially designed chamber for 4 hr, 24 hr or 48 hr. The trout were sacrificed at the conclusion of pyrene exposure and the tissues analyzed for unchanged pyrene by HPLC. In separate experiments, trout were implanted with dorsal aorta cannuli before the trunks were exposed to stagnant water containing 24 ppm pyrene in the chamber for 4 hr. At specific time intervals during and after pyrene exposure, blood samples were withdrawn through the cannula and analyzed for pyrene by HPLC. The agreement between simulated and experimentally obtained values shows that this model is an appropriate tool to predict dermal absorption of waterborne pyrene by trout.

  10. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  11. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  12. Modelling knee flexion effects on joint power absorption and adduction moment.

    Science.gov (United States)

    Nagano, Hanatsu; Tatsumi, Ichiroh; Sarashina, Eri; Sparrow, W A; Begg, Rezaul K

    2015-12-01

    Knee osteoarthritis is commonly associated with ageing and long-term walking. In this study the effects of flexing motions on knee kinetics during stance were simulated. Extended knees do not facilitate efficient loading. It was therefore, hypothesised that knee flexion would promote power absorption and negative work, while possibly reducing knee adduction moment. Three-dimensional (3D) position and ground reaction forces were collected from the right lower limb stance phase of one healthy young male subject. 3D position was sampled at 100 Hz using three Optotrak Certus (Northern Digital Inc.) motion analysis camera units, set up around an eight metre walkway. Force plates (AMTI) recorded ground reaction forces for inverse dynamics calculations. The Visual 3D (C-motion) 'Landmark' function was used to change knee joint positions to simulate three knee flexion angles during static standing. Effects of the flexion angles on joint kinetics during the stance phase were then modelled. The static modelling showed that each 2.7° increment in knee flexion angle produced 2.74°-2.76° increments in knee flexion during stance. Increased peak extension moment was 6.61 Nm per 2.7° of increased knee flexion. Knee flexion enhanced peak power absorption and negative work, while decreasing adduction moment. Excessive knee extension impairs quadriceps' power absorption and reduces eccentric muscle activity, potentially leading to knee osteoarthritis. A more flexed knee is accompanied by reduced adduction moment. Research is required to determine the optimum knee flexion to prevent further damage to knee-joint structures affected by osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

    Directory of Open Access Journals (Sweden)

    Ghaemi Ahad

    2017-09-01

    Full Text Available In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.

  14. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  15. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    International Nuclear Information System (INIS)

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  16. Conscious and anaesthetised Göttingen mini-pigs as an in-vivo model for buccal absorption - pH-dependent absorption of metoprolol from bioadhesive tablets.

    Science.gov (United States)

    Meng-Lund, Emil; Jacobsen, Jette; Andersen, Morten B; Jespersen, Mads L; Karlsson, Jens-Jacob; Garmer, Mats; Jørgensen, Erling B; Holm, René

    2014-05-01

    The potential of buccal mucosa as a site for systemic absorption has attracted increased attention in recent years creating a need for new predictive in-vivo models. The aim of this study was to evaluate anaesthetised and conscious Göttingen mini-pigs as a model for buccal drug absorption by testing pH-dependent absorption of metoprolol from a solid dosage form. Buccal tablets buffered to pH 6.2 and pH 8.9, oral liquid and intravenous injection were tested in four conscious and anaesthetised Göttingen mini-pigs in a non-randomised cross-over study. Blood samples were collected and processed before analysis by ultra-performance liquid chromatography with tandem mass spectrometry detection. An ex-vivo flow retention model was applied to study release and retention of the bioadhesive buccal tablets. The Tmax obtained from the two buccal conscious groups (55 ± 5 and 35 ± 5 min) were significantly different to the buccal anaesthetised groups (120 ± 0 and 165 ± 15 min) for buccal tablet pH 6.2 and pH 8.9, respectively. Also, the absolute bioavailability from the anaesthetised buccal tablet pH 8.9 (20.7 ± 4.0%) had a significant increase compared to all other buccal tablet groups. In conclusion, this study showed a pH-dependent absolute bioavailability of metoprolol when administrated as bioadhesive buccal tablets to anaesthetised mini-pigs. The anaesthesia was found to delay the time to reach maximal plasma concentration of metoprolol as compared to the conscious pig model when administrated as buccal tablets.

  17. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    Science.gov (United States)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.

  18. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  19. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  20. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  1. Frenkel defect absorption on dislocations and dislocation discharge rate. Modeling determination of the absorption zone

    International Nuclear Information System (INIS)

    Mikhlin, Eh.Ya.

    1988-01-01

    A situation connected with the fact that evaluations of dislocation discharge strength which somehow or other are based on the elasticity theory in the dislocation nucleus or near it, do not lead to results complying with experimental data, is discussed. Bases of the alternative approach to this problem consisting in direct investigation into the process of Frenkel defect absorption on dislocation by its computerized simulation at the microscopic level are also presented. Methods of investigation and results are described using α dislocation in iron-alpha as an example. The concept of zones of vacancy and interstitial atom absorption on dislocation is discussed. It is shown that a spontaneous transition, performed by any of these defects near a dislocation is not always identical to absorption and usually appears to be only a part of a multistage process leading to the defect disappearance. Potential relief characteristics for vacancy movement near the dislocation are found. An area wide enough in a transverse direction is found around the dislocation. Vacncies reaching this area can be easily transported to places of their disappearance. Therefore the vacancy entry to this area is equivalent to the absorption. the procedure of simulating the atomic structure of a crystallite containing a dislocation with a step is described. Positions from which these defects perform spontaneous transitions, reaching the disappearance places are found on the dislocation near the step

  2. Sublinear absorption in OCS gas

    International Nuclear Information System (INIS)

    Bogani, F.; Querzoli, R.; Ernst, K.

    1988-01-01

    Sublinear absorption in OCS gas has been experimentally studied in detail by means of an optoacustic technique and transmission measurements. The best fit of the results is obtained by a phenomenological model, that considers the process as the sum of one-and two-photon absorptions

  3. A model for absorption determination of radioactive materials: application in the radio dosimetry and nutrition study

    International Nuclear Information System (INIS)

    Mesquita, C.H. de.

    1991-01-01

    A three-parameter model of the sigmoidal relationship is proposed to explain the food passage by intestinal tube. These parameters are: U = intestinal non-absorbed radioactivity; d parameter related to intestinal food dispersion; and t 50 = time to maximal appearance of material from the intestinal lumen. In order to illustrate the applications of this model and its validity, the absorption of 65 Zn from casein semi-purified diet was evaluated in rats. There was a good agreement between the predicted values and the experimental data when the sigmoidal component was added to the conventional multicompartimental equations. With this kind of model the time to maximal appearance (hours), the true absorption level, the fecal concentration and the intestinal dispersion of the ingested radioactivity material may be determined. (author)

  4. Sensitivity of light interaction computer model to the absorption properties of skin

    Science.gov (United States)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  5. Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, L. [Alstom Power Italy, Milan (Italy)

    2010-08-01

    This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.

  6. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  7. Characterizing, modelling and optimizing the sound absorption of wood wool cement boards (WWCB)

    NARCIS (Netherlands)

    Botterman, B.; Hornikx, M.C.J.; Doudart de la Grée, G.C.H.; Yu, Q.; Brouwers, H.J.H.

    2016-01-01

    The present article aims to characterize and, by using impedance models, predict the sound absorption of wood wool cement boards (WWCB). The main challenge lies in the inhomogeneity of the WWCB; the samples taken from different commercial boards do not only greatly differ in density, but also in

  8. Modeling of absorption data complicated by Fabry endash Perot interference in germanosilicate thin-film waveguides

    International Nuclear Information System (INIS)

    Simmons-Potter, K.; Simmons, J.H.

    1996-01-01

    Complex absorption spectra obtained from thin films at normal incidence can be difficult to interpret owing to the appearance of Fabry endash Perot interference fringes in the data. We describe a technique for modeling such spectra so that true absorption features can be identified and evaluated separately from the overlying fringes. The technique is used to interpret data obtained from photosensitive germanosilicate solgel films on fused-silica substrates but may be easily extended to analysis in other material systems. copyright 1996 Optical Society of America

  9. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  10. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  11. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  12. Modelling and simulation of an absorption cycle with a blow pump; Modellierung und Simulation eines Absorptionskreislaufes mit einer Blasenpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, Markus

    2011-07-01

    Diffusion-absorption refrigerators are commonly operated with ammonia and water. If a ionic liquid with negligible vapour pressure is substituted for water, the rectifier will be unnecessary. In the context of a diploma thesis, a diffusion-absorption refrigerator with a blower pump and ammonia and a ionic liquid as working fluid was modelled and simulated. For this, three models were selected from the relevant literature and compared. Changes in COP as a result of varied operating parameters were investigated as well. It was shown that it is possible, in principle, to operate a diffusion-absorption refrigerator with a ionic liquid. [German] Diffusions-Absorptions-Kaeltemaschinen werden in der Regel mit dem Arbeitsstoffpaar Ammoniak-Wasser betrieben. Ersetzt man das Absorptionsmittel Wasser gegen eine ionische Fluessigkeit, die nur einen vernachlaessigbaren Dampfdruck besitzt, kann man den Rektifikator einsparen. Im Rahmen einer Diplomarbeit wurde eine Diffusions-Absorptions-Kaeltemaschine mit einer Blasenpumpe und dem Arbeitsstoffpaar Ammoniak-Ionische Fluessigkeit modelliert und simuliert. Hierfuer wurden drei Modelle aus der Literatur ausgewaehlt. Diese Modelle wurden untereinander verglichen. Ausserdem wurde die Veraenderung des COP bei der Variation der Betriebsparameter fuer diese Berechnungsmodelle untersucht. Es konnte gezeigt werden, dass es prinzipiell moeglich ist, eine Diffusions-Absorptions-Kaeltemaschine mit ionischer Fluessigkeit zu betreiben.

  13. Model for absorption and release of gaseous materials by forest canopies

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1976-01-01

    A model of the physical processes defining the absorption and release of materials by a forest canopy has been developed. The model deals with the turbulent transport of gaseous materials in the surface boundary layer near the canopy, the turbulent transport in the canopy atmosphere, the transport through the boundary layer near the leaf and soil surface, and the solution of the gaseous materials in intracellular fluids and subsequent diffusion into the leaf cells. The model is used to simulate the uptake of molecular tritium by the forest canopy and the subsequent release of tritiated water. Results of dynamic simulations of tritium uptake and release are compared with data collected at the time of a release of molecular tritium to the atmosphere

  14. Far-wing absorption in Na-Ar collision

    International Nuclear Information System (INIS)

    Kulander, K.C.

    1985-01-01

    Collision-induced absorption and emission at wavelengths well removed from line center play important roles in many atomic and molecular processes. The authors have developed the theory and computer codes to calculate exact quantum mechanical cross sections for these optical and radiative collisions between atoms. The authors also have produced a quasi-classical model that can efficiently generate accurate absorption cross sections. This model cannot, however, give branching ratios for the final-state populations. Their codes and model can be used to study the propagation of nearly resonant light through gaseous media and to calculate accurate gain and absorption cross sections for the far wings of atomic transitions. The authors have used their theory to study the collision-induced absorption by sodium in argon for wavelengths in the vicinity of the resonance lines D 1 and D 2

  15. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    International Nuclear Information System (INIS)

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  16. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  17. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  18. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  19. 2nd-order optical model of the isotopic dependence of heavy ion absorption cross sections for radiation transport studies

    Science.gov (United States)

    Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.

    2018-01-01

    Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.

  20. Absorption of manganese and iron in a mouse model of hemochromatosis.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1 and Fpn (ferroportin, transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe (-/- knockout mice after intravenous, intragastric, and intranasal administration of (54Mn. These values were compared to intravenous and intragastric administration of (59Fe. Intestinal absorption of (59Fe was increased and clearance of injected (59Fe was also increased in Hfe(-/- mice compared to controls. Hfe (-/- mice displayed greater intestinal absorption of (54Mn compared to wild-type Hfe(+/+ control mice. After intravenous injection, the distribution of (59Fe to heart and liver was greater in Hfe (-/- mice but no remarkable differences were observed for (54Mn. Although olfactory absorption of (54Mn into blood was unchanged in Hfe (-/- mice, higher levels of intranasally-instilled (54Mn were associated with Hfe(-/- brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency.

  1. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: timothy.r.kallman@nasa.gov, E-mail: thomas.gorczyca@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  2. and three-dimensional models for analysis of optical absorption in ...

    Indian Academy of Sciences (India)

    Unknown

    The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near ... Optical band gap; two- and three-dimensional; optical absorption. 1. ..... ssion, New Delhi, in the form of a research project is.

  3. Linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases

    Energy Technology Data Exchange (ETDEWEB)

    Shaydyuk, Ye.O. [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine); Levchenko, S.M. [Institute of Molecular Biology and Genetics, 150, Akademika Zabolotnoho Str., Kyiv 036803 (Ukraine); Kurhuzenkau, S.A. [Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124 (Italy); Anderson, D. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); Masunov, A.E. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); South Ural State University, Lenin pr. 76, Chelyabinsk 454080 (Russian Federation); Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Kachkovsky, O.D.; Slominsky, Yu.L.; Bricks, J.L. [Insitute of Organic Chemistry, Murmanskaya Street, 5, Kyiv 03094 (Ukraine); Belfield, K.D. [College of Science and Liberal Arts, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States); School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Bondar, M.V., E-mail: mbondar@mail.ucf.edu [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine)

    2017-03-15

    The steady-state and time-resolved linear spectral properties, two-photon absorption spectra and fast relaxation processes in the excited states of styryl base-type derivatives were investigated. The nature of linear absorption, fluorescence and excitation anisotropy spectra were analyzed in solvents of different polarity at room temperature and specific dependence of the solvatochromic behavior on the donor-acceptor strength of the terminal substituents was shown. Two-photon absorption (2PA) efficiency of styryl dye bases was determined in a broad spectral range using two-photon induced fluorescence technique, and cross-sections maxima of ~ 100 GM were found. The excited state absorption (ESA) and fast relaxation processes in the molecular structures were investigated by transient absorption femtosecond pump-probe methodology. The role of twisted intramolecular charge transfer (TICT) effect in the excited state of styryl dye base with dimethylamino substituent was shown. The experimental spectroscopic data were also verified by quantum chemical calculations at the Time Dependent Density Functional Theory level, combined with a polarizable continuum model.

  4. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  5. Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform

    International Nuclear Information System (INIS)

    Mansouri, Rami; Boukholda, Ismail; Bourouis, Mahmoud; Bellagi, Ahmed

    2015-01-01

    A steady-state simulation model of a commercial 3-ton ammonia/water absorption chiller is developed and validated using the flow-sheeting software Aspen-Plus. First an appropriate thermodynamic property model for the ammonia/water fluid mixture is selected. To this purpose nine methods from the software library are pre-selected and tested, but none of the methods predicts the VLE (vapour–liquid equilibrium) with sufficient accuracy. The interaction parameters of these models are then determined by fitting the equations of state (EOS) to VLE data. It is finally found that the Boston–Mathias modified Peng–Robinson EOS with fitted parameters predicts most accurately the VLE for the temperature and pressure ranges encountered in commercial chillers. A simulation model of the machine is then developed. The simulation results are found to be in good agreement with data from literature at a cooling air temperature of 35 ºC. The heat transfer characteristics (UA) of the various heat exchangers of the machine are then determined and the model modified to make it accept these (UA) as input parameters. The comparison of the simulation predictions at cooling air temperatures of 26.7 and 38 ºC with the bibliographical data showed good concordance. The proposed model could be very useful for the analysis and performance prediction of the commercial absorption chiller. - Highlights: • A commercial NH 3 /H 2 O absorption chiller is simulated using the software Aspen-Plus. • Peng-Robinson-Boston-Mathias equation of state is used to predict VLE of NH 3 /H 2 O fluid mixture. • A steady-state model describing the chiller operation is developed. • The model predicts the internal operating conditions and COP of the chiller.

  6. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  7. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  8. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    Science.gov (United States)

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  9. Is oral absorption of vigabatrin carrier-mediated?

    DEFF Research Database (Denmark)

    Nøhr, M. K.; Juul, R. V.; Thale, Z. I.

    2015-01-01

    by mechanistic non-linear mixed effects modelling, evaluating PAT1-ligands as covariates on the PK parameters with a full covariate modelling approach. The oral absorption of vigabatrin was adequately described by a Michaelis-Menten type saturable absorption. Using a Michaelis constant of 32.8 mM, the model......-mediated and if the proton-coupled amino acid transporter 1 (PAT1) was involved in the absorption processes. Vigabatrin (0.3-300 mg/kg) was administered orally or intravenously to Sprague Dawley rats in the absence or presence of PAT1-ligands l-proline, l-tryptophan or sarcosine. The PK profiles of vigabatrin were described...... estimated a maximal oral absorption rate (Vmax) of 64.6 mmol/min and dose-dependent bioavailability with a maximum of 60.9%. Bioavailability was 58.5-60.8% at 0.3-30 mg/kg doses, but decreased to 46.8% at 300 mg/kg. Changes in oral vigabatrin PK after co-administration with PAT1-ligands was explained...

  10. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  11. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  12. On the nature of absorption features toward nearby stars

    Science.gov (United States)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  13. Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2018-01-01

    The Machine Learning (ML) is one of the fastest developing techniques in the prediction and evaluation of important pharmacokinetic properties such as absorption, distribution, metabolism and excretion. The availability of a large number of robust validation techniques for prediction models devoted to pharmacokinetics has significantly enhanced the trust and authenticity in ML approaches. There is a series of prediction models generated and used for rapid screening of compounds on the basis of absorption in last one decade. Prediction of absorption of compounds using ML models has great potential across the pharmaceutical industry as a non-animal alternative to predict absorption. However, these prediction models still have to go far ahead to develop the confidence similar to conventional experimental methods for estimation of drug absorption. Some of the general concerns are selection of appropriate ML methods and validation techniques in addition to selecting relevant descriptors and authentic data sets for the generation of prediction models. The current review explores published models of ML for the prediction of absorption using physicochemical properties as descriptors and their important conclusions. In addition, some critical challenges in acceptance of ML models for absorption are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Analytic descriptions of ion cyclotron absorption

    International Nuclear Information System (INIS)

    Bers, A.; Francis, G.; Fuchs, V.; Lashmore-Davies, C.N.; Ram, A.K.

    1987-05-01

    Analysis of energy propagation and absorption in ion-cyclotron heating of tokamak plasmas has relied on numerical solutions of fourth (and sixth) order differential equations for slab models of the plasma (poloidal) cross section. Realistic two-dimensional and fully toroidal geometry analyses would become quite unwieldy. It is shown here that the analysis of the slab model can be simplified considerably. A first-order differential equation is shown to describe the transmission coefficient for the fast wave, and it is solved analytically. A second order differential equation is shown to adequately describe both transmission and reflection. Conditions for ion absorption or mode conversion are derived. Including toroidal effects in propagation, conditions for electron absorption on the mode-converted ion-Bernstein waves are also described analytically

  15. Effect of oils on drug absorption

    OpenAIRE

    Palin, K.J.

    1981-01-01

    Oil and emulsion vehicles have been shown to alter the oral absorption of many drugs. This may be due to enhanced lymph flow and/or altered gastro-intestinal motility in the presence of the oils. The oral absorption of a model compound (DOT) in the presence of three chemically different oils, arachis oil, Miglyol 812 and liquid paraffin was investigated in rats, the influence of lymphatic absorption and gastro-intestinal motility being determined. The findings were applied to the for.mulation...

  16. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  17. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  18. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    2017-01-01

    The absorption spectrum of the MnO4(-) ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high...... by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit...... treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO4(-) absorption spectrum, whose assignment has been elusive....

  19. XUV Absorption by Solid Density Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, C A

    2009-09-21

    An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature dependence as well as other details between the present approach and a recently proposed absorption model are discussed.

  20. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  1. Adrenaline (epinephrine) microcrystal sublingual tablet formulation: enhanced absorption in a preclinical model.

    Science.gov (United States)

    Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J

    2015-01-01

    For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.

  2. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  3. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  4. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    Science.gov (United States)

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  5. Narrow absorption lines complex I: one form of broad absorption line

    Science.gov (United States)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  6. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  7. From Training to Organizational Behavior: A Mediation Model through Absorptive and Innovative Capacities.

    Science.gov (United States)

    Yáñez-Araque, Benito; Hernández-Perlines, Felipe; Moreno-Garcia, Juan

    2017-01-01

    The training of human resources improves business performance: myth or reality? While the literature has extensively addressed this issue, the transfer that occurs from training to performance still remains unresolved. The present study suggests an empirical solution to this gap, through a multiple mediation model of dynamic capabilities. Accordingly, the study makes a major contribution to the effectiveness of an organizational-level training: the "true" relationship between training and performance is mediated by absorptive and innovative capacities. It is difficult from training to directly affect the results: it must be done through a chain of intermediate variables. Training can be argued to be indirectly related to performance, through absorptive capacity in the first place, and innovative capacity in the second, sequentially in this order (three-path mediated effect). Of all immediate relationships received by performance, its explained variance is achieved partly via absorptive capacity and partly via innovation. The direct relationship through training is not significant and only explains a small percentage of the variance in performance. These results have been corroborated by combining two methods of analysis: PLS-SEM and fsQCA, using data from an online survey. This dual methodology in the study of the same phenomenon allows overcoming the limitations of each method, which would not have been possible with a single methodological approach, and confirming the findings obtained by any of them.

  8. Statistical Models for Sediment/Detritus and Dissolved Absorption Coefficients in Coastal Waters of the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Green, Rebecca E; Gould, Jr., Richard W; Ko, Dong S

    2008-01-01

    ... (CDOM) absorption coefficients from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data...

  9. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    Science.gov (United States)

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  10. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  11. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    Science.gov (United States)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  12. Modelling aging effects on a thermal cycling absorption process column

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France); Baudouin, O. [ProSim SA, Stratege Bat. A, BP 27210, F-31672 Labege Cedex (France); Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  13. Possible stretched exponential parametrization for humidity absorption in polymers.

    Science.gov (United States)

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  14. Threshold nonlinear absorption in Zeeman transitions

    International Nuclear Information System (INIS)

    Narayanan, Andal; Hazra, Abheera; Sandhya, S N

    2010-01-01

    We experimentally study the absorption spectroscopy from a collection of gaseous 87 Rb atoms at room temperature irradiated with three fields. Two of these fields are in a pump-probe saturation absorption configuration. The third field co-propagates with the pump field. The three fields address Zeeman degenerate transitions between hyperfine levels 5S 1/2 , F = 1 and 5P 3/2 , F = 0, F = 1 around the D2 line. We find a sub-natural absorption resonance in the counter-propagating probe field for equal detunings of all three fields. This absorption arises in conjunction with the appearance of increased transmission due to electro-magnetically induced transparency in the co-propagating fields. The novel feature of this absorption is its onset only for the blue of 5P 3/2 , F = 0, as the laser frequency is scanned through the excited states 5P 3/2 , F = 0, F = 1 and F = 2. The absorption rapidly rises to near maximum values within a narrow band of frequency near 5P 3/2 , F = 0. Our experimental results are compared with a dressed atom model. We find the threshold absorption to be a result of coherent interaction between the dressed states of our system.

  15. Optical absorption and energy transfer processes in dendrimers

    International Nuclear Information System (INIS)

    Reineker, P.; Engelmann, A.; Yudson, V.I.

    2004-01-01

    For dendrimers of various sizes the energy transfer and the optical absorption is investigated theoretically. The molecular subunits of a dendrimer are modeled as two-level systems. The electronic interaction between them is described via transfer integrals and the influence of vibrational degrees of freedom is taken into account in a first approach using a stochastic model. We discuss the time dependence of the energy transport and show that rim states of the dendrimer dominate the absorption spectra, that in general the electronic excitation energy is concentrated on peripheric molecules, and that the energetically lowest absorption peak is redshifted with increasing dendrimer size due to delocalization of the electronic excitation

  16. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption.

    Directory of Open Access Journals (Sweden)

    Akiko Tanaka

    Full Text Available The nasal absorption of macromolecules from powder formulations and the effect of sodium carboxymethyl cellulose (CMC-Na as a pharmaceutical excipient on their absorption were studied. Model macromolecules were fluorescein isothiocyanate-labeled dextran (average molecular weight of 4.4kDa, FD4 and insulin. The plasma concentration of FD4 after application of the powder containing 50% starch (control was higher than that after application of the solution, and the absorption from 50% starch powder was enhanced by the substitution of starch with CMC-Na. The fractional absorption of FD4 after administration of the CMC-Na powder formulation was 30% and 40% higher than that after administration from the solution and the starch powder, respectively. The nasal absorption of insulin from the powder and the effect of CMC-Na were similar with those of FD4. The effective absorption of FD4 and insulin after application of powder with CMC-Na could be due to the increase in the nasal residence of FD4 and insulin. No damage in the nasal mucosa or dysfunction of the mucociliary clearance was observed after application of the drug powder and CMC-Na. The present findings indicate that nasal delivery of powder formulations with the addition of CMC-Na as an excipient is a promising approach for improving the nasal absorption of macromolecules.

  17. The distribution of absorptive power dissipation in irradiated nanoparticulate system

    International Nuclear Information System (INIS)

    Li, Jiayu; Yang, Jian; Gu, Xiaobing

    2016-01-01

    The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO_2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO_2 and Ag particles is beneficial to the spectral radiant absorption of TiO_2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO_2–Ag interface, the Ag core coated with Al_2O_3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO_2 particle. - Highlights: • The absorptive power distribution in nanoparticulate system is simulated by FDTD. • FDTD simulation is compared with theoretical model extended from Mie theory. • The parameters and conditions are confirmed based on the comparison. • The influence of Ag nanoparticle on nearby TiO_2 particle's absorption is analyzed.

  18. New experiments call for a continuous absorption alternative to the photon model

    Science.gov (United States)

    Reiter, Eric S.

    2015-09-01

    A famous beam-split coincidence test of the photon model is described herein using gamma-rays instead of the usual visible light. A similar a new test was performed using alpha-rays. In both tests, coincidence rates greatly exceed chance, leading to an unquantum effect. In contradiction to quantum theory and the photon model, these new results are strong evidence of the long abandoned accumulation hypothesis, also known as the loading theory. Attention is drawn to assumptions applied to past key-experiments that led to quantum mechanics. The history of the loading theory is outlined, and a few equations for famous experiments are derived, now free of wave-particle duality. Quantum theory usually works because there is a subtle difference between quantized and thresholded absorption.

  19. Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.

    Science.gov (United States)

    Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan

    2015-11-01

    Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian; Hanigan, Mark D

    2012-01-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated...... exchange across the rumen wall that incorporates epithelial blood flow as a driving force for ruminal VFA removal. The bidirectional fluxes between the ruminal and epithelial pool of VFA were assumed mass action driven, given that passive diffusion of nonionized VFA is the dominant transmembrane VFA flux...... of body weight. The rate constants related to the flux from ruminal fluid to epithelium were in the order isobutyrate rate constants for fluxes of isobutyrate, acetate, propionate, and butyrate...

  1. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures.

    Science.gov (United States)

    Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise

    2018-04-15

    A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  3. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs

    DEFF Research Database (Denmark)

    Nørskov, Natalja; Hedemann, Mette Skou; Theil, Peter Kappel

    2013-01-01

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study...... the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small...... consumed. Benzoic acid derivatives showed low concentration in the plasma (phenolic acids, likely because it is an intermediate in the phenolic acid metabolism...

  4. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  5. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  6. The quasi deuteron model for low energy pion absorption

    International Nuclear Information System (INIS)

    Gouweloos, M.

    1986-01-01

    In this thesis pion absorption in complex nuclei is studied in the quasi-deuteron model in which the pion is absorbed on a nucleon pair in the nucleus. The mechanism is studied in the low-energy domain since then the in-medium (pi→NN) operator turns out to be of simple character. In Ch. 2 and 3 this operator is constructed and analytical expressions are derived for (pi,NN) distributions in a plane wave impulse approximation for nuclei. The results turn out to be very useful for developing insight in the possibilities inherent in the QDM and the interpretation of the results in later chapters. Ch. 4 to 6 are devoted to the more realistic distorted wave calculations. In Ch. 4 the formal framework is presented and the calculational details are discussed. Ch.5 and 6 contain the comparison to stopped pion and in-flight data respectively. In Ch. 7 the main results are summarized. (Auth.)

  7. Absorptive and dispersive optical profiles in fluctuating environments: A stochastic model

    International Nuclear Information System (INIS)

    Paz, J.L.; Mendoza-Garcia, A.; Mastrodomenico, A.

    2011-01-01

    In this study, we determined the absorptive and dispersive optical profiles of a molecular system coupled with a thermal bath. Solvent effects were explicitly considered by modelling the non-radiative interaction with the solute as a random variable. The optical stochastical Bloch equations (OSBE) were solved using a time-ordered cumulant expansion with white noise as a correlation function. We found a solution for the Fourier component of coherence at the third order of perturbation for the nonlinear Four-wave mixing signal and produced analytical expressions for the optical responses of the system. Finally, we examined the behaviour of these properties with respect to the noise parameter, frequency detuning of the dynamic perturbation, and relaxation times.

  8. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  9. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  10. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    2012-01-01

    A 100 kWe liquid-cooled HT-PEMFC subsystem is integrated with an absorption chiller subsystem to provide electricity and cooling. The system is designed, modeled and simulated to investigate the potential of this technology for future novel energy system applications. Liquid-cooling can provide...

  11. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, S.S.

    2015-01-01

    Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period

  12. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  13. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    in the wave channel in front of the wave generator. The results of physical model tests performed with an absorbing wave maker based on this principle show that the problem of rereflection is reduced significantly when active absorption is performed. Finally, an absorbing directional wave generator for 3-D...... generator is capable of of reducing the problem of rereflection in multidirectional, irregular wave fields significantly....

  14. Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption

    Science.gov (United States)

    Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija

    2018-01-01

    Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 02Mpc, the simulations asymptotically match the observations, because the ΛCDM model successfully describes the ambient IGM. This represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations are present on scales 20kpc-2Mpc, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ~2Mpc, indicating that the `sphere-of-influence' of galaxies could extend to approximately ~20 times the halo virial radius (~100kpc). Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. I demonstrate that the Ly-a absorption profile is primarily sensitive to the underlying temperature-density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models. With near-future high-precision observations of Ly-a absorption, the tools developed in my thesis set the stage for even stronger constraints on models of galaxy formation and cosmology.

  15. Bayesian inversion from sabine absorption coefficients to flow resistivity values for porous absorbers

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2015-01-01

    to determine the flow resistivity of a porous material from the Sabine absorption coefficient was investigated through a reliable model. The model for the flow resistivity estimation is based on an equivalent fluid model, i.e., Miki’s model, together with the most advanced model that accounts for edge...... diffraction, named Thomasson’s finite size correction. As input data, a set of the Sabine absorption coefficients in a recent absorption round robin test in 13 European chambers was used. Finally, the flow resistivity of the test specimen is characterized via the Bayesian framework, together...

  16. Theory of X-ray absorption and emission spectra

    International Nuclear Information System (INIS)

    Mukoyama, Takeshi

    2004-01-01

    Theoretical studies on X-ray absorption and emission spectroscopy are discussed. Simple expressions for X-ray emission rate and X-ray absorption cross section are presented in the dipole approximation. Various atomic models to obtain realistic wave functions and theoretical calculations for X-ray absorption cross sections and X-ray emission rates are described. In the case of molecules and solids, molecular orbital methods for electronic structures and molecular wave functions are discussed. The emphasis is on the procedures to obtain the excited-state and continuum wave functions for molecules and to calculate the multi-center dipole matrix elements. The examples of the calculated X-ray absorption and emission spectra are shown and compared with the experimental results

  17. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    International Nuclear Information System (INIS)

    Gatuzz, E.; Mendoza, C.; García, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 10 21 cm –2 ; an ionization parameter of log ξ = –2.70 ± 0.023; an oxygen abundance of A O = 0.689 +0.015 -0.010 ; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A O =0.952 +0.020 -0.013 , a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  18. Nitrogen oxide absorption into water and dilute nitric acid in an engineering-scale sieve-plate column: description of a mathematical model and comparison with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Counce, R M

    1978-09-01

    The study reported here is concerned with the absorption of gaseous NO/sub x/ compounds into water and dilute HNO/sub 3/ in a three-stage sieve-plate column with plates designed for high gas-liquid interfacial area. The performance of the column was measured while several operating parameters were varied. A mechanistic model was developed and presented to explain the observed phenomena. The results of the study indicate the importance of three mechanisms in the absorption of gaseous NO/sub x/ compounds: (a) the absorption of NO/sub 2/*, which results in the production of liquid HNO/sub 3/ and HNO/sub 2/; (b) the dissociation of the liquid HNO/sub 2/ into HNO/sub 3/ and gaseous NO; and (c) the gas-phase oxidation of NO to NO/sub 2/. A useful model was developed to explain the absorption of NO/sub x/ compounds based on the above mechanisms. This model is presented and discussed.

  19. Mixture component effects on the in vitro dermal absorption of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, J.E.; Qiao, G.; Baynes, R.E.; Brooks, J.D. [Coll. of Veterinary Medicine, North Carolina State Univ., Raleigh, NC (United States); Mumtaz, M. [Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA (United States)

    2001-08-01

    Interactions between chemicals in a mixture and interactions of mixture components with the skin can significantly alter the rate and extent of percutaneous absorption, as well as the cutaneous disposition of a topically applied chemical. The predictive ability of dermal absorption models, and consequently the dermal risk assessment process, would be greatly improved by the elucidation and characterization of these interactions. Pentachlorophenol (PCP), a compound known to penetrate the skin readily, was used as a marker compound to examine mixture component effects using in vitro porcine skin models. PCP was administered in ethanol or in a 40% ethanol/60% water mixture or a 40% ethanol/60% water mixture containing either the rubefacient methyl nicotinate (MNA) or the surfactant sodium lauryl sulfate (SLS), or both MNA and SLS. Experiments were also conducted with {sup 14}C-labelled 3,3',4,4'-tetrachlorobiphenyl (TCB) and 3,3',4,4',5-pentachlorobiphenyl (PCB). Maximal PCP absorption was 14.12% of the applied dose from the mixture containing SLS, MNA, ethanol and water. However, when PCP was administered in ethanol only, absorption was only 1.12% of the applied dose. There were also qualitative differences among the absorption profiles for the different PCP mixtures. In contrast with the PCP results, absorption of TCB or PCB was negligible in perfused porcine skin, with only 0.14% of the applied TCB dose and 0.05% of the applied PCB dose being maximally absorbed. The low absorption levels for the PCB congeners precluded the identification of mixture component effects. These results suggest that dermal absorption estimates from a single chemical exposure may not reflect absorption seen after exposure as a chemical mixture and that absorption of both TCB and PCB are minimal in this model system. (orig.)

  20. The Zone of Inertia: Absorptive Capacity and Organizational Change

    Science.gov (United States)

    Godkin, Lynn

    2010-01-01

    Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…

  1. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  2. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  3. Mechanistic understanding of time-dependent oral absorption based on gastric motor activity in humans.

    Science.gov (United States)

    Higaki, Kazutaka; Choe, Sally Y; Löbenberg, Raimar; Welage, Lynda S; Amidon, Gordon L

    2008-09-01

    The relationship of gastric motor activity and gastric emptying of 0.7 mm caffeine pellets with their absorption was investigated in the fed state in healthy human subjects by simultaneous monitoring of antral motility and plasma concentrations. A kinetic model for gastric emptying-dependent absorption yielded multiple phases of gastric emptying and rate constants (k(g)) with large inter-individual differences and large variability in onset of gastric emptying (50-175 min). The model suggests that 50% of the dose is emptied in 1-2h and over 90% emptied by 3.5h following dosing, in all subjects. The maximum values of k(g) (k(g)(max)) were much greater than those reported for emptying of liquids in the fasted state and were comparable to k(g) values in the late Phase II/III of the migrating motor complex (MMC). The model described the observed irregular absorption rate-time and plasma concentration-time profiles adequately but not in detail. The model was more successful at simulating double-peak phenomena in absorption rate profiles and onset of caffeine absorption. The results suggest that gastric emptying regulates drug absorption of small particles in the fed state. Further, estimates of k(a) derived using the time-dependent absorption model were closer to the intrinsic absorption rate constant for caffeine.

  4. Vertical electro-absorption modulator design and its integration in a VCSEL

    Science.gov (United States)

    Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.

    2018-04-01

    Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.

  5. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  6. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    Science.gov (United States)

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  7. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs.

    Science.gov (United States)

    Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia

    2018-05-30

    The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.

  8. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  9. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  10. Theoretical calculation of saturated absorption for multilevel atoms

    International Nuclear Information System (INIS)

    O'Kane, T.J.; Scholten, R.E.; Farrell, P.M.

    1998-01-01

    We present the first theoretical saturated absorption spectra for general multi-level atoms, using a model based on extensions of the optical Bloch equations, and using Monte Carlo averaging of the absorption of individual atoms with random trajectories through a standing wave. We are for the first time able to accurately predict the merging of hyperfine and cross-over resonances due to intensity dependent phenomena such as power broadening. Results for 20-level sodium and 24-level rubidium models are presented and compared to experiment, demonstrating excellent agreement

  11. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  12. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    Science.gov (United States)

    Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.

    2013-09-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.

  13. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  14. Development of a canine model to enable the preclinical assessment of pH-dependent absorption of test compounds.

    Science.gov (United States)

    Fancher, R Marcus; Zhang, Hongjian; Sleczka, Bogdan; Derbin, George; Rockar, Richard; Marathe, Punit

    2011-07-01

    A preclinical canine model capable of predicting a compound's potential for pH-dependent absorption in humans was developed. This involved the surgical insertion of a gastrostomy feeding tube into the stomach of a beagle dog. The tube was sutured in position to allow frequent withdrawal of gastric fluid for pH measurement. Therefore, it was possible to measure pH in the stomach and assess the effect of gastric pH-modifying agents on the absorption of various test compounds. Fasted gastric pH in the dog showed considerable inter- and intra-animal variability. Pretreatment of pentagastrin (6 µg/kg intramuscularly) 20 min prior to test compound administration was determined to be adequate for simulating fasting stomach pH in humans. Pretreatment with famotidine [40 mg orally] 1 h prior to test compound administration was determined to be adequate for simulating human gastric pH when acid-reducing agents are coadministered. Pentagastrin and famotidine pretreatments were used to test two discovery compounds and distinct differences in their potential for pH-dependent absorption were observed. The model described herein can be used preclinically to screen out compounds, differentiate compounds, and support the assessment of various formulation- and prodrug-based strategies to mitigate the pH effect. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  16. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  17. Absorptive capacity and smart companies

    Directory of Open Access Journals (Sweden)

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  18. Steady state simulation of a double-effect steam absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.S.A.M.S.; Gilani, S.I.U.H. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering

    2011-07-01

    Absorption cooling systems have become increasingly popular in recent years from the viewpoint of energy and environment. Despite a lower coefficient of performance (COP) as compared to the vapor compression, absorption refrigeration systems are attractive for using inexpensive waste heat, solar, geothermal or biomass energy sources for which the cost of supply is negligible in many cases. In addition absorption refrigeration uses natural substances which do not contribute towards ozone depletion and global warming. Owing to the serious environmental problems and the price of the traditional energy resources, the use of industrial waste heat or renewable energy as the driving force for vapor absorption cooling systems is continuously increasing. A steady-state model is developed to predict the performance of an absorption refrigeration system using LiBr-water as working pair. Each component of the cycle is modelled based on mass and energy balances. The design point parameters are determined. The refrigeration effect, coefficient of performance and load factor are analyzed for different heat input. Simulation is carried out and the results are compared with actual data and showed good agreement.

  19. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  20. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies

    Directory of Open Access Journals (Sweden)

    David I Forrester

    2014-09-01

    Full Text Available Background Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR, and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models.

  1. Wine absorption by cork stoppers research in foods

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Adrados, J. R.; Gonzalez-Hernandez, F.; Garcia de Ceca, J. L.; Caceres-Esteban, M. J.; Garcia-Vallejo, M. C.

    2008-07-01

    To evaluate the magnitude of wine absorption by cork under conditions as close to reality as possible and its evolution in time, ready-to-use natural cork stoppers and ''1+1'' cork stoppers were used to close bottles filled with red wine. Stoppers were removed after 3, 6, 12 and 24 months of contact to determine absorption of liquid and liquid progression along the lateral surface of the cork stopper.Variation of absorption with contact time was studied by adjusting the model Absorption = a {radical} t(R{sup 2}: 82.19 - 93.63%). A scheme of the evolution of wine absorption with time is proposed, differentiating liquid flow along cork-glass interface, diffusion in cell walls and liquid flow through the cell lumens. In conditions of use, a value of 4.48.10{sup 1}3 m{sup 2} s{sup -}1 was obtained for non-radial diffusion coefficient (D). (Author) 13 refs.

  2. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    Science.gov (United States)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  3. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  4. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    Science.gov (United States)

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  5. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection

    Directory of Open Access Journals (Sweden)

    Yuka Matsumoto

    2017-09-01

    Full Text Available Ileocecal resection (ICR, one of several types of intestinal resection that results in short bowel syndrome (SBS, causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans.

  6. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  7. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  8. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  10. Effect of antibiotic treatment on fat absorption in mice with cystic fibrosis

    NARCIS (Netherlands)

    Wouthuyzen-Bakker, Marjan; Bijvelds, Marcel J. C.; de Jonge, Hugo R.; De Lisle, Robert C.; Burgerhof, Johannes G. M.; Verkade, Henkjan J.

    INTRODUCTION: Improving fat absorption remains a challenge in cystic fibrosis (CF). Antibiotics (AB) treatment has been shown to improve body weight in CF mice. The mechanism may include improvement in fat absorption. We aimed to determine the effect of AB on fat absorption in two CF mouse models.

  11. A numerical approach to model and predict the energy absorption and crush mechanics within a long-fiber composite crush tube

    Science.gov (United States)

    Pickett, Leon, Jr.

    Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.

  12. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  13. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  14. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  15. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  16. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  17. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  18. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  19. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  20. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  1. Seasonal Solar Thermal Absorption Energy Storage Development.

    Science.gov (United States)

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  2. Building a Conceptual Model of Routines, Capabilities, and Absorptive Capacity Interplay

    Directory of Open Access Journals (Sweden)

    Ivan Stefanovic

    2014-05-01

    Full Text Available Researchers have often used constructs such as routines, operational capability, dynamic capability, absorptive capacity, etc., to explain various organizational phenomena, especially a competitive advantage of firms. As a consequence of their frequent use in different contexts, these constructs have become extremely broad and blurred, thus making a void in strategic management literature. In this paper we attempt to bring a sense of holistic perspective on these constructs by briefly reviewing the current state of the research and presenting a conceptual model that provides an explanation for the causal relationships between them. The final section of the paper sheds some light on this topic from the econophysics perspective. Authors hope that findings in this paper may serve as a foundation for other research endeavours related to the topic of how firms achieve competitive advantage and thrive in their environments.

  3. Temperature-dependent optical absorption of SrTiO3

    International Nuclear Information System (INIS)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard

    2015-01-01

    The optical absorption edge and near infrared absorption of SrTiO 3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO 3 -based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO 3 , measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Modelling LiBr-H2O solution concentration/crystallization of low thermal-powered absorption air conditioning system

    International Nuclear Information System (INIS)

    Abdullah, M.O.

    2000-01-01

    A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H 2 O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)

  5. Review on absorption technology with emphasis on small capacity absorption machines

    Directory of Open Access Journals (Sweden)

    Labus Jerko M.

    2013-01-01

    Full Text Available The aim of this paper is to review the past achievements in the field of absorption systems, their potential and possible directions for future development. Various types of absorption systems and research on working fluids are discussed in detail. Among various applications, solar cooling and combined cooling, heating and power (CCHP are identified as two most promising applications for further development of absorption machines. Under the same framework, special attention is given to the small capacity absorption machines and their current status at the market. Although this technology looks promising, it is still in development and many issues are open. With respect to that fact, this paper covers all the relevant aspects for further development of small capacity absorption machines.

  6. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explanation for the Cloud Absorption Anomaly

    Science.gov (United States)

    Crisp, D.

    1997-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.

  7. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets.

    Directory of Open Access Journals (Sweden)

    Muhammad Qumar

    Full Text Available Short-chain fatty acids (SCFAs and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8 or interruptedly (Int; n = 8. Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1 and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4. Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline, while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides

  8. Absorption and long term retention of Mn-54 in man

    International Nuclear Information System (INIS)

    Cederblad, A.; Eriksson, R.; Alpsten, M.; Davidsson, L.

    1989-01-01

    The manganese absorption is found to be ≤ 16% after administration of some infant diets as well as from water solutions of manganese. These absorption figures might in some cases be an underestimation of the true initial absorption due to the rapid initial excretion of Mn-54. This means that both the often quoted figure for manganese absorption in humans, 3.0±0.5% and the value 10% used by ICRP 1979 are underestimations of the fractional absorption of manganese under some circumstances. The long term retention curve obtained, where the ratio between retention day 200 and day 30 had a mean value of 0.19 (range 0.10-0.35), could be compared to the two-component exponential function used by ICRP 1979 based on studies by Mahoney and Small 1968 where the corresponding ratio is 0.045. In the study by Mahoney and Small Mn-54 retention was studied after intravenous administration. We have earlier observed a difference between the metabolic handling of Mn-54 introduced orally and intravenously in man. Another model proposed by Caughtrey and Thorne 1983 consisting of a three component exponential function is in better agreement with our measurements and gives the ratio 0.22. The ICRP model for dose calculations tends to underestimate fractional absorption as well as long term retention of manganese. (orig./HP)

  9. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  10. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  11. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  12. The Scaled SLW model of gas radiation in non-uniform media based on Planck-weighted moments of gas absorption cross-section

    Science.gov (United States)

    Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.

    2018-02-01

    The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is presented. The paper considers a new approach for construction of a Scaled SLW model. In order to maintain the SLW method as a simple and computationally efficient engineering method special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient. The moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in particular, the first moment - Planck mean, and first inverse moment - Rosseland mean) are used as the total characteristics of the absorption spectrum to be preserved by scaling. Generalized SLW modelling using these moments including both discrete gray gases and the continuous formulation is presented. Application of line-by-line look-up table for corresponding ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is needed) ensures that the method is flexible and efficient. Predictions for radiative transfer using the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using the Rank Correlated SLW model and SLW Reference Approach. Conclusions and recommendations regarding application of the Scaled SLW model are made.

  13. Absorption of Sunlight by Water Vapor in Cloudy Conditions: A Partial Explaination for the Cloud Absorption Anomaly

    Science.gov (United States)

    Crisp, D.

    1996-01-01

    The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 Wm(sup -2)...Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere.

  14. The zig-zag walk with scattering and absorption on the real half line and in a lattice model

    Science.gov (United States)

    Wuttke, Joachim

    2014-05-01

    The Darwin-Hamilton equations, describing one-dimensional transport with scattering and absorption, are expanded into a recursion. The solution involves ballot numbers. The recurrence probability as function of scattering order is given by Catalan numbers. To reproduce this analytical result in a lattice model, a novel relation between Narayana and Catalan numbers is derived.

  15. Drug gastrointestinal absorption in rat: Strain and gender differences.

    Science.gov (United States)

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Energy absorption capabilities of composite sandwich panels under blast loads

    Science.gov (United States)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  17. Absorption dynamics and delay time in complex potentials

    Science.gov (United States)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  18. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. 2: Modeling and analysis

    Science.gov (United States)

    Skocypec, Russell D.; Hogan, Roy E., Jr.; Muir, James F.

    1991-01-01

    The catalytically enhanced solar absorption receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as being essential in improving the confidence in the capability to predict large-scale reactor operation.

  19. $J/\\psi$ Absorption in Heavy Ion Collisions

    CERN Document Server

    Maiani, Luciano; Polosa, Antonio; Riquer, V

    2004-01-01

    We present a new calculation of the pi-J/psi dissociation cross sections within the Constituent Quark-Meson Model recently introduced. To discuss the absorption of J/psi in heavy-ion collisions, we assume the J/psi to be produced inside a thermalized pion gas, as discussed by Bjorken, and introduce the corrections due to absorption by nuclear matter as well. We fit the absorption length of the J/psi to the data obtained at the CERN SPS by the NA50 Collaboration for Pb-Pb collisions. Collisions of lower centrality allow us to determine the temperature and the energy density of the pion gas. For both these quantities we find values close to those indicated by lattice gauge calculations for the transition to a quark-gluon plasma. A simple extrapolation to more central collisions, which takes into account the increase of the energy deposited due to the increased nucleon flux, fails to reproduce the break in J/psi absorption indicated by NA50, thus lending support to the idea that an unconfined quark-gluon phase m...

  20. New thermodynamical systems. Alternative of compression-absorption; Nouveaux systemes thermodynamiques. Alternative de la compression-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M.; Brunin, O.; Lottin, O.; Vidal, J.F. [Universite Henri Poincare Nancy, 54 - Vandoeuvre-les-Nancy (France); Hivet, B. [Electricite de France, 77 - Moret sur Loing (France)

    1996-12-31

    This paper describes a 5 years joint research work carried out by Electricite de France (EdF) and the ESPE group of the LEMTA on compression-absorption heat pumps. It shows how a thermodynamical model of machinery, completed with precise exchanger-reactor models, allows to simulate and dimension (and eventually optimize) the system. A small power prototype has been tested and the first results are analyzed with the help of the models. A real scale experiment in industrial sites is expected in the future. (J.S.) 20 refs.

  1. Absorption of pentacaine from ulcerous rat stomach

    International Nuclear Information System (INIS)

    Tomcikova, O.; Babulova, A.; Durisova, M.; Trnovec, T.; Benes, L.

    1985-01-01

    Pentacaine is a local anaesthetic which exhibited positive effects on healing of model ulcers in the rat stomach. The in situ disappearance of pentacaine from the ulcerous and intact rat stomach was studied. Gastric ulcers were produced by oral administration of phenylbutazone (200 mg/kg) 3.5 h before absorption experiment. Pentacaine exhibited a biexponential decrease from the lumen of the stomach, the rate of which was essentially the same in both groups. The total amount of pentacaine absorbed was small because of extremly low absorption rate. (author)

  2. Dietary fibers from mushroom sclerotia. 4. In vivo mineral absorption using ovariectomized rat model.

    Science.gov (United States)

    Wong, Ka-Hing; Katsumata, Shin-Ichi; Masuyama, Ritsuko; Uehara, Mariko; Suzuki, Kazuharu; Cheung, Peter C K

    2006-03-08

    The effect of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporus rhinocerus, and Wolfiporia cocos, on calcium and magnesium absorption was evaluated in ovariectomized (OVX) rats fed with sclerotial DF based and low Ca (0.3%) diets for 14 days. The animals in the W. cocos DF diet group possessed significantly (p cocos DF group were also significantly (p cocos DF could improve the overall Ca and Mg absorptions of the OVX rats fed a low Ca diet. The potential use of sclerotial DFs as a functional food ingredient for enhancing mineral absorption is also discussed.

  3. Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus.

    Science.gov (United States)

    Li, Shuai; Wang, Yuanhong; Jiang, Tingfu; Wang, Han; Yang, Shuang; Lv, Zhihua

    2016-06-17

    The present study is focused on the intestinal absorption of sea cucumber saponins. We determined the pharmacokinetic characteristics and bioavailability of Echinoside A and Holotoxin A₁; the findings indicated that the bioavailability of Holotoxin A₁ was lower than Echinoside A. We inferred that the differences in chemical structure between compounds was a factor that explained their different characteristics of transport across the intestine. In order to confirm the absorption characteristics of Echinoside A and Holotoxin A₁, we examined their transport across Caco-2 cell monolayer and effective permeability by single-pass intestinal perfusion. The results of Caco-2 cell model indicate that Echinoside A is transported by passive diffusion, and not influenced by the exocytosis of P-glycoprotein (P-gp, expressed in the apical side of Caco-2 monolayers as the classic inhibitor). The intestinal perfusion also demonstrated well the absorption of Echinoside A and poor absorption of Holotoxin A₁, which matched up with the result of the Caco-2 cell model. The results demonstrated our conjecture and provides fundamental information on the relationship between the chemical structure of these sea cucumber saponins and their absorption characteristics, and we believe that our findings build a foundation for the further metabolism study of sea cucumber saponins and contribute to the further clinical research of saponins.

  4. Constraining Absorption of Organic Aerosol from Biomass Burning with Observations

    Science.gov (United States)

    Feng, Y.; Liu, X.

    2014-12-01

    Biomass burning emissions contribute to a large fraction of global organic aerosol (OA) emissions. In most models, radiative forcing of black carbon (BC) and OA from biomass burning offsets each other to give a small or close to zero total forcing, i.e., an estimate of 0 (-0.2 to +0.2) W m-2 by IPCC-AR5. Recent observational and modeling studies have shown the absorbing part of OA, referred to as "brown" carbon (BrC), to be a significant source of direct absorption of solar radiation thus positive forcing, in particular over regions dominated by biomass burning and biofuel emissions. Here we implement optical treatment for the BrC absorption in the CESM1/CAM5 model, and compare the calculated aerosol spectral absorption with ground-based AERONET and DOE/ARM observations. In this version of CAM5, biomass burning and biofuel OA are treated separately from fossil fuel OA with different imaginary refractive index. Because the absorption of BrC is highly variable and uncertain depending on source, aging, and mixing state, sensitivity studies of BrC refractive index parameterized by fuel type and ratio of BC to OA mass will be examined and the resulting uncertainty in the estimated forcing will be discussed. Preliminary results suggest the simulated wavelength dependence of aerosol absorption, as measured by the absorption Ångström exponent (AAE), increases from 0.9 for non-absorbing OA to 1.2 (or 1.0) for strongly (or moderately) absorbing BrC. The AAE calculated for the strongly absorbing BrC agrees with AERONET spectral observations at 440-870 nm over most regions but overpredicts for the open biomass burning-dominated South America and southern Africa, in which inclusion of moderately absorbing BrC exhibits better agreement.

  5. Physicochemical and thermodynamic investigation of hydrogen absorption and desorption in LaNi3.8Al1.0Mn0.2 using the statistical physics modeling

    Science.gov (United States)

    Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb

    2018-06-01

    In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.

  6. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  7. Minimal Regge model for meson--baryon scattering: duality, SU(3) and phase-modified absorptive cuts

    International Nuclear Information System (INIS)

    Egli, S.E.

    1975-10-01

    A model is presented which incorporates economically all of the modifications to simple SU(3)-symmetric dual Regge pole theory which are required by existing data on 0 -1 / 2 + → -1 / 2 + processes. The basic assumptions are no-exotics duality, minimally broken SU(3) symmetry, and absorptive Regge cuts phase-modified by the Ringland prescription. First it is described qualitatively how these assumptions suffice for the description of all measured reactions, and then the results of a detailed fit to 1987 data points are presented for 18 different reactions. (auth)

  8. The effect of refractive index changes in an intracavity absorption on the laser output power

    International Nuclear Information System (INIS)

    Al-Hawat, Sh.; Eskef, M.

    2007-10-01

    A model describing the intra-cavity absorption has been developed. The model allows for a reliable description of the attenuation of laser power as a function of the gas pressure inside the absorption cell, conducting both real and imaginary parts of the refractive index of the absorbing gas. The model relies on an adequate integration of the additional loss due to the absorption into the rate equations. After that the rate equations are solved under steady state conditions, which is quite reliable for a cw CO 2 laser. The oscillation, clearly observed in case of weak absorption, is described in the framework of an interference model considering the electric field inside the cavity as the interference result of successive phase correlated waves differing from each other in the number of passes made through the cavity. The phase shift is determined by the optical length of the cavity depending on the real part of the refractive index of the gas in the absorption cell. The model has been applied to analyze a large set of attenuation curves obtained in a previous work, in which intra-cavity absorption was measured for the three gases CFC-11, 12, 22 using a tunable cw CO 2 laser at 44 lines of the emission spectrum of the CO 2 molecule distributed on the branches P and R of the two bands at 9.6 μm and 10.6 μm. For mostly all examples, the value of the absorption cross section (imaginary part of the refractive index) has been determined by fitting the model to the experimental data. Furthermore, the value of the linear polarizability (real part of the refractive index) has been calculated from the oscillation period for all examples, in which the attenuation curve exhibits reliable oscillating behavior. The results are in fair agreement with the values of the absorption cross section published in the Hitran data base, as well as with the results obtained from independent absorption measurements performed outside the cavity (Author)

  9. Stimulation of butyrate absorption in the human rectum in vivo

    DEFF Research Database (Denmark)

    Holtug, K; Hove, H; Mortensen, P B

    1995-01-01

    BACKGROUND: Models of short-chain fatty acid absorption have focused on the stimulation of sodium absorption, an effect mainly located in the proximal colon of man. With the present efforts to utilize butyrate enemas as a treatment of ulcerative colitis, it seemed important to assess the transport...... in the rectum. METHODS: Non-equilibrium dialysis of the rectum was applied by placing dialysis bags containing various electrolyte solutions in the rectum of volunteers for 30 min. In this period changes in ion concentrations were linear with time. Net absorption and secretion rates were calculated from...

  10. In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption.

    Science.gov (United States)

    Tanaka, Yusuke; Sugihara, Masahisa; Kawakami, Ayaka; Imai, So; Itou, Takafumi; Murase, Hirokazu; Saiki, Kazunori; Kasaoka, Satoshi; Yoshikawa, Hiroshi

    2017-08-30

    The purpose of this study was to evaluate in vivo supersaturation/precipitation/absorption behavior in the gastrointestinal (GI) tract based on the luminal concentration-time profiles after oral administration of pioglitazone (PG, a highly permeable lipophilic base) and its hydrochloride salt (PG-HCl) to rats. In the in vitro precipitation experiment in the classic closed system, while the supersaturation was stable in the simulated gastric condition, PG drastically precipitated in the simulated intestinal condition, particularly at a higher initial degree of supersaturation. Nonetheless, a drastic and moderate improvement in absorption was observed in vivo at a low and high dose of PG-HCl, respectively. Analysis based on the luminal concentration of PG after oral administration of PG-HCl at a low dose revealed that most of the dissolved PG emptied from the stomach was rapidly absorbed before its precipitation in the duodenum. At a high dose of PG-HCl, PG partly precipitated in the duodenum but was absorbed to some extent. Therefore, the extent of the absorption was mainly dependent on the duodenal precipitation behavior. Furthermore, a higher-than expected absorption after oral administration of PG-HCl from in vitro precipitation study may be due to the absorption process in the small intestine, which suppresses the precipitation by removal of the drug. This study successfully clarify the impact of the absorption process on the supersaturation/precipitation/absorption behavior and key absorption site for a salt formulation of a highly permeable lipophilic base based on the direct observation of in vivo luminal concentration. Our findings may be beneficial in developing an ideal physiologically based pharmacokinetic model and in vitro predictive dissolution tools and/or translating the in silico and in vitro data to the in vivo outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  12. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes

    International Nuclear Information System (INIS)

    Aspenstroem-Fagerlund, Bitte; Ring, Linda; Aspenstroem, Pontus; Tallkvist, Jonas; Ilbaeck, Nils-Gunnar; Glynn, Anders W.

    2007-01-01

    Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90 min to mannitol in emulsions of oleic acid (5, 15 or 30 mM) or DHA (5, 15 or 30 mM) in an experimental medium with or without Ca 2+ and Mg 2+ . Absorption of 14 C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30 mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5 mM DHA for 90 min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for β-catenin. Oleic acid (30 mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180 min to 250 nM cadmium (Cd) in emulsions of oleic acid (5 or 30 mM) or DHA (1 or 5 mM), in an experimental medium with Ca 2+ and Mg 2+ . Retention of Cd in Caco-2 cells was higher after exposure to 5 mM oleic acid but lower after exposure to 30 mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly

  13. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  14. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  15. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  16. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  17. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  18. Study of Material Moisture Measurement Method and Instrument by the Combination of Fast Neutron Absorption and γ Absorption

    International Nuclear Information System (INIS)

    Hou Chaoqin; Gong Yalin; Zhang Wei; Shang Qingmin; Li Yanfeng; Gou Qiangyuan; Yin Deyou

    2010-01-01

    To solve the problem of on-line sinter moisture measurement in the iron making plant, we developed material moisture measurement method and instrument by the combination of fast neutron absorption and y-absorption. It overcomes the present existed problems of other moisture meters for the sinter. Compare with microwave moisture meter, the measurement dose not affected by conductance and magnetism of material; to infrared moisture meter, the measurement result dose not influenced by colour and light-reflect performance of material surface, dose not influenced by changes of material kind; to slow neutron scatter moisture meter, the measurement dose not affected by density of material and thickness of hopper wall; to the moisture measurement meter which combined by slow neutron penetrate through and y-absorption, there are definite math model and good linear relation between the measurement values, and the measurement dose not affected by material thickness, changes of material form and component. (authors)

  19. Semi-analytical model of laser resonance absorption in plasmas with a parabolic density profile

    International Nuclear Information System (INIS)

    Pestehe, S J; Mohammadnejad, M

    2010-01-01

    Analytical expressions for mode conversion and resonance absorption of electromagnetic waves in inhomogeneous, unmagnetized plasmas are required for laboratory and simulation studies. Although most of the analyses of this problem have concentrated on the linear plasma density profile, there are a few research works that deal with different plasma density profiles including the parabolic profile. Almost none of them could give clear analytical formulae for the electric and magnetic components of the electromagnetic field propagating through inhomogeneous plasmas. In this paper, we have considered the resonant absorption of laser light near the critical density of plasmas with parabolic electron density profiles followed by a uniform over-dense region and have obtained expressions for the electric and magnetic vectors of laser light propagating through the plasma. An estimation of the fractional absorption of laser energy has also been carried out. It has been shown that, in contrast to the linear density profile, the energy absorption depends explicitly on the value of collision frequency as well as on a new parameter, N, called the over-dense density order.

  20. Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-06-01

    Full Text Available The present study is focused on the intestinal absorption of sea cucumber saponins. We determined the pharmacokinetic characteristics and bioavailability of Echinoside A and Holotoxin A1; the findings indicated that the bioavailability of Holotoxin A1 was lower than Echinoside A. We inferred that the differences in chemical structure between compounds was a factor that explained their different characteristics of transport across the intestine. In order to confirm the absorption characteristics of Echinoside A and Holotoxin A1, we examined their transport across Caco-2 cell monolayer and effective permeability by single-pass intestinal perfusion. The results of Caco-2 cell model indicate that Echinoside A is transported by passive diffusion, and not influenced by the exocytosis of P-glycoprotein (P-gp, expressed in the apical side of Caco-2 monolayers as the classic inhibitor. The intestinal perfusion also demonstrated well the absorption of Echinoside A and poor absorption of Holotoxin A1, which matched up with the result of the Caco-2 cell model. The results demonstrated our conjecture and provides fundamental information on the relationship between the chemical structure of these sea cucumber saponins and their absorption characteristics, and we believe that our findings build a foundation for the further metabolism study of sea cucumber saponins and contribute to the further clinical research of saponins.

  1. Modeling microwave electromagnetic field absorption in muscle tissues

    Science.gov (United States)

    Felbacq, D.; Clerjon, S.; Damez, J. L.; Zolla, F.

    2002-07-01

    Absorption of electromagnetic energy in human tissues is an important issue with respect to the safety of low-level exposure. Simulation is a way to a better understanding of electromagnetic dosimetry. This letter presents a comparison between results obtained from a numerical simulation and experimental data of absorbed energy by a muscle. Simulation was done using a bidimensional double-scale homogenization scheme leading to the effective permittivity tensor. Experimental measurements were performed at 10 GHz on bovine muscle, 30 hours after slaughter, thanks to the open-ended rectangular waveguide method. Results show a good agreement between measurements and simulated data.

  2. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  3. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  4. The Effect of D-Tagatose on Fructose Absorption in a Rat Model.

    Science.gov (United States)

    Williams, Jarrod; Spitnale, Michael; Lodder, Robert

    D-tagatose is in development as a medication for the treatment of type 2 diabetes. The effect of oral D-tagatose on the absorption of D-fructose was assessed when co-administered in this study. In the pilot study, male Sprague-Dawley rats were fed C14 labeled fructose and glucose concomitantly to establish dose levels for the treatment group of rats fed C14 labeled fructose together with D-tagatose. Rats were administered 0, 600, 2000, 6000, or 12000 mg/kg of D-tagatose along with 2000 mg/kg of fructose. Blood samples were taken over 60 minutes and were assessed using scintillation counting. 600, 2000, and 6000 mg/kg of D-tagatose decreased fructose absorption by 1%, 26%, and 30% respectively (12000 mg/kg group was stopped short of completion due to intolerance) as measured by AUC of scintillation counts. The 600 and 2000 mg/kg of D-tagatose groups showed no difference in plasma glucose concentrations compared to placebo while a rise in glucose was seen in the 6000 mg/kg of D-tagatose groups. The results indicate that D-tagatose may be useful in reducing fructose absorption, which could lead to a beneficial outcome.

  5. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  6. Sound absorption of a new oblique-section acoustic metamaterial with nested resonator

    Science.gov (United States)

    Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui

    2018-02-01

    This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.

  7. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  8. CD36-Mediated Hematoma Absorption following Intracerebral Hemorrhage: Negative Regulation by TLR4 Signaling

    OpenAIRE

    Fang, Huang; Chen, Jing; Lin, Sen; Wang, PengFei; Wang, YanChun; Xiong, XiaoYi; Yang, QingWu

    2014-01-01

    Promoting hematoma absorption is a novel therapeutic strategy for intracerebral hemorrhage (ICH); however, the mechanism of hematoma absorption is unclear. The present study explored the function and potential mechanism of CD36 in hematoma absorption using in vitro and in vivo ICH models. Hematoma absorption in CD36-deficient ICH patients was examined. Compared with patients with normal CD36 expression, CD36-deficient ICH patients had slower hematoma adsorption and aggravated neurologic defic...

  9. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    Science.gov (United States)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction

  10. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    Science.gov (United States)

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  11. Broken-cloud enhancement of solar radiation absorption

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.N. [Science Applications International Corporation, San Diego, CA (United States); Somerville, R.C. [Univ. of California, La Jolla, CA (United States); Subasilar, B. [Curtain Univ. of Technology, Perth (Australia)

    1996-04-01

    Two papers recently published in Science have shown that there is more absorption of solar radiation than estimated by current atmospheric general circulation models (GCMs) and that the discrepancy is associated with cloudy scenes. We have devised a simple model which explains this as an artifact of stochastic radiative transport. We first give a heuristic description, unencumbered by mathematical detail. Consider a simple case with clouds distributed at random within a single level whose upper and lower boundaries are fixed. The solar zenith angle is small to moderate; this is therefore an energetically important case. Fix the average areal liquid water content of the cloud layer, and take the statistics of the cloud distribution to be homogeneous within the layer. Furthermore, assume that all the clouds in the layer have the same liquid water content, constant throughout the cloud, and that apart from their droplet content they are identical to the surrounding clear sky. Let the clouds occupy on the average a fraction p{sub cld} of the volume of the cloudy layer, and let them have a prescribed distribution of sizes about some mean. This is not a fractal distribution, because it has a scale. Cloud shape is unimportant so long as cloud aspect ratios are not far from unity. Take the single-scattering albedo to be unity for the droplets in the clouds. All of the absorption is due to atmospheric gases, so the absorption coefficient at a point is the same for cloud and clear sky. Absorption by droplets is less than 10% effect in the numerical stochastic radiation calculations described below, so it is reasonable to neglect it at this level of idealization.

  12. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  13. Analytical modeling of light transport in scattering materials with strong absorption.

    Science.gov (United States)

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  14. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    Science.gov (United States)

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  15. Skin absorption through atopic dermatitis skin

    DEFF Research Database (Denmark)

    Halling-Overgaard, A-S; Kezic, S; Jakasa, I

    2017-01-01

    Patients with atopic dermatitis have skin barrier impairment in both lesional and non-lesional skin. They are typically exposed to emollients daily and topical anti-inflammatory medicaments intermittently, hereby increasing the risk of developing contact allergy and systemic exposed to chemicals...... ingredients found in these topical preparations. We systematically searched for studies that investigated skin absorption of various penetrants, including medicaments, in atopic dermatitis patients, but also animals with experimentally induced dermatitis. We identified 40 articles, i.e. 11 human studies...... examining model penetrants, 26 human studies examining atopic dermatitis drugs and 3 animal studies. We conclude that atopic dermatitis patients have nearly two-fold increased skin absorption when compared to healthy controls. There is a need for well-designed epidemiological and dermato...

  16. Modelling the effect of oil/fat content in food systems on flavour absorption by LLDPE.

    NARCIS (Netherlands)

    Dekker, M.; Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2003-01-01

    One of the phenomena in food packaging interactions is flavour absorption. Absorption of flavour compounds from food products into food-packaging materials can result in loss of flavour compounds or an unbalance in the flavour profile changing a product's quality. The food matrix influences the

  17. High-resolution numerical model of the middle and inner ear for a detailed analysis of radio frequency absorption

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Jappel, Alexandra; Baumgartner, Wolf-Dieter; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human middle and inner ear organs, a numerical model of these organs was developed at a spatial resolution of 0.1 mm, based on a real human tissue sample. The dielectric properties of the liquids (perilymph and endolymph) inside the bony labyrinth were measured on samples of ten freshly deceased humans. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-3700 MHz were carried out. For typical output power values of real handheld mobile communication devices the obtained results showed only very small amounts of absorbed RF power in the middle and inner ear organs. Highest absorption in the middle and inner ear was found for the 400 MHz irradiation. In this case, the RF power absorbed inside the labyrinth and the vestibulocochlear nerve was as low as 166 μW and 12 μW, respectively, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power were found to be more than one order of magnitude lower than the values given above. These results indicate that temperature-related biologically relevant effects on the middle and inner ear, induced by the RF emissions of typical handheld mobile communication devices, are unlikely

  18. X-ray absorption anisotropy for polychromatic illumination-Crystal views from inside

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Novikov, D.V.

    2009-01-01

    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms.

  19. The γ-ray self-absorption correction for sources with random geometrical shape

    International Nuclear Information System (INIS)

    Lu Xiangdong

    2003-01-01

    The regularities followed by γ-ray self-absorption corrections of nuclear materials under common geometry conditions have been studied by the numeric simulation. Many models were adopted. The results show that the self-absorption corrections are not related to shape and size of the sources. The method is succinct, and the conclusions are useful for actual situation and offer bases for data analyzing. The component of a sample is analyzed by means of the self-absorption correction

  20. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  1. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    International Nuclear Information System (INIS)

    Curis, Emmanuel; Osan, Janos; Falkenberg, Gerald; Benazeth, Simone; Toeroek, Szabina

    2005-01-01

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented

  2. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T

    2006-01-01

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware

  3. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    Science.gov (United States)

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  4. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  5. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption.

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Li, Song-Lin; Sun, E; Tan, Xiao-Bin; Song, Jie; Jia, Xiao-Bin

    2013-01-01

    As with many other anti-cancer agents, 20(S)-protopanaxadiol (PPD) has a low oral absorption. In this study, in order to improve the oral bioavailability of PPD, the cubic nanoparticles that it contains were used to enhance absorption. Therefore, the cubic nanoparticle loaded PPD were prepared through the fragmentation of the glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and were verified by transmission electron microscope, small angle X-ray scattering and differential scanning calorimetry. The in vitro release of 20(S)-protopanaxadiol from these nanoparticles was less than 5% at 12h. And then Caco-2 cell monolayer model was used to evaluate the absorption of PPD in vitro. Meanwhile the rat intestinal perfusion model and bioavailability were also estimated in vivo. The results showed that, in the Caco-2 cell model, the PPD-cubosome could increase the permeability values from the apical (AP) to the basolateral (BL) of PPD at 53%. The result showed that the four-site rat intestinal perfusion model was consistent with the Caco-2 cell model. And the result of a pharmacokinetic study in rats showed that the relative bioavailability of the PPD-cubosome (AUC(0-∞)) compared with the raw PPD (AUC(0-∞)) was 169%. All the results showed that the PPD-cubosome enhanced bioavailability was likely due to the increased absorption by the cubic nanoparticles rather than by the improved release. Hence, the cubic nanoparticles may be a promising oral carrier for the drugs that have a poor oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    Science.gov (United States)

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  7. Effects of changing the amount of absorption in a computer model of Queen's Hall, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2006-01-01

    of the results reveal great differences in the objective parameters of reverberation time (T30), clarity index (C50), sound pressure level (SPL) and lateral energy fraction (LF80) for each channel’s impulse response across the room absorption variations. Subjective studies were conducted to see the effect...... of modelling the source directivity. A new method to incorporate source directivity is multi-channel auralizations. An omni-directional source is divided into the number of recording channels and the impulse response (IR) for each channel is calculated. Each individual IR is then convolved with the appropriate...

  8. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  9. Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2012-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes

  10. Absorptive Capacity, Alliance Portfolios and Innovation Performance: an Analytical Model Based on Bibliographic Research

    Directory of Open Access Journals (Sweden)

    Teresia Diana Lewe van Aduard de Macedo-Soares

    2016-10-01

    Full Text Available The objective of this article is to present a model for analysing the role of absorptive capacity in the relationship between strategic alliance portfolios and innovation performance based on the results of bibliographic research on the subject published between 2000 and 2015. The research was carried out in three stages, involving both quantitative - bibliometric and bibliographic coupling - and qualitative content analyses.  AP management capabilities were found to have a fundamental moderating role in the AP–IP relationship, and amongst these capabilities AC was highlighted by several authors. However, its role was found to vary according to AP characteristics, notably AP diversity – functional, geographic and institutional, but also centrality, size, stability and volume of resources, alliance and partner types as well as country type: emerging versus developed economies. This research formed the basis for the development of the model and the formulation of some propositions that focused on emerging countries.

  11. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    Science.gov (United States)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  12. Performance of iodide vapour absorption in the venturi scrubber working in self-priming mode

    International Nuclear Information System (INIS)

    Zhou, Yanmin; Sun, Zhongning; Gu, Haifeng; Miao, Zhuang

    2016-01-01

    Highlights: • The absorption performance for iodide vapour was studied under different conditions. • A mathematical model was developed to describe the iodide absorption process. • The venturi scrubber can ensure absorption efficiiency and reduce pressure loss. - Abstract: The self-priming venturi scrubber is the key component of filtered containment venting systems for the removal of radioactive products during severe accidents in nuclear power plants. This paper is focused on the absorption performance of iodide vapour in the venturi scrubber, based on experiment and mathematical calculation. The results indicate that the absorption efficiency is closely related to solution flow rate, gas flow rate and temperature, but is not sensitive to iodide inlet concentration. When solution flow rate is low, the absorption efficiency increases rapidly with increasing the solution flow rate, and when the solution is excessive, the absorption efficiency remains around 99% stably; the influence of gas flow rate on absorption efficiency is mainly reflected in the variation of gas and liquid contacting time; when the solution flow rate is low, the increase of gas flow rate will led to an obvious decrease in absorption efficiency; temperature is not important when gas flow rate in constant but becomes effective for improving the absorption efficiency when gas velocity is constant. The proposed mathematical model can predict the iodide absorption process well in the range of experimental conditions. Especially, in the condition of lower gas flow rate and higher solution flow rate, the prediction accuracy is more satisfactory; however the accuracy of prediction will decrease at higher gas flow rates and lower solution flow rates because of neglecting the transverse exchange between gas and liquid phase.

  13. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  14. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-06-01

    The present discussion is limited to a presentation of the most recent total photonuclear absorption experiments performed with real photons at intermediate energy, and more precisely in the region of nucleon resonances. The main sources of real photons are briefly reviewed and the experimental procedures used for total photonuclear absorption cross section measurements. The main results obtained below 140 MeV photon energy as well as above 2 GeV are recalled. The experimental study of total photonuclear absorption in the nuclear resonance region (140 MeV< E<2 GeV) is still at its beginning and some results are presented

  15. The Effect of D-Tagatose on Fructose Absorption in a Rat Model

    Science.gov (United States)

    Williams, Jarrod; Spitnale, Michael; Lodder, Robert

    2014-01-01

    D-tagatose is in development as a medication for the treatment of type 2 diabetes. The effect of oral D-tagatose on the absorption of D-fructose was assessed when co-administered in this study. In the pilot study, male Sprague-Dawley rats were fed C14 labeled fructose and glucose concomitantly to establish dose levels for the treatment group of rats fed C14 labeled fructose together with D-tagatose. Rats were administered 0, 600, 2000, 6000, or 12000 mg/kg of D-tagatose along with 2000 mg/kg of fructose. Blood samples were taken over 60 minutes and were assessed using scintillation counting. 600, 2000, and 6000 mg/kg of D-tagatose decreased fructose absorption by 1%, 26%, and 30% respectively (12000 mg/kg group was stopped short of completion due to intolerance) as measured by AUC of scintillation counts. The 600 and 2000 mg/kg of D-tagatose groups showed no difference in plasma glucose concentrations compared to placebo while a rise in glucose was seen in the 6000 mg/kg of D-tagatose groups. The results indicate that D-tagatose may be useful in reducing fructose absorption, which could lead to a beneficial outcome. PMID:25621289

  16. Nonlinear cyclotron absorption and stimulated scattering

    International Nuclear Information System (INIS)

    Chung, T.H.

    1986-01-01

    In electron cyclotron resonance heating (ECRH), wave sources heating a plasma linearly with respect to intensity; but as the intensity of ECRH gets larger, there might appear nonlinear effects that would result in cutoff of net absorption. This thesis uses quantum mechanical theory to derive a threshold microwave intensity for nonlinear absorption. The quantum mechanical theory estimates that the threshold microwave intensity for nonlinear absorption is about 10 5 watts/cm 2 for a microwave heating experiment (T/sub e/ = 100 ev, λ = 3,783 cm, B = 2.5 kG). This value seems large considering the present power capabilities of microwave sources (10 2 ∼ 10 3 watts/cm 2 ), but for a low temperature plasma, this threshold will go down. There is another nonlinear phenomenon called stimulated cyclotron scattering that enhances photon scattering by electrons gyrating in a magnetic field. This is expected to prevent incoming photons from arriving at the central region of the fusion plasma, where absorption mainly takes place. Theory based on a photon transport model predicts that the threshold intensity for the stimulated cyclotron scattering is about 10 4 watts/cm 2 for the plasma parameters mentioned above. This value seems large also, but a longer wavelength of microwaves and a larger magnitude magnetic field, which will be the case in reactor type facilities, will lower the threshold intensity to levels comparable with the currently developed microwave sources

  17. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  18. Investigation into the absorptivity change in metals with increased laser power

    DEFF Research Database (Denmark)

    Blidegn, Kristian; Olsen, Flemmming Ove

    1996-01-01

    At a first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG and CO2 lasers in metal processing very inefficient. However industrial inert gas cutting abilities demonstrates that the absorptivity can reach significantly higher levels during the high power laser...... interaction. An increase which can not be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing. The Drude free electron model or simplifications like the Hagen-Rubens relation has often been used to model...

  19. Accounting for the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    This paper reports that the assumptions used dose calculations can be overly conservative for discrete hot particles (activated satellite chips and irradiated fuel fragments) due to self-absorption of betas within the particles. Using data from tests with a Co-60 hot particle, a model is developed to estimate the dose reduction factor afforded by self-absorption in a satellite chip with a known thickness. The model can be applied indirectly using ion chamber survey instrument readings (the thickness of the particle does not have to be measured). Tests with Co-60 particles found at the Palo Verde Nuclear Generating Station verify that self-absorption is significant -- in one case, a dose reduction factor of 7 was measured in a satellite chip with a visible thickness

  20. Linking Transformational Leadership, Absorptive Capacity, and Corporate Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Imran Shafique

    2018-03-01

    Full Text Available This study aims to analyze the nexus between transformational leadership and corporate entrepreneurship through an integration of dispersed scholarly work on transformational leadership, absorptive capacity, and corporate entrepreneurship under one framework. A survey method was employed for the collection of data from small and medium-sized enterprises (SMEs of Pakistan. The data were analyzed using structural equation modeling (SEM technique to empirically test the hypotheses. The results demonstrate that transformational leadership positively affects corporate entrepreneurship and its dimensions—namely, innovation, new business venturing, self-renewal, proactivity, and risk-taking—both directly and through absorptive capacity. The potential of transformational leadership to influence corporate entrepreneurship via absorptive capacity added additional interesting substitutes. Future studies may produce novel insights by examining different leadership styles, settings, or utilizing qualitative technique. Firms should invest to initiate transformational leadership training programs for their managers. Additionally, if these firms are aiming to promote corporate entrepreneurship, they should focus on hiring managers that have attributes of transformational leadership. Furthermore, they should also invest in absorptive capacity to utilize outside knowledge for the enhancement of entrepreneurial activities. This study exploits research work on the relationship between transformational leadership and corporate entrepreneurship in a novel way; it investigates the dimensions of entrepreneurship individually, as well as unidimensionally, and includes the mediating role of absorptive capacity and tests several other hypotheses that previously have been ignored. This study, compared to the existing research, contributes to the impact of transformational leadership on corporate entrepreneurship and absorptive capacity, especially in Pakistan

  1. Extreme Variability in a Broad Absorption Line Quasar

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Daniel; Jun, Hyunsung D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Steidel, Charles C. [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arav, Nahum; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Glikman, Eilat, E-mail: daniel.k.stern@jpl.nasa.gov [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-04-20

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.

  2. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network

    DEFF Research Database (Denmark)

    Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.

    2013-01-01

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15Me......V, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA...

  3. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model

    Science.gov (United States)

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index (RI) of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range $250\\,{\\rm nm} - 1100\\,{\\rm nm}$ using the Kramers-Kronig (KK) relations and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  4. Temperature-insensitive laser frequency locking near absorption lines

    International Nuclear Information System (INIS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-01-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  5. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    Science.gov (United States)

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  6. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  7. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    Science.gov (United States)

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 InP nanowire-based solar cells and photodetectors.

  8. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model.

    Science.gov (United States)

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  9. PENGUJIAN COGNITIVE ABSORPTION TERHADAP KEPERCAYAAN-KEPERCAYAAN PENGGUNA UNTUK BERBAGI INFORMASI DI LINGKUNGAN VIRTUAL WORLDS

    Directory of Open Access Journals (Sweden)

    Supardi Supardi

    2014-04-01

    Full Text Available Virtual Worlds (VWs are media-rich  cognitively  engaging technologies that geographically dispersed organizations  can use  as a cost effective workplace collaboration tool. Using  a sharing  information in virtual worlds environment, the aims of this study is to investigate cognitive absorption within individual beliefs about the technology of virtual worlds use. Cognitive absorption, theorized as being exhibited through the five dimensions of temporal dissociation, focused immersion, heightened enjoyment, control, and curiosity, is posited to be a proximal antecedent of two important beliefs about technology use: perceived usefulness and perceived ease of use. A model, based on Bandura's Social Cognitive Theory, was developed to test number of variables as the antecedents of cognitive absorption, which include social factor and individual like familiarity and personal innovativeness.A sample of 218 respondents participated in the research. In informing the results, the study utilized the partial least square model with the support for SmartPLS 2.0 software. Our findings suggest that beliefs about VWs usage can be influenced by cognitive absorption. Significant relationships were found between familiarity and cognitive absorption, and between personal innovativeness and cognitive absorption. Theoretical and practical implications are offered.

  10. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  11. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  12. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash; Zarokanellos, Nikolaos; Kheireddine, Malika; Shanmugam, Palanisamy; Jones, Burton

    2018-01-01

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non

  13. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  14. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    Science.gov (United States)

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-04

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  15. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  16. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  17. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  18. Identifying and Quantifying Adulterants in Extra Virgin Olive Oil of the Picual Varietal by Absorption Spectroscopy and Nonlinear Modeling.

    Science.gov (United States)

    Aroca-Santos, Regina; Cancilla, John C; Matute, Gemma; Torrecilla, José S

    2015-06-17

    In this research, the detection and quantification of adulterants in one of the most common varieties of extra virgin olive oil (EVOO) have been successfully carried out. Visible absorption information was collected from binary mixtures of Picual EVOO with one of four adulterants: refined olive oil, orujo olive oil, sunflower oil, and corn oil. The data gathered from the absorption spectra were used as input to create an artificial neural network (ANN) model. The designed mathematical tool was able to detect the type of adulterant with an identification rate of 96% and to quantify the volume percentage of EVOO in the samples with a low mean prediction error of 1.2%. These significant results make ANNs coupled with visible spectroscopy a reliable, inexpensive, user-friendly, and real-time method for difficult tasks, given that the matrices of the different adulterated oils are practically alike.

  19. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Science.gov (United States)

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  20. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  1. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    Science.gov (United States)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  2. New data on the self-absorption of betas in cobalt-60 hot particles

    International Nuclear Information System (INIS)

    Lantz, M.W.; Steward, J.B.

    1988-01-01

    The authors demonstrated that standard dose calculation methods for hot particles could seriously overestimate the beta dose rate component to skin. The reason-self-absorption within an activated satellite particle that has a finite thickness can lead to dramatic reductions in beta output, as compared to that predicted by calculation models that assume the particle has zero thickness. In this paper, the authors demonstrate the self-absorption effect with a particle model and confirmed it with measurements on two high-activity Co-60 particles found at the Palo Verde Nuclear Power Station. The authors then described a method for using an Eberline RO-2 ion chamber survey instrument to estimate the beta dose rate reduction related to self-absorption within a particle. This method relied on the comparison of the uncorrected beta/gamma ratio [(open window-closed window) divided-by closed window] for a particle expected of exhibiting self-absorption to the ratio obtained for a particle of zero thickness

  3. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  4. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  5. Modeling of optical absorption of silver prolate nanoparticles embedded in sol-gel glasses

    International Nuclear Information System (INIS)

    Renteria, V.M.; Garcia-Macedo, J.

    2005-01-01

    Silver prolate nanoparticles were obtained in silica gels prepared by the sol-gel process. Heating them at 900 deg. C for few minutes, the samples showed a yellow-orange color. A strong optical absorption with an asymmetric peak centred at 425 nm due to surface plasmon resonance of silver nanoparticles was observed. High-resolution transmission electron microscopy images showed silver prolate particles (average axial ratio AR = 0.76) randomly oriented with broad size distribution. The size changed from 9 to 3 nm and the prolate form changed to almost spherical (AR = 0.92) when the samples were heated longer time at 900 deg. C. In these samples, the absorption peak was shifted from 425 up to 460 nm. After heat treatment, the absorption spectrum did not change any more in some months, indicating that the particles obtained through this method are stable at room temperature. The Gans theory was used to fit the experimental spectra. The fit was not good until we assumed in the calculations all the physical features come from the system such as the volume fraction, shape and size of the metallic particles, and refractive index of the silica matrix. It was necessary to consider also a refractive index that come from oxidation on the surface of the metallic particles. With these considerations the fit with the Gans theory was good enough, and the difference between the calculated and experimental spectra was very small, factor 20 better than when oxidation is ignored. So then, the oxidation from the metallic particles must be taken in account to explain the experimental absorption spectra. These results are discussed

  6. Modeling of optical absorption of silver prolate nanoparticles embedded in sol-gel glasses

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, V.M. [Departamento de Estado Solido, Instituto de Fisica, UNAM, P.O. Box 20-364, 01000 Mexico, Distrito Federal (Mexico); Garcia-Macedo, J. [Departamento de Estado Solido, Instituto de Fisica, UNAM, P.O. Box 20-364, 01000 Mexico, Distrito Federal (Mexico)]. E-mail: gamaj@fisica.unam.mx

    2005-05-15

    Silver prolate nanoparticles were obtained in silica gels prepared by the sol-gel process. Heating them at 900 deg. C for few minutes, the samples showed a yellow-orange color. A strong optical absorption with an asymmetric peak centred at 425 nm due to surface plasmon resonance of silver nanoparticles was observed. High-resolution transmission electron microscopy images showed silver prolate particles (average axial ratio AR = 0.76) randomly oriented with broad size distribution. The size changed from 9 to 3 nm and the prolate form changed to almost spherical (AR = 0.92) when the samples were heated longer time at 900 deg. C. In these samples, the absorption peak was shifted from 425 up to 460 nm. After heat treatment, the absorption spectrum did not change any more in some months, indicating that the particles obtained through this method are stable at room temperature. The Gans theory was used to fit the experimental spectra. The fit was not good until we assumed in the calculations all the physical features come from the system such as the volume fraction, shape and size of the metallic particles, and refractive index of the silica matrix. It was necessary to consider also a refractive index that come from oxidation on the surface of the metallic particles. With these considerations the fit with the Gans theory was good enough, and the difference between the calculated and experimental spectra was very small, factor 20 better than when oxidation is ignored. So then, the oxidation from the metallic particles must be taken in account to explain the experimental absorption spectra. These results are discussed.

  7. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    OpenAIRE

    G. E. Kim; M.-A. Pradal; A. Gnanadesikan

    2015-01-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attribut...

  8. Absorption and emission properties of photonic crystals and metamaterials

    International Nuclear Information System (INIS)

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  9. Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2008-09-15

    A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)

  10. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology.

    Science.gov (United States)

    Wu, Chunnuan; Sun, Le; Sun, Jin; Yang, Yajun; Ren, Congcong; Ai, Xiaoyu; Lian, He; He, Zhonggui

    2013-09-10

    The aim of the present study was to correlate in vitro properties of drug formulation to its in vivo performance, and to elucidate the deciding properties of oral absorption. Gastrointestinal simulation technology (GST) was used to simulate the in vivo plasma concentration-time curve and was implemented by GastroPlus™ software. Lansoprazole, a typical BCS class II drug, was chosen as a model drug. Firstly, physicochemical and pharmacokinetic parameters of lansoprazole were determined or collected from literature to construct the model. Validation of the developed model was performed by comparison of the predicted and the experimental plasma concentration data. We found that the predicted curve was in a good agreement with the experimental data. Then, parameter sensitivity analysis (PSA) was performed to find the key parameters of oral absorption. The absorption was particularly sensitive to dose, solubility and particle size for lansoprazole enteric-coated tablets. With a single dose of 30 mg and the solubility of 0.04 mg/ml, the absorption was complete. A good absorption could be achieved with lansoprazole particle radius down to about 25 μm. In summary, GST is a useful tool for profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets and guiding the formulation optimization. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Aspects on modeled and the design of a system of refrigeration by absorption attended with solar energy; Aspectos sobre el modelado y diseno de un sistema de refrigeracion por absorcion asistido con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Cascales, J. R.; Vera Garcia, F.; Cano Izquierdo, J. M.; Delgado Marin, J. P.; Martinez Sanchez, R.

    2008-07-01

    In this paper, we study the global modelling of an absorption system working with Br Li-H{sub 2}O. It satisfies the air-conditioning necessities of a classroom in an educational centre in Puerto Lumbreras. Murcia. This system utilises a set of solar collector to satisfy the thermal necessities of the vapour generator in the absorption system. For the dynamical simulation of the system we have used the TRNSYS software. The air-conditioned place has been modelled by using a TRNSYS module called PREBID. In this work, special attention is paid to the absorption equipment model developed by using neural networks which has been implemented in TRNSYS. The paper is closed drawing some conclusions. (Author)

  12. Prediction of energy absorption characteristics of aligned carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Weidt, D; Figiel, Ł; Buggy, M

    2012-01-01

    This research aims ultimately at improving the impact performance of laminates by applying a coating of epoxy containing carbon nanotubes (CNTs). Here, 2D and 3D computational modelling was carried out to predict energy absorption characteristics of aligned CNT/epoxy nanocomposites subjected to macroscopic compression under different strain rates (quasi-static and impact rates). The influence of the rate-dependent matrix behaviour, CNT aspect ratio and CNT volume fraction on the energy absorption characteristics of the nanocomposites was evaluated. A strong correlation between those parameters was found, which provides an insight into a rate-dependent behaviour of the nanocomposites, and can help to tune their energy absorption characteristics.

  13. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  14. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize...... the operation of the heat pump under different load conditions. Different feasible input-output pairings are analyzed by computation of relative gain array matrices and scaled condition numbers, which indicate the best pairing choice and the potential of each input-output set. Further, it is possible...... to minimize the effect of cross couplings and improve stability with the right pairing of input and output. Simulation of selected candidate input-output pairings demonstrate that decentralized control can provide stable operation of the heat pump....

  15. Nonlinear absorption and receptivity of the third order in InAs infrared region

    International Nuclear Information System (INIS)

    Musayev, M.A.

    2005-01-01

    Nonlinear absorption and receptivity of the third order and coefficient nonlinear absorption in InAs n-type with different degree of alloying was measured. Obtained score considerably exceed sense, calculated on the basis of the models describing nonlinear receptivity of electrons, situated in the nonparabolic area of conductivity. It was shown that, observable deviations withdraw; if in the calculation apply energy dissipation of electrons. Growth of the efficiency under four-wave interaction in low-energy-gap semiconductors confines nonlinear absorption of interacting waves

  16. The absorption of carbon monoxide in COSORB solutions: absorption rate and capacity

    NARCIS (Netherlands)

    Hogendoorn, Kees; van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1995-01-01

    Absorption rate experiments and equilibrium experiments were carried out for the COSORB reaction at 300 K. The equilibrium data at 300 K could reasonably well be described with the following relation: [...] Determination of the kinetics and mechanism of a chemical reaction by means of absorption

  17. Simulation and experimental validation of the performance of a absorption refrigerator

    International Nuclear Information System (INIS)

    Olbricht, Michael; Luke, Andrea

    2015-01-01

    The two biggest obstacles to a stronger market penetration of absorption refrigerators are their high cost and the size of the apparatus, which are due to the inaccurate methods for plant design. In order to contribute to an improved design a thermodynamic model is presented to describe the performance of a absorption refrigerator with the working fluid water/lithium. In this model, the processes are displayed in the single apparatus and coupled to each other in the systemic context. Thereby the interactions between the apparatus can specifically investigated and thus the process limiting component can be identified under the respective conditions. A validation of the simulation model and the boundary conditions used is done based on experimental data operating a self-developed absorption refrigerator. In the simulation, the heat transfer surfaces in accordance with the real system can be specified. The heat transport is taken into account based on typical values for the heat transfer in the individual apparatuses. Simulation results show good agreement with the experimental data. The physical relationships and influences externally defined operating parameters are correctly reproduced. Due to the chosen low heat transfer coefficient, the calculated cooling capacities by the model are below the experimentally measured. Finally, the possibilities and limitations are discussed by using the model and further improvement possibilities are suggested. [de

  18. Accurate Laser Measurements of the Water Vapor Self-Continuum Absorption in Four Near Infrared Atmospheric Windows. a Test of the MT_CKD Model.

    Science.gov (United States)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon

    2017-06-01

    The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.

  19. Influence of age and sex on mineral absorption from the alimentary tract

    International Nuclear Information System (INIS)

    Strain, W.H.; Pories, W.J.; Michael, E.; Peer, R.M.; Zaresky, S.A.

    1976-01-01

    The influence of age and sex on mineral absorption, especially iron and zinc, from the alimentary tract has been studied in a rat model using radioisotope retention measurements by means of a whole body counter for small animals. The body burden measurements made after oral administration of each radioisotope showed that the radionuclides were absorbed and retained more by young than by old rats, and more by female than by male animals. The sex effect was slight in young rats and became very pronounced in year-old animals. Old female breeder rats absorbed more of the radioisotopes than virgin adult females. The animal results agree well with human stable and radioisotope Fe and with the limited data on radiozinc absorption. The experimental model seems to have general applicability for investigating the influences of age and sex on trace mineral absorption

  20. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...

  1. Modified starch enhances absorption and accelerates recovery in experimental diarrhea in rats.

    Science.gov (United States)

    Wingertzahn, M A; Teichberg, S; Wapnir, R A

    1999-03-01

    Rice gruels have been used as home remedies to treat dehydration associated with diarrheal illness in developing countries. These preparations have produced conflicting results, most likely due to the heterogeneity of starch used. We investigated whether the modified tapioca starch, Textra (TX), at 5.0 or 10.0 g/L added to a 90 mmol/L Na+-111 mmol glucose oral rehydration solution (ORS) enhanced water and electrolyte absorption in two models of diarrhea. To induce a secretory state (model A), the jejunum of juvenile rats was perfused with 10 mmol/L theophylline (THEO) under anesthesia and then perfused with the solutions indicated above. To produce chronic osmotic-secretory diarrhea (model B), rats had a magnesium citrate-phenolphthalein solution as the sole fluid source for 1 wk, and then were perfused as the THEO-treated rats. Water, electrolyte, and glucose absorption were measured during both perfusions. As an extension of the perfusion studies, we compared how fast rats recovered from chronic osmotic diarrhea by offering them either water, ORS, or ORS containing 5.0 g/L TX along with solid food. Recovery rate markers were measured after 24 h and included weight gain, food and fluid intake, and stool output. In model A, addition of 5.0 g/L TX to ORS reversed Na+ secretion and improved net water as well as K+ and glucose absorption, compared with THEO-treated rats perfused with ORS without TX. In model B, addition of TX to ORS increased water, Na+, K+, and glucose absorption, compared with rats perfused without TX. Increasing TX from 5.0 to 10.0 g/L had no additional benefit. In recovery experiments, animals with free access to ORS with TX had significantly greater weight gain and decreased stool output compared with animals recovering with water or ORS without TX. Our experiments suggest that TX may be a useful additive to standard ORS to promote fluid and electrolyte absorption and may provide additional energy without increasing ORS osmotic load.

  2. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    Science.gov (United States)

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  3. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  4. New approximation for calculating free-free absorption in hot dense plasmas

    International Nuclear Information System (INIS)

    Perrot, F.

    1996-01-01

    We propose a model for calculating free-free absorption (inverse bremmstrahlung) in hot dense plasmas. This model writes the total Gaunt factor as the product of a static factor and a dynamic factor. The treatment of the static part is based on a relation between the absorption cross section and the elastic scattering cross section, which is exact for very low frequencies and becomes asymptotically correct when the Born approximation is valid. Generalizing this relation provides an expression of the absorption cross section Q(k,k'), which depends on the initial and final wave vectors k and k', as an integral of a unique function S * (k). The calculation of nondiagonal matrix elements (k ''not='' k') is thus avoided. The analytical summation of the high angular momenta in the partial wave expansion of the cross section makes possible to apply the model in the limit of weak electron screening. The collective effects are accounted for in a dynamic Gaunt factor and in an index of refraction different from unity. Numerical results for the Gaunt factor in cesium are presented and discussed. An application to the mean opacities of carbon is also shown. (Author)

  5. Small Airway Absorption and Microdosimetry of Inhaled Corticosteroid Particles after Deposition.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2017-10-01

    To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms. A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated. Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells. Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.

  6. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    Science.gov (United States)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  7. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.

  8. Absorption of water and lubricating oils into porous nylon

    Science.gov (United States)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  9. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  10. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  11. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  12. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  13. A contribution of black and brown carbon to the aerosol light absorption

    Science.gov (United States)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  14. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  15. Study of absorption and re-emission processes in a ternary liquid scintillation system

    International Nuclear Information System (INIS)

    Xiao Hualin; Wang Naiyan; Li Xiaobo; Cao Jun; Wen Liangjian; Zheng Dong

    2010-01-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2, 5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured. (authors)

  16. Absorption characteristics of epidural levobupivacaine with adrenaline and clonidine in children.

    Science.gov (United States)

    Chalkiadis, George A; Abdullah, Farah; Bjorksten, Andrew R; Clarke, Alexander; Cortinez, Luis I; Udayasiri, Sonal; Anderson, Brian J

    2013-01-01

    To determine if the addition of adrenaline, clonidine, or their combination altered the pharmacokinetic profile of levobupivacaine administered via the caudal epidural route in children. Children aged adrenaline 5 mcg · ml(-1) or clonidine 2 mcg · ml(-1) or their combination. Covariate analysis included weight and postnatal age (PNA). Time-concentration profile analysis was undertaken using nonlinear mixed effects models. A one-compartment linear disposition model with first-order input and first-order elimination was used to describe the data. The effect of either clonidine or adrenaline on absorption was investigated using a scaling parameter (Fabs(CLON), Fabs(ADR)) applied to the absorption half-life (Tabs). There were 240 children (median weight 11.0, range 1.9-56.1 kg; median postnatal age 16.7, range 0.6-167.6 months). Absorption of levobupivacaine was faster when mixed with clonidine (Fabs(CLON) 0.60; 95%CI 0.44, 0.83) but slower when mixed with adrenaline (Fabs(ADR) 2.12; 95%CI 1.45, 3.08). The addition of adrenaline to levobupivacaine resulted in a bifid absorption pattern. While initial absorption was unchanged (Tabs 0.15 h 95%CI 0.12, 0.18 h), there was a late absorption peak characterized by a Tabs(LATE) 2.34 h (95%CI 1.44, 4.97 h). The additional use of clonidine with adrenaline had minimal effect on the bifid absorption profile observed with adrenaline alone. Neither clonidine nor adrenaline had any effect on clearance. The population parameter estimate for volume of distribution was 157 l 70 kg(-1). Clearance was 6.5 l · h(-1) 70 kg(-1) at 1-month PNA and increased with a maturation half-time of 1.6 months to reach 90% of the mature value (18.5 l · h(-1) 70 kg(-1)) by 5 months PNA. The addition of adrenaline decreases the rate of levobupivacaine systemic absorption, reducing peak concentration by half. Levobupivacaine concentrations with adrenaline adjuvant were reduced compared to plain levobupivacaine for up to 3.5 hours. Clonidine as an

  17. Uranium absorption study pile; Empilement pour le controle de l'absorption de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF{sub 3} counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10{sup -6} boron per gr. of uranium) or better. (author) [French] Nous decrivons un dispositif permettant de mesurer l'absorption des elements combustibles d'une pile. Ce dispositif est constitue par un empilement de graphite dont la region centrale est formee par un reseau regulier de barres d'uranium. Des sources de RaBe et des compteurs a BF{sub 3} sont places de part et d'autre de cette region. En comparant un chargement d'uranium a un chargement etalon d'environ 560 kg, on peut determiner la difference d'absorption entre ces deux chargements. La sensibilite permettrait de deceler une variation d'absorption de l'ordre du ppm de bore (10{sup -6} g de bore par gramme d'uranium) et peut-etre mieux. (auteur)

  18. Successive collision calculation of resonance absorption (AWBA Development Program)

    International Nuclear Information System (INIS)

    Schmidt, E.; Eisenhart, L.D.

    1980-07-01

    The successive collision method for calculating resonance absorption solves numerically the neutron slowing down problem in reactor lattices. A discrete energy mesh is used with cross sections taken from a Monte Carlo library. The major physical approximations used are isotropic scattering in both the laboratory and center-of-mass systems. This procedure is intended for day-to-day analysis calculations and has been incorporated into the current version of MUFT. The calculational model used for the analysis of the nuclear performance of LWBR includes this resonance absorption procedure. Test comparisons of results with RCPO1 give very good agreement

  19. Terahertz absorption in graphite nanoplatelets/polylactic acid composites

    Science.gov (United States)

    Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.

    2018-04-01

    The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.

  20. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  1. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    Science.gov (United States)

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  2. A VISION OF ORKUT´S USERS: STUDYING THIS PHENOMENON THROUGH COGNITIVE ABSORPTION

    Directory of Open Access Journals (Sweden)

    Mauri Leodir Löbler

    2011-05-01

    Full Text Available This study aims to identify the influence that Cognitive Absorption has on the intention of using Orkut. It happens due to the fact that Cognitive Absorption is related to the state of deep involvement users carry with an individual task, performed with the support of Information Technology (IT; it corroborates the study on this virtual community. Therefore, through descriptive research with a quantitative character and with the aid of structural equations, 645 Orkut users were investigated. After the identification of suitability of all indexes tested and fit for both constructs and the final model. The conclusion drawn is that Cognitive Absorption explains the 41% intention of using Orkut, emphasizing that for this kind of IT the Cognitive Absorption seems perfectly adequate to measure the Intention of Use.

  3. Absorptive capacity and mass customization capability

    OpenAIRE

    Zhang, Min; Zhao, Xiande; Lyles, Marjorie A.; Guo, Hangfei

    2015-01-01

    Purpose The purpose of this paper is to investigate the effects of a manufacturer’s absorptive capacity (AC) on its mass customization capability (MCC). Design/methodology/approach The authors conceptualize AC within the supply chain context as four processes: knowledge acquisition from customers, knowledge acquisition from suppliers, knowledge assimilation, and knowledge application. The authors then propose and empirically test a model on the relationships among AC processes and MCC using s...

  4. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    Science.gov (United States)

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  5. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    Science.gov (United States)

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  6. Influence of pH on Drug Absorption from the Gastrointestinal Tract: A Simple Chemical Model

    Science.gov (United States)

    Hickman, Raymond J. S.; Neill, Jane

    1997-07-01

    A simple model of the gastrointestinal tract is obtained by placing ethyl acetate in contact with water at pH 2 and pH 8 in separate test tubes. The ethyl acetate corresponds to the lipid material lining the tract while the water corresponds to the aqueous contents of the stomach (pH 2) and intestine (pH 8). The compounds aspirin, paracetamol and 3-aminophenol are used as exemplars of acidic, neutral and basic drugs respectively to illustrate the influence which pH has on the distribution of each class of drug between the aqueous and organic phases of the model. The relative concentration of drug in the ethyl acetate is judged by applying microlitre-sized samples of ethyl acetate to a layer of fluorescent silica which, after evaporation of the ethyl acetate, is viewed under an ultraviolet lamp. Each of the three drugs, if present in the ethyl acetate, becomes visible as a dark spot on the silica layer. The observations made in the model system correspond well to the patterns of drug absorption from the gastrointestinal tract described in pharmacology texts and these observations are convincingly explained in terms of simple acid-base chemistry.

  7. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  8. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans

    Science.gov (United States)

    Calcium absorption efficiency and bone mineral mass are increased in adolescents who regularly consume inulin-type fructans (ITF). The mechanism of action in increasing absorption is unknown but may be related to increased colonic calcium absorption. We conducted a study in young adults designed to ...

  10. A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.

    Science.gov (United States)

    Greer, T; Bedelbayev, A; Igreja, J M; Gomes, J F; Lie, B

    2010-01-01

    Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.

  11. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  12. Absorption of controlled-release iron

    International Nuclear Information System (INIS)

    Cook, J.D.; Lipschitz, D.A.; Skikne, B.S.

    1982-01-01

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  13. Time dependent theory of two-step absorption of two pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebane, Inna, E-mail: inna.rebane@ut.ee

    2015-09-25

    The time dependent theory of two step-absorption of two different light pulses with arbitrary duration in the electronic three-level model is proposed. The probability that the third level is excited at the moment t is found in depending on the time delay between pulses, the spectral widths of the pulses and the energy relaxation constants of the excited electronic levels. The time dependent perturbation theory is applied without using “doorway–window” approach. The time and spectral behavior of the spectrum using in calculations as simple as possible model is analyzed. - Highlights: • Time dependent theory of two-step absorption in the three-level model is proposed. • Two different light pulses with arbitrary duration is observed. • The time dependent perturbation theory is applied without “door–window” approach. • The time and spectral behavior of the spectra is analyzed for several cases.

  14. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    Science.gov (United States)

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  15. Reverse-Engineering Laboratory Astrophysics: Oxygen Inner-shell Absorption in the ISM

    Science.gov (United States)

    Garcia, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2017-01-01

    The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.

  16. Optimization of a solar driven absorption refrigerator in the transient regime

    International Nuclear Information System (INIS)

    Hamed, Mouna; Fellah, Ali; Ben Brahim, Ammar

    2012-01-01

    Highlights: ► Dynamic behavior of a solar absorption refrigerator endoreversible model. ► Using the principles of classical thermodynamics, mass and heat transfers. ► Minimizing heat exchange time to reach maximum performances. ► Major influence of the collector temperature on the model’s characteristics. ► Analogous effects of both the thermal load and the thermal conductance. -- Abstract: This contribution deals with the theoretical study in dynamic mode of an absorption refrigerator endoreversible model. The system is a cold generating station driven by solar energy. The main elements of the cycle are a refrigerated space, an absorption refrigerator and a solar collector form. A mathematical model is developed. It combines the classical thermodynamics and mass and heat transfers principles. The numerical simulation is made for different operating and conceptual conditions. A global minimizing time optimization is performed in view to reach maximum performances. Appropriate dimensionless groups are defined. The results are presented in normalized charts for general applications. The collector temperature presents major influence on the conceptual and functional characteristics compared to the stagnation temperature influence. On the other hand the thermal load in the refrigerated space and the thermal conductance of the walls has analogous effects, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar collector based energy systems.

  17. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil

    Directory of Open Access Journals (Sweden)

    Shen JY

    2015-08-01

    Full Text Available Jin-Yang Shen,1,* Xiao-Lin Yang,2,* Zhong-Lin Yang,1 Jun-Ping Kou,1 Fei Li11State Key Laboratory of Natural Medicines, China Pharmaceutical University, 2Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China*These authors contributed equally to this workPurpose: This present study investigated the absorption kinetics of echinacoside (ECH in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters.Methods: ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography.Results: The results showed that the effective permeability coefficient (Peff and apparent permeability coefficient of ECH were 0.83×10-6–3.23×10-6 cm/s and 2.99×10-6–9.86×10-6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01, which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05 and 2.36-fold (P<0.001, respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability.Conclusion: The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently

  18. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  19. Theoretical approaches to x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Rehr, J. J.; Albers, R. C.

    2000-01-01

    Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made over the past few decades, which have led ultimately to a highly quantitative theory. This review covers these developments from a unified multiple-scattering viewpoint. The authors focus on extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent, on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both formal considerations, derived from a many-electron formulation, and practical computational methods based on independent-electron models, with many-body effects lumped into various inelastic losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative importance is assessed; these include the convergence of the multiple-scattering expansion, curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and structural disorder. The advantages and limitations of current computational approaches are addressed, with particular regard to quantitative experimental comparisons. (c) 2000 The American Physical Society

  20. A review of lung-to-blood absorption rates for radon progeny

    International Nuclear Information System (INIS)

    Marsh, J. W.; Bailey, M. R.

    2013-01-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f b , for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f r = 0.1, s r = 100 d -1 , s s = 1.7 d -1 , f b = 0.5 and s b = 1.7 d -1 . Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed. (authors)

  1. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  2. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  3. Evidence for continuum absorption above the quiet sun transition region

    International Nuclear Information System (INIS)

    Schmahl, E.J.; Orrall, F.Q.

    1979-01-01

    We report new evidence for continuum absorption in the solar transition zone in EUV spectra obtained from OSO 4, OSO 6, ATM, and full Sun measurements. This absorption shortward of 912 A is manifest everywhere on the Sun's disk. It is present within network cells and boundaries of the quiet Sun, in coronal holes, in active regions, above the limb, and in solar prominences. Models of the upper chromosphere and the transition zone must be modified to include an admixture of neutral hydrogen (or possibly singly ionized helium) with the hotter plasma

  4. Modeling the heating and melting of sea ice through light absorption by microalgae

    Science.gov (United States)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  5. Rate of absorption and interfacial area of chlorine into aqueous ...

    African Journals Online (AJOL)

    aghomotsegin

    Due to excellent mass transfer characteristics with energy efficiency jet ejectors can be used in place of ... developed. The rate of absorption predicted from developed model is compared with experimental results. .... Numerical implementation.

  6. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  7. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  8. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    International Nuclear Information System (INIS)

    White, W.T. III.

    1985-01-01

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs

  9. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  10. Current fluctuations in quantum absorption refrigerators

    Science.gov (United States)

    Segal, Dvira

    2018-05-01

    Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.

  11. Determination of Lung-to-Blood Absorption Rates for Lead and Bismuth which are Appropriate for Radon Progeny

    International Nuclear Information System (INIS)

    Marsh, J.W.; Birchall, A.

    1999-01-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) treats clearance as a competitive process between absorption into blood and particle transport to the gastrointestinal tract and lymphatics. The ICRP recommends default absorption rates for lead and bismuth in ICRP Publication 71 but states that the values are not appropriate for short-lived radon progeny. This paper describes an evaluation of published data from volunteer experiments to estimate the absorption half-times of lead and bismuth that are appropriate for short-lived radon progeny. The absorption half-time for lead was determined to be 10±2 h, based on 212 Pb lung and blood retention data from several studies. The absorption half-time for bismuth was estimated to be about 13 h, based on 212 Bi urinary excretion data from one experiment and the ICRP biokinetic model for bismuth as a decay product of lead. (author)

  12. Annette Bunge: developing the principles in percutaneous absorption using chemical engineering principles.

    Science.gov (United States)

    Stinchcomb, A L

    2013-01-01

    Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field.

  13. Hydrogen absorption kinetics of niobium with an ion-plated nickel overlayer

    International Nuclear Information System (INIS)

    Nakamura, K.

    1981-01-01

    The hydrogen absorption rate for nickel-ion-plated niobium was measured as a function of hydrogen pressure and temperature. The observed absorption curves of c(mean)/csub(e) against time (c(mean) and csub(e) are the mean and equilibrium hydrogen concentrations respectively) exhibited a marked hydrogen pressure dependence below 628 K but this was less marked above 723 K. The results were analysed on the basis of the proposed model that the rate-determining step is the hydrogen permeation through the nickel overlayer and that the permeation is driven by the hydrogen activity difference between the two interfaces, namely the H 2 -Ni and Ni-Nb interfaces. The marked pressure dependence can be attributed to the fact that the hydrogen activity coefficient in nickel is constant and that in niobium it varies markedly with concentration, i.e. with hydrogen pressure and temperature. It was also found that the change in the nickel overlayer structure caused by the dilatation of bulk niobium during hydrogen absorption enhances the hydrogen absorption rates. The temperature dependence of the hydrogen absorption rate is also discussed in comparison with that for tantalum with a vacuum-deposited nickel overlayer. (Auth.)

  14. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    Science.gov (United States)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  15. R&D Spillovers with Endogenous Absorptive Capacity: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Chankwon Bae

    2016-06-01

    Full Text Available This paper analyzes the role of absorptive capacity in R&D spillovers through strategic R&D investments in a game-theoretic framework. In the model, a firm's effective R&D is composed of idiosyncratic R&D, which produces its own innovations, and identical R&D, which improves absorptive capacity. The model shows that in the presence of absorptive capacity firms have a tendency to underinvest (overinvest in idiosyncratic (identical R&D relative to the social optimum. As the spillover becomes larger, firms decrease their own R&D while they become more inclined towards strategic exploitation of rivals' efforts. Since the former effect overpowers the latter, the total amount of R&D decreases as the spillover increases. This is socially undesirable, providing a potential justification for a governmental subsidy for idiosyncratic R&D and a tax on identical R&D. The findings may have important implications for newly industrialized or emerging countries that consider a redirection of national R&D policy and intellectual property rights (IPR regime.

  16. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    Science.gov (United States)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  17. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  18. Characteristics of water absorption of beans

    OpenAIRE

    上中, 登紀子; 森, 孝夫; 豊沢, 功; Tokiko, Uenaka; Takao, Mori; Isao, Toyosawa

    2001-01-01

    Characteristics of water absorption of soybean, azuki bean and kidney beans (cv. Toramame and Taishokintoki) were investigated. The way of water absorption of soybean was different from that of other beans, because soybeans absorbed water from whole surface of seed coat immediately after the immersion. Azuki beans absorbed extremely slowly water from only strophiole, and then the water absorption in other tissue was induced by a certain amount of water absorption playing a role of trigger. Th...

  19. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    International Nuclear Information System (INIS)

    Hannukainen, A; Hyvönen, N; Majander, H; Harhanen, L

    2016-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged object is composed of an approximately homogeneous background with clearly distinguishable embedded inhomogeneities. An algorithm for finding the maximum a posteriori estimate for the absorption and diffusion coefficients is introduced assuming an edge-preferring prior and an additive Gaussian measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments with simulated data. (paper)

  20. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  1. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  2. Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption

    KAUST Repository

    Qiu, Xuepeng

    2016-11-18

    The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin current absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.

  3. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Directory of Open Access Journals (Sweden)

    Yehui Cui

    2018-06-01

    Full Text Available In this work a three-dimensional (3D hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized. Keywords: Hydrogen storage, ZrCo metal hydride, Heat transfer, Three-dimensional simulation

  4. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  5. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Massimiliano, E-mail: m.anselmi@caspur.it [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Marocchi, Simone [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Aschi, Massimiliano [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Via Vetoio (Coppito 1), 67100 Coppito, L' Aquila (Italy); Amadei, Andrea [Department of Chemistry, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-01-02

    Highlights: Black-Right-Pointing-Pointer The calculated absorption spectra were compared with experimental data. Black-Right-Pointing-Pointer Shapes and absorption maxima were reproduced for luciferin and oxyluciferin spectra. Black-Right-Pointing-Pointer The effect of the solvent largely changes the electronic transition probabilities. Black-Right-Pointing-Pointer Higher excitations provide an important contribution to the main absorption peak. - Abstract: Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  6. Absorption and emission profiles of unresolved arrays near local thermodynamic equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.; Klapisch, M. E-mail: klapisch@this.nrl.navy.mil; Bar-Shalom, A

    2003-11-01

    The absorption and emission arrays in the unresolved transition array (UTA) and super transition array (STA) models are usually assumed to have the same Gaussian spectral shape. It is shown, starting from a Boltzmann population distribution, that the assumption of profile identity for both absorption and emission is inconsistent with Kirchhoff's law. A correcting formula is established. It is extended to the cases where one or two effective population temperatures are involved. Examples are shown where the effect is noticeable.

  7. Absorption and emission profiles of unresolved arrays near local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Busquet, M.; Klapisch, M.; Bar-Shalom, A.

    2003-01-01

    The absorption and emission arrays in the unresolved transition array (UTA) and super transition array (STA) models are usually assumed to have the same Gaussian spectral shape. It is shown, starting from a Boltzmann population distribution, that the assumption of profile identity for both absorption and emission is inconsistent with Kirchhoff's law. A correcting formula is established. It is extended to the cases where one or two effective population temperatures are involved. Examples are shown where the effect is noticeable

  8. Evaluation of energy absorption performance of steel square profiles with circular discontinuities

    Directory of Open Access Journals (Sweden)

    Dariusz Szwedowicz

    Full Text Available This article details the experimental and numerical results on the energy absorption performance of square tubular profile with circular discontinuities drilled at lengthwise in the structure. A straight profile pattern was utilized to compare the absorption of energy between the ones with discontinuities under quasi-static loads. The collapse mode and energy absorption conditions were modified by circular holes. The holes were drilled symmetrically in two walls and located in three different positions along of profile length. The results showed a better performance on energy absorption for the circular discontinuities located in middle height. With respect to a profile without holes, a maximum increase of 7% in energy absorption capacity was obtained experimentally. Also, the numerical simulation confirmed that the implementation of circular discontinuities can reduce the peak load (Pmax by 10%. A present analysis has been conducted to compare numerical results obtained by means of the finite element method with the experimental data captured by using the testing machine. Finally the discrete model of the tube with and without geometrical discontinuities presents very good agreements with the experimental results.

  9. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  10. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    Science.gov (United States)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  11. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  12. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    Science.gov (United States)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  13. Effect of gastric pH on the pharmacokinetics of a BCS class II compound in dogs: utilization of an artificial stomach and duodenum dissolution model and GastroPlus,™ simulations to predict absorption.

    Science.gov (United States)

    Bhattachar, Shobha N; Perkins, Everett J; Tan, Jeffrey S; Burns, Lee J

    2011-11-01

    Dogs are one of the most commonly used non-rodent species in toxicology studies and are known to have basal stomach pH ranging from 2 to 7 in the fasted state. Thus absorption and resulting plasma exposure of weakly basic compounds administered as crystalline suspensions to dogs are often variable. LY2157299 is a potent and selective transforming growth factor (TGF)-beta receptor type 1 kinase (TGF-βRI) inhibitor that displayed variable absorption in early dog studies. This molecule is a weakly basic Biopharmaceutics Classification System (BCS)Class II compound, and depends on the rate and extent of dissolution to drive oral absorption. An artificial stomach and duodenum (ASD) dissolution model was utilized to evaluate potential effect of gastric pH on the absorption of suspension and buffered solution formulations. GastroPlus™ was also employed to predict the magnitude of gastric pH changes on LY2157299 absorption. The ASD experiments demonstrated that administration of a buffered acidic solution could improve the potential for absorption by normalizing gastric pH and enabling supersaturation in the duodenum. GastroPlus™ modeling suggested that direct modulation of gastric pH could lead to marked changes in bioavailability. Pharmacokinetic experiments were conducted in dogs to evaluate the effect of gastric pH modification on plasma exposure. The data were qualitatively consistent with the predictions. Copyright © 2011 Wiley-Liss, Inc.

  14. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elwafa Abdallah, Mohamed, E-mail: mae_abdallah@yahoo.co.uk [Division of Environmental Health and Risk Management, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut (Egypt); Pawar, Gopal; Harrad, Stuart [Division of Environmental Health and Risk Management, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2016-01-15

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm{sup 2}, finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K{sub p}, cm/h) showed a significant negative correlation with log K{sub ow} for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K{sub ow} of PFRs. • Skin washing reduced the overall dermal

  15. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    International Nuclear Information System (INIS)

    Abou-Elwafa Abdallah, Mohamed; Pawar, Gopal; Harrad, Stuart

    2016-01-01

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm 2 , finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K p , cm/h) showed a significant negative correlation with log K ow for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K ow of PFRs. • Skin washing reduced the overall dermal absorption of target PFRs

  16. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    Science.gov (United States)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  17. Absorption and Metabolism of Xanthophylls

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2011-06-01

    Full Text Available Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  18. Absorption and metabolism of xanthophylls.

    Science.gov (United States)

    Kotake-Nara, Eiichi; Nagao, Akihiko

    2011-01-01

    Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  19. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  20. Modulation of intestinal absorption of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, P; Dupuis, Y [Ecole Pratique des Hautes Etudes, 75 - Paris (France); Paris-11 Univ., 92 - Chatenay-Malabry (France))

    1975-01-01

    Absorption of ingested calcium (2ml of a 10mM CaCl/sub 2/ solution + /sup 45/Ca) by the adult rat was shown to be facilitated by the simultaneous ingestion of an active carbohydrate, L-arabinose. As the carbohydrate concentration is increased from 10 to 200mM, the absorption of calcium is maximised at a level corresponding to about twice the control absorption level. A similar doubling of calcium absorption is obtained when a 100mM concentration of any one of a number of other carbohydrates is ingested simultaneously with a 10mM CaCl/sub 2/ solution. Conversely, the simultaneous ingestion of increasing doses (10 to 100mM) of phosphate (NaH/sub 2/PO/sub 4/) with a 10mM CaCl/sub 2/ solution results in decreased /sup 45/Ca absorption and retention by the adult rat. The maximum inhibition of calcium absorption by phosphate is independent of the concentration of the ingested calcium solution (from 5 to 50mM CaCl/sub 2/). The simultaneous ingestion of CaCl/sub 2/ (10mM) with lactose and sodium phosphate (50 and 10mM respectively) shows that the activation effect of lactose upon /sup 45/Ca absorption may be partly dissimulated by the presence of phosphate. These various observations indicate that, within a large concentration range (2 to 50mM CaCl/sub 2/) calcium absorption appears to be a precisely modulated diffusion process. Calcium absorption varies (between minimum and maximum levels) as a function of the state of saturation by the activators (carbohydrates) and inhibitors (phosphate) of the calcium transport system.

  1. Absorption lines, Faraday rotation, and magnetic field estimates for QSO absorption-line clouds

    International Nuclear Information System (INIS)

    Kronberg, P.P.; Perry, J.J.

    1982-01-01

    We have estimated the extragalactic component of Faraday rotation for a sample of 37 QSOs for which there is good absorption line data, which we have also analyzed. Statistical evidence is presented which suggests that we have isolated a component of Faraday rotation which is occurring in the absorption clouds of some QSOs

  2. Oxalic acid decreases calcium absorption in rats

    International Nuclear Information System (INIS)

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-01-01

    Calcium absorption from salts and foods intrinsically labeled with 45 Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO 3 and CaCl 2 than from CaC 2 O 4 (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach

  3. Empirical formulae for mass attenuation and energy absorption coefficients from 1 keV to 20 MeV

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.; Seenappa, L.; Sridhar, K.N.; Hanumantharayappa, C.

    2017-01-01

    Mass attenuation and energy absorption coefficients represents attenuation and absorption of X-rays and gamma rays in the material medium. A new empirical formula is proposed for mass attenuation and energy absorption coefficients in the region 1 < Z < 92 and from 1 keV to 20 MeV. The mass attenuation and energy absorption coefficients do not varies linearly with energy. We have performed the nonlinear regressions/nonlinear least square fittings and proposed the simple empirical relations between mass attenuation coefficients (μ/ρ) and mass energy absorption coefficients (μ en /ρ) and energy. We have compared the values produced by this formula with that of experiments. A good agreement of present formula with the experiments/previous models suggests that the present formulae could be used to evaluate mass attenuation and energy absorption coefficients in the region 1 < Z < 92. This formula is a model-independent formula and is the first of its kind that produces a mass attenuation and energy absorption coefficient values with the only simple input of energy for wide energy range 1 keV - 20 MeV in the atomic number region 1 < Z < 92. This formula is very much useful in the fields of radiation physics and dosimetry

  4. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  5. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  6. Lifshitz Tails for the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC) for various models. We show that at the lower and upper edges of the spectrum the Lifshitz tails behaviour of the density of states implies similar behaviour for the ILAC at appropriate energies. The Lifshitz tails property is also exhibited at some points ...

  7. One, two or three-nucleon photo- absorption in 3He

    International Nuclear Information System (INIS)

    Tamas, G.

    1986-08-01

    Pion production and photodisintegration of 3 He are studied in the δ resonance region to try to separate the various photon absorption mechanism by one, two or three nucleons. The results are compared to the existing models

  8. Effects of flavour absorption on foods and their packaging materials

    NARCIS (Netherlands)

    Willige, van R.W.G.

    2002-01-01

    Keywords: flavour absorption, scalping, packaging, food matrix, lldpe, ldpe, pp, pc, pet, pen,b-lactoglobulin, casein, pectin, cmc, lactose, saccharose, oil, modelling, storage, oxygen permeability, taste perception,

  9. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Chun, Wongee; Ng, K. C.

    2011-01-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  10. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung

    2011-10-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  11. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    International Nuclear Information System (INIS)

    Radosavljević, Sanja; Radovanović, Jelena; Milanović, Vitomir

    2016-01-01

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  12. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljević, Sanja [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Photonics Research Group, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Radovanović, Jelena, E-mail: radovanovic@etf.bg.ac.rs [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia)

    2016-12-09

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  13. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  14. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  15. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  16. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  17. Development of population pharmacokinetics model of icotinib with non-linear absorption characters in healthy Chinese volunteers to assess the CYP2C19 polymorphism and food-intake effect.

    Science.gov (United States)

    Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji

    2015-07-01

    Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to

  18. Gastrointestinal absorption of Np in rats

    International Nuclear Information System (INIS)

    Wirth, R.; Volf, V.

    1985-01-01

    The effect of Np mass and the acidity of the administered Np solutions as well as the age, sex and nutritional status of the animals injected or gavaged with 239Np or 237Np were determined. The latter factor proved to be dominant for absorption of Np from the gut. Thus in fasting weanling and young adult male rats, the absorption of 239Np was sixfold higher (0.18% and 0.12%, respectively) than in fed ones (0.03% and 0.02%, respectively). Absorption by fasted adult females was 0.05% of the administered 239Np, about half of that of adult males. Raising the Np-mass gavaged to fasted female rats to 1 and 10 mg 237Np/kg resulted in an absorption of 0.23% and 0.26%, respectively. Thus, an increased absorption of Np in adult rats seems to be expected only if a large mass is ingested. No dependence of the absorption of Np on nitric acid concentration was found. The data obtained after oral administration of 238Pu and 239Np to adult rats suggest that the f1 factor recommended by the ICRP for fractional absorption of soluble Np compounds from the gut should be decreased, whereas the f1 factor for soluble Pu compounds should be raised

  19. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  20. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  1. Glucose absorption in acute peritoneal dialysis.

    Science.gov (United States)

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  2. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  3. Collision-Induced Infrared Absorption by Hydrogen-Helium gas mixtures at Thousands of Kelvin

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2010-10-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars ^[1]. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2--H2, H2--He, and H2--H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin ^[2]. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely ^[2], so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures ^[2]. [1] L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 [2] Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, ``Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin'', International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201

  4. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  5. High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.

    Science.gov (United States)

    Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng

    2016-07-28

    The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.

  6. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  7. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Do, Thanh Nhut [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Ong, Xuanwei [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Chan, Yinthai [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Institute of Materials Research & Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634 (Singapore); Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2016-12-20

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  8. Randomized structured triglycerides increase lymphatic absorption of tocopherol and retinol compared with the equivalent physical mixture in a rat model of fat malabsorption.

    Science.gov (United States)

    Tso, P; Lee, T; DeMichele, S J

    2001-08-01

    Previously we demonstrated that the digestion, absorption and lymphatic transport of lipid and key essential fatty acids (EFA) from randomly interesterified fish oil/medium-chain structured triglycerides (STG) were significantly higher than an equivalent physical mixture (PM) in a normal lymph fistula rat model and in a rat model of lipid malabsorption caused by ischemia/reperfusion (I/R) injury. The goals of this study were to further explore the potential absorptive benefits of STG by comparing the intestinal absorption and lymphatic transport of tocopherol and retinol when delivered gastrically with either STG or PM under normal conditions and after I/R injury to the small bowel. Food-deprived male Sprague-Dawley rats were randomly assigned to two treatments (sham controls or I/R). Under halothane anesthesia, the superior mesenteric artery (SMA) was occluded for 20 min and then reperfused in I/R rats. The SMA was isolated but not occluded in control rats. In both groups, the mesenteric lymph duct was cannulated and a gastric tube was inserted. Each treatment group received 1 mL of the fish oil/MCT STG or PM (7 rats/group) along with (14)C-alpha-tocopherol and (3)H-retinol through the gastric tube followed by an infusion of PBS at 3 mL/h for 8 h. Lymph was collected hourly for 8 h. Under steady-state conditions, the amount of (14)C-alpha-tocopherol and (3)H-retinol transported into lymph was significantly higher in the STG-fed rats compared with those fed PM in both control and I/R groups. In addition, control and I/R rats given STG had earlier steady-state outputs of (14)C-alpha-tocopherol and (3)H-retinol and maintained approximately 30% higher outputs in lymph throughout the 8-h lymph collection period compared with rats given the PM. We conclude that STG provides the opportunity to potentiate improved absorption of fat-soluble vitamins under normal and malabsorptive states.

  9. Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator

    International Nuclear Information System (INIS)

    Qin Xiaoyong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples

  10. Molecular absorption by atmospheric gases in the 100-1000 GHz region

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Knight, R. J.

    The two principal atmospheric absorbers in the near-mm wavelength region are oxygen and water vapor. In order to measure the degree of water vapor absorption with the required precision, a large untuned resonator was constructed, consisting of a copper cylindrical structure with a Q-value close to one million at 100 GHz. A comparison of observed absorption values with theoretical predictions show a marked discrepancy. Without laboratory measurements such as the present, existing atmospheric attenuation models are likely to be inaccurate and misleading, especially at the lower range of tropospheric temperatures.

  11. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  12. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  13. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  14. Absorption of airborne molecular iodine by water sprays

    International Nuclear Information System (INIS)

    Albert, M.F.; Wichner, R.P.; Baumgarten, P.K.

    1986-01-01

    A computer model, I2WASH, which accounts for the effect of hydrolysis reactions between molecular iodine and water, has been developed to predict the rate of removal of gaseous molecular iodine by water sprays. It has been shown that the hydrolysis reactions can affect the concentration driving force of mass transfer for molecular iodine absorption. Thus, factors that affect the hydrolysis kinetics, such as spray solution pH, iodine concentration, and temperature, should be considered in the design of a well-based absorption model. The described model also includes the effects of spray drop-size distribution, convective heat transfer, droplet evaporation or water condensation, decay heating, and ventilation air flow through the containment. The model was originally developed at Oak Ridge National Laboratory (ORNL) in 1985 for the Nuclear Regulatory Commission's Severe Accident Sequence Analysis program and has been improved to assist in a comprehensive probability risk assessment of the Savannah River Plant (SRP). Results obtained using the model are compared with those of the Containment Systems Experiments conducted at Pacific Northwest Laboratories (PNL) in 1970. An improvement over the earlier model is indicated at room temperatures, but accuracy decreases as the temperature rises. The decreased agreement at high temperature is partially due to an incomplete knowledge of the temperature effects on iodine hydrolysis reactions. The results of the I2WASH model for a postulated catastrophic accident at SRP show that ∼85% of the molecular iodine will be captured by the sprays at a buffered pH of 10.0, and ∼52% will be captured at a buffered pH of 7.0. The model is believed to be a significant improvement over (and more realistic than) other models

  15. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  16. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  17. Quasar Absorption in the UV: Probing the Intergalactic Medium

    Science.gov (United States)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  18. Applications of Lagrangian Dispersion Modeling to the Analysis of Changes in the Specific Absorption of Elemental Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Doran, J. C.; Fast, Jerome D.; Barnard, James C.; Laskin, Alexander; Desyaterik, Yury; Gilles, Marry K.; Hopkins, Rebecca J.

    2008-03-07

    We use a Lagrangian dispersion model driven by a mesoscale model with four-dimensional data assimilation to simulate the dispersion of elemental carbon (EC) over a region encompassing Mexico City and its surroundings, the study domain for the 2006 MAX-MEX experiment, which was a component of the MILAGRO campaign. The results are used to identify periods when biomass burning was likely to have had a significant impact on the concentrations of elemental carbon at two sites, T1 and T2, downwind of the city, and when emissions from the Mexico City Metropolitan Area (MCMA) were likely to have been more important. They are also used to estimate the median ages of EC affecting the specific absorption of light, aABS, at 870 nm as well as to identify periods when the urban plume from the MCMA was likely to have been advected over T1 and T2. Values of aABS at T1, the nearer of the two sites to Mexico City, were smaller at night and increased rapidly after mid-morning, peaking in the mid-afternoon. The behavior is attributed to the coating of aerosols with substances such as sulfate or organic carbon during daylight hours, but such coating appears to be limited or absent at night. Evidence for this is provided by scanning electron microscope images of aerosols collected at three sampling sites. During daylight hours the values of aABS did not increase with aerosol age for median ages in the range of 1-4 hours. There is some evidence for absorption increasing as aerosols were advected from T1 to T2 but the statistical significance of that result is not strong.

  19. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2004-01-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  20. Iron, lead, and cobalt absorption: similarities and dissimilarities

    International Nuclear Information System (INIS)

    Barton, J.C.; Conrad, M.E.; Holland, R.

    1981-01-01

    Using isolated intestinal segments in rats, the absorption of iron, lead, and cobalt was increased in iron deficiency and decreased in iron loading. Similarly, the absorption of these metals was decreased in transfusional erythocytosis, after intravenous iron injection and after parenteral endotoxin injection. Acute bleeding or abbreviated intervals of dietary iron deprivation resulted in increased iron absorption from isolated intestinal segments and in intact animals, while the absorption of lead and cobalt was unaffected. These results suggest that the specificity of the mucosal metal absorptive mechanism is either selectively enhanced for iron absorption by phlebotomy or brief periods of dietary iron deprivation, or that two or more mucosal pathways for iron absorption may exist

  1. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks.

    Science.gov (United States)

    Meisels, R; Toifl, M; Hartlieb, P; Kuchar, F; Antretter, T

    2015-02-10

    A numerical analysis in a two-component model rock is presented including the propagation and absorption of a microwave beam as well as the microwave-induced temperature and stress distributions in a consistent way. The analyses are two-dimensional and consider absorbing inclusions (discs) in a non-absorbing matrix representing the model of a heterogeneous rock. The microwave analysis (finite difference time domain - FDTD) is performed with values of the dielectric permittivity typical for hard rocks. Reflections at the discs/matrix interfaces and absorption in the discs lead to diffuse scattering with up to 20% changes of the intensity in the main beam compared to a homogeneous model rock. The subsequent thermo-mechanical finite element (FE) analysis indicates that the stresses become large enough to initiate damage. The results are supported by preliminary experiments on hard rock performed at 2.45 GHz.

  2. On pair-absorption in intrinsic vapours

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Schlueter, D.

    1982-01-01

    The bound-state pair-absorption bands Cs(6 2 S 1 sub(/) 2 ) + Cs(6 2 S 1 sub(/) 2 ) + hν → Cs(5 2 D 5 sub(/) 2 sub(,) 3 sub(/) 2 ) + Cs(6 2 P 1 sub(/) 2 ) and the K-K continuum-state pair-absorptions in the wavelength region 2.350 <= lambda <= 2.850 Angstroem have been investigated experimentally. In the case of the bound-state pair-absorption bands a theoretical approach for the absorption cross section at the band centre is given which is in good agreement with the experimental observation. Differences between our and the theoretical formulas given by the Stanford group are discussed. (orig.)

  3. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  4. Examining University Students’ Cognitive Absorption Levels Regarding To Web And Its Relationship With The Locus Of Control

    OpenAIRE

    CUHADAR, Cem

    2015-01-01

    The current study investigated university students’ cognitive absorption levels according to several variables, and presented the relationship between cognitive absorption and locus of control. This study resorted to a descriptive model. Participants were 374 undergraduate students. The Cognitive Absorption Scale and Locus of Control Scale were used to collect the data. Independent samples t-test, one-way between-groups ANOVA, correlation and regression analyses were used to analyze data....

  5. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  6. Iron absorption after antrectomy with gastroduodenostomy

    International Nuclear Information System (INIS)

    Magnusson, B.E.O.

    1976-01-01

    Haematological values were studied in 177 unselected patients 3-6 years after antrectomy with gastroduodenostomy. The majority (76%) had been operated upon for duodenal ulcer, 20% for gastric ulcer and the remaining patients had had both a duodenal and a gastric ulcer before the operation. In 65 patients a vagotomy had been added to the resection. 10% of the males and 15% of the females had a haemoglobin concentration below 13.0 or 12.0 g/100 ml, respectively. The corresponding frequencies for iron defifiency, defined as absence or only traces of haemosiderin in bone marrow smears, were 7% and 15%. The absorption of a small test dose of inorganic iron (0.56 mg Fe ++ as ferrous ascorbate) was studied in all the antrectomized patients. The absorption was also investigated in normal men and in patients who had had a Billroth II partial gastrectomy. No malabsorption of inorganic iron could be found in any of the groups. An inverse relationship between iron absorption and the grading of haemosiderin in bone marrow smears was found in normal subjects as well as in operated patients. Thus, an adequate increase of the absorption of ferrous iron was found even in operated patients with iron deficiency. Gastric acid secretion, measured as the peak acid output (PAO) after stimulation, was determined in all antrectomized patients. In patients having the same grading of haemosiderin (grade II) a slight but significant positive correlation was found between PAO and the absorption from the test dose (Fe ++ ). The absorption of food iron from a composite meal and the absorption from an iron salt (3.0 mg Fe ++ as ferrous ascorbate) was studied in 4 different groups: 1) normal males, 2) non-operated patients with peptic ulcer, 3) antrectomized patients with gastroduodenostomy and 4) patients operated upon with Billroth II partial gastrectomy. The range and mean absorption values from the test dose of inorganic iron were about the same in all groups. The absorption of food iron

  7. Approaching Resonant Absorption of Environmental Xenobiotics Harmonic Oscillation by Linear Structures

    Directory of Open Access Journals (Sweden)

    Cornelia A. Bulucea

    2012-03-01

    Full Text Available Over the last several decades, it has become increasingly accepted that the term xenobiotic relates to environmental impact, since environmental xenobiotics are understood to be substances foreign to a biological system, which did not exist in nature before their synthesis by humans. In this context, xenobiotics are persistent pollutants such as dioxins and polychlorinated biphenyls, as well as plastics and pesticides. Dangerous and unstable situations can result from the presence of environmental xenobiotics since their harmful effects on humans and ecosystems are often unpredictable. For instance, the immune system is extremely vulnerable and sensitive to modulation by environmental xenobitics. Various experimental assays could be performed to ascertain the immunotoxic potential of environmental xenobiotics, taking into account genetic factors, the route of xenobiotic penetration, and the amount and duration of exposure, as well as the wave shape of the xenobiotic. In this paper, we propose an approach for the analysis of xenobiotic metabolism using mathematical models and corresponding methods. This study focuses on a pattern depicting mathematically modeled processes of resonant absorption of a xenobiotic harmonic oscillation by an organism modulated as an absorbing oscillator structure. We represent the xenobiotic concentration degree through a spatial concentration vector, and we model and simulate the oscillating regime of environmental xenobiotic absorption. It is anticipated that the results could be used to facilitate the assessment of the processes of environmental xenobiotic absorption, distribution, biotransformation and removal within the framework of compartmental analysis, by establishing appropriate mathematical models and simulations.

  8. Lithium absorption by the rabbit gall-bladder

    DEFF Research Database (Denmark)

    Hansen, C P; Holstein-Rathlou, N H; Skøtt, O

    1991-01-01

    Lithium (Li+) absorption across the low-resistance epithelium of the rabbit gall-bladder was studied in order to elucidate possible routes and mechanisms of Li+ transfer. Li+ at a concentration of 0.4 mM in both mucosal and serosal media did not affect isosmotic mucosa-to-serosa fluid absorption...... was elicited from the mucosal side and was not accounted for by compensatory Li+ absorption; water and Na+ absorption rates decreased nearly in parallel. The effects of 0.4 mM amiloride and of substitution with 20 mM Li+ were only partly additive. It is concluded that Li+ absorption in the rabbit gall...

  9. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2016-01-01

    Full Text Available The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6-carboxyfluorescein (CF across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate , and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers.

  10. The imaging and modelling of the physical processes involved in digestion and absorption.

    Science.gov (United States)

    Schulze, K S

    2015-02-01

    The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. © 2014 This article is a U.S. Government work and is in the public domain in the USA.

  11. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid.

    Science.gov (United States)

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C.

  12. Absorption anisotropy studies of polymethine dyes

    International Nuclear Information System (INIS)

    Lepkowicz, Richard S.; Cirloganu, Claudiu M.; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.; Mayboroda, Elena I.

    2004-01-01

    The determination of the spectral position of the excited states and orientation of the transition dipole moments of polymethine molecules is experimentally measured using two methods: the steady-state fluorescence anisotropy method, and a two-color polarization-resolved pump-probe method. This novel use of the pump-probe method is described in detail and a comparison to the fluorescence method is given. Quantum-chemical modeling on the effects of the bridge structure in the polymethine chromophore on the linear absorption spectrum is also discussed

  13. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  14. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve

  15. An Empirical Study on Entrepreneurial Orientation, Absorptive Capacity, and SMEs’ Innovation Performance: A Sustainable Perspective

    Directory of Open Access Journals (Sweden)

    Yu-Ming Zhai

    2018-01-01

    Full Text Available Using a survey of 324 small and medium-sized enterprises (SMEs of the Yangtze River Delta in China, this study discusses the relationship between entrepreneurial orientation, absorptive capacity, environmental dynamism, and corporate technological innovation performance. The results based on a moderated moderation model show that the relationship between entrepreneurial orientation and innovation performance is significantly positive. The absorptive capacity can positively moderate this relationship. When the external environment is in high dynamism, the moderating effect of absorptive capacity will be stronger than when the environment is in low dynamism.

  16. Stratum corneum damage and ex vivo porcine skin water absorption - a pilot study

    DEFF Research Database (Denmark)

    Duch Lynggaard, C; Bang Knudsen, D; Jemec, G B E

    2009-01-01

    A simple ex vivo screening technique would be of interest for mass screening of substances for potential barrier disruptive qualities. Ex vivo water absorption as a marker of skin barrier integrity was studied on pig ear skin. Skin water absorption was quantified by weighing and weight changes were...... found to reflect prehydration barrier damage. It is suggested that this simple model may be elaborated to provide a rapid, economical screening tool for potential skin irritants....

  17. Electromagnetic-wave absorption by inhomogeneous, collisional plasmas

    International Nuclear Information System (INIS)

    Gregoire, D.J.; Santoru, J.; Schumacher, R.W.

    1990-01-01

    Unmagnetized, collisional plasmas can be used as broadband EM-wave absorbers or refractors. In the absorption process, plasma electrons are first accelerated by the EM-wave fields and then collide with background-gas molecules, thereby transferring energy from the EM waves to the gas. A plasma absorber has several advantages compared to conventional materials. A plasma can be turned on and off very rapidly, thereby switching between absorbing and transparent conditions. Calculations indicate that plasma absorbers can also be tailored to provide broadband absorption (>40 dB) over multiple octaves. The authors have developed a one-dimensional model and a computer code to calculate the net power reflected from a plasma-enclosed EM-wave-reflecting target. They included three contributions to the reflected EM-wave power: reflections from the vacuum-plasma interface; reflections from the bulk plasma volume; and reflection of the attenuated EM wave that is transmitted through the plasma and reflected by the target

  18. Crown structure, radiation absorption, photosynthesis and transpiration

    OpenAIRE

    Wang, Yingping

    1988-01-01

    A complex simulation model, MAESTRO, has been developed and validated against field measurements in plantation in both Scotland and Australia. It has been shown that MAESTRO can reasonably predict the daily course of PAR (photosynetically active radiation) transmittance at points below the canopies of radiata pine and Sitka spruce plantations. 1. Four structural properties of the Sitka spruce tree crown have been identified and evaluation in relation to PAR absorption, photosynthesis and ...

  19. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  20. 51Cr-ethylenediaminetetraacetic acid absorption test

    International Nuclear Information System (INIS)

    Aabakken, L.

    1989-01-01

    The 51 Cr-ethylenediaminetetraacetic acid (EDTA) absorption test was evaluated in 83 healthy, male volunteers. Base-line 24 h excretion after peroral administration ranged from 0.88% to 7.96%, with a higher median absorption than reported by most authors (2.45%). However, the reproducibility and stability of the method and the reproducibility of the results were satisfactory. Urinary excretion after intraduodenal installation (n=18) was comparable to that seen after peroral test dose administration, indicating a limited significance of gastric 51 Cr-EDTA absorption under normal conditions. In 16 subjects a single intake of alcohol immediately before the test gave a modest and short-lasting increase in 51 Cr-EDTA absorption. No correlation was seen to body mass index, creatinine clearance, urinary volume, or small-bowel transit time, possibly reducing the number of confounding factors in the evaluation of absorption data. A small but significant negative correlation was, however, found to body surface area and age

  1. Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. perviridis)

    International Nuclear Information System (INIS)

    Ambe, S.; Shinonaga, T.; Ozaki, T.; Enomoto, S.; Yasuda, H.; Uchida, S.

    1999-01-01

    The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides by a multitracer technique. Komatsuna, Brassica rapa var. perviridis, was hydroponically cultivated in a nutrient solution containing a multitracer for 1 day. Nutrient concentration dependence of the selective absorption coefficient of various elements from Be to Re was obtained separately for leaves and roots. The selective absorption coefficients of these elements were, in general, found to decrease with an increase in the concentration of nutrient solutions. Regression equations of the power function for the selective absorption coefficients and the concentration of nutrient solutions were obtained for the leaves and roots. The effects of photon flux and growth stage of plants on the selective absorption coefficients were also studied. It was found that the photon flux influenced the accumulation of radionuclides in the roots but had no significant effect on the selective absorption coefficients for the leaves in 1-day cultivation with the multitracer. The selective absorption coefficients of Mn and Zn in the leaves of the plants at the development stage were higher than those at the maturation stage. For the other elements, no significant effects of the growth stage on the selective absorption coefficients were observed. (author)

  2. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G.; Cooke, Jeff [Swinburne University of Technology, Victoria 3122 (Australia); Martin, Crystal L.; Ho, Stephanie H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane [CNRS, Institut de Recherche en Astrophysique et Planétologie (IRAP) de Toulouse, 14 Avenue E. Belin, F-31400 Toulouse (France); Churchill, Christopher W.; Klimek, Elizabeth, E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  3. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  4. Measurements of Narrow Mg II Associated Absorption Doublets with ...

    Indian Academy of Sciences (India)

    time is a good method to study the physical conditions of absorbers. In this paper ... The intervening absorption systems are often believed to be associated with the galaxies ... that about 30% intrinsic NALs are variable to some unspecified level. Although ..... This model is supported by some recent studies on the BAL vari-.

  5. Water absorption characteristic of interlocking compressed earth brick units

    Science.gov (United States)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  6. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  7. Enriching Absorptive Capacity Through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper Jaap; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    their organization’s capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer initiative at two subsidiaries of the same MNE. The findings demonstrate that social interaction is a key requirement for subsidiary....... These insights contribute to the absorptive capacity literature by demonstrating the scale and scope of social interaction as the key link between individual- and organizational-level absorptive capacity.......Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within MNEs. But how individual behaviour translates to absorptive capacity at the subsidiary level, and exactly how this is contingent on subsidiaries’ social context, remains under-addressed. This not only...

  8. Enriching Absorptive Capacity through Social Interaction

    DEFF Research Database (Denmark)

    Hotho, Jasper J.; Saka-Helmhout, Ayse; Becker-Ritterspach, Florian

    2012-01-01

    their organization's capacity to put new knowledge to use. To address this shortcoming we conduct an in-depth comparative case study of a headquarters-initiated knowledge transfer at two subsidiaries of the same multinational enterprise. The findings demonstrate that social interaction is a prerequisite...... or constraining local interaction patterns. These insights contribute to the absorptive capacity literature by demonstrating the scale and scope of social interaction as a key link between individual- and organizational-level absorptive capacity.......Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under...

  9. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a

  10. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  11. The effect of volatility on percutaneous absorption.

    Science.gov (United States)

    Rouse, Nicole C; Maibach, Howard I

    2016-01-01

    Topically applied chemicals may volatilize, or evaporate, from skin leaving behind a chemical residue with new percutaneous absorptive capabilities. Understanding volatilization of topical medications, such as sunscreens, fragrances, insect repellants, cosmetics and other commonly applied topicals may have implications for their safety and efficacy. A systematic review of English language articles from 1979 to 2014 was performed using key search terms. Articles were evaluated to assess the relationship between volatility and percutaneous absorption. A total of 12 articles were selected and reviewed. Key findings were that absorption is enhanced when coupled with a volatile substance, occlusion prevents evaporation and increases absorption, high ventilation increases volatilization and reduces absorption, and pH of skin has an affect on a chemical's volatility. The articles also brought to light that different methods may have an affect on volatility: different body regions; in vivo vs. in vitro; human vs. Data suggest that volatility is crucial for determining safety and efficacy of cutaneous exposures and therapies. Few articles have been documented reporting evaporation in the context of percutaneous absorption, and of those published, great variability exists in methods. Further investigation of volatility is needed to properly evaluate its role in percutaneous absorption.

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  13. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz

    International Nuclear Information System (INIS)

    Keshvari, J; Lang, S

    2005-01-01

    The increasing use of mobile communication devices, especially mobile phones by children, has triggered discussions on whether there is a larger radio frequency (RF) energy absorption in the heads of children compared to that of adults. The objective of this study was to clarify possible differences in RF energy absorption in the head region of children and adults using computational techniques. Using the finite-difference time-domain (FDTD) computational method, a set of specific absorption rate (SAR) calculations were performed for anatomically correct adult and child head models. A half-wave dipole was used as an exposure source at 900, 1800 and 2450 MHz frequencies. The ear and eye regions were studied representing realistic exposure scenarios to current and upcoming mobile wireless communication devices. The differences in absorption were compared with the maximum energy absorption of the head model. Four magnetic resonance imaging (MRI) based head models, one female, one adult, two child head models, aged 3 and 7 years, were used. The head models greatly differ from each other in terms of size, external shape and the internal anatomy. The same tissue dielectric parameters were applied for all models. The analyses suggest that the SAR difference between adults and children is more likely caused by the general differences in the head anatomy and geometry of the individuals rather than age. It seems that the external shape of the head and the distribution of different tissues within the head play a significant role in the RF energy absorption

  14. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Keshvari, J [Radio Technologies Laboratory, Nokia Research Centre, Itaemerenkatu 11-13, 00180 Helsinki FIN-00180 (Finland); Lang, S [Technology Platforms, Nokia Corporation, PO Box 301, FIN-00045 Nokia Group, Linnoitustie 6, 02600 ESPOO (Finland)

    2005-09-21

    The increasing use of mobile communication devices, especially mobile phones by children, has triggered discussions on whether there is a larger radio frequency (RF) energy absorption in the heads of children compared to that of adults. The objective of this study was to clarify possible differences in RF energy absorption in the head region of children and adults using computational techniques. Using the finite-difference time-domain (FDTD) computational method, a set of specific absorption rate (SAR) calculations were performed for anatomically correct adult and child head models. A half-wave dipole was used as an exposure source at 900, 1800 and 2450 MHz frequencies. The ear and eye regions were studied representing realistic exposure scenarios to current and upcoming mobile wireless communication devices. The differences in absorption were compared with the maximum energy absorption of the head model. Four magnetic resonance imaging (MRI) based head models, one female, one adult, two child head models, aged 3 and 7 years, were used. The head models greatly differ from each other in terms of size, external shape and the internal anatomy. The same tissue dielectric parameters were applied for all models. The analyses suggest that the SAR difference between adults and children is more likely caused by the general differences in the head anatomy and geometry of the individuals rather than age. It seems that the external shape of the head and the distribution of different tissues within the head play a significant role in the RF energy absorption.

  15. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Pan, Xiang; Shi, Xiheng; Zhang, Shaohua [Polar Research Institute of China, 451 Jinqiao Road, Shanghai (China); Liu, Wenjuan; Wang, Jianguo [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan (China); Wang, Tinggui; Yang, Chenwei [Department of Astronomy, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui (China); Miller, Lauren P., E-mail: lmsun@mail.ustc.edu.cn [Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015 (United States)

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.

  16. Uniform semiclassical approximation for absorptive scattering systems

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1987-07-01

    The uniform semiclassical approximation of the elastic scattering amplitude is generalized to absorptive systems. An integral equation is derived which connects the absorption modified amplitude to the absorption free one. Division of the amplitude into a diffractive and refractive components is then made possible. (Author) [pt

  17. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  18. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  19. Narrow Quasar Absorption Lines and the History of the Universe

    Science.gov (United States)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  20. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    Science.gov (United States)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.