WorldWideScience

Sample records for absorption lidar dial

  1. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    Science.gov (United States)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  2. Development of a Differential Absorption Lidar (DIAL) for Carbon Sequestration Site Monitoring

    Science.gov (United States)

    Johnson, W.; Bares, A.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J.

    2010-12-01

    Rising levels of carbon dioxide (CO2) in the Earth’s atmosphere have been identified as a major contributor to climate change. Geologic carbon sequestration has the potential for mitigating CO2 emission into the atmosphere by capturing CO2 at power generation facilities and storing the CO2 in geologic formations. Several technological challenges need to be overcome for successful geologic sequestration of CO2 including surface monitoring tools and techniques for monitoring CO2 sequestration sites to ensure site integrity and public safety. Researchers at Montana State University are developing an eye-safe scanning differential absorption lidar (DIAL) capable of spatially mapping above-ground CO2 number densities for carbon sequestration site monitoring. The eye-safe scanning CO2 DIAL utilizes a temperature tunable fiber pigtailed distributed feedback (DFB) laser operating wavelength of 1.573 μm to access CO2 absorption features. The output of the DFB laser is split using an inline fiber splitter with part of the light sent to an optical wavemeter to monitor the operating wavelength of the laser transmitter. The remaining light is modulated using an inline acousto-optic modulator producing a pulse train with a 20 kHz pulse repetition frequency and a 2 μs duration. This pulse train is amplified in a commercial fiber amplifier producing up to 80 μJ per pulse energy. The output from the fiber amplifier is sent horizontally through the atmosphere and the scattered light is collected using a 28 cm diameter commercial Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and focused into a multimode optical fiber. A fiber coupled photomultiplier (PMT) tube is then used to monitor the light collected by the DIAL receiver. Data is collected in the following manner. The DFB laser is tuned to the online wavelength of the CO2 absorption feature and data is collected for a user defined time. A feedback loop utilizing the optical wavemeter is used

  3. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    Science.gov (United States)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  4. Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL and the solar FTIR system on Mt. Zugspitze

    Directory of Open Access Journals (Sweden)

    H. Vogelmann

    2011-05-01

    Full Text Available We present an intercomparison of three years of measurements of integrated water vapor (IWV performed by the mid-infrared solar FTIR (Fourier Transform Infra-Red instrument on the summit of Mt. Zugspitze (2964 m a.s.l. and by the nearby near-infrared differential absorption lidar (DIAL at the Schneefernerhaus research station (2675 m a.s.l.. The solar FTIR was shown to be one of the most accurate and precise IWV sounders in recent work (Sussmann et al., 2009 and is taken as the reference here. By calculating the FTIR-DIAL correlation (22 min coincidence interval, 15 min integration time we derive an almost ideal slope of 0.996 (10, a correlation coefficient of R = 0.99, an IWV intercept of −0.039 (42 mm (−1.2 % of the mean, and a bias of −0.052 (26 mm (−1.6 % of the mean from the scatter plot. By selecting a subset of coincidences with an optimum temporal and spatial matching between DIAL and FTIR, we obtain a conservative estimate of the precision of the DIAL in measuring IWV which is better than 0.1 mm (3.2 % of the mean. We found that for a temporal coincidence interval of 22 min the difference in IWV measured by these two systems is dominated by the volume mismatch (horizontal distance: 680 m. The outcome from this paper is twofold: (1 the IWV soundings by FTIR and DIAL agree very well in spite of the differing wavelength regions with different spectroscopic line parameters and retrieval algorithms used. (2 In order to derive an estimate of the precision of state-of-the-art IWV sounders from intercomparison experiments, it is necessary to use a temporal matching on time scales shorter than 10 min and a spatial matching on the 100-m scale.

  5. Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL and the solar FTIR system on Mt. Zugspitze

    Directory of Open Access Journals (Sweden)

    H. Vogelmann

    2010-12-01

    Full Text Available We present an intercomparison of three years of measurements of integrated water vapor (IWV performed by the mid-infrared solar FTIR instrument on the summit of Mt. Zugspitze (2964 m a.s.l. and the nearby near-infrared differential absorption lidar (DIAL at the Schneefernerhaus research station (UFS, 2675 m a.s.l.. The solar FTIR turned out to be one of the most accurate and precise IWV sounders in recent work (Sussmann et al., 2009 and is taken as the reference here. By calculating the FTIR-DIAL correlation (22 min coincidence interval, 15 min integration time we derive an almost ideal slope of 0.99(1, a correlation coefficient of R = 0.99, an IWV intercept of 0.056(42 mm (1.8% of the mean, and a bias of 0.097(26 mm (3.1% of the mean from the scatter plot. By selecting a subset of coincidences with an optimum temporal and spatial matching between DIAL and FTIR, we obtain a conservative estimate of the precision of the DIAL in measuring IWV which is better than 0.1 mm (3.2% of the mean. We found that for a temporal coincidence interval of 22 min the difference in IWV measured by these two systems is dominated by the volume mismatch (horizontal distance: 680 m. The outcome from this paper is twofold: (1 The IWV soundings by FTIR and DIAL agree very well in spite of the differing wavelength regions with different spectroscopic line parameters and retrieval algorithms used. (2 In order to derive an estimate of the precision of state-of-the-art IWV sounders from intercomparison experiments, it is necessary to use a temporal matching on the shorter 10-min scale and a spatial matching on the smaller 1-km scale.

  6. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  7. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    Science.gov (United States)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  8. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    Science.gov (United States)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  9. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  10. Compact mid-infrared DIAL lidar for ground-based and airborne pipeline monitoring

    Science.gov (United States)

    Degtiarev, Egor V.; Geiger, Allen R.; Richmond, Richard D.

    2003-04-01

    We report the progress in the development of a compact mid-infrared differential absorption lidar (DIAL) for ground-based and airborne monitoring of leaks in natural gas pipeline systems. This sensor, named Lidar II, weighs approximately 30 kg (70 lbs) and occupies a volume of 0.08 m3 (3.5 ft3). Lidar II can be used on the ground in a topographic mode or in a look-down mode from a helicopter platform. The 10-Hz pulse repetition rate and burst-mode averaging currently limit the airborne inspection speed to 30 km/h. The Lidar II laser transmitter employs an intracavity optical parametric oscillator. Wavelength tuning is accomplished through two mechanisms: a servo-controlled crystal rotation for slow and broad-band tuning and a fast piezo-activated wavelength shifter for on-line/off-line switching in less than 10 ms. The sensor operates in the 3.2-3.5-μm band with the primary focus on hydrocarbons and volatile organics. In the pipeline inspection work, the two main targets are methane and ethane, the latter chemical being important in preventing false positives. Initial results of Lidar II testing on actual pipeline leaks are reported. To supplement the mapping capabilities of Lidar II with range-resolved information, a short-range (less than 300 m) aerosol backscatter lidar is currently under development.

  11. Two micron Heterodyne Doppler DIAL Lidar remote sensing of atmospheric CO2

    International Nuclear Information System (INIS)

    This work deals with the development of a differential absorption lidar (DIAL) instrument and its use for absolute CO2 measurements with a 1-2% precision. The first chapter describes the scientific framework of the thesis: atmospheric branch of the carbon cycle, climatic change and Kyoto protocol, present day monitoring network and main space missions. The modeling, experimental and theoretical aspects of the study are presented in the more general framework of the recovery of surface fluxes and atmospheric CO2 measurements. Chapter 2 treats of the evolution of atmospheric CO2 at the meso-scale. The time, horizontal and vertical representativeness of a CO2 measurement is evaluated. The processes at the origin of the variability of a mixing ratio in the different parts of the atmosphere is presented in order to develop an efficient measurement method. Chapter 3 discusses the DIAL measurement and its optimization for a maximum preciseness of the concentration measurement. A particular attention is given to the spectroscopy and to the optimization of parameters like the optical thickness of the air column, the energy of laser pulses in the atmosphere, and the analysis of statistical and systematic errors. Chapter 4 describes the experimental setup 'LIDIA', the existing Lidar used, its transformations and added parts. A particular attention is given to the signal processing. Then follows the presentation and discussion of the measurements performed night and day during the end of 2004 and during 2005: integrated measurements at the ground level and validation using in-situ measurements, vertical measurements inside the atmospheric boundary layer (ABL), use of cloudy targets, measurements inside the free troposphere and resolved measurements inside the ABL. The contribution of simultaneous wind and vertical velocity measurements with concentration measurements is used to explain the natural and anthropic processes at the origin of the variations with time of the CO2

  12. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-04-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of instrument and provides a standard for current and future TOLNet algorithms.

  13. Stabilized master laser system for differential absorption lidar.

    Science.gov (United States)

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  14. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms - Part 2: Ozone DIAL uncertainty budget

    Science.gov (United States)

    Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi

    2016-08-01

    A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL

  15. Feasibility Study of Multi-Wavelength Differential Absorption LIDAR for CO2 Monitoring

    Directory of Open Access Journals (Sweden)

    Chengzhi Xiang

    2016-06-01

    Full Text Available To obtain a better understanding of carbon cycle and accurate climate prediction models, highly accurate and temporal resolution observation of atmospheric CO2 is necessary. Differential absorption LIDAR (DIAL remote sensing is a promising technology to detect atmospheric CO2. However, the traditional DIAL system is the dual-wavelength DIAL (DW-DIAL, which has strict requirements for wavelength accuracy and stability. Moreover, for on-line and off-line wavelengths, the system’s optical efficiency and the change of atmospheric parameters are assumed to be the same in the DW-DIAL system. This assumption inevitably produces measurement errors, especially under rapid aerosol changes. In this study, a multi-wavelength DIAL (MW-DIAL is proposed to map atmospheric CO2 concentration. The MW-DIAL conducts inversion with one on-line and multiple off-line wavelengths. Multiple concentrations of CO2 are then obtained through difference processing between the single on-line and each of the off-line wavelengths. In addition, the least square method is adopted to optimize inversion results. Consequently, the inversion concentration of CO2 in the MW-DIAL system is found to be the weighted average of the multiple concentrations. Simulation analysis and laboratory experiments were conducted to evaluate the inversion precision of MW-DIAL. For comparison, traditional DW-DIAL simulations were also conducted. Simulation analysis demonstrated that, given the drifting wavelengths of the laser, the detection accuracy of CO2 when using MW-DIAL is higher than that when using DW-DIAL, especially when the drift is large. A laboratory experiment was also performed to verify the simulation analysis.

  16. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    Science.gov (United States)

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  17. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    Science.gov (United States)

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  18. Differential absorption lidar for volcanic CO(2) sensing tested in an unstable atmosphere.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Fiorani, Luca

    2015-03-01

    Motivated by the need for an extremely durable and portable instrument to quantify volcanic CO(2) we have produced a corresponding differential absorption lidar (DIAL). It was tested on a volcano (Vulcano, Italy), sensing a non-uniform volcanic CO(2) signal under turbulent atmospheric conditions. The measured CO(2) mixing ratio trend agrees qualitatively well but quantitatively poorly with a reference CO(2) measurement. The disagreement is not in line with the precision of the DIAL determined under conditions that largely exclude atmospheric effects. We show evidence that the disagreement is mainly due to atmospheric turbulence. We conclude that excluding noise associated with atmospheric turbulence, as commonly done in precision analysis of DIAL instruments, may largely underestimate the error of measured CO(2) concentrations in turbulent atmospheric conditions. Implications for volcanic CO(2) sensing with DIAL are outlined. PMID:25836880

  19. Novel algorithm for simultaneously detecting multiple vapor materials with multiple-wavelength differential absorption lidar

    Institute of Scientific and Technical Information of China (English)

    Shirong Yin; Weiran Wang

    2006-01-01

    Differential absorption lidar (DIAL) has been successfully used to detect vapor material, however limited to detect single vapor using two closely spaced wavelengths. The progress in multiple-wavelength lasers motivates the need for detection and estimation algorithms that have the capability for simultaneous detection of multiple materials. In this paper, a simple and accurate algorithm is presented for simultaneously detecting and estimating multiple vapor materials with multiple-wavelength DIAL, which based on the maximum likelihood estimation (MLE) methodology. The performance of the algorithm is evaluated by simulation experiments, the results show that this algorithm can separately identify and quantify vapor material in mixtures and perform quite well.

  20. In-cell measurements of smoke backscattering coefficients using a CO2 laser system for application to lidar-dial forest fire detection

    Science.gov (United States)

    Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo

    2010-12-01

    In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.

  1. Infrared differential absorption lidar for stand-off detection of chemical agents

    Indian Academy of Sciences (India)

    A K Razdan; S Veerabuthiran; M K Jindal; R K Sharma

    2014-02-01

    A compact trolley-mounted pulsed transverse electric atmospheric pressure (TEA) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and assembled at Laser Science and Technology Centre (LASTEC), Delhi. The system was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at on (strong absorption, 9R16) and off (weak absorption, 10R26) wavelengths were recorded for stand-off distances upto ∼100 m (open air ground path). This paper discusses the technical details of trolley-mounted CO2 DIAL system and the data generated during the test and evaluation of this sensor using DEE aerosols.

  2. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    Science.gov (United States)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  3. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    Science.gov (United States)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  4. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Gibert, Fabien; Barnes, Bruce W.; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J.; Yu, Jirong; Modlin, Edward A.; Davis, Kenneth J.; Singh, Upendra N.

    2008-03-01

    A 2 μm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO2 absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO2 concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO2 concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO2 measurements were made with rolling average on the DIAL measurement.

  5. Compact, Rugged and Low-Cost Atmospheric Ozone DIAL Transmitter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bridger Photonics Inc. (Bridger) proposes to develop the most compact, efficient and low-cost ultra-violet ozone differential absorption lidar (DIAL) transmitter...

  6. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  7. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  8. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  9. Profiling tropospheric water vapour with a coherent infrared differential absorption lidar: a sensitivity analysis

    Science.gov (United States)

    Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Itabe, Toshikazu; Yasui, Motoaki

    2012-11-01

    In the last decade the precision of coherent Doppler differential absorption lidar (DIAL) has been greatly improved in near and middle infra-red domains for measuring greenhouse gases such as CO2, CH4 and winds. The National Institute of Information and Communications Technology (NICT, Japan) has developed and is operating a CO2 and wind measuring ground-based coherent DIAL at 2.05 μm (4878 cm-1). The application of this technology from space is now considered. In this analysis we study the use of the NICT DIAL for profiling tropospheric water vapour from space. We present the methodology to select the spectral lines and summarized the results of the selected lines between 4000 and 7000 cm-1. The choice of the frequency offset, the pulse energy and repetition frequency are discussed. Retrieval simulations from the line at 4580 cm-1 (2.18 μm) suitable for the boundary layer and the stronger one at 5621 cm-1 (1.78 μm) for sounding the boundary layer and the middle troposphere, are shown.

  10. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    Science.gov (United States)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  11. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Science.gov (United States)

    Grund, Christian J.; Hardesty, R. Michael; Rye, Barry J.

    1995-04-01

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution (e.g. high resolution infrared (IR) Fourier transform radiometry), poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  12. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    Science.gov (United States)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  13. Optical parametric oscillators in lidar sounding of trace atmospheric gases in the mid infrared region

    Science.gov (United States)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2015-12-01

    Applicability of a KTA crystal-based laser system with optical parametric generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases is based on differential absorption (DIAL) technique and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

  14. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    Science.gov (United States)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  15. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  16. Parametric Study of Differential Absorption Lidar Systemfor Monitoring Toxic Agents in the Atmosphere

    Directory of Open Access Journals (Sweden)

    S. Veerabuthiran

    2007-09-01

    Full Text Available Differential absorption lidar (DIAL techniques are advantageously used these days fordetecting and monitoring traces of toxic agents located at several kilometer in the atmosphere.A theoretical study has been carried out to simulate the performance of a multiwavelength DIALsystem. Clouds of hydrazine, unsymmetrical dimethylhydrazine (UDMH, andmonomethylhydrazine (MMH, located at various ranges up to 5 km in the atmosphere, havebeen taken as examples of the toxic agents. It has been shown that a given lidar system cannotdetect any of these agents with a specific cloud thickness if the concentration of that agent isbelow a certain value (Nmin. It has also been shown that if the concentration level of a givenagent is above a certain value (Nmax at a particular distance, this value cannot be quantified fora given lidar system although the identity as well as the location of that agent can still bedetermined. Further, for some typical parametric conditions, the required energy levels of thelaser to detect specific concentrations of these agents at different distances have been computed.Power levels of the return signals and the SNR values from different ranges have also beencalculated for each of these toxic agents for a given value of the laser transmitter energy.

  17. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    Science.gov (United States)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  18. Ground-based integrated path coherent differential absorption lidar measurement of CO2: hard target return

    Directory of Open Access Journals (Sweden)

    A. Sato

    2012-11-01

    Full Text Available The National Institute of Information and Communications Technology (NICT have made a great deal of effort to develop a coherent 2-μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a hard target (surface return located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2-μm IPDA lidar was examined in detail using the CO2 concentration measured by the hard target. The precisions of CO2 measurement for the hard target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for measuring the CO2 concentration of the hard target with a precision of 1–2 ppm. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the hard target made comparison difficult, the CO2 volume mixing ratio measured with the Co2DiaWiL was about 5 ppm lower than that measured with the in situ sensor. The statistical results indicated that there were no differences between the hard target and atmospheric return measurements. A precision of 1.5% was achieved from the atmospheric return, which is lower than that obtained from the hard-target returns. Although long-range DIfferential Absorption Lidar (DIAL CO2 measurement with the atmospheric return can result in highly precise measurement, the precision of the atmospheric return measurement was widely distributed comparing to that of the hard target return. Our results indicated that it is important to use a Q-switched laser to measure the range-gated differential absorption optical depth with the atmospheric return and that it is better to simultaneously conduct both hard target and atmospheric return

  19. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  20. Development of Field-deployable Diode-laser-based Water Vapor Dial

    Directory of Open Access Journals (Sweden)

    Le Hoai Phong Pham

    2016-01-01

    Full Text Available In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  1. Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO II Dial system

    Science.gov (United States)

    Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.

    2006-09-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.

  2. A High Spectral Resolution Lidar Based on Absorption Filter

    Science.gov (United States)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  3. FY05 FM Dial Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.

    2005-12-01

    Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Prior to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).

  4. Extended Kalman filter for multiwavelength differential absorption lidar

    Science.gov (United States)

    Warren, Russell E.; Vanderbeek, Richard G.

    2001-08-01

    Our earlier study described an approach for estimating the path-integrated concentration, CL, of a set of vapor materials using time series data from topographic backscatter lidar with frequency-agile lasers. That methodology assumed the availability of background data samples collected before the release of the vapors of interest to estimate statistical parameters such as the mean topographic backscatter return and the transmitter energy mean and variance as a function of wavelength. The background data were then used in an extended Kalman filter approach for estimating the CL components as a function of time. That approach worked well for data that showed negligible drift in the mean parameters over the data collection time. In practice, however, the transmitter energy and background return can drift, producing substantial bias in the estimates. In this paper we generalize the approach to a more complete state model that includes the mean transmitter energy and background return in addition to the CL vapor set. This generalization allows the algorithm to track slow drift in those parameters and provides generally improved estimates. Results of the new algorithm are compared with those of a two-wavelength classical DIAL estimator on synthetic and field test data.

  5. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  6. IR differential-absorption lidars for ecological monitoring of the environment

    NARCIS (Netherlands)

    Vasil'ev, B. I.; Mannoun, O. M.

    2006-01-01

    A review of studies on lidar sensing of the environment by the method of IR differential absorption is presented. The differential-absorption method is described and its various applications are considered. A comparison of this method with other methods of lidar sensing showed that a differential-ab

  7. Gating characteristics of photomultiplier tubes for Lidar applications

    Science.gov (United States)

    Barrick, J. D. W.

    1986-01-01

    A detector test facility was developed and applied in the evaluation and characterization of lidar detectors in support of the multipurpose airborne differential absorption lidar (DIAL) system based at the Langley Research Center (LaRC). A performance data base of various detector configurations available to the DIAL system was obtained for optimum lidar detector selection. Photomultiplier tubes (PMT's) with multialkaline and bialkaline photocathodes were evaluated in voltage-divider networks (bases) by using either the focusing electrode or dynodes as a gating mechanism. Characteristics used for detector evaluation included gain stability, signal rise time, and the ability to block unwanted high light levels.

  8. The study on the lidar's detection limit for Iodine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-lyul; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A powerful and reliable tool for range-resolved remote sensing of gas concentrations that has proven its capabilities in a variety of studies is the differential absorption lidar (DIAL). Differential absorption lidar (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. DIAL can measure air pollutant concentrations with a high spatial resolution by adopting two laser systems with different degrees of absorption between the two different wavelengths. The absorption of the reference wavelength is very weak, while the absorption of the other wavelength is very strong. In this paper, we measured the limit of detection capability of our designed DIAL system. The DIAL measurements were performed using a target iodine cell in the laboratory. We confirmed that the concentration of iodine gas ratio increased after the laser passed through the iodine cell. The system of DIAL(Differential Absorption Lidar) was effective to detect the iodine gas. We obtained the signals from the iodine target cell and the lidar signal from the iodine target cell was proportional to frequency locking ratios.

  9. An airborne high spectral resolution lidar based on an iodine absorption filter

    OpenAIRE

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Ehret, Gerhard

    2007-01-01

    Aerosols directly influence the fluxes of solar and terrestrial radiation within the atmosphere by absorption and scattering of light. The quantification of this effect accounts for accurate determination of the aerosol’s optical properties. With conventional backscatter lidars climatically relevant aerosol properties like aerosol extinction can only be derived by inverting the lidar signal under the assumption of a a priori known lidar ratio, which generally is a highly var...

  10. A lidar system for remote sensing of aerosols and water vapor from NSTS and Space Station Freedom

    Science.gov (United States)

    Delorme, Joseph F.

    1989-01-01

    The Tropical Atmospheric Lidar Observing System (TALOS) is proposed to be developed as a Differential Absorption Lidar (DIAL) system for flight aboard the earth orbiting Space Station Freedom. TALOS will be capable of making high resolution vertical profile measurements of tropospheric water and tropospheric and stratospheric aerosols, clouds and temperature.

  11. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  12. AM-CW Integrated Path Differential Absorption Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA's science objectives with innovative lidar architecture for atmospheric CO2 measurements. Specifically, the proposed work can support...

  13. Lidar Remote Sensing for Industry and Environment Monitoring

    Science.gov (United States)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  14. Application of Optical Parametric Generator for Lidar Sensing of Minor Gas Components of the Atmosphere in 3-4 μm Spectral Range

    Science.gov (United States)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2016-07-01

    Possibility of application of a laser system with parametric light generation based on a nonlinear KTA crystal for lidar sensing of the atmosphere in the 3-4 μm spectral range is investigated. A technique for lidar measurements of gas components in the atmosphere with the use of differential absorption lidar (DIAL) and differential optical absorption spectroscopy (DOAS) method is developed. The DIAL-DOAS technique is tested for estimating the possibility of laser sensing of minor gas components in the atmosphere.

  15. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    Science.gov (United States)

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km. PMID:23670775

  16. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  17. Lidar Measurements of Ozone in the Upper Troposphere - Lower Stratosphere at Siberian Lidar Station in Tomsk

    Science.gov (United States)

    Romanovskii, O. A.; Dolgii, S. I.; Burlakov, V. D.; Nevzorov, A. A.; Nevzorov, A. V.

    2016-06-01

    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors.

  18. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  19. Evaluation of ECMWF water vapour fields by airborne differential absorption lidar measurements: a case study between Brazil and Europe

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2007-10-01

    Full Text Available Three extended airborne Differential Absorption Lidar (DIAL sections of tropospheric water vapour across the tropical and sub-tropical Atlantic in March 2004 are compared to short-term forecasts of the European Centre for Medium Range Weather Forecasts (ECMWF. The humidity fields between 28° S and 36° N exhibit large inter air-mass gradients and reflect typical transport patterns of low- and mid-latitudes like convection (e.g. Hadley circulation, subsidence and baroclinic development with stratospheric intrusion. These processes re-distribute water vapour vertically such that locations with extraordinary dry/moist air-masses are observed in the lower/upper troposphere, respectively. The mixing ratios range over 3 orders of magnitude. Back-trajectories are used to trace and characterize the observed air-masses.

    Overall, the observed water vapour distributions are largely reproduced by the short-term forecasts at 0.25° resolution (T799/L91, the correlation ranges from 0.69 to 0.92. Locally, large differences occur due to comparably small spatial shifts in presence of strong gradients. Systematic deviations are found associated with specific atmospheric domains. The planetary boundary layer in the forecast is too moist and to shallow. Convective transport of humidity to the middle and upper troposphere tends to be overestimated. Potential impacts arising from data assimilation and model physics are considered. The matching of air-mass boundaries (transport is discussed with repect to scales and the representativity of the 2-D sections for the 3-D humidity field. The normalized bias of the model with respect to the observations is 6%, 11% and 0% (moist model biases for the three along-flight sections, whereby however the lowest levels are excluded.

  20. Measurement of Lower-Atmospheric CO2 Concentration Distribution Using a Compact 1.6 μm DIAL

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. The differential absorption lidar (DIAL) is expected to measure atmospheric CO2 profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a compact 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This 1.6 μm DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and a 25 cm telescope. CO2 concentration profiles were obtained up to 2.5 km altitude.

  1. Investigations on Frequency and Energy References for a Space-borne Integrated Path Differential Absorption Lidar

    OpenAIRE

    Fix, Andreas; Matthey, Renaud; Amediek, Axel; Ehret, Gerhard; Gruet, Florian; Kiemle, Christoph; Klein, Volker; Mileti, Gaetano; Pereira do Carmo, Joao; Quatrevalet, Mathieu

    2014-01-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique using hard target reflection the near IR has the potential to deliver CO2 column measurements from space with unprecedented accuracy which is a prerequisite to understand the sources and sinks of this dominant anthropogenic greenhouse gas. The observational needs, however, demand for very stringent system requirements, of which two were thoroughly investigated. The first is the online frequency accuracy. With a sub-100-kHz ...

  2. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  3. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  4. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System

    Science.gov (United States)

    Wulfmeyer, Volker; Walther, Craig

    2001-10-01

    Taking into account Poisson, background, amplifier, and speckle noise, we can simulate the precision of water-vapor measurements by using a 10-W average-power differential absorption lidar (DIAL) system. This system is currently under development at Hohenheim University, Germany, and at the American National Center for Atmospheric Research. For operation in the 940-nm region, a large set of measurement situations is described, including configurations that are considered for the first time to the authors knowledge. They include ultrahigh-resolution measurements in the surface layer (resolutions, 1.5 m and 0.1 s) and vertically pointing measurements (resolutions, 30 m and 1 s) from the ground to 2 km in the atmospheric boundary layer. Even during daytime, the DIAL system will have a measurement range from the ground to the upper troposphere (300 m, 10 min) that can be extended from a mountain site to the lower stratosphere. From the ground, for the first time of which the authors are aware, three-dimensional fields of water vapor in the boundary layer can be investigated within a range of the order of 15 km and with an averaging time of 10 min. From an aircraft, measurements of the atmospheric boundary layer (60 m, 1 s) can be performed from a height of 4 km to the ground. At higher altitudes, up to 18 km, water-vapor profiles can still be obtained from aircraft height level to the ground. When it is being flown either in the free troposphere or in the stratosphere, the system will measure horizontal water-vapor profiles up to 12 km. We are not aware of another remote-sensing technique that provides, simultaneously, such high resolution and accuracy.

  5. Alexandrite laser source for atmospheric lidar measurements

    Science.gov (United States)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  6. Lidar Measurements of Ozone in the Upper Troposphere – Lower Stratosphere at Siberian Lidar Station in Tomsk

    Directory of Open Access Journals (Sweden)

    Romanovskii O. A.

    2016-01-01

    Full Text Available The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors.

  7. Assimilation of ground-based and airborne lidar data into the MM5 4D-Var system

    OpenAIRE

    Grzeschik, Matthias

    2010-01-01

    This work investigates the impact of assimilating water vapor Light Detection and Ranging (lidar) data into mesoscale Numerical Weather Prediction (NWP) models. Two cases from the field campaigns International H20 Project 2002 (IHOP_2002) and International Lindenberg Campaign for Assessment of Humidity- and Cloud-Profiling Systems and its Impact on High-Resolution Modelling 2005 (LAUNCH-2005) are presented. In the first case, airborne water vapor Differential Absorption Lidar (DIAL) data ar...

  8. Development and Integration of a Pulsed 2-micron Direct Detection Integrated Path Differential Absorption (IPDA) Lidar for CO2 Column Measurement from Airborne platform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO2 Column Measurement from Airborne platform...

  9. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    Science.gov (United States)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  10. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    Science.gov (United States)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  11. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    Science.gov (United States)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  12. Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar

    CERN Document Server

    Ramanathan, Anand; Allan, Graham R; Riris, Haris; Weaver, Clark J; Hasselbrack, William E; Browell, Edward V; Abshire, James B

    2013-01-01

    We use an airborne pulsed integrated path differential absorption lidar to make spectroscopic measurements of the pressure-induced line broadening and line center shift of atmospheric CO2 at the 1572.335 nm absorption line. We measure the absorption lineshape in the vertical column between the aircraft and ground. A comparison of our measured absorption lineshape to calculations based on HITRAN shows excellent agreement with the peak optical depth accurate to within 0.3%. Additionally, we measure changes in the line center position to within 5.2 MHz of calculations, and the absorption linewidth to within 0.6% of calculations.

  13. Simulation study for the monitoring of industrial exhaust dispersion using a DIAL system

    Science.gov (United States)

    Veerabuthiran, S.; Jindal, Mukesh Kumar; Dudeja, Jai Paul; Dubey, Deepak Kumar; Kumar, Anil

    2006-12-01

    Computer simulations have been carried out to optimize the IR Differential Absorption Lidar (DIAL) system in order to measure the gaseous pollutants released by the industries. The concentration of the gaseous pollutants due to elevated sources is computed using the Gaussian dispersion model. For given atmospheric conditions and stack physical parameters, the downwind distance (x) at which the SO II reaches the safe limit of its toxicity has been computed at given other two coordinates (y, z) with respect to chimney. The gaseous pollutants released by the industries will be effectively monitored by the proposed DIAL system, which will be placed at New Delhi (28.35 degrees N, 77.12 degrees E), India. The performance of the Lidar has been optimized based on the various system parameters incorporating the atmospheric conditions and stack physical parameters. Further, the backscattered return powers at on- & -off line wavelengths, the required energy to be transmitted and the position at which the lidar system should be posted have been computed in order to monitor SO II.

  14. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  15. Design of a near-IR coherent lidar for high spatial and velocity resolution wind measurement

    Science.gov (United States)

    Grund, Christian J.; Post, Madison J.

    1992-01-01

    A coherent Doppler lidar based on a CW diode-pumped, injection seeded, Th:YAG laser operating at approx. 2.02 microns is currently under development. This system is optimized for measurements of boundary layer winds with high spatial, temporal, and velocity resolution. Initially, the system will run alongside a new high repetition rate (5-10 kHz) CO2 mini-Master Oscillator Power Amplifier (mini-MOPA) Doppler lidar, which will provide simultaneous range-resolved Differential Absorption Lidar (DIAL) water vapor measurements. Water vapor DIAL operation of the 2 micron system is being considered as a future option. The anticipated specifications and the preliminary design are discussed.

  16. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    Science.gov (United States)

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

  17. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  18. Atmospheric absorption versus deep ultraviolet (pre-)resonance in Raman lidar measurements

    Science.gov (United States)

    Hallen, Hans D.; Willitsford, Adam H.; Neely, Ryan R.; Chadwick, C. Todd; Philbrick, C. Russell

    2016-05-01

    The Raman scattering of several liquids and solid materials has been investigated near the deep ultraviolet absorption features corresponding to the electron energy states of the chemical species present. It is found to provide significant enhancement, but is always accompanied by absorption due to that or other species along the path. We investigate this trade-off for water vapor, although the results for liquid water and ice will be quantitatively very similar. An optical parametric oscillator (OPO) was pumped by the third harmonic of a Nd:YAG laser, and the output frequency doubled to generate a tunable excitation beam in the 215-600 nm range. We use the tunable laser excitation beam to investigate pre-resonance and resonance Raman spectroscopy near an absorption band of ice. A significant enhancement in the Raman signal was observed. The A-term of the Raman scattering tensor, which describes the pre-resonant enhancement of the spectra, is also used to find the primary observed intensities as a function of incident beam energy, although a wide resonance structure near the final-state-effect related absorption in ice is also found. The results suggest that use of pre-resonant or resonant Raman LIDAR could increase the sensitivity to improve spatial and temporal resolution of atmospheric water vapor measurements. However, these shorter wavelengths also exhibit higher ozone absorption. These opposing effects are modeled using MODTRAN for several configurations relevant for studies of boundary layer water and in the vicinity of clouds. Such data could be used in studies of the measurement of energy flow at the water-air and cloud-air interface, and may help with understanding some of the major uncertainties in current global climate models.

  19. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    Directory of Open Access Journals (Sweden)

    Fix Andreas

    2016-01-01

    Full Text Available The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  20. Autonomous Ozone and Aerosol LIDAR Profiling of the Troposphere: A Synergistic Approach

    Science.gov (United States)

    Strawbridge, K. B.

    2015-12-01

    LIDAR technology is an excellent tool to probe the complex vertical structure of the atmosphere at high spatial and temporal resolution. This provides the critical vertical context for the interpretation of ground-based chemistry measurements, airborne measurements and model/satellite verification and validation. In recent years, Environment Canada has designed several autonomous aerosol LIDAR systems for deployment across several regions of Canada. The current system builds on the successes of these autonomous LIDARS but using a synergistic approach by combining tropospheric ozone DIAL (Differential Absorption LIDAR) technology with simultaneous 3+2+1 aerosol LIDAR measurements. It operates 24 hours a day, seven days a week except during precipitation events. The system is operated remotely and the data are updated every hour to a website to allow near real-time capability. A few case studies are shown emphasizing the synergistic approach of coupling ozone and aerosol profiles to better understand air quality impacts on local and regional scales.

  1. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  2. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  3. Characteristics of the OPG System USIG Quasiphase-Matched Nonlinear Crystals for 1.6 μm CO2 Dial

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system consists of the optical parametric generator (OPG) and amplifier (OPA) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The OPG system consists of a quasi-phase-matched (QPM) crystal and does not need a cavity. The output power of the OPA system is 6 mJ, the full width at half maximum (FWHM) of the spectrum is about 280 MHz and spectrum purity is 91.0 +- 0.2 ~ 0.5%. CO2 concentration error from fluctuation of the spectrum purity is 0.3% at 6 km altitude and 0.4 % at 10 km altitude.

  4. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  5. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2016-06-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  6. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    Directory of Open Access Journals (Sweden)

    Singh Upendra N.

    2016-01-01

    Full Text Available The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  7. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    OpenAIRE

    Singh Upendra N.; Refaat Tamer F.; Petros Mulugeta; Yu Jirong

    2016-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, s...

  8. Tropospheric ozone lidar intercomparison experiment, TROLIX '91, field phase report

    International Nuclear Information System (INIS)

    The Tropospheric Ozone Lidar Intercomparison Experiment TROLIX '91 has been initiated as part of the TESLAS subproject of the cooperative programme EUROTRAC. It has been performed in June 1991 at the Rijksinstitut voor Volksgezondheid en Milieuhygiene (RIVM) in Bilthoven, The Netherlands. The experiment was based on the simultaneous operation of different types of differential absorption lidars (DIAL), a special version of a Differential Optical Absorption Spectroscopy Instrument (DOAS), helicopter borne in situ instruments, and many other supporting measurements. After a short introduction to the general methodology the instruments are described, the experimental operations are explained, and a selection of data are presented. Some examples are given for the results of the intercomparison, as far as they have been available at the present stage of evaluation. The main purpose of this report, however, is to provide an overview over the material collected during the experiment, on order to facilitate further detailed studies in cooperation between the different groups which have participated. (orig.)

  9. Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Renger, W.; Simmet, G.

    1992-01-01

    Summarized here are the results of airborne water vapor measurements in the lower middle and upper troposphere using the Differential Absorption Lidar (DIAL) technique in the near infrared. The measurements were performed in July 1990 in Southern Bavaria between Allersberg and Straubing from 20 to 23 UTC taking advantage of night time conditions. The tropospheric H2O profiles were range investigated both horizontally and vertically. With the DIAL system that was used, water vapor measurements in the upper troposphere have been carried out for the first time. To calibrate the H2O-retrievals, effective absorption cross sections of selected H2O lines in terms of altitude around 724 nm were calculated using line parameter data from the literature (B. E. Grossmann et al). The frequency of the on-line measurements was adjusted by the spectra of a Polyacenic Semiconductor (PAS) cell filled with H2O. We found that the calibration error ranged between 0.005 and 0.015 cm(exp -1). The systematic errors of the H2O as a function of altitude were estimated below 7 km and 12 percent accuracy in the upper troposphere. The vertical H2O profile agrees well with in situ measurements in the investigated range between the top of the planetary boundary layer (PBL) up to near the tropopause. Horizontal and vertical H2O profiles are calculated by means of averaging single lidar returns. Typical horizontal resolutions range from 4 km in the lower to 11 km in the upper troposphere with vertical resolutions varying from 0.3 km up to 1 km, respectively, in order to satisfy a 5 - 10 percent accuracy in the statistical error. The measurement sensibility of the water vapor mixing ration in the upper troposphere is 0.01 g/kg.

  10. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  11. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    Science.gov (United States)

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments. PMID:26974792

  12. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    Science.gov (United States)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  13. Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols

    Science.gov (United States)

    Behrendt, Andreas; Wagner, Gerd; Petrova, Anna; Shiler, Max; Pal, Sandip; Schaberl, Thorsten; Wulfmeyer, Volker

    2005-01-01

    Three lidar systems are currently in development at University of Hohenheim. A water vapor lidar based on the differential absorption lidar (DIAL) technology working near 815 or 935 nm, a temperature and aerosol lidar employing the rotational Raman technique at 355 nm, and an aerosol lidar working with eye-safe laser radiation near 1.5 μm. The transmitters of these three systems are based on an injection-seeded, diode laser pumped Nd:YAG laser with an average power of 100 W at 1064 nm and a repetition rate of 250 Hz. This laser emits a nearly Gaussian-shaped beam which permits frequency-doubling and tripling with high efficiencies. The frequency-doubled 532-nm radiation is employed for pumping a Ti:Sapphire ring-resonator which will be used for DIAL water vapor measurements. In a second branch, a Cr4+:YAG crystal is pumped with the 1064-nm radiation to reach 1400 to 1500 nm for eye-safe monitoring of aerosol particles and clouds. The 532 and 1064 nm radiation are also used for backscatter lidar observations. Frequency tripling gives 355-nm radiation for measurements of temperature with the rotational Raman technique and particle extinction and particle backscattering coefficients in the UV. High transmitter power and effective use of the received signals will allow scanning operation of these three lidar systems. The lidar transmitters and detectors are designed as modules which can be combined for simultaneous measurements with one scanning telescope unit in a ground-based mobile container. Alternatively, they can be connected to different Nd:YAG pump lasers and to telescope units on separate platforms.

  14. Airborne Differential Absorption and High Spectral Resolution Lidar Measurements for Cirrus Cloud Studies

    Science.gov (United States)

    Gross, Silke; Schaefler, Andreas; Wirth, Martin; Fix, Andreas

    2016-06-01

    Aerosol and water vapor measurements were performed with the lidar system WALES of the German Aerospace Center (DLR) onboard the German research aircraft G550-HALO during the HALO Techno-Mission in October and November 2010 and during the ML-Cirrus mission in March and April 2014 over Central Europe and the North Atlantic region. Curtains composed of lidar profiles beneath the aircraft show the water vapor mixing ratio and the backscatter ratio. Temperature data from ECMWF model analysis are used to calculate the relative humidity above ice (RHi) in the 2-D field along the flight track to study the RHi distribution inside and outside of cirrus clouds at different stages of cloud evolution.

  15. Linear operating region in the ozone dial photon counting system

    Science.gov (United States)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  16. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments

    Directory of Open Access Journals (Sweden)

    C. Kiemle

    2008-06-01

    Full Text Available In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR flew a zenith-viewing water vapor differential absorption lidar (DIAL during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. A sensitivity analysis reveals that the DIAL profiles have an accuracy of ~5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH and the Fluorescent Advanced Stratospheric Hygrometer (FLASH onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to –3%±8% and between FLASH and DIAL to –8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT show a mean difference of –8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less

  17. Optimum detection of multiple vapor materials with frequency-agile lidar

    Science.gov (United States)

    Warren, Russell E.

    1996-07-01

    Differential absorption lidar (DIAL) is a well-established technology for estimating the concentration and its path integral CL of vapor materials using two closely spaced wavelengths. The recent development of frequency-agile lasers (FAL's) with as many as 60 wavelengths that can be rapidly scanned motivates the need for detection and estimation algorithms that are optimal for lidar employing these new sources. I derive detection and multimaterial CL estimation algorithms for FAL applications using the likelihood ratio test methodology of multivariate statistical inference theory. Three model sets of assumptions are considered with regard to the spectral properties of the backscatter from either topographic or aerosol targets. The calculations are illustrated through both simulated and actual lidar data.

  18. Range-resolved frequency-agile CO2 lidar measurements of smokestack vapor effluents

    Science.gov (United States)

    D'Amico, Francis M.; Vanderbeek, Richard G.; Warren, Russell E.

    1999-11-01

    Range-resolved lidar measurements of chemical vapor output from a smokestack were conducted using a moderate-power (100 millijoules per pulse) frequency-agile CO2 differential absorption lidar (DIAL) system. A 70-foot non-industrial smokestack, erected for the purpose of studying effluent emissions, was used in the experiment. These measurements were conducted for the purpose of obtaining real data to support development of advanced chemical and biological (CB) range- resolved vapor detection algorithms. Plume transmission measurements were made using natural atmospheric backscatter from points at the mouth of the stack and several positions downwind. Controlled releases of triethyl-phosphate (TEP), dimethyl-methylphosphonate (DMMP), and sulfur-hexaflouride (SF6) were performed. Test methodology and experimental results are presented. Effective application of ground-based lidar to the monitoring of smokestack effluents, without the use of fixed targets, is discussed.

  19. Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk

    Science.gov (United States)

    Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris

    2010-01-01

    A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.

  20. MERLIN (Methane Remote Sensing Lidar Mission): an Overview

    Science.gov (United States)

    Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; Deniel, C.; Bousquet, P.; Chevallier, F.

    2016-06-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a methane (CH4) monitoring satellite. MERLIN is focused on global measurements of the spatial and temporal gradients of atmospheric CH4, the second most anthropogenic gas, with a precision and accuracy sufficient to constrain Methane fluxes significantly better than with the current observation network. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging). This payload is under the responsibility of the German space agency (DLR), while the platform (MYRIADE Evolutions product line) is developed by the French space agency (CNES). The IPDA technique relies on DIAL (Differential Absorption LIDAR) measurements using a pulsed laser emitting at two wavelengths, one wavelength accurately locked on a spectral feature of the methane absorption line, and the other wavelength free from absorption to be used as reference. This technique enables measurements in all seasons, at all latitudes. It also guarantees almost no contamination by aerosols or water vapour cross-sensitivity, and thus has the advantage of an extremely low level of systematic error on the dry-air column mixing ratio of CH4.

  1. Radium dial workers

    International Nuclear Information System (INIS)

    The population of radium dial workers who were exposed to radium 30 to 50 years ago are currently being followed by the Center for Human Radiobiology at the Argonne National Laboratory. It is not clear that radium has induced additional malignancies in this population, other than the well-known bone sarcomas and head carcinomas, but elevated incidence rates for multiple myeloma and cancers of the colon, rectum, stomach, and breast suggest that radium might be involved. Continued follow-up of this population may resolve these questions. Finally, the question of the effect of fetal irradiation on the offspring of these women remains to be resolved. No evidence exists to suggest that any effects have occurred, but there is no question that a chronic irradiation of the developing fetus did take place. No formal follow-up of these children has yet been initiated

  2. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  3. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  4. 2-micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurements

    Science.gov (United States)

    Yu, J.; Singh, U.; Petros, M.

    2012-12-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar is being developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. Our objective is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable an airborne capability to perform a first proof of principle demonstration of airborne direct detection CO2 measurements. The 2-micron transmitter provides 100mJ at 10Hz with double pulse format specifically designed for DIAL/IPDA instrument. The compact, rugged, highly reliable transceiver is based on unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. A 16-inch diameter telescope has been designed and being manufactured for the direct detection lidar. The detector is an InGaAs Positive-Intrinsic-Negative (PIN) photodiode manufactured by Hamamatsu Corporation. The performance of the detector is characterized at various operating temperatures and bias voltages for spectral response, NEP, response time, dynamic range, and linearity. A collinear lidar structure is designed to be integrated to NASA UC12 or B200 research aircrafts. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design

  5. High-resolution measurements of humidity and temperature with lidar

    Science.gov (United States)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  6. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  7. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments

    Directory of Open Access Journals (Sweden)

    C. Schiller

    2008-09-01

    Full Text Available In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR flew a zenith-viewing water vapor differential absorption lidar (DIAL during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH and the Fluorescent Advanced Stratospheric Hygrometer (FLASH onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer

  8. LIDAR for Detection of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    S Veerabuthiran

    2011-04-01

    Full Text Available Remote detection of chemical and biological warfare agents and toxic gases in the atmosphere is of current interest to both the military and civilian agencies. Out of all currently available techniques, no single technique provides efficient detection against such threats at significant standoff distances. Light detection and ranging (LIDAR technologies, based on the transmission of laser pulses and analysis of the return signals, have demonstrated impressive capabilities in remote detection of such toxic chemicals. LIDAR is a highly sensitive tool to detect the extremely low concentrations of various toxic agents present in the form of thin clouds at distances of few kilometer. The detection of these toxic clouds is based on the approach of first detecting and measuring the range of the clouds using the scattering phenomena and subsequently identifying the composition of toxic clouds using absorption and fluorescence phenomena. Laser Science and Technology Centre (LASTEC, Delhi has been working on the design and development of LIDAR systems for detection of chemical and biological warfare (CBW agents. In this paper, theoretical analysis of differential absorption LIDAR (DIAL for detection of chemical agents and fluorescence LIDAR for detection of biological agents has been discussed. For some typical parametric conditions, the received power levels from different ranges to detect specific concentrations of chemical or biological clouds have been computed and discussed. The technical details of the indigenously developed backscattering LIDAR, which detects and measures the distance of cloud layers up to 5 km is also presented.Defence Science Journal, 2011, 61(3, pp.241-250, DOI:http://dx.doi.org/10.14429/dsj.61.556

  9. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  10. Comparison of Long Term Tropospheric Ozone Trends Measured by Lidar and ECC Ozonesondes from 1991 to 2010 in Southern France

    Science.gov (United States)

    Ancellet, G.; Gaudel, A.; Godin-Beekmann, S.

    2016-06-01

    ECC (Electrochemical Concentration Cell) ozonesondes and UV DIAL (Differential Absorption Lidar) measurements have been carried out simultaneously at OHP (Observatoire de Haute Provence, 44°N, 6.7°E, 690 m) since 1991. A unique long-term trend assessment by two different instruments operated routinely at the same location is possible. Air mass trajectories have been calculated for all the ozone observations available at OHP. The bias between the seasonal mean calculated with lidar and ECC ozone vertical profiles for 4 timeperiods of 5 years is 0.6 ppbv in the free troposphere (4-8 km). Larger differences (> 10 ppbv) are explained by the need for clear sky conditions during lidar observations. The measurements of both instruments have been combined to decrease the impact of short-term atmospheric variability on the trend estimate.

  11. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    Science.gov (United States)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  12. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    Science.gov (United States)

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-01

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable. PMID:27607715

  13. Boundary layer ozone differential-absorption lidar%边界层臭氧差分吸收激光雷达

    Institute of Scientific and Technical Information of China (English)

    曹开法; 黄见; 胡顺星

    2015-01-01

    差分吸收激光雷达是测量边界层臭氧空间分布的一种重要工具.研制了一台边界层臭氧差分吸收激光雷达系统,系统采用Nd:YAG四倍频激光266 nm泵浦H2/D2混合气体产生受激拉曼光作为光源,采用牛顿型望远镜接收大气回波,288.9 nm和299 nm的弹性散射信号被分成两路,被光电倍增管转换为电信号,然后通过A/D采集卡采集保存用以反演大气臭氧分布廓线.给出了系统的探测结果以及和臭氧探空仪地对比验证实验.结果显示该激光雷达可以大大降低几何因子的影响,提供0.2~2 km区间的边界层大气臭氧分布廓线.%Differential absorption lidar is one of important tools for measurement of spatial distribution of ozone in boundary layer. A boundary layer ozone differential absorption lidar system was developed. The stimulated Raman laser in H2/D2 mixtures pumped by the frequency quadrupled Nd:YAG laser at 266 nm was adopted in lidar system. A new Newton telescope received the lidar atmospheric echo. The elastic scattering signals at 288.9 nm and 299 nm were divided into two channels and converted to electrical signals by photomultiplier. Finally the signals were collected by A/D acquisition card for inversion of atmospheric ozone distribution profile. Some ozone data results were given and comparison of ozone profiles between ozone lidar and ozonesonde was displayed. Results show that the influence of the geometrical factor is reduced greatly in the lidar system. Atmospheric ozone profiles from 0.2 km to 2 km can be provided reliably by the lidar system.

  14. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  15. Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)

    Science.gov (United States)

    Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.

    2006-12-01

    Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is

  16. Development of a Mid-Infrared Laser for Range-Resolved Methane DIAL Measurements

    Science.gov (United States)

    Brandt, S.; Hannun, R. A.; Smith, J. B.; Dykema, J. A.; Witinski, M. F.; Anderson, J. G.

    2013-12-01

    Obtaining a global, homogenous observational record of atmospheric methane mixing ratio as a function of altitude constitutes a challenging experimental problem. The Total Carbon Column Observing Network (TCCON) as well as several climate satellites such as SCIAMACHY provide global data of ground-level concentrations and atmospheric column averages, mapping the global methane content as part of the carbon cycle. However, recent data from the HIAPER Pole-to-Pole Observations mission (HIPPO) reveals highly variable spatial structure within the vertical profile, that is not captured by satellite or ground-based in situ data. This underscores the need for new approaches for range-resolved methane detection. Differential Absorption LIDAR (DIAL) has proven to be a viable technique for range-resolved greenhouse gas measurements from both ground-based and airborne platforms. In order to achieve the necessary vertical resolution for long-range methane measurements, a high-power, pulsed laser system in the mid-IR has been developed. The optical set-up includes a single-frequency Nd:YAG laser, which pumps a non-linear crystal to generate broadly tunable, mid-IR pulses via Optical Parametric Generation (OPG). A detailed sensitivity analysis, including computational estimates of the requirements for laser linewidth, spectral purity, and frequency stability and an examination of different spectral regions in the mid-IR, will be presented. Depending on the deployment location of such a ground-based DIAL observing system, these measurements would make substantial contributions to a range of carbon cycle science questions, including monitoring of national emissions inventories and quantifying potential increases in methane emissions from natural reservoirs due to changing climate.

  17. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    Science.gov (United States)

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental

  18. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    Science.gov (United States)

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental

  19. Modelling the performance of a LIDAR system for the measurement of atmospheric carbon dioxide

    Science.gov (United States)

    Lawrence, J. P.; Leigh, R. J.; Bösch, H.; Monks, P. S.; Remedios, J. J.

    2009-04-01

    With atmospheric carbon dioxide concentrations rising steadily, investigations into locations and magnitudes of the sources, sinks and net surface fluxes are of increasing importance. Active space-borne measurement systems such as LIDAR offer one potential technique to derive global, near-surface concentrations. However, significant instrumental challenges need to be overcome for such measurements to achieve a useful degree of accuracy and precision. This poster presents the work being carried out at the University of Leicester to accurately model a spaceborne LiDAR system. The model aims at providing an insight into the performance of a differential absorption LiDAR system (DIAL) based on current and future technology in a realistic environment. This is achieved by accurately modelling the surface footprint of a laser system based on expected orbital parameters, and using atmospheric profiles, topographic information and BRDF's to simulate the laser lights interaction with the environment. The model readily simulates LiDAR systems operating at 1.57 and 2.05µm wavelengths using Voigt convolved HITRAN line centres to obtain accurate vertical sensitivity to the atmosphere as a result of spectral line broadening. This method allows any spectral line to be selected and any offset from the line centre to be applied to optimize the systems performance. It also offers the potential for investigating multi-spectral LiDAR systems and the benefits that this method has versus the standard duel wavelength DIAL systems. In order to retrieve near-surface CO2 concentrations of a few ppm the resulting instrument requirements are unquestionably demanding, but provide a benchmark for new technology development initiatives such as A-SCOPE and ASCENDS.

  20. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    Science.gov (United States)

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50 nmol/mol (3%), respectively. PMID:27534472

  1. Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone DIAL

    Science.gov (United States)

    Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence

    2016-06-01

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.

  2. Air Quality Campaign Results from the Langley Mobile Ozone Lidar

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Gano, R.

    2014-12-01

    A compact differential absorption ozone lidar (DIAL) system has been developed called the Langley Mobile Ozone Lidar (L-MOL) which can provide ozone, aerosol and cloud atmospheric profiles from a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars, three of which are mobile, across the country. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser. The transmitter transmits ~60 mW at two wavelengths between 280 and 293-nm for ozone and 2.5-W at 527-nm for aerosol profiling. The lidar operates at 1-kHz with 500-Hz at each 0f two UV wavelength. A fiber coupled 40-cm diameter parabolic telescope collets the backscattered return and records analog and photon counting signals. A separate 30-cm diameter telescope collects very near field returns for ozone profiles close to the surface. The lidar is capable of recording ozone profiles from 100-500-m with the very near field telescope and from 800-m to approximately 6000-m with the far field channel depending on sky background conditions. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck with the objective to make the system mobile such that it can be setup at remote sites to support air quality field campaigns such as the July-August 2014 Denver, CO DISCOVER_AQ campaign. Before the lidar was deployed in the DISCOVER-AQ campaign the lidar operated for 15 hours at NASA Langley in Hampton, VA to test the ability of the system to accurately record ozone profiles. The figure below shows the results of that test. Six ozonesondes were launched during this period and show reasonable agreement with the ozone (ppbv) curtain plot. Ozone of stratospheric origin at 4-14 UTC was noted as well as local ozone

  3. Lidar Measurements of Tropospheric Ozone in the Arctic

    Science.gov (United States)

    Seabrook, Jeffrey; Whiteway, James

    2016-06-01

    This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  4. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  5. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    Science.gov (United States)

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed. PMID:27607288

  6. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  7. Explicaciones dialécticas

    OpenAIRE

    Rotsztein, Ricardo Ariel; García, Alejandro Javier; Simari, Guillermo Ricardo

    2007-01-01

    Este artículo reporta el estudio realizado hasta el momento en la línea de investigación de explicaciones dialécticas [4] y propone direcciones para el trabajo a futuro. Dentro de varias áreas de la Inteligencia Artificial se ha puesto atención al rol de las explicaciones, en particular en sistemas expertos [7, 10, 6]. El objetivo de brindar explicaciones en sistemas expertos es brindar mayor confianza al usuario con respecto a las respuestas dadas por el sistema. No obstante, pocos han anali...

  8. On the remote monitoring of gaseous uranium hexafluoride in the lower atmosphere using lidar

    Science.gov (United States)

    Shayeganrad, Gholamreza

    2013-10-01

    Uranium hexafluoride (UF6), a major material for uranium enrichment, is highly toxic and can have adverse effects on the environment and human health if it escapes into the atmosphere. This paper proposes a contactless enhanced remote-sensing system for spatial and temporal detection of gaseous UF6 in the atmosphere and visualization of the leakage location. The system is composed of a combination of differential absorption lidar (DIAL) and Raman lidar for the simultaneous detection of gaseous UF6 and HF. The DIAL provides information on the UF6 concentration using a frequency-quadrupled Nd:YAG laser at 266 nm for the off-wavelength and a Nd:YAG-pumped Coumarin 450 dye laser using a Littrow grating mounting operating in the frequency-doubled mode at 245 nm for the on-wavelength. The Raman scattering of molecular HF at a wavelength of 297.3 nm (with a Raman frequency shift of 3959 cm-1) is a versatile technique used to identify the HF as a probe for real-time detection of the toxic UF6 leakage location. Combining the simultaneous measurements of UF6 and HF allows for a reduction of the uncertainty and an increase in the sensitivity of remote sensing of UF6.

  9. Space-Based Lidar Systems

    Science.gov (United States)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  10. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    Science.gov (United States)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  11. Development and Field Testing of a Continuously Operating CO2 Lidar Profiling System

    Science.gov (United States)

    Ismail, S.; Refaat, T.; Koch, G. J.; Davis, K.; Abedin, N. M.; Rubio, M. A.; Singh, U. N.

    2009-05-01

    A ground-based 2-micron DIAL system for profiling atmospheric CO2 was developed at NASA Langley Research Center (LaRC) under the NASA Instrument Incubator Program. This system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state YLF laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. The DIAL system was integrated and tested at LaRC, and then incorporated in a field experiment for evaluation. The field experiment was conducted during June-July 2008, at West Branch, Iowa, which is located at the center of a domain rich in complementary CO2 measurements. The objective of the experiment was to evaluate the accuracy and precision of the system and its ability to distinguish contents between boundary layer and free troposphere. Therefore, the experiment was co-located with other CO2 measurement setups that aid the evaluation. These setups include NOAA WBI tower with in-situ CO2 sampling sensors at 31, 99 and 379 m altitudes; NOAA airborne CO2 profiling; and radiosondes for atmospheric temperature, pressure and relative humidity profiling at the site. The lidar operations included daytime CO2 measurements to sense the well-mixed atmospheric boundary layer and overlying troposphere; day-to-night and night-to-day transitions; and night observations to capture CO2 mixing ratio differences within the boundary layer. Measurements included atmospheric CO2 spatial and temporal profiles as well as column measurements using high altitude clouds. Examples of CO2 DIAL system capability and measurements from the field experiment will be presented.

  12. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    Science.gov (United States)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  13. Solid-state Raman frequency converters for CO2-DIAL systems at 1.6 μm

    Science.gov (United States)

    Rhee, Hanjo; Lisinetskii, Victor; Kaminskii, Alexander A.; Eichler, Hans-Joachim

    2009-09-01

    Measurement of the three-dimensional distribution of atmospheric trace gases, especially CO2, is an important factor to improve the accuracy of climate models and to understand the global effects of the greenhouse effect. This can be achieved by differential absorption Lidar (DIAL). The absorption spectrum of CO2 features several suitable absorption lines for a ground-based or air-borne DIAL system working at wavelengths between 1.57 μm and 1.61 μm. An appropriate laser transmitter must emit laser pulses with pulse energies of more than 10 mJ and pulse duration in the nanosecond range. For high spectral purity the bandwidth is required to be less than 60 MHz. OPOs and Er-doped solid-state lasers emit around 1.6 μm, but we describe here alternatively Nd:YAG and Nd:glass laser systems with Raman converters. The use of stimulated Raman scattering in crystalline and ceramic materials is a possibility to shift the wavelength of existing lasers depending on the size of the Raman shift. After the investigation of a large number of Raman-active materials some of them could be identified as promising candidates for the conversion of typical Nd:YAG emission wavelengths, including LiNH2C6H4SO3•H2O, Ba(NO3)2, Li2SO4•H2O, Y(HCOO)3•2H2O, β-BBO and diamond. Our experiments with Ba(NO3)2 showed that the choice of the material should not be restricted to those with an adequate first order Stokes Raman line position, but also second or third order Raman shift should be considered. Development of Raman frequency converters for high pulse energies concentrates on linear and folded resonator designs and seeded Raman amplifiers using the Raman material as a direct amplifier. With Ba(NO3)2 pulse energy up to 116 mJ and 42 % quantum efficiency at the third Stokes wavelength with 1599 nm has been demonstrated. High power operation at 5 W with compensation of thermal lensing was achieved.

  14. Gas correlation lidar for methane detection

    Science.gov (United States)

    Galletti, E.; Zanzottera, E.; Draghi, S.; Garbi, M.; Petroni, R.

    1986-01-01

    A new type of DIAL system for the detection of methane in the atmosphere is being developed. The main feature of this lidar is the use of a gas correlation technique to obtain the reference signal by means of a single laser pulse, instead of two shots at different wavelengths. This fact is useful to make measurements on fast moving platforms. To meet the infrared absorption band of methane an optical parametric oscillator (OPO) was used with a LiNbO3 crystal as active element, and a tuning range between 1.5 divided by 4 microns. As known, the major problem to overcome in parametric oscillators are the pump beam quality and the difficulty in reducing the linewidth. The first requirement is met by using, as a pump, a Nd-YAG laser based on a new type of resonator cavity, named SFUR (Self Filtering Unstable Resonator). The laser emits, with high efficiency, near diffraction limited pulsed beams of about 250 mJ of energy, 20 ns of duration at 10 pps of frequency repetition rate. On the other hand, the gas correlation technique allows the operation with a bandwidth as large as 1/cm, which is obtainable using only a diffraction grating as a dispersive element in the OPO cavity.

  15. A Novel Satellite Mission Concept for Upper Air Water Vapour, Aerosol and Cloud Observations Using Integrated Path Differential Absorption LiDAR Limb Sounding

    Directory of Open Access Journals (Sweden)

    Claudia Weitnauer

    2012-03-01

    Full Text Available We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.

  16. Development of lidar techniques for environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Mats

    1996-09-01

    The lidar group in Lund has performed many DIAL measurements with a mobile lidar system that was first described in 1987. The lidar system is based on a Nd:YAG-pumped dye laser. During the last few years the lidar group has focused on fluorescence imaging and mercury measurements in the troposphere. In 1994 we performed two campaigns: one fluorescence imaging measurement campaign outside Avignon, France and one unique lidar campaign at a mercury mine in Almaden, Spain. Both campaigns are described in this thesis. This thesis also describes how the mobile lidar system was updated with the graphical programming language LabVIEW to obtain a user friendly lidar system. The software controls the lidar system and analyses measured data. The measurement results are shown as maps of species concentration. All electronics and the major parts of the program are described. A new graphical technique to estimate wind speed from plumes is also discussed. First measurements have been performed with the new system. 31 refs, 19 figs, 1 tab

  17. Florence Kelley and the radium dial painters

    International Nuclear Information System (INIS)

    All health physicists are familiar with the radium dial painter episode of the early 1900s and how one of today's primary radiation limits was set after studying both the health effects of these workers. The social history of this event is not as well known to health physicists. This paper tells of the efforts by Florence Kelley of the National Consumers League and others on behalf of the dial painters and of the events that led to Kelley's interest in the problem. Known as the 'Impatient Crusader', Florence Kelley worked to have legislation passed that would eliminate the radiation hazards of dial painting and to obtain compensation for those who were injured. (author)

  18. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region

    Science.gov (United States)

    Mammez, Dominique; Cadiou, Erwan; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Gorju, Guillaume; Pelon, Jacques; Lefebvre, Michel

    2015-10-01

    Integrated-path differential absorption lidar (IPDIAL) is an attractive technique to monitor greenhouse gases from space. For that purpose, suitable absorption lines have been identified as good candidates around 2.05 μm for CO2, 2.29 μm for CH4, and 2.06 μm for H2O. In this context, we have developed a high energy transmitter around 2 μm based on frequency conversion in a nested cavity doubly resonant optical parametric oscillator (NesCOPO) followed by high energy parametric amplification. This master oscillator power amplifier (MOPA) architecture enables the generation of tunable single-frequency high energy nanosecond pulses (tens of mJ) suitable for atmospheric DIAL applications. Moreover, taking advantage of the wide spectral coverage capability of the NesCOPO, we demonstrate the potential for this single emitter to address the aforementioned spectral lines, without the use of additional seeding devices. The emitter provides energies up to 20 mJ for the signal waves in the vicinity of CO2 and H2O lines, and 16 mJ at 2290 nm for the CH4 line. By implementing a control loop based on a wavemeter frequency measurement, the signal fluctuations can be maintained below 1 MHz rms for 10 s averaging time. Finally, from optical heterodyne analysis of the beat note between our emitter and a stabilized laser diode, the optical parametric source linewidth was estimated to be better than 60 MHz (Full width at half maximum).

  19. New ground-based lidar enables volcanic CO2 flux measurements

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-01-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest. PMID:26324399

  20. New ground-based lidar enables volcanic CO2 flux measurements.

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  1. Simultaneous NO and NO(2) DIAL measurement using BBO crystals.

    Science.gov (United States)

    Kölsch, H J; Rairoux, P; Wolf, J P; Wöste, L

    1989-06-01

    We report a new differential absorption lidar technique for measuring simultaneously the concentrations of NO and NO(2) in the atmosphere. The technique is based on the correlation of the 450-nm absorption band of NO(2) and 227-nm absorption band of NO by frequency doubling. This performance has been allowed by the advent of a new and highly efficient frequency doubling crystal: the beta-BaB(2)O(4). A test experiment on a NO/NO(2) emitter has been performed, demonstrating the efficiency of the technique. The detection limit is estimated to be ~1 ppm .m for NO(2) and 100 ppb.m for NO. The range of measurement is limited to 1 km, due to the strong UV Rayleigh scattering and O(2) absorption.

  2. Simultaneous NO and NO(2) DIAL measurement using BBO crystals.

    Science.gov (United States)

    Kölsch, H J; Rairoux, P; Wolf, J P; Wöste, L

    1989-06-01

    We report a new differential absorption lidar technique for measuring simultaneously the concentrations of NO and NO(2) in the atmosphere. The technique is based on the correlation of the 450-nm absorption band of NO(2) and 227-nm absorption band of NO by frequency doubling. This performance has been allowed by the advent of a new and highly efficient frequency doubling crystal: the beta-BaB(2)O(4). A test experiment on a NO/NO(2) emitter has been performed, demonstrating the efficiency of the technique. The detection limit is estimated to be ~1 ppm .m for NO(2) and 100 ppb.m for NO. The range of measurement is limited to 1 km, due to the strong UV Rayleigh scattering and O(2) absorption. PMID:20555467

  3. Intercomparing CO2 amounts from dispersion modeling, 1.6 μm differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy

    Directory of Open Access Journals (Sweden)

    M. Queißer

    2015-04-01

    Full Text Available We intercompare results of three independent approaches to quantify a vented CO2 release at a strongly non-uniform CO2 Earth degassing at Caldara di Manziana, central Italy. An integrated path differential absorption lidar prototype and a commercial open path FTIR system were measuring column averaged CO2 concentrations in parallel at two different paths. An Eulerian gas dispersion model simulated 3-D CO2 concentration maps in the same area, using in situ CO2 flux input data acquired at 152 different points. Local processes the model does not account for, such as small-scale and short-lived wind eddies, govern CO2 concentrations in the instrument measurement paths. The model, on the other hand, also considers atmospheric effects that are out of the field of view of the instruments. Despite this we find satisfactory agreement between modeled and measured CO2 concentrations under certain meteorological conditions. Under these conditions the results suggest that an Eulerian dispersion model and optical remote sensing can be used as an integrated, complementary monitoring approach for CO2 hazard or leakage assessment. Furthermore, the modeling may assist in evaluating CO2 sensing surveys in the future. CO2 column amounts from differential absorption lidar are in line with those from FTIR for both paths with a mean residual of the time series of 44 and 34 ppm, respectively. This experiment is a fundamental step forward in the deployment of the differential absorption lidar prototype as a highly portable active remote sensing instrument probing vented CO2 emissions, including volcanoes.

  4. Field Testing of a Two-Micron DIAL System for Profiling Atmospheric Carbon Dioxide

    Science.gov (United States)

    Refaat, Tamer F.; Ismail, Syed; Koch, Grady J.; Diaz, Liza; Davis, Ken; Rubio, Manuel

    2010-01-01

    A 2-m DIAL system has been developed at NASA Langley Research Center through the NASA Instrument Incubator Program. The system utilizes a tunable 2-m pulsed laser and an IR phototransistor for the transmitter and the receiver, respectively. The system targets the CO2 absorption line R22 in the 2.05-m band. Field experiments were conducted at West Branch, Iowa, for evaluating the system for CO2 measurement by comparison with in-situ sensors. The CO2 in-situ sensors were located on the NOAA's WBI tower at 31, 99 and 379 m altitudes, besides the NOAA s aircraft was sampling at higher altitudes. Preliminary results demonstrated the capabilities of the DIAL system in profiling atmospheric CO2 using the 2-m wavelength. Results of these experiments will be presented and discussed.

  5. A study on the atmospheric concentrations of primary and secondary air pollutants in the Athens basin performed by DOAS and DIAL measuring techniques.

    Science.gov (United States)

    Kalabokas, P D; Papayannis, A D; Tsaknakis, G; Ziomas, I

    2012-01-01

    In this work an analysis of continuous Differential Optical Absorption Spectroscopy (DOAS) measurements of primary and secondary air pollutants (SO(2), NO(2) and O(3)) in the Athens basin is performed combined with Differential Absorption Lidar (DIAL) vertical ozone measurements obtained inside the Planetary Boundary Layer (PBL) and the lower free troposphere. The measurements took place during the period May 2005-February 2007, at the National Technical University of Athens Campus (200 m above sea level (asl.), 37.96 °N, 23.78 °E). The SO(2) and NO(2) DOAS measurements showed maximum 1-hour mean values (around 20 μg/m(3) and 74 μg/m(3), respectively) in winter and did not exceed the current European Union (EU) air quality standards (European Council Directive 2008/50/EC), in contrast to ozone, which shows its maximum (around 128 μg/m(3)) in summer and frequently exceeds the EU standard for human health protection (120 μg/m(3)). If the measurements are classified according to the two most frequent flow-patterns of the air masses in the Athens basin (northern-southern circulation), it is observed that in general the atmospheric concentrations of all measured pollutants including ozone are higher when the southern circulation occurs, in comparison to the corresponding values under the northern circulation. The vertical ozone profiles obtained by DIAL were also higher under the southern circulation. During the summer months a mean difference (between the southern-northern circulations) of the order of 15-20 μg/m(3), maximized at the 0.9-1.1 km and 1.7-1.8 km height, was observed within the PBL. It was also observed that the summer surface ozone levels remained relatively high (around 80-110 μg/m(3)) even during strong northerly winds, verifying the high levels of rural surface ozone in the surrounding area reported by previous studies. PMID:22153607

  6. Dial a Ride from k-forest

    CERN Document Server

    Gupta, Anupam; Nagarajan, Viswanath; Ravi, R

    2007-01-01

    The k-forest problem is a common generalization of both the k-MST and the dense-$k$-subgraph problems. Formally, given a metric space on $n$ vertices $V$, with $m$ demand pairs $\\subseteq V \\times V$ and a ``target'' $k\\le m$, the goal is to find a minimum cost subgraph that connects at least $k$ demand pairs. In this paper, we give an $O(\\min\\{\\sqrt{n},\\sqrt{k}\\})$-approximation algorithm for $k$-forest, improving on the previous best ratio of $O(n^{2/3}\\log n)$ by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an $n$ point metric space with $m$ objects each with its own source and destination, and a vehicle capable of carrying at most $k$ objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an $\\alpha$-approximation algorithm for the $k$-forest problem implies an $O(\\alpha\\cdot\\log^2n)$-ap...

  7. Dial Europe: A decision support tool for early lighting design

    NARCIS (Netherlands)

    Groot, E. de; Zonneveldt, L.; Paule, B.

    2003-01-01

    DIAL-Europe is the final product of a three year European project that ended in March 2003. During this project the “Swiss” tool LesoDIAL, developed during the IEA task 21 in 1999, has been expanded with, among other items, an artificial lighting module. The objective of this module is to support ar

  8. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  9. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V.

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  10. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  11. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  12. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    Science.gov (United States)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  13. Lidar system for remote environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A.; Mastromarino, J. [Laser Research Section, Centre for Applied Physical Sciences, The Research Institute, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia)

    2000-10-02

    Light detection and ranging (lidar) system has been developed for remote monitoring of the environment. The system has been tested for measuring the size of clouds and by measurement of differential absorption due to pollutant gases like NO{sub 2} and SO{sub 2} in a cell. The lidar measurements revealed strong scattered signals from clouds situated around 11 km above the earth surface. The lidar data indicates that cloud thickness varied from 0.8 to 3.6 km at various times.

  14. 可重部署钠激光雷达接收系统减震设计%Shock absorption design of the receiving system for re deployment of sodium lidar

    Institute of Scientific and Technical Information of China (English)

    程永强; 胡雄; 闫召爱; 郭商勇; 孙逸桥; 张旭

    2016-01-01

    为了防止中国科学院临近空间环境野外综合探测站(廊坊,39ºN,116ºE)的钠荧光多普勒激光雷达在可重新部署运输过程中震动对激光雷达系统的不良影响,保证系统测量的稳定性和精度,文中主要对钠激光雷达接收系统进行了减震设计。首先选用了空气悬挂车载底盘和对望远镜的主镜运输以及望远镜安装运输平台等进行了三级减震设计,通过仿真模拟表明通过减震设计的望远镜安装运输平台冲击位移小于望远镜的主镜运输减震设计要求;其次通过跑车实验表明通过减震设计主镜室的最大振动加速度满足望远镜运输条件设计输入要求;最后通过钠荧光多普勒激光雷达系统的观测实验进一步验证了在长途运输中减震设计的可靠性。%In the process of the re deployment, in order to prevent the adverse effects and assure the stability and accuracy of the sodium Doppler fluorescence lidar in the near space environment of the Chinese Academy of Sciences (Langfang, 39oN, 116oE), the shock absorption design of the receiving system in sodium lidar was mainly carried out. Firstly, the three-level shock absorber design was carried out by selecting the air suspension chassis, the main mirror of the telescope, and the platform for the installation of the telescope. Through simulation, it was found that the impact displacement of the telescope platform is less than the design requirements of the primary mirror of the telescope. Secondly, by the sports truck experiment, the maximum vibration acceleration of the main mirror chamber was found to meet the requirements of the design input of the telescope. In the end, the reliability of shock absorption design of the long distance transportation is further verified by the observation experiment of the sodium doppler fluorescence lidar.

  15. Lidar postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  16. Calculation of optimal parameters of an NH3-CO2 lidar

    NARCIS (Netherlands)

    Vasil'ev, BI; Mannoun, OM

    2005-01-01

    The basic parameters (range, signal-to-noise ratio, and sensitivity) of a lidar using NH3 and CO2 lasers are calculated. The principle of lidar operation is based on the differential absorption recording. Absorption spectra of all known Freons are considered in the spectral range 9-13.5 mu m and opt

  17. Development of ground-based lidars for measuring H2O and O3 profiles in the troposphere

    Science.gov (United States)

    Sakai, T.; Abo, M.; Pham, L. H. P.; Uchino, O.; Nagai, T.; Izumi, T.; Morino, I.; Ohyama, H.; Nagasawa, C.

    2015-12-01

    Water vapor is the strongest natural greenhouse gas and a highly variable atmospheric constituent. It plays an important role of the energy transfer and the meteorological phenomena such as evaporation, vapor transport, cloud formation, and rainfall in the troposphere. Ozone is an important air pollutant that at high concentrations impacts on human health and ecosystem including crops and also a greenhouse gas that plays an important role in climate change. Aerosol is an important climate parameter and also one of the largest error sources (causes) in retrieval from solar reflected short wavelength infrared radiances observed with greenhouse gases observing satellites such as the GOSAT and OCO-2. Therefore, we have been developing ground-based differential absorption lidars (DIALs) for measuring the tropospheric water vapor, ozone and aerosols.The water vapor DIAL employs two distributed Bragg reflector (DBR) lasers operating at 829.054 nm for the online wavelength and 829.124 nm for the offline wavelength with tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration, and utilizes pseudorandom coded pulse modulation technique.It has started to measure the vertical distribution of lower tropospheric water vapor in order to improve accuracy and lead time of numerical weather prediction of local heavy rainfalls. Well-organized and regularly spaced convective cells of which vertical thickness were 200 m and the periods were 10 minutes were observed in the top of planetary boundary layer at 2.5 km altitude over Tokyo (35.66°N, 139.37°E) on 22 June 2015.The ozone DIAL employs a Nd:YAG laser and a 2 m long Raman cell filled with CO2 gas which generates four Stokes lines (276.2, 287.2, 299.1, and 312.0 nm) of stimulated Raman scattering, and two receiving telescopes with diameters of 49 and 10 cm.It has started to measure the vertical distributions of the tropospheric ozone as well as aerosols and thin cirrus cloud in

  18. Sobre o transcendental prático e a dialética da sociabilidade

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Lopes dos Santos

    2011-07-01

    Full Text Available Ao escrever Apresentação do mundo: considerações sobre o pensamento de Ludwig Wittgenstein, as intenções de José Arthur Giannotti não eram principalmente exegéticas. Ele pretendia trilhar alguns caminhos abertos por Ludwig Wittgenstein no intuito de lidar com suas próprias obsessões filosóficas. Neste artigo, mostro por que e como algumas das linhas de pensamento de Wittgenstein ajudaram Giannotti a clarear logicamente alguns de seus próprios temas filosóficos obsessivos: o transcendental prático e a dialética da sociabilidade.In writing Presentation of the World: considerations on the thought of Ludwig Wittgenstein, Giannotti's intentions were not primarily exegetical. He aimed to follow some of Wittgenstein's conceptual pathways in order to deal with his own philosophical obsessions. In this paper, I show why and how some of Wittgenstein's lines of thought helped Giannotti to logically clarify a couple of his own obsessive philosophical themes: the practical transcendental and the dialectic of sociability.

  19. Wind Measurement LIDAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems & Processes Engineering Corporation (SPEC) proposes a Wind Measurement LIDAR whose sensor assembly is composed of SPEC Gen IV LIDAR seeker, with 12.8...

  20. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.;

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  1. Space-borne clear air lidar measurements in the presence of broken cloud

    Directory of Open Access Journals (Sweden)

    I. Astin

    Full Text Available A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM and DIAL missions (e.g. WALES are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.

    Key words. Atmospheric composition and structure (aerosols and particles Meteorology and atmospheric dynamics (instruments and techniques; general circulation

  2. Feasibility Testing for Dial-a-Ride Problems

    DEFF Research Database (Denmark)

    Haugland, Dag; Ho, Sin C.

    2010-01-01

    Hunsaker and Savelsbergh have proposed an algorithm for testing feasibility of a route in the solution to the dial-a-ride problem. The constraints that are checked are load capacity constraints, time windows, ride time bounds and wait time bounds. The algorithm has linear running time. By virtue ...... of a simple example, we show in this work that their algorithm is incorrect. We also prove that by increasing the time complexity by only a logarithmic factor, a correct algorithm is obtained....

  3. Feasibility testing for dial-a-ride problems

    DEFF Research Database (Denmark)

    Haugland, Dag; Ho, Sin C.

    Hunsaker and Savelsbergh have proposed an algorithm for testing feasibility of a route in the solution to the dial-a-ride problem. The constraints that are checked are load capacity constraints, time windows, ride time bounds and wait time bounds. The algorithm has linear running time. By virtue ...... of a simple example, we show in this work that their algorithm is incorrect. We also prove that by increasing the time complexity by only a logarithmic factor, a correct algorithm is obtained....

  4. Feasibility Checking for Dial-a-Ride Problems

    DEFF Research Database (Denmark)

    Haugland, Dag; Ho, Sin C.

    Hunsaker and Savelsbergh have proposed an algorithm for testing feasibility of a route in the solution to the dial-a-ride problem. The constraints that are checked are load capacity constraints, time windows, ride time bounds and wait time bounds. The algorithm has linear running time. By virtue ...... of a simple example, we show in this work that their algorithm is incorrect. We also prove that by increasing the time complexity by only a logarithmic factor, a correct algorithm is obtained....

  5. A semi-automation procedure for dial comparators calibration

    OpenAIRE

    Garcia Benadí, Albert; Shariat Panahi, Shahram; Río Fernandez, Joaquín del; Manuel Lázaro, Antonio

    2009-01-01

    In this article an improvement of a calibration process of measurement equipment in the field of dimensional metrology is presented. Devices under calibration process are dial comparators. The semi-automated process is focused on the acquisition and treatment of the calibration data. The aim of the semi-automated implementation is the improvement of the process performance for error minimization produced by human factors and a reduction of time. We have implemented semi-automated process i...

  6. Lidar base specification

    Science.gov (United States)

    Heidemann, Hans Karl.

    2012-01-01

    In late 2009, a $14.3 million allocation from the “American Recovery and Reinvestment Act” for new light detection and ranging (lidar) elevation data prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common base specification for all lidar data acquired for The National Map. Released as a draft in 2010 and formally published in 2012, the USGS–NGP “Lidar Base Specification Version 1.0” (now Lidar Base Specification) was quickly embraced as the foundation for numerous state, county, and foreign country lidar specifications.

  7. La dialéctica en las investigaciones educativas

    Directory of Open Access Journals (Sweden)

    Emilio Alberto Ortiz Torres

    2011-01-01

    Full Text Available En las investigaciones educativas se refleja la dialéctica al manifestarse contradicciones en el objeto de estudio, que se presuponen y se niegan al unísono. Sin embargo, los principios y las categorías de la lógica dialéctica casi no son abordados, de manera explícita, en la formación de profesionales en investigación educativa, en los manuales elaborados, ni en la propia práctica inquisitoria. Por lo general, solo se resalta la importancia de las leyes y reglas de la lógica formal que considera a la contradicción como algo indeseable y que se debe eliminar en aras de conservar el rigor científico, cuando en realidad ambas no son excluyentes, por el contrario, su complementariedad deviene en una exigencia contemporánea para las investigaciones científicas. Por lo anterior, el objetivo de este ensayo es ofrecer varios argumentos y recomendaciones que contribuyen a la aplicación rigurosa, consecuente y sistemática de la lógica dialéctica en las investigaciones educativas. Además, puede servir de consulta para el diseño y el desarrollo de investigaciones en el campo educativo

  8. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Science.gov (United States)

    Portafaix, T.; Godin-Beekmann, S.; Payen, G.; de Mazière, M.; Langerock, B.; Fernandez, S.; Posny, F.; Cammas, J. P.; Metzger, J. M.; Bencherif, H.; Vigouroux, C.; Marquestaut, N.

    2016-06-01

    A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  9. Advances in lidar applications

    Science.gov (United States)

    Lewandowski, Piotr Andrzej

    Quantitative laser remote sensing (lidar) measurements have always posed a challenge for the research community. The complexity of the data inversion and the instrumentation itself makes lidar results difficult to interpret. This dissertation presents a suite of 3 elastic lidar experiments. The goal of these studies was to quantitatively approach atmospheric physical phenomena such as rainfall (chapter 3), a distribution of concentration of particulates in Mexico City (chapter 4) and emission rates and emission factors from an agricultural facility in Iowa (chapter 5). The studies demonstrate that elastic lidar measurements are possible not only in a qualitative sense but also in a quantitative sense. The lidar study of rainfall was intended to provide rainfall data in small spatial and temporal scales (1.5m and 1s resolution). The two levels of lidar inversion algorithms allowed the calculation of rainfall rates in small scales. The problem of the distribution of particles over Mexico City required mobile lidar measurements. The elastic lidar data were successfully inverted to extinction coefficients which were then combined with aerosol size distribution. As a result, a spatial distribution of particulate concentration was created to illustrate the transport processes and intensity of Mexico City pollution. The measurements of particulate emission fluxes from a livestock facility involved a stationary scanning elastic lidar, in-situ aerosol size distribution measurements and wind measurements. The data from the 3 independent measurement platforms combined together resulted in emission rates and emission factors. The results from this experiment demonstrated that the new lidar approach is an adequate tool for measurement of aerosol emissions from livestock production facilities. The studies presented in the dissertation show quantitative lidar measurements in combination with other instruments measurements. This approach significantly extends the applications of

  10. 2015 Lowndes County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Lidar for Lowndes County, GA with the option to Collect Lidar in Cook and Tift Counties, GA Lidar Data Acquisition and Processing Production...

  11. Solving the Dial-a-Ride Problem using Genetic Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Rene Munk; Larsen, Jesper; Bergvinsdottir, Kristin Berg

    2007-01-01

    In the Dial-a-Ride problem (DARP), customers request transportation from an operator. A request consists of a specified pickup location and destination location along with a desired departure or arrival time and capacity demand. The aim of DARP is to minimize transportation cost while satisfying...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods....

  12. Hardness of Preemptive Finite Capacity Dial-a-Ride

    DEFF Research Database (Denmark)

    Gørtz, Inge Li

    2006-01-01

    In the Finite Capacity Dial-a-Ride problem the input is a metric space, a set of objects, each specifying a source and a destination, and an integer k---the capacity of the vehicle used for making the deliveries. The goal is to compute a shortest tour for the vehicle in which all objects can...... be delivered from their sources to their destinations while ensuring that the vehicle carries at most k objects at any point in time. In the preemptive version an object may be dropped at intermediate locations and picked up later and delivered. Let N be the number of nodes in the input graph. Charikar...

  13. Lidar Calibration Centre

    Science.gov (United States)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  14. First-time lidar measurement of water vapor flux in a volcanic plume

    OpenAIRE

    Fiorani, L.; Colao, F.; A. PALUCCI; Poreh, D.; Aiuppa, A.; Giudice, G.

    2011-01-01

    The CO2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar returns were obtained up to a range of 3 km. The spatial resolution was 15 mand the temporal resolution was 20 s. By combining these measurements, the water vapor ...

  15. Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.

    Science.gov (United States)

    Agishev, Ravil; Comerón, Adolfo; Rodriguez, Alejandro; Sicard, Michaël

    2014-05-20

    In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments. PMID:24922200

  16. Dialéctica material Donald Judd y Philip Johnson

    Directory of Open Access Journals (Sweden)

    María Teresa Muñoz

    2016-05-01

    Full Text Available Resumen El objetivo de este escrito es examinar cómo se plantea una cierta dialéctica material en el conjunto llamado la Mansana de Chinati, construido por el escultor Donald Judd en la ciudad de Marfa, Texas, a partir del año 1974, comparándolo con las dos viviendas que realiza el arquitecto Philip Johnson en su propiedad de New Canaan, Connecticut, en torno al año 1950. Tanto en New Canaan como en la Mansana de Chinati existe una  oposición, una dialéctica, entre una arquitectura industrial y otra artesana, tanto Philip Johnson como Donald Judd consideran que existe una arquitectura principal, la realizada con materiales y técnicas industriales, y otra subalterna o de servicio, la construida con piezas de arcilla y técnicas artesanales. Esta segunda arquitectura encarnará las cualidades asociadas con la pobreza, la abundancia material y la clausura espacial. Sin  embargo, esta exhibición de pobreza no tiene como fin los propios edificios domésticos construidos artesanalmente, ya sea con adobe o con ladrillo, sino que estará al servicio de esa otra arquitectura, construida con técnicas industriales, a la que se exige renunciar a la comodidad y el confort o cuando menos ocultarlos bajo la forma de una radical austeridad.

  17. Simultaneous and Independent Measurement of Atmospheric Water Vapor and Carbon Dioxide using a Triple-Pulsed, 2-micron Airborne IPDA Lidar - A Feasibility Study

    Science.gov (United States)

    Singh, U. N.; Refaat, T. F.; Yu, J.; Petros, M.

    2013-12-01

    Water vapor (H2O) and carbon dioxide (CO2) are dominant greenhouse gases that are critical for Earth's radiation budget and global warming through the eco-system and the carbon cycle. NASA Langley Research Center (LaRC) has a strong heritage in atmospheric remote sensing of both gases using several instruments adopting various DIAL techniques. This communication presents a feasibility study for measuring both H2O and CO2 simultaneously and independently using a single instrument. This instrument utilizes the Integrated Path Differential Absorption (IPDA) lidar technique to measure the weighted-average column dry-air mixing ratios of CO2 (XCO2) and H2O (XH2O) independently and simultaneously from an airborne platform. The key component of this instrument is a tunable triple-pulse 2-micron laser. The three laser pulses are transmitted sequentially within a short time interval of 200 microsec. The wavelength of each of the laser pulses can be tuned separately. The IPDA receiver design is based on low-risk, commercially available components, including 300-micron diameter InGaAs 2-micron pin detector, a low-noise, high speed trans-impedance amplifier (TIA) and 12-bit 400 MHz digitizer.

  18. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  19. DIAL-meettechniek toegepast op NO2-detectie

    NARCIS (Netherlands)

    Salemink; H.; Valk; P.de*

    1985-01-01

    Verslag van experimenteel onderzoek naar haalbaarheid van meting van NO2 m.b.v. lidar remote sensing. Aangetoond wordt de mogelijkheid tot detectie van NO2 over 1.0 km padlengte. Verbeteringen van de techniek, om tot een acceptabele detectielimiet voor stedelijke omgeving te komen, worden aangeg

  20. Minimum Makespan Multi-Vehicle Dial-a-Ride

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath; Ravi, R.

    2015-01-01

    -vehicle Dial-a-Ride problem, there are q vehicles, each having capacity k and where each vehicle j epsilon [q] has its own depot-vertex r(j) epsilon V. A feasible schedule consists of a capacitated route for each vehicle (where vehicle j originates and ends at its depot r(j)) that together move all objects...... from their sources to destinations. The objective is to find a feasible schedule that minimizes the maximum completion time (i.e., makespan) of vehicles, where the completion time of vehicle j is the time when it returns to its depot r(j) at the end of its route. We study the preemptive version...

  1. Lidar techniques for environmental and ecological monitoring

    Science.gov (United States)

    Svanberg, Sune

    2015-04-01

    An overview of optical probing of the atmosphere will be given, where mostly active remote- sensing techniques of the laser-radar type will be covered, but also some passive techniques employing ambient radiation. Atmospheric objects of quite varying sizes can be studied. Mercury is the only pollutant in atomic form in the atmosphere, while other pollutants are either molecular or in particle form. Light detection and ranging (Lidar) techniques allow three-dimensional mapping of such constituents, and examples from atmospheric lidar work in Lund and in Guangzhou will be given. Recently, much larger lidar targets have been studied. Monitoring of flying insects and birds is of considerable ecological interest, and several projects have been pursued in collaboration with biologists. Mostly, elastic backscattering and fluorescence techniques are employed. Some references to recent activities by the author and his colleagues are given below. [1] Z.G. Guan, L. Mei, P. Lundin, G. Somesfalean, and S. Svanberg, Vertical Lidar Sounding of Air Pollutants in a Major Chinese City, Appl. Phys. B 101, 465 (2010) [2] L. Mei, G.Y. Zhou and S. Svanberg, Differential Absorption Lidar System Employed for Background Atomic Mercury Vertical Profiling in South China, Lasers Opt. Eng. 55, 128 (2013) [3] Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, and S. Svanberg, Insect Monitoring with Fluorescence LIDAR techniques - Field experiments, Appl. Optics 48, 5668 (2010) [4] A. Runemark, M. Wellereuther, H. Jayaweera, S. Svanberg and M. Brydegaard, Rare Events in Remote Dark Field Spectroscopy: An Ecological Case study of Insects, IEEE JSTQE 18, 1573 (2011) [5] L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, and G. Somesfalean, Agricultural Pest Monitoring using Fluorescence Lidar Techniques, Applied Physics B 106, 733 (2011) [6] P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Åkesson, and M. Brydegaard, Remote

  2. Comparison of Efficacy of Dial Flow Microdrip Sets for Hyperviscous Fluids

    Directory of Open Access Journals (Sweden)

    Shiraboina Madanmohan

    2012-04-01

    Full Text Available The current study was conducted with an objective to compare efficacy of dial flow microdrip sets for hyperviscous fluids. Four different sets and two hyperviscous fluids were used to eliminate bias. The study was done by suspending buret sets which was attached with microdrip dial flow sets and set rate was 100 ml/min. we noted the time to flow 100ml. 3 sets were delivered fluid as per set rate with insignificant p value. Micro drip dial flow sets can be used for hyperviscous fluids. [National J of Med Res 2012; 2(2.000: 232-233

  3. Comparison of Efficacy of Dial Flow Microdrip Sets for Hyperviscous Fluids

    OpenAIRE

    Shiraboina Madanmohan; Ramachandran Gopinath

    2012-01-01

    The current study was conducted with an objective to compare efficacy of dial flow microdrip sets for hyperviscous fluids. Four different sets and two hyperviscous fluids were used to eliminate bias. The study was done by suspending buret sets which was attached with microdrip dial flow sets and set rate was 100 ml/min. we noted the time to flow 100ml. 3 sets were delivered fluid as per set rate with insignificant p value. Micro drip dial flow sets can be used for hyperviscous fluids. [Nation...

  4. LIDAR: Malheur NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project was funded through the Region 1 Inventory and Monitoring Initiative RFP in 2011. LiDAR has been identified by the Malheur Lake Work Group as critical...

  5. Lidar 2009 - All Returns

    Data.gov (United States)

    Kansas Data Access and Support Center — LIDAR-derived binary (.las) files containing classified points of all returns. We have 3 classifications Unclassified, Ground, Low points. The average Ground Sample...

  6. 2006 FEMA Hawaii Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The FEMA Task Order 26 LiDAR data set was collected by Airborne 1 Corporation of El Segundo, California in September - December of 2006 for URS Corp.

  7. 2004 Maine Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Maine. Data was collected...

  8. LIDAR: Malheur NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — LiDAR has been identified by the Malheur Lake Work Group as critical tool for planning, management, and restoration across the Harney Basin. In particular, this...

  9. 2004 Connecticut Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS...

  10. Phoenix Lidar Operation Animation

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  12. The Durban atmospheric LIDAR

    Science.gov (United States)

    Moorgawa, A.; Bencherif, H.; Michaelis, M. M.; Porteneuve, J.; Malinga, S.

    2007-03-01

    A brief description of the Durban atmospheric LIDAR (acronym for light detection and ranging) system for the measurement of vertical temperature profiles is presented. In its original configuration, a 10 Hz-laser was used as the transmitter for the LIDAR. The 10 Hz-laser has now been replaced by a 30 Hz-laser delivering five times more power. Both lasers have been used separately to sample the atmosphere above Durban. A comparative analysis of the backscattered signals obtained separately from each laser shows that the 30 Hz-laser has a much greater stratospheric range. The wavelength emitted for both lasers is 532 nm. A comparison of the average monthly LIDAR temperature profiles has been computed between 20 and 60 km. The LIDAR temperature profiles have been compared with the South African Weather Service (SAWS) radiosonde temperature measurement for the lower stratosphere, between 20 and 27 km. The agreement between the two measurements is good in the lower stratosphere where SAWS radiosondes overlap with LIDAR. A comparison of the LIDAR and SAGE II (stratospheric aerosol and gas experiment) aerosol measurements has also been carried out.

  13. The Zugspitze Raman Lidar: System Testing

    Science.gov (United States)

    Höveler, Katharina; Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    A high-power Raman lidar system has been installed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m a.s.l., at the side of the existing wide-range differrential-absorption lidar. An industrial XeCl laser was modified for polarized single-line operation at an average power of about 175 W. This high power and a 1.5-m-diameter receiver are expected to allow us to extend the operating range for water-vapour sounding to more than 25 km, at an accuracy level of the order of 10 %. In addition, temperature measurements in the free troposphere and to altitudes beyond 80 km are planned. The system is currently thoroughly tested and exhibits an excellent performance up to the lowermost stratosphere. We expect that results for higher altitudes can be presented at the meeting.

  14. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  15. 2006 Volusia County, Florida Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  16. Sonoma County, CA, 2013 Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sonoma County Vegetation Mapping and LiDAR Consortium retained WSI to provide lidar and Orthophoto data and derived products in Sonoma County, CA. A classified LAS...

  17. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  18. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    Science.gov (United States)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  19. Survival times of pre-1950 US women radium dial workers

    International Nuclear Information System (INIS)

    Survival times of US women radium dial workers to the end of 1989 were examined by life table methods. Included were 1301 women rust employed before 1930 and 1242 first employed in 1930-1949. Expected numbers of deaths were estimated from age- and time-specific death rates for US white females. In the early group, 85 deaths from the well-known radium-induced cancers - bone sarcomas and head carcinomas - were observed, but only 724 deaths from aH other causes were observed vs 755 expected. Life shortening (±S.E.) of 1.8 ±0.5 y compared to the general population of US white females was calculated from the time distribution of all deaths in the pre-1930 group. In the 1930--1949 group, 350 deaths were observed vs 343 expected and no bone sarcomas or head carcinomas occurred. Among women who survived at least 2 y after rust measurement of body radium, a significant excess of observed vs expected deaths was found only for radium intakes greater than 1.85 MBq of 226Ra + 228Ra, and no trend of deaths or reduction of life expectancy was found with length of employment

  20. Micropulse Lidar (MPL) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  1. Dose-effect relationships for the US radium dial painters

    International Nuclear Information System (INIS)

    Dose-response data are presented from a large percentage of the US workers who were exposed to radium through the painting of luminous dials. The data in this paper are only from females, because very few males worked in this occupation. Log-normal analyses were done for radium-induced bone sarcomas and head carcinomas after the populations of the respective doses were first determined to be log-normally distributed. These populations included luminisers who expressed no radium-related cancerous condition. In this study of the female radium luminisers, the most important data concerning radiation protection are probably from workers who were exposed to radium but showed no cancer incidence. A total of 1391 subjects with average measured skeletal doses below 10 Gy are in this category. A primary purpose is to illustrate the strong case that 226,228Ra is representative of those radionuclides that exemplify in humans a 'threshold' dose, a dose below which there has been no observed health effects on the exposed individual. Application of a threshold dose for radium deposited in the skeleton does not mean to imply that any other source of skeletal irradiation should be considered to follow a similar pattern. Second, a policy issue that begs for attention is the economic consequence of forcing radiation to appear as a highly toxic insult. It is time to evaluate the data objectively instead of formatting the extrapolation scheme beforehand and forcing the data to fit a preconceived pattern such as linearity through the dose-effect origin. In addition, it is time to re-evaluate (again) variations in background radiation levels throughout the world and to cease being concerned with, and regulating against, miniscule doses for which no biomedical effects on humans have ever been satisfactorily identified or quantified. (author)

  2. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  3. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  4. Lidar 2009 - IMG

    Data.gov (United States)

    Kansas Data Access and Support Center — ESRI Grids 1 meter resolution are created from the ground classified lidar points. The tiles are delivered in 5,000m by 5,000m tiles. The ESRI grids are exported to...

  5. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam...

  6. 2004 Alaska Lidar Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data sets are generated using the OPTECH ALTM 70 kHz LIDAR system mounted onboard AeroMap's twin-engine Cessna 320 aircraft. Classified data sets such as this...

  7. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  8. LIDAR mapping of ozone-episode dynamics in Paris and intercomparaison with spot analysers

    OpenAIRE

    Thomasson, Alexandre; Geffroy, Sylvain; Frejafon, Emeric; Weidauer, Derk; Fabian, R.; Godet, Yves; Nomine, Michel; Menard, Tamara; Rairoux, Pierre; Moeller, D.; Wolf, Jean-Pierre

    2002-01-01

    International audience Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50- and 300-m altitudes on the Eiffel Tower. Very good agreement is fo...

  9. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients

    OpenAIRE

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Gerhard, Ehret

    2008-01-01

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high--power frequency--doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the DLR Falcon 20 research aircraft during the Saharan Mineral Dust Experiment (SAMUM) in May/June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of...

  10. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    OpenAIRE

    Anselmo C.; Thomas B; Miffre A.; Francis M; Cariou J.P.; Rairoux P.

    2016-01-01

    In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth’s atmosphere (CH4, H2O) by combining broadband optical correlation spectroscopy (OCS) with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the pl...

  11. A semianalytic Monte Carlo code for modelling LIDAR measurements

    Science.gov (United States)

    Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.

  12. MyOcean Internal Information System (Dial-P)

    Science.gov (United States)

    Blanc, Frederique; Jolibois, Tony; Loubrieu, Thomas; Manzella, Giuseppe; Mazzetti, Paolo; Nativi, Stefano

    2010-05-01

    , trajectory, station, grid, etc., which will be implemented in netCDF format. SeaDataNet is recommending ODV and NetCDF formats. Another problem related to data curation and interoperability is the possibility to use common vocabularies. Common vocabularies are developed in many international initiatives, such as GEMET (promoted by INSPIRE as a multilingual thesaurus), UNIDATA, SeaDataNet, Marine Metadata Initiative (MMI). MIS is considering the SeaDataNet vocabulary as a base for interoperability. Four layers of different abstraction levels of interoperability an be defined: - Technical/basic: this layer is implemented at each TAC or MFC through internet connection and basic services for data transfer and browsing (e.g FTP, HTTP, etc). - Syntactic: allowing the interchange of metadata and protocol elements. This layer corresponds to a definition Core Metadata Set, the format of exchange/delivery for the data and associated metadata and possible software. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant metadata set and common data formats). - Functional/pragmatic: based on a common set of functional primitives or on a common set of service definitions. This layer refers to the definition of services based on Web services standards. This layer is implemented by the DIAL-P logical interface (e.g. adoption of INSPIRE compliant network services). - Semantic: allowing to access similar classes of objects and services across multiple sites, with multilinguality of content as one specific aspect. This layer corresponds to MIS interface, terminology and thesaurus. Given the above requirements, the proposed solution is a federation of systems, where the individual participants are self-contained autonomous systems, but together form a consistent wider picture. A mid-tier integration layer mediates between existing systems, adapting their data and service model schema to the MIS. The developed MIS is a read-only system, i.e. does not allow

  13. Simulating full-waveform LIDAR

    OpenAIRE

    Kim, Angela M.

    2009-01-01

    LIDAR (LIght Detection And Ranging) is used to remotely measure the threedimensional shapes and arrangements of objects with high efficiency and accuracy by making precise measurements of time-of-flight of pulses of light. Discrete return LIDAR systems provide a discrete series of elevation points corresponding to reflections from objects in the scene. Full-waveform LIDAR systems measure the intensity of light returned to the sensor continuously over a period of time. Relatively little r...

  14. Henri Walon: por uma teoria dialética na educação

    Directory of Open Access Journals (Sweden)

    Maria Inês Naujorks

    2000-04-01

    Full Text Available O texto aborda as principais idéias desenvolvidas por Henri Wallon. Tendo como método o materialismo dialético, seu projeto foi o de formular uma "ciência do homem". Para o autor o desenvolvimento é a síntese dialética do biológico e do social e só pode ser entendido à luz das contradições de um processo que se estende por toda vida toda.

  15. Henri Walon: por uma teoria dialética na educação

    OpenAIRE

    Maria Inês Naujorks

    2000-01-01

    O texto aborda as principais idéias desenvolvidas por Henri Wallon. Tendo como método o materialismo dialético, seu projeto foi o de formular uma "ciência do homem". Para o autor o desenvolvimento é a síntese dialética do biológico e do social e só pode ser entendido à luz das contradições de um processo que se estende por toda vida toda.

  16. The Client Program of WLAN Dialing%WLAN拨号客户端方案

    Institute of Scientific and Technical Information of China (English)

    肖宏

    2011-01-01

    随着中国电信WLAN业务开放和深入推进,客户对WLAN业务体验飞速增长,本文就WLAN业务拨号方式进行多方位的分析,并提出WLAN专用拨号客户端的建议和发展思路。%With the opening up of China Telecom and further promote the WLAN business,customer service experience rapid growth of WLAN,the WLAN business dialing this multi-faceted analysis,and proposed WLAN dedicated dialing client's suggestions and development ideas.

  17. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  18. NASA/GSFC Scanning Raman Lidar Measurements of Water Vapor and Cirrus Clouds during WVIOP2000 and AFWEX

    Science.gov (United States)

    Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.

  19. High Spectral Resolution Lidar: System Calibration

    Science.gov (United States)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  20. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Science.gov (United States)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  1. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Razenkov Ilya I.

    2016-01-01

    Full Text Available The High Spectral Resolution Lidar (HSRL designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm.

  2. Aprendizaje dialógico : base teórica de las comunidades de aprendizaje

    OpenAIRE

    Duque Sánchez, Elena; Mello, Roseli R. de; Gabassa, Vanessa

    2009-01-01

    El aprendizaje dialógico y los siete principios que lo componen sientan las bases de las comunidades de aprendizaje como proyecto de transformación global y también las prácticas educativas concretas que se realizan en este marco

  3. I 5683 you: dialing phone numbers on cell phones activates key-concordant concepts.

    Science.gov (United States)

    Topolinski, Sascha

    2011-03-01

    When people perform actions, effects associated with the actions are activated mentally, even if those effects are not apparent. This study tested whether sequences of simulations of virtual action effects can be integrated into a meaning of their own. Cell phones were used to test this hypothesis because pressing a key on a phone is habitually associated with both digits (dialing numbers) and letters (typing text messages). In Experiment 1, dialing digit sequences induced the meaning of words that share the same key sequence (e.g., 5683, LOVE). This occurred even though the letters were not labeled on the keypad, and participants were not aware of the digit-letter correspondences. In Experiment 2, subjects preferred dialing numbers implying positive words (e.g., 37326, DREAM) over dialing numbers implying negative words (e.g., 75463, SLIME). In Experiment 3, subjects preferred companies with phone numbers implying a company-related word (e.g., LOVE for a dating agency, CORPSE for a mortician) compared with companies with phone numbers implying a company-unrelated word.

  4. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Science.gov (United States)

    Schwemmer, G.; Yakshin, M.; Prasad, C.; Hanisco, T.; Mylapore, A. R.; Hwang, I. H.; Lee, S.

    2016-06-01

    We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO) fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  5. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  6. Hydrologic enforcement of lidar DEMs

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  7. Standards - An Important Step for the (Public) Use of Lidars

    Science.gov (United States)

    Althausen, Dietrich; Emeis, Stefan; Flentje, Harald; Guttenberger, Josef; Jäckel, Simon; Lehmann, Volker; Mattis, Ina; Münkel, Christoph; Peters, Gerhard; Ritter, Christoph; Wiegner, Matthias; Wille, Holger

    2016-06-01

    Lidar standards are needed to ensure quality and lidar product control at the interface between lidar manufacturers and lidar users. Meanwhile three lidar standards have been published by German and international standardization organizations. This paper describes the cooperation between the lidar technique inventors, lidar instrument constructors, and lidar product users to establish useful standards. Presently a backscatter lidar standard is elaborated in Germany. Key points of this standard are presented here. Two German standards were already accepted as international standards by the International Organization for Standardization (ISO). Hence, German and international organizations for the establishment of lidar standards are introduced to encourage a cooperative work on lidar standards by lidar scientists.

  8. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    Science.gov (United States)

    Anselmo, C.; Thomas, B.; Miffre, A.; Francis, M.; Cariou, J. P.; Rairoux, P.

    2016-06-01

    In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth's atmosphere (CH4, H2O) by combining broadband optical correlation spectroscopy (OCS) with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the planetary boundary layer using the 4ν 720 nm absorption band.

  9. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Anselmo C.

    2016-01-01

    Full Text Available In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth’s atmosphere (CH4, H2O by combining broadband optical correlation spectroscopy (OCS with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the planetary boundary layer using the 4ν 720 nm absorption band.

  10. Making lidar more photogenic: creating band combinations from lidar information

    Science.gov (United States)

    Stoker, Jason M.

    2010-01-01

    Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar point cloud datasets (Stoker et al., 2006), currently has 3.5 percent of the United States covered by lidar, and has approximately another 5 percent in the processing queue. The majority of data being collected by the commercial sector are from discrete-return systems, which collect billions of lidar points in an average project. There are also a lot of discussions involving a potential National-scale Lidar effort (Stoker et al., 2008).

  11. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    Science.gov (United States)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  12. Mobile lidars. Influence of external mechanical actions on accuracy of lidar aiming

    OpenAIRE

    Dmitriev, Viktor Stepanovich; Kostyuchenko, T. G.; Yangulov, V. S.; Teploukhov, V. V.

    2007-01-01

    The questions of designing mechanical system load-bearing elements «lidar radiator-lidar basis-automobile» in order to reduce external mechanical effects on lidar aiming accuracy have been considered

  13. Accuracy of Lidar Measurements of the Atmosphere

    Science.gov (United States)

    Kavaya, M. J.; Menzies, R. T.

    1986-01-01

    Report reviews sources of systematic error in laser radar (lidar) measurements of particles in atmosphere. Report applies particularly to stationary pulsed carbon dioxide lidars of type used to measure backscatter from aerosols in troposphere. Provides information for calibrating such systems accurately and consistently and interpreting their data correctly. Also useful in calibrating mobile and airborne lidars, lidars operating at wavelengths other than those of carbon dioxide lasers, and continuouswave lidars.

  14. Measurements of aerosol distribution by an elastic-backscatter lidar in summer 2008 in Beijing

    Institute of Scientific and Technical Information of China (English)

    Zhenyi Chen; Wenqing Liu; Yujun Zhang; Nanjing Zhao; Junfeng He; Jun Ruan

    2009-01-01

    Elastic lidar observations of profiles of the aerosol extinction,backscattering coefficients,and the lidar ratio have been performed in Beijing.The elastic lidar transmitts wavelengths of 532 and 355 nm.The measurement altitude can reach up to 6 km.The similarity of the extinction and backscattering profiles suggests a close relation between the mean transmission and reflection properties.The lidar ratio on July 22,2008 varied from 10 to 30 sr with the mean value of 20 sr.The profiles of the aerosol properties indicate the cirrus at 6-km altitude and a well-mixed boundary layer from July 22 to 24,2008.The detected boundary layer also agrees well with the high and stable ozone concentration obtained from the differential optical absorption spectroscopy(DOAS)system.

  15. High Resolution Doppler Lidar

    Science.gov (United States)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  16. Simulating full-waveform lidar

    Science.gov (United States)

    Kim, Angela M.; Olsen, Richard C.; Borges, Carlos F.

    2010-04-01

    A simple Monte Carlo model of laser propagation through a tree is presented which allows the simulation of fullwaveform LIDAR signatures. The model incorporates a LIDAR system and a 'natural' scene, including an atmosphere, tree and ground surface. The PROSPECT leaf reflectance model is incorporated to determine leaf radiometric properties. Changes in the scene such as varying material reflectance properties, sloped vs. flat ground, and comparisons of tree 'leaf-on' vs. 'leaf-off' conditions have been analyzed. Changes in the LIDAR system have also been studied, including the effects of changing laser wavelength, shape and length of transmitted pulses, and angle of transmission. Results of some of these simulations are presented.

  17. Estimation of inherent optical properties from CZMIL lidar

    Science.gov (United States)

    Kim, Minsu; Feygels, Viktor; Kopilevich, Yuri; Park, Joong Yong

    2014-11-01

    Bathymetric lidar has been widely used for ocean floor mapping. By identifying two distinctive return peaks, one from the water surface and the other from the bottom, the water depth can be estimated. In addition to bathymetry, it is also possible to estimate the optical properties of the water by analyzing the lidar return waveform. Only the few systems (e.g. Optech's SHOALS and CZMIL systems) that have good radiometric calibration demonstrate the capability to product the water's inherent optical properties and bottom reflectance. As the laser pulse propagates through the water, it is scattered by the water constituents. The directional distribution of scattered radiant power is determined by the volume scattering function. Only the backscattering within a very narrow solid angle around the 180° scattering angle travels back to the detector. During the two-way travel it experiences the same optical interaction (absorption and scattering) with the water constituents. Thus, the lidar return waveform between the surface and bottom peak contains information about the vertical distribution of the water attenuation coefficient and the backscattering coefficient in the form of the rate of change of the return power. One challenge is how to estimate the inherent attenuation from the apparent attenuation. In this research we propose a technique to estimate the true water attenuation coefficient from the total system attenuation. We use a lidar waveform simulator that solves the irradiance distribution on the beam cross-section using an analytical Fourier transform of the radiance based on a single-scattering approximation.

  18. New mobile Raman lidar for measurement of tropospheric water vapor

    Institute of Scientific and Technical Information of China (English)

    XIE Chenbo; ZHOU Jun; YUE Guming; QI Fudi; FAN Aiyuan

    2007-01-01

    The content of water vapor in atmosphere is very little and the ratio of volume of moisture to air is about 0.1%-3%,but water vapor is the most active molecule in atmosphere.There are many absorption bands in infrared(IR)wavelength for water vapor,and water vapor is also an important factor in cloud formation and precipitation,therefore it takes a significant position in the global radiation budget and climatic changes.Because of the advantages of the high resolution,wide range,and highly automatic operation,the Raman lidar has become a new-style and useful tool to measure water vapor.In this paper,first,the new mobile Raman lidar's structure and specifications were introduced.Second,the process method of lidar data was described.Finally,the practical and comparative experiments were made over Hefei City in China.The results of measurement show that this lidar has the ability to gain profiles of ratio of water vapor mixing ratio from surface to a height of about 8 km at night.Mean-while,the measurement of water vapor in daytime has been taken,and the profiles of water vapor mixing ratio at ground level have been detected.

  19. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  20. Integration of INFOMAR Bathymetric Lidar with External Onshore Lidar Datasets

    OpenAIRE

    Coveney, S.

    2009-01-01

    This study was carried out by the National Centre for Geocomputation at NUI Maynooth. The NCG is a resource for those interested in any aspect of the capture, storage, integration, management, retrieval, display, analysis or modelling of spatial data. Research at the NCG is diverse, but much of its work focuses on Algorithm development, Geosensor integration, Geovisualisation and Location Based Services. Research under the Geosensors banner includes LiDAR research, which includes LiDAR acquis...

  1. Contradicción y diferencia, Althusser y la pregunta por una dialéctica materialista

    OpenAIRE

    Cocimano, Fermando

    2014-01-01

    Tal vez nadie haya insistido tanto en la necesidad de abandonar la dialéctica comoGillesDeleuze. A punto tal que podemos leer su obra como un intento sistemático por superar la dialéctica en favor de una ontología positiva de la diferencia. La dialéctica, en la perspectiva de Deleuze, no sería otra cosa que ese “largo error” que de Platón a Hegel obliteró, mediante el recurso de lo negativo, la diferencia. De este modo, la intención no tan secreta de la dialéctica no sería otra que la de “dom...

  2. Lidar Methods for Observing Mineral Dust

    Institute of Scientific and Technical Information of China (English)

    Nobuo SUGIMOTO; HUANG Zhongwei

    2014-01-01

    Lidar methods for observing mineral dust aerosols are reviewed. These methods include Mie scattering lidars, polarization lidars, Raman scattering lidars, high-spectral-resolution lidars, and fluorescence lidars. Some of the lidar systems developed by the authors and the results of the observations and applications are introduced. The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions. Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols. The lidar network data are actually used for validation and assimilation of dust transport models, which can evaluate emission, transport, and deposition of mineral dust. The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols. Evolution of the lidar data analysis methods for aerosol characterization is also reviewed. Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment. Directions of the researches with lidar methods in the near future are discussed.

  3. 2008 City of Baltimore Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2008, the City of Baltimore expressed an interest to upgrade the City GIS Database with mapping quality airborne LiDAR data. The City of Baltimore...

  4. 2009 Chatham County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR generated point cloud acquired in spring 2009 for Chatham County, Georgia for the Metropolitan Planning Commission. The data are classified as follows: Class...

  5. Methane LIDAR Laser Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop laser technology intended to meet NASA's need for innovative lidar technologies for atmospheric measurements of methane. NASA and the...

  6. 2006 FEMA Lidar: Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The FEMA Task Order 26 LiDAR data set was collected by Airborne 1 Corporation of El Segundo, California in September - December of 2006 for URS Corp.

  7. 2009 SCDNR Charleston County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photoscience completed the original collection and classification of the multiple return LiDAR of Charleston County, South Carolina in the winter of 2006-2007. In...

  8. 2004 USACE Puerto Rico Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This record describes Light Detection and Ranging (Lidar) data acquired for the island of Puerto Rico. The data were acquired for USACE, St. Louis District by 3001,...

  9. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  10. 2005 Baltimore County Maryland Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2005, Sanborn as part of the Dewberry team was contracted to execute a LiDAR (Light Detection and Ranging) survey campaign to collect the...

  11. Alabama 2003 Lidar Coverage, USACE

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  12. 2014 NJMC Lidar: Hackensack Meadowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial, Inc. (QSI) was contracted by the New Jersey Meadowlands Commission (NJMC) to collect Light Detection and Ranging (LiDAR) data in...

  13. 2009 SCDNR Horry County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Horry County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  14. Complex Terrain and Wind Lidars

    DEFF Research Database (Denmark)

    Bingöl, Ferhat

    models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to ∼6h. At the forest......This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed...... in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar...

  15. 2009 SCDRN Lidar: Florence County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Carolina Department of Natural Resources (SCDNR) contracted with Sanborn to provide LiDAR mapping services for Florence County, SC. Utilizing multi-return...

  16. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  17. 2013 USGS Lidar: Norfolk (VA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) provided high accuracy, calibrated multiple return LiDAR for roughly 1,130 square miles...

  18. Three dials, and a few more: a practical introduction to accurate gnomonics

    OpenAIRE

    Roegel, Denis

    2007-01-01

    Sundials provide an interesting application for the MetaPost graphical programming language, at the intersection of geometry, astronomy and time. This article considers three classical sundial drawings (normal hours, horizontal coordinates, and Babylonian/Italian hours), shows how to reproduce them accurately, and extends the study to related dials, such as those showing the declination, temporary hours, or sidereal time. Analemmatic sundials, related to common sundials, are also covered.

  19. An Efficient Single Frequency Ho:YLF Laser for IPDA Lidar Applications

    Science.gov (United States)

    Yu, J.; Bai, Y.; Wong, T.; Reithmeier, K.; Petros, M.

    2016-01-01

    A highly efficient, versatile, single frequency 2-micron pulsed laser can be used in a pulsed Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution measurements to investigate sources and sinks of CO2. For a direct detection IPDA lidar, the desired 2 ?m Ho:YLF laser should generate 30-40 mJ pulses at the repetition rate of 100 to 200 Hz, with short pulse length (laser in-band pumped Ho:YLF laser has been developed to meet this technical challenge. This Ho:YLF laser is designed in a four mirror ring resonator with bow tie configuration, which helps to obtain high beam quality. It is end-pumped by a 40 W linearly polarized Tm fiber laser at 1.94µm. The resonator length is 1.10 meters with output coupler reflectivity at 45%. The laser crystal size is 3 x 3 x 60 mm (w, h, l) with a doping concentration of 0.5% Holmium. The laser beam and pump beam are mode-matched in the active medium. Thus, the pump and laser beams have the same confocal parameters. Mode-matching is also helpful for operating the laser in a single transverse mode. The laser beam waist is slightly less than 0.5 mm at the center of the laser crystal. Based on quasi-four level modeling, pump absorption and saturation depend on laser intensity. Laser amplification and saturation also depend on the pump intensity in the crystal. The laser is injection seeded to obtain the single frequency required by an IPDA lidar measurement. The seed beam is entered into the resonator through an output coupler. The laser is mounted on a water cooled optical bench for stable and reliable operation. The size of the optical bench is 22.16 x 9.20 x 1.25 inches. It is stiffened so that the laser can be operated in any orientation of the optical bench. This packaged Ho:YLF laser is designed for either mobile trailer or airborne platform operation. The engineering prototype Ho:YLF laser has been fully characterized to demonstrate laser performance

  20. Recent results in imaging lidar

    Science.gov (United States)

    Ulich, Bobby L.; Lacovara, Philip; Moran, Steven E.; DeWeert, Michael J.

    1997-07-01

    Imaging lidar, in which light detection and ranging is implemented with sufficient spatial resolution to resolve the size and shape of an object, has demonstrated impressive performance for detecting and classifying underwater targets. During 1996 the U.S. Navy deployed its first imaging lidar system with Naval Air Reserve Squadron HSL-94. This paper reviews the Magic LanternR system and discusses new technology and trends for future systems.

  1. Spatio-temporal variability of water vapor investigated by lidar and FTIR vertical soundings above Mt. Zugspitze

    Directory of Open Access Journals (Sweden)

    H. Vogelmann

    2014-11-01

    Full Text Available Water vapor is the most important greenhouse gas and its spatio-temporal variability strongly exceeds that of all other greenhouse gases. However, this variability has hardly been studied quantitatively so far. We present an analysis of a five-year period of water vapor measurements in the free troposphere above Mt. Zugspitze (2962 m a.s.l., Germany. Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV, recorded with a solar Fourier Transform InfraRed (FTIR spectrometer on the summit of Mt. Zugspitze and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL at the Schneefernerhaus research station. The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. The SD of differences between both instruments σIWV calculated for varied subsets of data serves as a measure of variability. The different subsets are based on various spatial and temporal matching criteria. Within a time interval of 20 min, the spatial variability becomes significant for horizontal distances above 2 km, but only in the warm season (σIWV = 0.35 mm. However, it is not sensitive to the horizontal distance during the winter season. The variability of IWV within a time interval of 30 min peaks in July and August (σIWV > 0.55 mm, mean horizontal distance = 2.5 km and has its minimum around midwinter (σIWV 5 km. The temporal variability of IWV is derived by selecting subsets of data from both instruments with optimal volume matching. For a short time interval of 5 min, the variability is 0.05 mm and increases to more than 0.5 mm for a time interval of 15 h. The profile variability of water vapor is determined by analyzing subsets of water vapor profiles recorded by

  2. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    Science.gov (United States)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  3. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    Science.gov (United States)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  4. Eyesafe Direct Laser Source for Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate an eye-safe laser source for a DIAL CO2 sensor that meets or exceeds all topic requirements for a high-pulse-energy laser with good beam...

  5. Solid State Transmitters for Water Vapor and Ozone DIAL Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  6. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  7. Performance Simulations for a Spaceborne Methane Lidar Mission

    Science.gov (United States)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  8. Sensitivity studies for a space-based methane lidar mission

    Directory of Open Access Journals (Sweden)

    C. Kiemle

    2011-06-01

    Full Text Available Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN on a small satellite in Polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1 % over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol

  9. Sensitivity studies for a space-based methane lidar mission

    Directory of Open Access Journals (Sweden)

    C. Kiemle

    2011-10-01

    Full Text Available Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol

  10. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  11. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  12. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  13. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  14. 2007 South Carolina DNR Lidar: Anderson County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in 5 sessions, from March 7 to March 9, 2007. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition...

  15. 2004 SWFWMD Citrus County Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the ortho & LIDAR mapping of Citrus County, FL. The mapping consists of LIDAR data collection, contour generation, and production...

  16. 2007 SRWMD Lidar: Mallory Swamp (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Mallory Swamp. These data were produced for SRWMD. The Mallory Swamp LiDAR Survey project area...

  17. 2011 ARRA Lidar: Hidalgo County (TX)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Hidalgo County, Texas. LiDAR data, and...

  18. 2009 Bayfield County Lake Superior Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR survey presents digital elevation data sets of a bald earth surface model and 2ft interval contours covering Bayfield County, Wisconsin. The LIDAR data...

  19. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  20. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  1. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  2. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  3. Mobile incoherent Doppler lidar using fiber-based lidar receivers

    Science.gov (United States)

    Hu, Dongdong; Sun, Dongsong; Shu, Zhifeng; Shangguan, Mingjia; Gao, Yuanyuan; Dou, Xiankang

    2014-09-01

    A mobile incoherent Doppler lidar was developed at the University of Science and Technology of China. The lidar consists of three subsystems. All subsystems are designed based on the well-proven double-edge technique, operate at 354.7 nm, and use Fabry-Perot etalons as frequency discriminators. The whole system is designed for wind measurement from 15- to 60-km height. In order to make the lidar receiver more compact and stable and to reduce interference between optical paths inside the receiver box, fiber splitters are introduced into the lidar receivers as a substitute for normally used discrete components. According to the stability of the splitter, the wind error dominated by the splitting ratio would be luminance heterogeneity's influence on the splitter performance, an integrating sphere is used in the system. Multiple measurements of transmission curves have a maximum mean squared error of 9.674E-5. A typical result of wind profile is also given to help demonstrate the reliability of the lidar and the fiber-based receiver.

  4. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  5. Detection of Atmospheric Composition Based on Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinye; Tong Yala; Yang Xiaoling; Gong Jiaoli [School of science, Hubei University of Technology, Wuhan 430068 (China); Gong Wei, E-mail: yezi.zh@163.com [State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079 (China)

    2011-02-01

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  6. Industrial fiber lidar: some applications

    Science.gov (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario; Roy, Gilles

    2000-12-01

    In recent years, INO has developed an eye-safe, transportable industrial fiber lidar (IFL) for industrial applications of pollution control during handling of loose materials'2. However, it can also be used for other applications like urban particulates monitoring, cloud mapping, and unattended surveillance. The IPL is a compact and direct scanning lidar. It is based on 1140's diode pumped Erbium doped fiber laser, which delivers an energy of 1 .5microJoules in l2ns pulses with a high repetition rate of 10kHz at an eye-safe wavelength of 1.5microns. 1140's lidar system is composed of a lidar head containing the transmitter-receiver optics in a biaxial configuration mounted on a scanning platform. The lidar head is connected to the laser source and detector via optical fibers. A computer controls the scanning platform via an optical RS- 232 communication link. This allows remote operation since sensitive equipment like the laser and the computer can be located away from the surveillance site in an environmentally controlled room. The TEL characteristics and results obtained from monitoring in an urban area and field trials on surveillance of hard targets and transmission through obscurants will be detailed.

  7. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...... measurements are given for information only....

  8. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  9. Improvement of web-based data acquisition and management system for GOSAT validation lidar data analysis

    Science.gov (United States)

    Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra Nugraha; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei

    2013-01-01

    A web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data-analysis has been developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS (Automated Meteorological Data Acquisition System) ground-level local meteorological data, GPS Radiosonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data. In this article, we briefly describe some improvement for higher performance and higher data usability. GPS Radiosonde upper-air meteorological data and U.S. standard atmospheric model in DAS automatically calculate molecule number density profiles. Predicted ozone density prole images above Saga city are also calculated by using Meteorological Research Institute (MRI) chemistry-climate model version 2 for comparison to actual ozone DIAL data.

  10. A lidar for water vapour measurements in daytime at Lampedusa, Italy

    Directory of Open Access Journals (Sweden)

    F. Marenco

    2003-06-01

    Full Text Available ENEA is planning to develop a lidar system for measurement of the vertical profi le of water vapour mixing ratio in daytime at a remote site, the Station for Climate Observations located in Lampedusa, Italy. The Raman lidar technique has been retained because of its experimental simplicity with respect to DIAL, and the UV spectral range has been chosen because Raman cross-sections and detector effi ciencies are larger. For a wavelength larger than ~ 300 nm the signal is limited in daytime by sky background, but extinction is acceptable, and the aims of the system can be reached with a strong laser source. The 355 nm wavelength of a frequency-tripled Nd:YAG laser has been retained as this laser source permits to reach a large pulse energy while keeping the system simple to operate. Geometrical form factor calculations need to be performed to evaluate the near-range overlap between the laser beam and the fi eld-of-view of the receiver. Among several options, a dual-receiver system has been retained to account for the several orders of magnitude expected in the backscattered signal intensity: a smaller receiver, with a primary mirror of 200 mm diameter for the 0.2-1 km range, and a larger 500 mm receiver for the 1-3 km range.

  11. ¿Un modelo dialéctico para la conducta de consumo?

    OpenAIRE

    Caballero Muñoz, Domingo

    1995-01-01

    Se constata un creciente interés, incluso en publicaciones para la aplicación inmediata, por las teorías epistemológicas que subyacen a los hechos mercáticos, publicitarios y de consumo. Se sugiere un modelo dialéctico para su análisis, basado en el concepto de la contradicción como constructora de la realidad y de la imagen mental del mercado, así como de la propia subjetividad de los sujetos que compran. Por otra parte, la noción de sujeto construido por el consumo obligaría a repensar much...

  12. Algunas reflexiones en torno a la actualidad de la dialéctica hegeliana

    OpenAIRE

    Alex Pienknagura

    2007-01-01

    En este trabajo, dirijo mi atención a la escritura dialéctica inaugurada por Hegel. La interpreto como una fuente de desmitificación y resistencia frente a la cosificación. El concepto positivista de hechos verificables ha moldeado la estructura y el funcionamiento de un mundo orientado hacia la división del trabajo, la buena marcha del mercado y el aparato administrativo, y la toma de decisiones por parte de expertos. Sin embargo, nuestro extrañamiento frente a nuestras creaciones es a la ve...

  13. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Energy Technology Data Exchange (ETDEWEB)

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  14. Central nervous system tumors and related intracranial pathologies in radium dial workers

    International Nuclear Information System (INIS)

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs

  15. 2-μm Coherent DIAL for CO2, H2O and Wind Field Profiling in the Lower Atmosphere: Instrumentation and Results

    Directory of Open Access Journals (Sweden)

    Gibert Fabien

    2016-01-01

    Full Text Available We report on 2-μm coherent differential absorption lidar (CDIAL measurements of carbon dioxide (CO2, water vapour (H2O absorption and wind field profiling in the atmospheric boundary layer. The CDIAL uses a Tm:fiber pumped, single longitudinal mode Q-switched seeded Ho:YLF laser and a fibercoupled coherent detection. The laser operates at a pulse repetition frequency of 2 kHz and emits an output energy of 10 mJ with a pulse width of 40 ns (FWHM. Experimental horizontal and vertical range-resolved measurements were made in the atmospheric boundary layer and compared to colocated in-situ sensor data.

  16. Shear and Turbulence Effects on Lidar Measurements

    DEFF Research Database (Denmark)

    Courtney, Michael; Sathe, Ameya; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. It is known that lidar wind speed measure-ments are affected by both turbulence and wind shear. This report explains the mechanisms behind these sensitivities. For turbulence, it is found that errors in the scalar mean speed...... are usually only small. However, particularly in re-spect of a lidar calibration procedure, turbulence induced errors in the cup anemometer speed are seen to be signifi-cantly larger. Wind shear is shown to induce measurement errors both due to possible imperfections in the lidar sensing height and due...... to the averaging of a non-linear speed profile. Both effects in combination have to be included when modelling the lidar error. Attempts to evaluate the lidar error from ex-perimental data have not been successful probably due to a lack of detailed knowledge of both the wind shear and the actual lidar sensing...

  17. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  18. High Spectral Resolution Lidar Measurements of Multiple Scattering

    Science.gov (United States)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) provides unambiguous measurements of backscatter cross section, backscatter phase function, depolarization, and optical depth. This is accomplished by dividing the lidar return into separate particulate and molecular contributions. The molecular return is then used as a calibration target. We have modified the HSRL to use an I2 molecular absorption filter to separate aerosol and molecular signals. This allows measurement in dense clouds. Useful profiles extend above the cloud base until the two way optical depth reaches values between 5 and 6; beyond this, photon counting errors become large. In order to observe multiple scattering, the HSRL includes a channel which records the combined aerosol and molecular lidar return simultaneously with the spectrometer channel measurements of optical properties. This paper describes HSRL multiple scattering measurements from both water and ice clouds. These include signal strengths and depolarizations as a function of receiver field of view. All observations include profiles of extinction and backscatter cross sections. Measurements are also compared to predictions of a multiple scattering model based on small angle approximations.

  19. Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm%基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究∗

    Institute of Scientific and Technical Information of China (English)

    马昕; 龚威; 马盈盈; 傅东伟; 韩舸; 相成志

    2015-01-01

    利用差分吸收激光雷达探测大气CO2,可以获得其浓度的垂直分布,对于研究碳源、碳汇的过程有重要意义.设计了一套种子注入的脉冲差频激光器系统,作为差分吸收激光雷达的激光光源.针对脉冲差分吸收CO2激光雷达on波长的高精度稳频的研究空白,本文提出一种基于匹配的on波长的连续稳频算法.其基本思想是采用分子饱和吸收法,测量通过双路吸收池后的差分信号,计算其光学厚度值(optical depth, OD),获得实测的伪吸收谱,当监测到on波长发漂移后,进行连续的波长调节,获取其OD值,最后基于一维的图像匹配算法,将OD值作为灰度值,利用图像匹配原理,进行OD值匹配,确定当前输出波长在伪吸收谱中的位置,进而调节至on波长,实现on波长的连续、稳定输出.实验结果表明,提出的稳频算法能够很好的满足高精度的稳频要求,同时差平方和法在该应用中是最优的,稳频精度可达到0.3 pm.%The differential absorption lidar (DIAL) can help us to obtain the vertical distribution of the atmospheric CO2 concentration, which is important to the study of carbon sources and carbon sinks. We design a seeder injected pulsed laser system, working as the laser source of the CO2 DIAL. Unlike the other CO2 DIALs, our laser source is the result of difference frequency of two lasers at the wavelengths of 1064 nm and 634 nm, respectively. It should be pointed out that the high frequency (wavelength) accuracy and stability of the emission laser, especially the on-line one, are greatly required in the CO2 DIAL system. However, the mechanical properties of the dye laser (634 nm) and the application of laser difference frequency technique make the wavelength drift constantly; besides, the extremely unstable energy of the pulsed laser increases the difficulty in identifying and stabilizing the on-line wavelength. Hence, a fast and efficient frequency (wavelength) stabilization

  20. El marcado de un árbol dialéctico en DeLP es pspace-completo

    OpenAIRE

    Cecchi, Laura; Simari, Guillermo Ricardo

    2011-01-01

    La Programación en Lógica Rebatible (DeLP) es una extensión de la Programación en Lógica que permite representar conocimiento tentativo y razonar a través de argumentos a partir de él. Su semántica operacional está basada en un análisis dialéctico donde argumentos a favor y en contra de un literal interactúan, construyendo un árbol dialéctico. En este trabajo, nos enfocamos al estudio de la complejidad del proceso de marcado del árbol dialéctico, con el cual se determina si su raíz fue der...

  1. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  2. Lidar Detection of Explosives Traces

    Science.gov (United States)

    Bobrovnikov, Sergei M.; Gorlov, Evgeny V.; Zharkov, Victor I.; Panchenko, Yury N.

    2016-06-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  3. Lidar Detection of Explosives Traces

    OpenAIRE

    Bobrovnikov Sergei M.; Gorlov Evgeny V.; Zharkov Victor I.; Panchenko Yury N.

    2016-01-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  4. Mobile Lidar Operations at GSFC

    Science.gov (United States)

    McGee, Thomas J.

    2003-01-01

    Since the last meeting, the GSFC Stratospheric Ozone Lidar has participated in two campaigns at MLO - an ozone and temperature comparison and a water vapor comparison. The trailer has been returned to GSFC to begin transfer into a sea container, before deployment to Reunion Island in Spring, 2004.

  5. Dose-response relationships for female radium dial workers: A new look

    International Nuclear Information System (INIS)

    The values of initial systemic intake and of skeletal dose for all of the U.S. radium cases have recently been revised. This revision was required following the demonstrations by Rundo and by Keane that humans who were exposed to radium as adults lost radium at a rate that depended on the quantity of radium originally deposited within their bodies. These new values have been used to define new dose-response relationships for both the bone sarcomas and the carcinomas arising in the paranasal sinuses and mastoid air cells induced by internally deposited radium. The population examined was employed in the U.S. dial painting industry prior to 1950 and consisted of 1530 female dial workers for whom radium body burden measurements were available. By the end of 1990, 46 cases of bone sarcomas and 19 cases of head carcinomas had been diagnosed in this cohort. The head carcinoma incidence can be adequately fitted by a simple linear function, as was found in previous analyses. The bone sarcoma cases were previously fitted by a dose-squared-exponential function. With the revised values of systemic intake, the sarcoma results could not be satisfactorily fitted with this expression. When the exponent on D was increased to larger values, excellent fits were obtained

  6. A dialética expositiva de "O Capital" de Karl Marx

    Directory of Open Access Journals (Sweden)

    Carlos Prado

    2009-09-01

    Full Text Available

    Este artigo tem o objetivo de analisar a forma expositiva dialética de O Capital de Karl Marx. O modo de exposição utilizado por Marx segue a tradição dialética e ascende do abstrato ao concreto, da aparência para a essência. Começa no nível mais simples e vazio de conteúdo para aos poucos ir desenvolvendo as contradições, acrescentando as determinações políticas, econômicas e sociais, para assim desvelar a essência por trás das formas aparentes.

  7. Rapid optimization of gene dosage in E. coli using DIAL strains

    Directory of Open Access Journals (Sweden)

    Cheung Sherine

    2011-07-01

    Full Text Available Abstract Background Engineers frequently vary design parameters to optimize the behaviour of a system. However, synthetic biologists lack the tools to rapidly explore a critical design parameter, gene expression level, and have no means of systematically varying the dosage of an entire genetic circuit. As a step toward overcoming this shortfall, we have developed a technology that enables the same plasmid to be maintained at different copy numbers in a set of closely related cells. This provides a rapid method for exploring gene or cassette dosage effects. Results We engineered two sets of strains to constitutively provide a trans-acting replication factor, either Pi of the R6K plasmid or RepA of the ColE2 plasmid, at different doses. Each DIAL (different allele strain supports the replication of a corresponding plasmid at a constant level between 1 and 250 copies per cell. The plasmids exhibit cell-to-cell variability comparable to other popular replicons, but with improved stability. Since the origins are orthogonal, both replication factors can be incorporated into the same cell. We demonstrate the utility of these strains by rapidly assessing the optimal expression level of a model biosynthetic pathway for violecein. Conclusions The DIAL strains can rapidly optimize single gene expression levels, help balance expression of functionally coupled genetic elements, improve investigation of gene and circuit dosage effects, and enable faster development of metabolic pathways.

  8. Bioassay procedures and health physics recommendations for a promethium-147 luminescent dial painting industry

    International Nuclear Information System (INIS)

    A study was conducted to determine the hazard to workers who were applying a radioactive luminescent paint to devices such as clock dials and hands, signs, etc. The paint used was a mixture of macrospheres containing 147Pm, ZnS, and a binder. It was applied by workers either manually or by machine. This study was designed to determine the radiological safety of these operations. The potential routes of intake of 147Pm by workers were identified as inhalation and ingestion. Air samples were taken at work stations; total and respirable-sized 147Pm particles were measured. Both were shown to be at a safe level. An animal inhalation study was conducted to determine deposition of respirable-sized 147Pm particles. Testing by a bioassay procedure developed specifically for this purpose revealed low levels of deposited activity in the respiratory systems of these animals. A health physics evaluation of the dial painting facility firm and operation revealed that extensive improvements in engineering controls and worker protection were needed. The health physics recommendations made, as a result, should be adopted as a minimum for maximization of long term benefits to both the employee and the employer

  9. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  10. Test Review: C. Mardell & D. S. Goldenberg. "Speed Developmental Indicators for the Assessment of Learning-Fourth Edition" ("Speed DIAL-4")

    Science.gov (United States)

    Doskey, Elena M.; Lagunas, Brenda; SooHoo, Michelle; Lomax, Amanda; Bullick, Stephanie

    2013-01-01

    The Speed DIAL-4 was developed from the Developmental Indicators for the Assessment of Learning, Fourth Edition (DIAL-4), a screening designed to identify children between the ages of 2 years, 6 months through 5 years, 11 months "who are in need of intervention or diagnostic assessment in the following areas: motor, concepts, language,…

  11. Boundary Layer CO2 mixing ratio measurements by an airborne pulsed IPDA lidar

    Science.gov (United States)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Allan, G. R.

    2014-12-01

    Since the primary signature of CO2 fluxes at the surface occurs in the planetary boundary layer (PBL), remote sensing measurements of CO2 that can resolve the CO2 absorption in the PBL separate from the total column are more sensitive to fluxes than those that can only measure a total column. The NASA Goddard CO2 sounder is a pulsed, range-resolved lidar that samples multiple (presently 30) wavelengths across the 1572.335 nm CO2 absorption line. The range resolution and line shape measurement enable CO2 mixing ratio measurements to be made in two or more altitude layers including the PBL via lidar cloud-slicing and multi-layer retrievals techniques. The pulsed lidar approach allows range-resolved backscatter of scattering from ground and cloud tops. Post flight data analysis can be used split the vertical CO2 column into layers (lidar cloud-slicing) and solve for the CO2 mixing ratio in each layer. We have demonstrated lidar cloud slicing with lidar measurements from a flight over Iowa, USA in August 2011 during the corn-growing season, remotely measuring a ≈15 ppm drawdown in the PBL CO2. We will present results using an improved lidar cloud slicing retrieval algorithm as well as preliminary measurements from the upcoming ASCENDS 2014 flight campaign. The CO2 absorption line is also more pressure broadened at lower altitudes. Analyzing the line shape also allows solving for some vertical resolution in the CO2 distribution. By allowing the retrieval process to independently vary the column concentrations in two or more altitude layers, one can perform a best-fit retrieval to obtain the CO2 mixing ratios in each of the layers. Analysis of airborne lidar measurements (in 2011) over Iowa, USA and Four Corners, New Mexico, USA show that for altitudes above 8 km, the CO2 sounder can detect and measure enhanced or diminished CO2 mixing ratios in the PBL even in the absence of clouds. We will present these results as well as preliminary measurements from the upcoming

  12. 2004 Southwest Florida Water Management District Lidar: Sarasota District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the ortho & lidar mapping of Sarasota County, FL. The mapping consists of lidar data collected using a Leica ALS-40 Lidar Sensor,...

  13. 2004 Southwest Florida Water Management District Lidar: Pasco District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the ortho & lidar mapping of Pasco County, FL. The mapping consists of lidar data collected using a Leica ALS-40 Lidar Sensor,...

  14. 2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data of Western Lewis County for the Puget Sound LiDAR Consortium. This data set covers...

  15. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  16. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  17. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  18. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  19. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  20. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  1. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  2. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  3. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  4. Lidar Observations of Low-level Wind Reversals over the Gulf of Lion and Characterization of Their Impact on the Water Vapour Variability

    OpenAIRE

    Di Girolamo Paolo; Flamant Cyrille; Cacciani Marco; Summa Donato; Stelitano Dario; Mancini Ignazio; Richard Evelyne; Ducrocq Véronique; Nuret Mathieu; Said Frédérique

    2016-01-01

    International audience Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMe...

  5. Demonstration of differential backscatter absorption gas imaging

    International Nuclear Information System (INIS)

    Backscatter absorption gas imaging (BAGI) is a technique that uses infrared active imaging to generate real-time video imagery of gas plumes. We describe a method that employs imaging at two wavelengths (absorbed and not absorbed by the gas to be detected) to allow wavelength-differential BAGI. From the frames collected at each wavelength, an absorbance image is created that displays the differential absorbance of the atmosphere between the imager and the backscatter surface. This is analogous to a two-dimensional topographic differential absorption lidar or differential optical absorption spectroscopy measurement. Gas plumes are displayed, but the topographic scene image is removed. This allows a more effective display of the plume image, thus ensuring detection under a wide variety of conditions. The instrument used to generate differential BAGI is described. Data generated by the instrument are presented and analyzed to estimate sensitivity. (c) 2000 Optical Society of America

  6. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    Science.gov (United States)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  7. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    Science.gov (United States)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  8. Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory

    Science.gov (United States)

    Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong

    With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods,achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.

  9. LIDAR Products, LiDAR, Published in 2006, 1:1200 (1in=100ft) scale, Dodge County, Wisconsin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This LIDAR Products dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as 'LiDAR'. Data...

  10. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  11. Synthesis of Transportation Applications of Mobile LIDAR

    OpenAIRE

    Keith Williams; Olsen, Michael J.; Gene V. Roe; Craig Glennie

    2013-01-01

    A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of c...

  12. Lidar - Wind, Raman, and Other Sensing

    OpenAIRE

    Rocadenbosch Burillo, Francisco

    2003-01-01

    Lidar stands for Llght Detection and Ranging. Laser radars or lidars, which are optically the closest counterparts of conventional rnicrowave radars, take advantage of the relatively strong interaction of laser light with atmospheric constituents. They offer superior spatial and temporal resolution and are effective remote sensing instruments. Wind, Raman, and other lidar sensing instruments encompass a wide range of systems-unprecedented long-range wind, aerosol, and molecular chemical...

  13. Raman LIDAR Detection of Cloud Base

    Science.gov (United States)

    Demoz, Belay; Starr, David; Whiteman, David; Evans, Keith; Hlavka, Dennis; Peravali, Ravindra

    1999-01-01

    Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.

  14. Ozone Lidar Observations for Air Quality Studies

    Science.gov (United States)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; Sullivan, John T.; Langford, Andrew O.; Senff, Christoph J.; Alvarez, Raul; Eloranta, Edwin

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  15. 76 FR 53691 - Notice of Submission of Proposed Information Collection to OMB Section 8 Random Digit Dialing...

    Science.gov (United States)

    2011-08-29

    ... programs; payment standards for the Rental Voucher program; and any other programs whose regulations... assisted under the Loan Management and Property Disposition programs; payment standards for the Rental Voucher program; and any other programs whose regulations specify their use. Random digit dialing...

  16. Dial meettechniek voor detectie van NO2: Bepaling van de systeemkwaliteit d.m.v. experimenten en simulatie

    NARCIS (Netherlands)

    de Jonge CN; Swart DPJ; Bergwerff JB

    1991-01-01

    Purpose of this study is to ascertain the performance and to establish the performance parameters of the NO2 Dial system (configuration January 1991). The system specifications are established by basic system measurements as well as by some field experiments. For the latter are undependent referen

  17. A Survey to Determine the Reliability of Dynamometer and Pinch Gauge Dial Readings Among Certified Hand Therapists

    Directory of Open Access Journals (Sweden)

    Theodore I. King II, Ph.D, L.Ac.

    2013-02-01

    Full Text Available Using a cross-sectional descriptive study design, surveys were mailed to 200 randomly selected certified hand therapists of the American Society of Hand Therapists (ASHT to determine how they document analog dynamometer and pinch gauge dial readings. Three different needle settings for the dynamometer and pinch gauge were presented in picture format. For each instrument, one needle setting was just above a gauge marker, one was just below a gauge marker, and one was set exactly between two gauge markers. A total of 126out of 200 surveys were returned for a participation rate of 63%. For the dynamometer readings, therapists estimated the exact strength reading between the two gauge markers 78.3% of the time. For the pinch gauge readings, therapists rounded to the nearest dial marker 76.5% of the time when the needle was just above or just below a dial marker and 61.9% of the time they estimated the reading when the needle was placed exactly between two dial markers.

  18. BACKSCAT lidar simulation version 4.0: Technical documentation and users guide

    Science.gov (United States)

    Longtin, David R.; Cheifetz, Michael G.; Jones, James R.; Hummel, John R.

    1994-06-01

    SPARTA's BACKSCAT software package simulates the performance of lidars for remote sensing and other atmospheric applications. The package accommodates a wide range of lidar systems, viewing scenarios, and atmospheric conditions, plus it contains a user-friendly menu interface system for specifying input parameters. This report gives technical documentation and a users guide for BACKSCAT Version 4.0. In this effort, comprehensive and versatile signal-to-noise (SNR) performance models have been introduced into BACKSCAT. The SNR models give performance and range accuracy estimates for direct detection and coherent Doppler lidar systems, plus estimates of the wind speed accuracy for coherent Doppler systems. The models contain all important noise sources inherent in the detection process and allow the user to select from built-in detectors, as well as define their own detector specifications. In response to the user community, five water clouds have been added to BACKSCAT and they can be 'clicked-on' automatically as built-in cloud models. BACKSCAT Version 4.0 also contains an auxiliary software package, MABS, that estimates the molecular absorption profile for a lidar wavelength. MABS generates output that can be used in a simulation. Because MABS performs a broadband calculation, it is not intended to be a complete treatment of the molecular absorption problem. Finally, methods of handling the increased size of the BACKSCAT package have been developed.

  19. Scalable lidar technique for fire detection

    Science.gov (United States)

    Utkin, Andrei B.; Piedade, Fernando; Beixiga, Vasco; Mota, Pedro; Lousã, Pedro

    2014-08-01

    Lidar (light detection and ranging) presents better sensitivity than fire surveillance based on imaging. However, the price of conventional lidar equipment is often too high as compared to passive fire detection instruments. We describe possibilities to downscale the technology. First, a conventional lidar, capable of smoke-plume detection up to ~10 km, may be replaced by an industrially manufactured solid-state laser rangefinder. This reduces the detection range to about 5 km, but decreases the purchase price by one order of magnitude. Further downscaling is possible by constructing the lidar smoke sensor on the basis of a low-cost laser diode.

  20. LAND COVER INFORMATION EXTRACTION USING LIDAR DATA

    OpenAIRE

    Shaker, A; N. El-Ashmawy

    2012-01-01

    Light Detection and Ranging (LiDAR) systems are used intensively in terrain surface modelling based on the range data determined by the LiDAR sensors. LiDAR sensors record the distance between the sensor and the targets (range data) with a capability to record the strength of the backscatter energy reflected from the targets (intensity data). The LiDAR sensors use the near-infrared spectrum range which has high separability in the reflected energy from different targets. This characteristic i...

  1. Analysis of Lidar Remote Sensing Concepts

    Science.gov (United States)

    Spiers, Gary D.

    1999-01-01

    Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.

  2. Automating the Purple Crow Lidar

    Science.gov (United States)

    Hicks, Shannon; Sica, R. J.; Argall, P. S.

    2016-06-01

    The Purple Crow LiDAR (PCL) was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror's movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  3. Lidar study of K layer

    Science.gov (United States)

    Jiao, Jing

    2016-07-01

    A double-laser-beam lidar was successfully developed in 2010 to measure the K layer over Yanqing County, Beijing (40.5°N, 116.2°E). Comprehensive statistical analyses of sporadic K (Ks) layer parameters were conducted using two years of lidar data, and the parameters of the Ks layers and their distribution obtained by the analyses are described. The seasonal distribution of Ks occurrence was obtained, with two maxima observed in January and July, respectively. The seasonal distributions of sporadic E (Es) occurrence over Beijing differ from those of Ks occurrence. However, good correlations between Es and Ks in case by case study were found. We also found that four Ks events with peak altitudes lower than 90 km were associated with large and sharp temperature increases in five comparative examples.

  4. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan

    OpenAIRE

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A; Nagai, T; Uchiyama, A.; Y. Zaizen; Kagamitani, S.; Matsumi, Y.

    2015-01-01

    Coincident aerosol observations of multi-axis differential optical absorption spectroscopy (MAX-DOAS), cavity ring-down spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan, on 5–18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2–O2) absorption. The present study strongly sup...

  5. Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer in Tsukuba, Japan

    OpenAIRE

    Irie, H.; Nakayama, T.; Shimizu, A.; Yamazaki, A; Nagai, T; Uchiyama, A.; Y. Zaizen; Kagamitani, S.; Matsumi, Y.

    2015-01-01

    Coincident aerosol observations of Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), Cavity Ring Down Spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan on 5–18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supp...

  6. Breast cancer in female radium dial workers first employed before 1930

    International Nuclear Information System (INIS)

    Female radium dial workers first employed before 1930 were analyzed for breast cancer mortality and incidence using method and rate tables described by Manson and the Mantel-Haenszel summary chi-square test for significance. Of 1180 located women, 736 were measured to estimate radium intake. This measured group was analyzed for breast cancer mortality and incidence according to four possible risk factors: radium intake dose, duration of employment, age at first exposure, and parity. The located women had a mortality ratio of 1.51 (p < 0.05). The measured women showed a significant excess of breast cancer incidence and mortality only among those women with a radium intake of 50 μCi or greater. Although not significant, incidence and mortality ratios were slightly higher for nulliparous women

  7. Dialéctica de la enfermedad en "Cama 11", de José Revueltas

    Directory of Open Access Journals (Sweden)

    Jesús Humberto Florencia-Saldivar

    2014-10-01

    Full Text Available Se propone desentrañar la manera en que la narrativa de José Revueltas provee de significación al ‘cuerpo enfermo’ de los personajes que crea este escritor nacido hace 100 años en Durango, México. Con la ayuda de categorías literarias generadas por el propio Revueltas, y observando la ‘pluriperspectiva’ de algunos personajes revueltianos, se construye una fenomenología de la enfermedad que altera la normalidad de los cuerpos y las conciencias de los actores en relatos como “El Dios vivo”, “Dormir en tierra” y, particularmente, en “Cama 11”, al igual que en las novelas Los días terrenales y El apando. Se encuentra, entonces, un proceso dialéctico que trasciende la dicotomía ‘salud-enfermedad’.

  8. Hacia una conceptualización dialógica de la neuroeducación

    OpenAIRE

    Pallarés Domínguez, Daniel Vicente

    2015-01-01

    Este texto se plantea como un análisis del estado de la cuestión sobre la neuroeducación. Pretende ser una revisión crítica sobre los supuestos básicos sobre los que se asienta la neuroeducación como ciencia interdisciplinar. Para ello, a través de una metodología argumentativa y crítica, se propondrá una dirección en su quehacer que sea dialógica con otras ciencias afines para evitar reduccionismos neurocientíficos. La hipótesis principal es que el cerebro es el principal ó...

  9. Algunas reflexiones en torno a la actualidad de la dialéctica hegeliana

    Directory of Open Access Journals (Sweden)

    Alex Pienknagura

    2007-01-01

    Full Text Available En este trabajo, dirijo mi atención a la escritura dialéctica inaugurada por Hegel. La interpreto como una fuente de desmitificación y resistencia frente a la cosificación. El concepto positivista de hechos verificables ha moldeado la estructura y el funcionamiento de un mundo orientado hacia la división del trabajo, la buena marcha del mercado y el aparato administrativo, y la toma de decisiones por parte de expertos. Sin embargo, nuestro extrañamiento frente a nuestras creaciones es a la vez causa, efecto y emblema de la transformación de la dominación de la naturaleza en su progresiva destrucción. Mientras, son ideológicas las representaciones en las que se afinca el encasillamiento social

  10. La dialéctica del amor-odio en Empédocles y Schopenhauer

    Directory of Open Access Journals (Sweden)

    Morales Troncoso, David Emilio

    2010-04-01

    Full Text Available The dialectical thinking can be described as a way of understand an idea which involves the necessary coexistence of the contrary. In the philosophy of Empedocles and Schopenhauer we can find a similar sense of dialectic thought, that is recognized by the last and points to the reevaluation of the moral experience as the ground of representation of the motion of the world of the life.

    El pensamiento dialéctico se puede describir como un modo de concebir una idea que involucra la necesaria coexistencia de su contrario o complementario. En las filosofías de Empédocles y en Schopenhauer se da una semejanza en este sentido, que es advertida por este último y que apunta a la reivindicación de la experiencia moral como soporte de una representación del devenir del mundo de la vida.

  11. Three-dimension imaging lidar

    Science.gov (United States)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  12. Lidar Detection of Explosives Traces

    Directory of Open Access Journals (Sweden)

    Bobrovnikov Sergei M.

    2016-01-01

    Full Text Available The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT, hexogen (RDX, trotyl-hexogen (Comp B, octogen (HMX, and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  13. High Spectral Resolution Lidar Measurements of Extinction and Particle Size in Clouds

    Science.gov (United States)

    Eloranta, E. W.; Piirronen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler broadened molecular backscatter return from the unbroadened aerosol return. In the past, the HSRL employed a 150 mm diameter Fabry-Perot etalon to separate the aerosol and molecular signals. The replacement of the etalon with an I2 absorption filter significantly improved the ability of the HSRL to separate weak molecular signals inside dense clouds.

  14. 2013 NRCS-USGS Lidar: Lauderdale (MS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME:NRCS LAUDERDALE MS 0.7M NPS LIDAR. LiDAR Data Acquisition and Processing Production Task. USGS Contract No. G10PC00057. Task Order No. G12PD000125...

  15. Lidar: A laser technique for remote sensing

    Science.gov (United States)

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  16. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia;

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averagi...

  17. Inclined test of nacelle wind lidar

    DEFF Research Database (Denmark)

    Courtney, Michael

    A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....

  18. The ITER Thomson scattering core LIDAR diagnostic

    NARCIS (Netherlands)

    Naylor, G.A.; Scannell, R.; Beurskens, M.; Walsh, M.J.; Pastor, I.; Donné, A.J.H.; Snijders, B.; Biel, W.; Meszaros, B.; Giudicotti, L.; Pasqualotto, R.; Marot, L.

    2012-01-01

    The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be determin

  19. The long term stability of lidar calibrations

    DEFF Research Database (Denmark)

    Courtney, Michael; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. One of the requirements for the data to be accepted in support of project financing (so-called ‘banka-bility’) is to demonstrate the long-term stability of lidar cali-brations. Calibration results for six Leosphere WindCube li...

  20. CALIPSO Lidar Ratio Retrieval Over the Ocean

    Science.gov (United States)

    Josset, Damien B.; Rogers, Raymond R.; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali H.; Zhai, Peng-Wang

    2011-01-01

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type

  1. 2006 South Carolina DNR Lidar: Aiken County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LiDAR data acquisition was executed in five sessions, on March 15, 16 & 17, 2006, using a Leica ALS50 LiDAR System. Specific details about the ALS50 system...

  2. Synthesis of Transportation Applications of Mobile LIDAR

    Directory of Open Access Journals (Sweden)

    Keith Williams

    2013-09-01

    Full Text Available A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of case studies provides a clear description of the advantages of mobile LIDAR, including an increase in safety and efficiency. The final sections of the review identify current challenges the industry is facing, the guidelines that currently exist, and what else is needed to streamline the adoption of mobile LIDAR by transportation agencies. Unfortunately, many of these guidelines do not cover the specific challenges and concerns of mobile LIDAR use as many have been developed for airborne LIDAR acquisition and processing. From this review, there is a lot of discussion on “what” is being done in practice, but not a lot on “how” and “how well” it is being done. A willingness to share information going forward will be important for the successful use of mobile LIDAR.

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  4. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  5. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurement...

  6. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    Science.gov (United States)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  7. Broadband spectroscopic lidar for SWIR/MWIR detection of gaseous pollutants in air

    Science.gov (United States)

    Lambert-Girard, Simon; Hô, Nicolas; Bourliaguet, Bruno; Lemieux, Dany; Piché, Michel; Babin, François

    2012-11-01

    A broadband SWIR/MWIR spectroscopic lidar for detection of gaseous pollutants in air is presented for doing differential optical absorption spectroscopy (DOAS). One of the distinctive parts of the lidar is the use of a picosecond PPMgO:LN OPG (optical parametric generator) capable of generating broadband (10 to plane array used in the output plane of the grating spectrograph of the lidar system. The whole of the returned spectra is measured, within a very short time gate, at every pulse and at a resolution of a few tenths to a few nm. Light is collected by a telescope with variable focus for maximum coupling of the return to the spectrograph. Since all wavelengths are emitted and received simultaneously, the atmosphere is "frozen" during the path integrated measurement and hopefully reduces the baseline drift problem encountered in many broadband scanning approaches. The resulting path integrated gas concentrations are retrieved by fitting the molecular absorption features present in the measured spectra. The use of broadband pulses of light and of DOAS fitting procedures make it also possible to measure more than one gas at a time, including interferents. The OPG approach enables the generation of moderate FWHM continua with high spectral energy density and tunable to absorption features of a great number of molecules. Proposed follow-on work and applications will also be presented.

  8. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China.

    Science.gov (United States)

    Wang, Wei; Gong, Wei; Mao, Feiyue; Pan, Zengxin; Liu, Boming

    2016-01-01

    We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind. PMID:27213414

  9. Towards Enhanced Underwater Lidar Detection via Source Separation

    Science.gov (United States)

    Illig, David W.

    Interest in underwater optical sensors has grown as technologies enabling autonomous underwater vehicles have been developed. Propagation of light through water is complicated by the dual challenges of absorption and scattering. While absorption can be reduced by operating in the blue-green region of the visible spectrum, reducing scattering is a more significant challenge. Collection of scattered light negatively impacts underwater optical ranging, imaging, and communications applications. This thesis concentrates on the ranging application, where scattering reduces operating range as well as range accuracy. The focus of this thesis is on the problem of backscatter, which can create a "clutter" return that may obscure submerged target(s) of interest. The main contributions of this thesis are explorations of signal processing approaches to increase the separation between the target and backscatter returns. Increasing this separation allows detection of weak targets in the presence of strong scatter, increasing both operating range and range accuracy. Simulation and experimental results will be presented for a variety of approaches as functions of water clarity and target position. This work provides several novel contributions to the underwater lidar field: 1. Quantification of temporal separation approaches: While temporal separation has been studied extensively, this work provides a quantitative assessment of the extent to which both high frequency modulation and spatial filter approaches improve the separation between target and backscatter. 2. Development and assessment of frequency separation: This work includes the first frequency-based separation approach for underwater lidar, in which the channel frequency response is measured with a wideband waveform. Transforming to the time-domain gives a channel impulse response, in which target and backscatter returns may appear in unique range bins and thus be separated. 3. Development and assessment of statistical

  10. An investigation of cirrus cloud properties using airborne lidar

    Science.gov (United States)

    Yorks, John Edward

    The impact of cirrus clouds on the Earth's radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and located in the cold upper troposphere, cirrus clouds can cause large warming effects because they are relatively transmissive to short-wave solar radiation, but absorptive of long wave radiation. Our ability to model radiative effects of cirrus clouds is inhibited by uncertainties in cloud optical properties. Studies of mid-latitude cirrus properties have revealed notable differences compared to tropical anvil cirrus, likely a consequence of varying dynamic formation mechanisms. Cloud-aerosol lidars provide critical information about the vertical structure of cirrus for climate studies. For this dissertation, I helped develop the Airborne Cloud-Aerosol Transport System (ACATS), a Doppler wind lidar system at NASA Goddard Space Flight Center (GSFC). ACATS is also a high spectral resolution lidar (HSRL), uniquely capable of directly resolving backscatter and extinction properties of a particle from high-altitude aircraft. The first ACATS science flights were conducted out of Wallops Island, VA in September of 2012 and included coincident measurements with the Cloud Physics Lidar (CPL) instrument. In this dissertation, I provide an overview of the ACATS method and instrument design, describe the ACATS retrieval algorithms for cloud and aerosol properties, explain the ACATS HSRL retrieval errors due to the instrument calibration, and use the coincident CPL data to validate and evaluate ACATS cloud and aerosol retrievals. Both the ACATS HSRL and standard backscatter retrievals agree well with coincident CPL retrievals. Mean ACATS and CPL extinction profiles for three case studies demonstrate similar structure and agree to within 25 percent for cirrus clouds. The new HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions. Furthermore, extinction and particle wind

  11. O método dialético de Hegel

    Directory of Open Access Journals (Sweden)

    Utz, Konrad

    2005-01-01

    Full Text Available A questão do método na Ciência da Lógica (CL é uma das mais controvertidas na discussão da filosofia de Hegel. O artigo defende a opinião de que o "método absoluto" de fato apresenta uma estrutura formal definida e distinta que seja o princípio geral de todo o desenvolvimento do sistema hegeliano (maduro. Defende essa interpretação contra mal-entendimentos, sobretudo contra aquele que um tal método geral tornaria a CL num formalismo vazio. O método hegeliano é apresentado como método do determinar, sendo que a CL, fundamentalmente e originalmente, não é outra coisa que não uma teoria de determinações aprióricas do pensar, i. é, de categorias, regras e formas lógicas. O artigo argumenta em favor da pretensão à universalidade e incondicionalidade que Hegel atribui a seu método. Quer mostrar que é exatamente essa incondicionalidade do método, e nada mas, que sustenta a necessidade e a imanência do proceder do pensar puro e, com isso, sustenta toda a pretensão à "ciência absoluta" e ao "idealismo absoluto" hegeliano. No final, porém, o texto oferece uma crítica interna a este método, que modifica decisivamente a pretensão de Hegel, embora não a destrua fundamentalmente. É que o próprio contém um momento de indeterminação ou contingência. Essa crítica conduz ao conceito do "acaso" como princípio originário e intransponível de toda dialética e, com isso, de todo determinar-se. Determinação se realiza no acaso da dialética. O acaso dialético e o princípio de toda realidade. The question of the Method in the Science of Logic (SL is among the most controversially debated in the discussions on Hegel. This article defends the view that there actually is a definite and distinct formal structure underlying the whole development of Hegel’s (mature system which he himself presents as the “Absolute Method”. This interpretation is defended against misunderstandings, especially against the opinion that

  12. Pulse-compression ghost imaging lidar via coherent detection

    OpenAIRE

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-01-01

    Ghost imaging (GI) lidar, as a novel remote sensing technique,has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar s...

  13. Modeling Biomass and Canopy Fuel Attributes Using LIDAR Technology

    OpenAIRE

    Mitchell, Brent

    2011-01-01

    Within the last decade LIDAR technology has been increasingly utilized as a tool for resource management by the U.S. Forest Service. The agency has been engaged in a wide variety of lidar projects and applications ranging from the development and exploration of basic LIDAR derivatives to pursuing advanced modeling of forest inventory parameters based on lidar canopy metrics. This presentation will provide an overview of how LIDAR technology can be used for modeling forest biomass and c...

  14. Weather Station's Lidar in Action

    Science.gov (United States)

    2008-01-01

    This image of the Canadian-built Phoenix lidar in operation (with the cover open) was acquired at the Phoenix landing site on Sol 3. The Surface Stereo Imager (right) acquired this image at 11:40:12 local solar time. The camera pointing was elevation minus 47.2987 degrees and azimuth 225.325 degrees. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Lidar studies on climate sensitivity characteristics of tropical cirrus clouds

    Science.gov (United States)

    Motty, G. S.; Jayeshlal, G. S.; Satyanarayana, Malladi; Mahadevan Pillai, V. P.

    2016-05-01

    The cirrus clouds play an important role in the Earth's radiation budget due to their high frequency of occurrence, non-spherical ice crystal formations, and variability in the scattering/absorption characteristics. Mostly, the tropical cirrus clouds are considered as greenhouse modulators. Thus the parameterization of tropical cirrus clouds in terms of the micro- physical properties and the corresponding radiative effects are highly important for the climate studies. For characterizing the radiative properties of cirrus clouds, which depend on the size, shape and number of the ice crystals, the knowledge of extinction coefficient (σ) and optical depth (τ) are necessary. The σ provides information needed for understanding the influence of the scatterers on the radiative budget whereas the τ gives an indication on the composition and thickness of the cloud. Extensive research on the tropical cirrus clouds has been carried out by using a ground based and satellite based lidar systems. In this work, the characteristics of tropical cirrus cloud derived by using the data from the ground based lidar system over the tropical site Gadanki [13.5°N, 79.2°E], India during 2010 are presented. Some of the results are compared with those obtained by us from satellite based CALIOP lidar observations of the CALIPSO mission. It is observed that there is a strong dependence of the some of the physical properties such as occurrence height, cloud temperature and the geometrical thickness on the microphysical parameters in terms of extinction coefficient and optical depth. The correlation of both the σ and τ with temperature is also observed.

  16. La dialéctica en la psicologia del desarrollo: relevancia y significacion en la investigacion Dialectic in developmental psychology: its importance and significance in research

    OpenAIRE

    José Antonio Castorina

    2010-01-01

    El presente artículo examina la significación y la relevancia de la dialéctica en la obra psicológica de Piaget y de Vigotsky. Por un lado se analiza una metodología dialéctica común, presente en las unidades de análisis de las investigaciones. Por otro, se exponen los rasgos peculiares que adquiere la dialéctica en la explicación del desarrollo en ambos desarrollo. Finalmente, en base a los análisis realizados, se caracterizan los rasgos de la dialéctica. También se discute su unicidad y su ...

  17. Para uma Dialéctica Constelar: Theodor W. Adorno à entrada do Século XXI1

    Directory of Open Access Journals (Sweden)

    João Pedro Cachopo

    2016-03-01

    Full Text Available RESUMO: Interrogando-se sobre o lugar da filosofia de Theodor W. Adorno no âmbito do pensamento crítico contemporâneo, o presente artigo procura dar conta dos revezes da recepção político-filosófica da dialéctica negativa (das posturas críticas de Habermas, Lyotard ou Agamben às mais favoráveis de Jameson e Holloway e discutir a sua relevância actual. Defender-se-á que a politização do pensamento adorniano é possível, muito embora as suas valências críticas não se restrinjam a essa possibilidade. Hoje, a dialéctica negativa funcionaria também como antídoto contra os atalhos tomados pelas correntes "voluntarista" (Peter Hallward, "messiânica" (Agamben e "ontológica" (realismo especulativo da filosofia, à entrada do século XXI. Contudo, atendendo a que a relação entre teoria e prática é complexa em Adorno, a sua relevância actual ressaltaria em relação com as reacções críticas que o movimento do "realismo especulativo" tem suscitado. Em diálogo com alguns dos seus interlocutores (Markus Gabriel e Adrian Johnston, sugere-se que o desenvolvimento de uma "dialéctica constelar" depende da introdução de um elemento destotalizador no seio do diagnóstico radical - a um só tempo materialista e transcendental - da dialéctica negativa.

  18. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    Science.gov (United States)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  19. Fragmentos do pensamento dialético na história da construção das ciências da natureza

    Directory of Open Access Journals (Sweden)

    Antônio Fernandes Nascimento Júnior

    2000-01-01

    Full Text Available Este trabalho tem por objetivo identificar uma possível inclinação das ciências naturais em direção ao materialismo dialético. Para tanto, procura-se apresentar a história da dialética a partir da discussão racionalismo/empirismo moderno e seus desdobramentos até as tendências dialéticos contemporâneas. Os autores discutidos são Kant, Hegel, Marx, Engels, Lenin, Horkheimer, Marcuse, Habermas, Bachelard e suas escolas epistemológicas, completadas por Althusser, Lefebvre e Kedrov. Ao lado desses autores discutem-se outros, das duas últimas décadas, procurando extrair-lhes o olhar dialético, oculto em seus discursos acerca da ciência do fim do século. Também se procura encontrar na mecânica quântica, nos fractais, na lógica para-consistente, nos modelos matemáticos e na biologia antideterminista, argumentos para existência de uma forma de abordagem dialética da natureza. Por último, procura-se refletir acerca dos motivos da resistência ao método dialético apresentado pela maioria dos cientistas ocidentais e, sua possível superação.

  20. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  1. Assessing the feasibility and sample quality of a national random-digit dialing cellular phone survey of young adults.

    Science.gov (United States)

    Gundersen, Daniel A; ZuWallack, Randal S; Dayton, James; Echeverría, Sandra E; Delnevo, Cristine D

    2014-01-01

    The majority of adults aged 18-34 years have only cellular phones, making random-digit dialing of landline telephones an obsolete methodology for surveillance of this population. However, 95% of this group has cellular phones. This article reports on the 2011 National Young Adult Health Survey (NYAHS), a pilot study conducted in the 50 US states and Washington, DC, that used random-digit dialing of cellular phones and benchmarked this methodology against that of the 2011 Behavioral Risk Factor Surveillance System (BRFSS). Comparisons of the demographic distributions of subjects in the NYAHS and BRFSS (aged 18-34 years) with US Census data revealed adequate reach for all demographic subgroups. After adjustment for design factors, the mean absolute deviations across demographic groups were 3 percentage points for the NYAHS and 2.8 percentage points for the BRFSS, nationally, and were comparable for each census region. Two-sided z tests comparing cigarette smoking prevalence revealed no significant differences between NYAHS and BRFSS participants overall or by subgroups. The design effects of the sampling weight were 2.09 for the NYAHS and 3.26 for the BRFSS. Response rates for the NYAHS and BRFSS cellular phone sampling frames were comparable. Our assessment of the NYAHS methodology found that random-digit dialing of cellular phones is a feasible methodology for surveillance of young adults.

  2. Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network: methodology and results

    OpenAIRE

    Rocadenbosch Burillo, Francisco; Sicard, Michaël; Molero, Francisco; Guerrero Rascado, Juan Luis; Pedrós, Roberto; Expósito, Francisco Javier; Córdoba Jabonero, Carmen; Bolarín, Jose Miguel; Comerón Tejero, Adolfo; Moreno, José Maria; Navas Guzmán, Francisco; Requena, Alberto; Gil, Manuel; Pedro Díaz, Juan; Martínez Lozano, José Antonio

    2009-01-01

    Abstract—A group of eight Spanish lidars was formed in order to extend the European Aerosol Research Lidar Network–Advanced Sustainable Observation System (EARLINET-ASOS)project. This study presents intercomparisons at the hardware and software levels. Results of the system intercomparisons are based on range-square-corrected signals in cases where the lidars viewed the same atmospheres. Comparisons were also made for aeros backscatter coefficients at 1064 nm (2 systems) and 532 nm (all sy...

  3. GRUČENJE PODATKOV LiDAR

    OpenAIRE

    Založnik, Boštjan

    2014-01-01

    Cilje diplomske naloge je raziskati možnosti uporabe algoritmov gručenja za obdelavo podatkov LiDAR. Prvi del diplomske naloge predstavlja podatke LiDAR in algoritme gručenja. S senzorji LiDAR, pritrjenimi na letala ali helikopterje, je omogočeno hitro in natančno modeliranje površja. Metode gručenje predstavljajo enega izmed pristopov za detekcijo objektov na površju. Gručenje je vrsta nenadzorovane klasifikacije podatkov. Za učinkovito implementacijo algoritmov gručenja so po...

  4. LiDAR as a Web Service

    OpenAIRE

    Balija, Damir

    2011-01-01

    LiDAR(Light Detection And Ranging) is a device, which works in a similar way as radar, but instead of radio waves, it uses light. We can use it as a mean to detect particles in the air (mainly air polution particles) or for measuring weather conditions. LiDAR with other supporting elements forms LiDAR system. In our example LiDAR system will be used remotely, in particular by remote user. Goals: a) To plan and project protocol for exchanging messages between client (user, costumer) and ...

  5. Detectors for LIDAR type Thomson scattering diagnostics

    International Nuclear Information System (INIS)

    A report on the capability of the microchannel plate photomultiplier type (ITT F4128) presently used at the JET LIDAR Thomson Scattering System is given. Detailed investigation on time response, low noise amplification, shutter ratio, gating behaviour, linear mode of operation and saturation pulse recovery carried out during the design phase for LIDAR are presented. New investigation with respect to dc- and gated operation showed no measurable changes in sensitivity of this MCP photomultiplier. Comparing this type of detector with other MCP photomultipliers and with streak cameras some detection schemes for future LIDAR type diagnostic are proposed. (orig.)

  6. Building Extraction from LIDAR Based Semantic Analysis

    Institute of Scientific and Technical Information of China (English)

    YU Jie; YANG Haiquan; TAN Ming; ZHANG Guoning

    2006-01-01

    Extraction of buildings from LIDAR data has been an active research field in recent years. A scheme for building detection and reconstruction from LIDAR data is presented with an object-oriented method which is based on the buildings' semantic rules. Two key steps are discussed: how to group the discrete LIDAR points into single objects and how to establish the buildings' semantic rules. In the end, the buildings are reconstructed in 3D form and three common parametric building models (flat, gabled, hipped) are implemented.

  7. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  8. All solid-state high-efficiency source for satellite-based UV ozone DIAL

    Science.gov (United States)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-01-01

    During the past several years Sandia National Laboratories has carried out proof-of-concept experiments to demonstrate tunable, efficient, high-energy ultraviolet nanosecond light sources for satellite-based ozone DIAL. We designed our UV sources to generate pulse energies > 200 mJ at 10 Hz in the range of 308-320 nm with optical-to-optical efficiency approaching 25%. We use sum-frequency generation to mix the 532 nm second harmonic of Nd:YAG with near-IR light derived from a self-injection-seeded image-rotating nonplanar-ring optical parametric oscillator. Laboratory configurations using extra- and intra-cavity sum-frequency generation were designed and tested, yielding 1064 nm to 320 nm conversion efficiencies of 21% and 23% respectively, with pulse energies of 190 mJ and 70 mJ. These energies and efficiencies require pump depletion in the parametric oscillator of at least 80% and SFG efficiency approaching 60%. While the results reported here fall slightly short of our original goals, we believe UV pulse energies exceeding 250mJ are possible with additional refinements to our technology. Although the sources tested to date are laboratory prototypes with extensive diagnostics, the core components are compact and mechanically robust and can easily be packaged for satellite deployment.

  9. Dialética da diferença = Dialectics of difference

    Directory of Open Access Journals (Sweden)

    Bueno, Sinésio

    2013-01-01

    Full Text Available O presente artigo tem por objetivo problematizar dialeticamente o tema da diferença de acordo com os conceitos da teoria crítica. Em um primeiro momento, o tema da diferença será pensado em sua recepção negativa referida à produção de estereótipos e preconceitos de natureza étnica, racial e de gênero. Em um segundo momento, o tema será tratado em sua recepção positiva, muito comum entre movimentos sociais de esquerda e meios acadêmicos. Em um terceiro momento, ambos os tipos de recepção da diferença serão problematizados a partir do pensamento de Theodor Adorno, em sua Dialética negativa, como possível via de mediação entre a particularidade empírica e a universalidade conceitual

  10. A Hyperheuristic for the Dial-a-Ride Problem with Time Windows

    Directory of Open Access Journals (Sweden)

    Enrique Urra

    2015-01-01

    Full Text Available The dial-a-ride problem with time windows (DARPTW is a combinatorial optimization problem related to transportation, in which a set of customers must be picked up from an origin location and they have to be delivered to a destination location. A transportation schedule must be constructed for a set of available vehicles, and several constraints have to be considered, particularly time windows, which define an upper and lower time bound for each customer request in which a vehicle must arrive to perform the service. Because of the complexity of DARPTW, a number of algorithms have been proposed for solving the problem, mainly based on metaheuristics such as Genetic Algorithms and Simulated Annealing. In this work, a different approach for solving DARPTW is proposed, designed, and evaluated: hyperheuristics, which are alternative heuristic methods that operate at a higher abstraction level than metaheuristics, because rather than searching in the problem space directly, they search in a space of low-level heuristics to find the best strategy through which good solutions can be found. Although the proposed hyperheuristic uses simple and easy-to-implement operators, the experimental results demonstrate efficient and competitive performance on DARPTW when compared to other metaheuristics from the literature.

  11. Survival times of women radium dial workers first exposed before 1930

    International Nuclear Information System (INIS)

    Life table methods were applied to survival data on U.S. women radium dial workers in order to compare observed and expected deaths as a function of time after exposure to radium. The study population consisted of 1235 workers employed in the industry before 1930 for whom age and year of death, withdrawal or loss from the study were known. Expected deaths were estimated from age- and time-specific death rates for U.S. white females. The closing year for analysis was 1976, so observation times of 45 to 60 years were possible. For all causes, 529 deaths before age 85 were observed versus 461 expected, and the cumulative survival of the population was significantly less than expected at 10 and more years after first employment. Estimates were made of the net survival probabilities after elimination of risk due to the well-known radium-related malignancies, i.e. bone sarcomas and carcinomas of the paranasal sinuses and the mastoid air cells. There were 455 observed deaths from other causes versus 460 expected, and there was no significant difference between observed and expected cumulative net survival at one-year intervals from zero to 59 years after first employment. These findings indicate that only the known radium-related malignancies contributed significantly to life shortening of the exposed population as a whole, but the presence of other radium-related causes of death may yet be detectable by examination of specific risks as a function of dose. (author)

  12. Cellphone with Dial and Call Feature Design Prototype for Children with Autism Spectrum Disorder (ASD

    Directory of Open Access Journals (Sweden)

    Bayu D. Wicaksono

    2012-09-01

    Full Text Available Autism Spectrum Disorder (ASD is a term that used to explain neurological problems which affect mind, perception and concentration. The unfortunate condition of children with ASD lead more difficult to do long-distance communication, not only because of the lack of device that can be used exclusively by children with ASD (the physical as well as its interface, but also because of their general habits tends to destroy something in this case is a commercial cellphone. Identification of ASD children’s habit will be conducted by distributing questionnaires and interviews of the parties which are well acquainted with their daily activities such as parents and school teachers. To validate the questionnaire, has also been conducted ethnographic video capture. The design of cell phone’s prototype and dial & call software/application interface in it is done using the Quality Function Deployment (QFD method as the results have been obtained from the collection of data on the habits of ASD children. In addition, there is also made a sound maker app.

  13. Terapia dialéctico conductual para el trastorno de personalidad límite

    Directory of Open Access Journals (Sweden)

    Irene de la Vega

    2013-06-01

    Full Text Available La terapia dialéctico conductual (TDC es una terapia psicológica de tercera generación desarrollada por Marsha Linehan (1993a, 1993b para tratar específicamente los síntomas característicos del trastorno límite de la personalidad: inestabilidad afectiva, trastorno de identidad, impulsividad y dificultades en las relaciones sociales. La TDC parte de un modelo biosocial del trastorno límite y combina técnicas cognitivo conductuales con aproximaciones zen y budistas basadas en la aceptación de la realidad tal como se presenta. El tratamiento consiste en un entrenamiento en habilidades, psicoterapia individual y atención en crisis y es llevado a cabo por un equipo coordinado de profesionales que ejercen distintas funciones. La TDC cuenta con estudios de eficacia y se está aplicando con éxito a otras poblaciones de pacientes con elevada impulsividad.

  14. Characterization of shallow marine convection in subtropical regions by airborne and spaceborne lidar measurements

    Science.gov (United States)

    Gross, Silke; Gutleben, Manuel; Schäfler, Andreas; Kiemle, Christoph; Wirth, Martin; Hirsch, Lutz; Ament, Felix

    2016-04-01

    One of the biggest challenges in present day climate research is still the quantification of cloud feedbacks in climate models. Especially the feedback from marine cumulus clouds in the boundary layer with maximum cloud top heights of 4 km introduces large uncertainties in climate sensitivity. Therefore a better understanding of these shallow marine clouds, as well as of their interaction with aerosols and the Earth's energy budget is demanded. To improve our knowledge of shallow marine cumulus convection, measurements onboard the German research aircraft HALO were performed during the NARVAL (Next-generation Aircraft Remote-sensing for Validation studies) mission in December 2013. During NARVAL an EarthCARE equivalent remote sensing payload, with the DLR airborne high spectral resolution and differential absorption lidar system WALES and the cloud radar of the HAMP (HALO Microwave Package) as its core instrumentation, was deployed. To investigate the capability of spaceborne lidar measurements for this kind of study several CALIOP underflights were performed. We will present a comparison of airborne and spaceborne lidar measurements, and we will present the vertical and horizontal distribution of the clouds during NARVAL based on lidar measurements. In particular we investigate the cloud top distribution and the horizontal cloud and cloud gap length. Furthermore we study the representativeness of the NARVAL data by comparing them to and analysing a longer time series and measurements at different years and seasons.

  15. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    Science.gov (United States)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  16. LIDAR technology for measuring trace gases on Mars and Earth

    Directory of Open Access Journals (Sweden)

    H. Riris

    2010-11-01

    Full Text Available Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. Calculations show that an orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. Our proposed lidar uses Integrated Path Differential Absorption technique, Optical Parametric Amplifiers, and a receiver with high sensitivity detector at 1.65 μm to map methane concentrations, a strong greenhouse gas. For Mars we can use the same technique in the 3–4 μm spectral range to map various biogenic gas concentrations and search for the existence of life. Preliminary results demonstrating methane and water vapour detection using a laboratory prototype illustrate the viability of the technique.

  17. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    Science.gov (United States)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  18. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.

    Science.gov (United States)

    Li, Youzhi; Hoskins, Alan; Schlottau, Friso; Wagner, Kelvin H; Embry, Carl; Babbitt, William Randall

    2006-09-01

    We introduce a new approach to coherent lidar range-Doppler sensing by utilizing random-noise illuminating waveforms and a quantum-optical, parallel sensor based on spatial-spectral holography (SSH) in a cryogenically cooled inhomogeneously broadened absorber (IBA) crystal. Interference between a reference signal and the lidar return in the spectrally selective absorption band of the IBA is used to sense the lidar returns and perform the front-end range-correlation signal processing. Modulating the reference by an array of Doppler compensating frequency shifts enables multichannel Doppler filtering. This SSH sensor performs much of the postdetection signal processing, increases the lidar system sensitivity through range-correlation gain before detection, and is capable of not only Doppler processing but also parallel multibeam reception using the high-spatial resolution of the IBA crystals. This approach permits the use of ultrawideband, high-power, random-noise, cw lasers as ranging waveforms in lidar systems instead of highly stabilized, injection-seeded, and amplified pulsed or modulated laser sources as required by most conventional coherent lidar systems. The capabilities of the IBA media for many tens of gigahertz bandwidth and resolution in the 30-300 kHz regime, while using either a pseudo-noise-coded waveform or just a high-power, noisy laser with a broad linewidth (e.g., a truly random noise lidar) may enable a new generation of improved lidar sensors and processors. Preliminary experimental demonstrations of lidar ranging and simulation on range-Doppler processing are presented. PMID:16912777

  19. Sequential detection and robust estimation of vapor concentration using frequency-agile lidar time series data

    Science.gov (United States)

    Warren, Russell E.; Vanderbeek, Richard G.; D'Amico, Francis M.; Ben-David, Avishai

    1999-01-01

    This paper extends an earlier optimal approach for frequency-agile lidar using fixed-size samples of data to include the time series aspect of data collection. The likelihood ratio test methodology for deterministic but unknown vapor concentration is replaced by a Bayesian formalism in which the path integral of vapor concentration CL evolves in time through a random walk model. The fixed- sample maximum likelihood estimates of CL derived earlier are replaced by Kalman filter estimates, and the log- likelihood ratio is generalized to a sequential test statistic written in terms of the Kalman estimates. In addition to the time series aspect, the earlier approach is generalized by (1) including the transmitted energy on a short-by-shot basis in a statistically optimum manner, (2) adding a linear slope component to the transmitter and received data models, and (3) replacing the nominal multivariate normal statistical assumption by a robust model in the Huber sensor for mitigating the effects of occasional data spikes caused by laser misfiring or EMI. The estimation and detection algorithms are compared with fixed-sample processing by the DIAL method on FAL data collected by ERDEC during vapor chamber testing at Dugway, Utah.

  20. 2012 USGS Lidar: Brooks Camp (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) had a requirement for high resolution Lidar needed for mapping the Brooks Camp region of Katmai National Park in Alaska....

  1. 2010 Coastal Georgia Elevation Project Lidar Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between January and March 2010, lidar data was collected in southeast/coastal Georgia under a multi-agency partnership between the Coastal Georgia Regional...

  2. 2010 ARC Carroll County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the DTM comprised of classified aerial lidar elevation points, photogrammetrically compiled breaklines and the derived TIN for...

  3. 2012 South Carolina DNR Lidar: Calhoun County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  4. 2012 South Carolina DNR Lidar: Abbeville County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  5. 2011 USGS Lidar: Orange County (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  6. 2004 Saginaw Bay, Lake Huron, Michigan Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Saginaw Bay, Lake Huron,...

  7. 2010 South Carolina DNR Lidar: Richland County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Richland County, SC. Provide Bare Earth DEM (vegetation removal) of Richland County, SC.

  8. 2010 South Carolina DNR Lidar: Lexington County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Lexington County, SC. Provide Bare Earth DEM (vegetation removal) of Lexington County, SC.

  9. 2015 Cook & Tift County (GA) Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: NOAA OCM Tift and Cook Counties GA Lidar Data Acquisition and Processing Production Task NOAA Contract No. EA133C-11-CQ-0010 Woolpert Order No. 75271...

  10. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  11. 2010 South Carolina DNR Lidar: Sumter County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Sumter County, SC. Provide Bare Earth DEM (vegetation removal) of Sumter County, SC.

  12. 2010 South Carolina DNR Lidar: Saluda County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Saluda County, SC. Provide Bare Earth DEM (vegetation removal) of Saluda County, SC.

  13. 2004 FEMA Lidar: Blackstone (MA & RI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The LIDAR-derived data was collected in the Blackstone River area. This data supports the Federal Emergency Management Agency's specifications for mapping...

  14. 2012 South Carolina DNR Lidar: Edgefield County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  15. High Throughput Direct Detection Doppler Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  16. 2006 FEMA Lidar: Rhode Island Coastline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. By positioning laser range finding with the use of 1...

  17. 2006 NOAA Bathymetric Lidar: Puerto Rico (Southwest)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set (Project Number OPR-I305-KRL-06) depicts depth values (mean 5 meter gridded) collected using LiDAR (Light Detection & Ranging) from the shoreline...

  18. 2004 USGS Lidar: San Francisco Bay (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  19. 2004 St. Johns County, Florida Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the bare earth lidar data for St. Johns County, Florida, acquired in early January and February of 2004. This data was collected to develop...

  20. 2010 ARC Dekalb County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the DTM comprised of classified aerial lidar elevation points, photogrammetrically compiled breaklines and the derived TIN for Dekalb...

  1. 2007 JALBTCX Topographic Lidar: Saipan, CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain topographic lidar data collected by the CHARTS system in Saipan, CNMI. This file contains both first and last returns. The data points...

  2. 2005 NCFMP Lidar: NC Statewide Phase 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne LIDAR terrain mapping data acquired March through April 2005. These data sets may represent a single geographic tile of a larger, county/sub-county data...

  3. 2010 Northwestern Hawaiian Islands Lidar - Lisianki Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  4. 2010 Northwestern Hawaiian Islands Lidar - Midway Atoll

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  5. 2010 Northwestern Hawaiian Islands Lidar - Laysan Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  6. 2010 Northwestern Hawaiian Islands Lidar - Kure Atoll

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the...

  7. 2003 NCFMP Lidar: NC Statewide Phase 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne LIDAR terrain mapping data acquired January through March 2003. Point data (XYZ) in ASCII format. Horizontal datum NAD83(1995) North Carolina State Plane...

  8. 2010 USGS Lidar: Salton Sea (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Salton Sea project encompasses a 5-kilometer buffer around the Salton Sea, California. Dewberry classified LiDAR for a project boundary that touches 623...

  9. 2012 South Carolina DNR Lidar: Aiken County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  10. 2010 ARRA Lidar: Golden Gate (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Golden Gate LiDAR Project is a cooperative project sponsored by the US Geological Survey (USGS) and San Francisco State University (SFSU) that has resulted in...

  11. 2010 ARRA Lidar: Eklutna Glacier (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of lidar data to be collected for an area over Eklutna Glacier in the Chugach...

  12. NIR LIDAR for Hazard Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have investigated the feasibility of employing a hazard detection and mitigation system based upon a polarization discriminating range-gated Lidar system. This...

  13. 2007 Sumpter Powder River Mine Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data for the USDA Forest Service on September 17, 2007. The project covers an 8-mile...

  14. 2012 FEMA Lidar: Middle Counties (VA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dewberry collected LiDAR for ~3,341 square miles in various Virginia Counties, a part of Worcester County, and Hoopers Island. The acquisition was performed by...

  15. 2011 FEMA Lidar: Southern Virginia Cities

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dewberry collected LiDAR for ~3,341 square miles in various Virginia Counties, a part of Worcester County, and Hooper's Island. The acquisition was performed by...

  16. 2012 FEMA Lidar: Southern Virginia Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dewberry collected LiDAR for ~3,341 square miles in various Virginia Counties, a part of Worcester County, and Hoopers Island. The acquisition was performed by...

  17. 2005 Delaware Coastal Program Lidar: Sussex County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data were acquired in March 2005 using the NASA Experimental Advanced Airborne Research Lidar (EAARL) platform in Sussex County, Delaware. Once acquired, the...

  18. 2010 ARRA Lidar: Eleven County Virginia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint and LMSI collected LiDAR for over 2,572 square miles in Northumberland, Lancaster, Middlesex, King and Queen, Matthews, Gloucester, James City,...

  19. Biscayne National Park LIDAR GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it...

  20. 2010 NOAA American Samoa Mobile Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains three-dimensional mobile lidar elevation data for seven villages in American Samoa on the island of Tutuila. The seven villages are: Fagaalu,...

  1. 2010 South Carolina DNR Lidar: Kershaw County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Kershaw County, SC. Provide Bare Earth DEM (vegetation removal) of Kershaw County, SC.

  2. 2010 FEMA Lidar: Ozaukee County (WI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozaukee AOI consists of one area encompassing the entire county. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to...

  3. Direct Georeferencing of Stationary LiDAR

    OpenAIRE

    Ahmed Mohamed; Benjamin Wilkinson

    2009-01-01

    Unlike mobile survey systems, stationary survey systems are given very little direct georeferencing attention. Direct Georeferencing is currently being used in several mobile applications, especially in terrestrial and airborne LiDAR systems. Georeferencing of stationary terrestrial LiDAR scanning data, however, is currently performed indirectly through using control points in the scanning site. The indirect georeferencing procedure is often troublesome; the availability of control stations w...

  4. Effective resolution concepts for lidar observations

    OpenAIRE

    Iarlori, M.; Madonna, F.; Rizi, V.; T. Trickl; Amodeo, A.

    2015-01-01

    Since its establishment in 2000, EARLINET (European Aerosol Research Lidar NETwork) has provided, through its database, quantitative aerosol properties, such as aerosol backscatter and aerosol extinction coefficients, the latter only for stations able to retrieve it independently (from Raman or high-spectral-resolution lidars). These coefficients are stored in terms of vertical profiles, and the EARLINET database also includes the details of the range resolution of the verti...

  5. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    OpenAIRE

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for ...

  6. A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles

    Science.gov (United States)

    Korb, C. L.; Weng, C. Y.

    1982-01-01

    The theory of differential absorption lidar measurements for lines with a Voigt profile is given and applied to a two-wavelength technique for measuring the atmospheric temperature profile using a high J line in the oxygen A band. Explicit expressions for the temperature and pressure dependence of the absorption coefficient are developed for lines with a Voigt profile. An iteration procedure for calculating the temperature for narrow laser bandwidths is described which has an accuracy better than 0.2 K for bandwidths less than 0.01/cm. To reduce the errors in lidar measurements due to uncertainties in pressure, a method for estimating the pressure from the temperature profile is described. A procedure for extending the differential absorption technique to the case of finite laser bandwidth with good accuracy is also described. Simulation results show that a knowledge of the laser frequency is needed to 0.005/cm for accurate temperature measurements. Evaluation of the sensitivity for both ground- and Shuttle-based measurements shows accuracies generally better than 1 K. This technique allows up to an order of magnitude improvement in sensitivity compared to other differential absorption lidar techniques.

  7. Lidar measurements of plume statistics

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.

    1993-01-01

    Surface-layer aerosol diffusion experiments have been conducted using artificial smoke plume releases at ground level over flat and homogeneously vegetated terrain at the Meppen proving grounds in the Federal Republic of Germany (1989). At fixed downwind locations in the range out to 800 m from...... the source, instantaneous crosswind plume profiles were detected repetitively at high spatial (1.5 m) and temporal (3 sec) intervals by use of a mini LIDAR system. The experiments were accompanied by measurement of the surface-layer mean wind and turbulence quantities by sonic anemometers. On the basis...... of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities,and 4)Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All...

  8. Novel system for modulated lidar parameter optimization

    Institute of Scientific and Technical Information of China (English)

    Bo Zhou; Yong Ma; Kun Liang; Zhiqiang Tu; Hongyuan Wang

    2011-01-01

    We present a novel system for parameter design and optimization of modulated lidar. The system is realized by combining software simulation with hardware circuit. This method is more reliable and flexible for lidar parameter optimization compared with theoretical computation or fiber-simulated system. Experiments confirm that the system is capable of optimizing parameters for modulated lidar. Key parameters are analyzed as well. The optimal filter bandwidth is 200 MHz and the optimal modulation depth is 0.5 under typical application environment.%@@ We present a novel system for parameter design and optimization of modulated lidar.The system is realized by combining software simulation with hardware circuit.This method is more reliable and flexible for lidar parameter optimization compared with theoretical computation or fiber-simulated system.Experiments confirm that the system is capable of optimizing parameters for modulated lidar.Key parameters are analyzed as well.The optimal filter bandwidth is 200 MHz and the optimal modulation depth is 0.5 under typical application environment.

  9. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  10. Optical depths of semi-transparent cirrus clouds over oceans from CALIPSO infrared radiometer and lidar measurements, and an evaluation of the lidar multiple scattering factor

    Directory of Open Access Journals (Sweden)

    A. Garnier

    2015-02-01

    Full Text Available This paper provides a detailed evaluation of cloud absorption optical depths retrieved at 12.05 μm and comparisons to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP flying on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite. The blackbody radiance taken in the IIR Version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. IIR infrared absorption optical depths are then compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent 2-way transmittance through the cloud. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. This behavior is explained by variations of the multiple scattering factor ηT to be applied to correct the measured transmittance, which is taken equal to 0.6 in the CALIOP Version 3 algorithm, and which is found here to vary with temperature (and hence cloud particle size from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.

  11. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  12. Jean-Paul Sartre: La dialéctica ágil y paciente

    Directory of Open Access Journals (Sweden)

    Arribas, Sonia

    2005-12-01

    Full Text Available This essay reconstructs the Sartrean conception of a dialectics of history and politics, as it is advanced in «In Search of a Method». The principles of Sartre's articulation of Marxism and existentialism are put forward, as well as his reflections on the existential project as the mediation between the economic base of capitalist society and its ideological superstructure, or as the subjective and practical mediation between objective contradictions. The essay argues that this idea of the project is based on an untenable dualism between Knowledge and the real, and that its concomitant notion of the imaginary is problematically formulated as a form of representation. A Marxist approach, without existentialism, can thematize subjectivity and the contingency of history and politics, without dualisms or representationist models of the imaginary.

    Este ensayo reconstruye la concepción sartreana de una dialéctica de la historia y la política, tal y como está esbozada en «Cuestiones de método». Se exponen los principios de su articulación del marxismo y el existencialismo, así como sus reflexiones sobre el proyecto existencial como la mediación entre la base económica de la sociedad capitalista y su superestructura ideológica, o en tanto que la mediación subjetiva y práctica entre contradicciones objetivas. Se argumenta que esta idea del proyecto se basa en un dualismo insostenible entre el Saber y lo real, que el concomitante concepto del imaginario se formula problemáticamente en términos de representación y que una perspectiva marxista, sin existencialismo, permitiría tematizar la subjetividad y la contingencia de la historia y la política sin dualismos ni modelos representacionalistas del imaginario.

  13. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle......- or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system...

  14. Systematic Relationships Between Lidar Observables And Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    van Diedenhoven, B.; Perlwitz, J. P.; Fridlind, A. M.; Chowdhary, J.; Cairns, B.; Stangl, A. J.

    2015-12-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  15. Design Of A Low Cost Diode-Laser-Based High Spectral Resolution Lidar (HSRL)

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott; Morley, Bruce; Eloranta, Edwin W.

    2016-06-01

    A concept for an eye-safe, semiconductor-based high spectral resolution lidar has been developed at the National Center for Atmospheric Research. The lidar operates at a wavelength of 780 nm near several rubidium absorption peaks. A rubidium vapor cell is used to block aerosol backscatter in one channel to provide a molecular backscatter measurement for calculating extinction and backscatter ratio (calibrated backscatter). Laser and optical components around 780 nm are widely developed due to the large growth in atomic cooling and trapping of rubidium. Thus this instrument can be built largely using mature commercial-off-the-shelf parts. The simulation of the conceptual design shown here uses known commercial products and suggests that such an instrument could be used for quantitative profiling of the lower troposphere.

  16. Liderança dialógica nas instituições hospitalares Liderazgo dialógico en las instituciones hospitalárias Dialogical leadership in hospitals institutions

    Directory of Open Access Journals (Sweden)

    Simone Coelho Amestoy

    2010-10-01

    Full Text Available Trata-se de uma reflexão-teórica com o objetivo de discutir sobre a importância da inserção da liderança dialógica nas instituições hospitalares. O referencial teórico para fundamentar esta reflexão é de Paulo Freire complementado com outros autores. O modelo de liderança dialógica consiste em um instrumento gerencial que se difere dos métodos coercitivos e autocráticos, por ser fundamentado no estabelecimento de um processo comunicacional eficiente, capaz de estimular a autonomia, a co-responsabilização e a valorização de cada membro da equipe de enfermagem, bem como dos usuários dos serviços de saúde.Se trata de una reflexión-teórica con el objetivo de discutir sobre la importancia de la inserción del liderazgo dialógico en las instituciones hospitalarias. El referencial teórico para fundamentar esta reflexión es de Paulo Freire complementado con otros autores. El modelo de liderazgo dialógico consiste en un instrumento gerencial que se diferencia de los métodos coercitivos y autocráticos, por ser fundamentado en el establecimiento de un proceso comunicacional eficiente, capaz de estimular la autonomía, la co-responsabilidad y la valorización de cada miembro del equipo de enfermería, así como de los usuarios de los servicios de salud.The aim of this study is make a theorical-reflection about the importance of using dialogical leadership in hospital institutions through Freirean referencial. The dialogical leadership pattern differs from the coercive and autocratic methods, for being reasoned on the establishment of an efficient communicational process, able to stimulate autonomy, co-responsibility and appreciation of each member from nurse team. The dialogical leadership, unlike the directive one, is a management instrument, that pursuits to minimize the conflicts and stimulate the formation of healthy interpersonal relationships, which can contribute to the improvement of organizational atmosphere and

  17. 3D Flash LIDAR EDL Resolution Improvement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  18. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  19. 2006 FEMA New Jersey Flood Mitigation Lidar: Hunterdon County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the lidar topographic elevation mapping of Hunterdon County, NJ that occurred in July 2006. Products generated include lidar point...

  20. Occurrence and characteristics of mutual interference between LIDAR scanners

    Science.gov (United States)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  1. 2012 NOAA Fisheries Topographic Lidar: Bridge Creek, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is an LAZ (compressed LAS) format file containing LIDAR point cloud data. This data set is an LAZ (compressed LAS) format file containing LIDAR point...

  2. 2009 - 2011 CA Coastal Conservancy Coastal Lidar Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. This LiDAR dataset is a...

  3. 2013-2014 USGS Lidar: Olympic Peninsula (WA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: USGS Olympic Peninsula Washington LIDAR LiDAR Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G13PD00849...

  4. 2006 FEMA New Jersey Flood Mitigation Lidar: Highlands Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Light Detection and Ranging (LiDAR) data is remotely sensed high-resolution elevation data collected by an airborne collection platform. LiDAR was flown for...

  5. 2014 USGS CMGP Lidar: Post Sandy (Long Island, NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Long Island New York Sandy LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00296 Woolpert...

  6. Systematic variations in multi-spectral lidar representations of canopy height profiles and gap probability

    Science.gov (United States)

    Chasmer, L.; Hopkinson, C.; Gynan, C.; Mahoney, C.; Sitar, M.

    2015-12-01

    Airborne and terrestrial lidar are increasingly used in forest attribute modeling for carbon, ecosystem and resource monitoring. The near infra-red wavelength at 1064nm has been utilised most in airborne applications due to, for example, diode manufacture costs, surface reflectance and eye safety. Foliage reflects well at 1064nm and most of the literature on airborne lidar forest structure is based on data from this wavelength. However, lidar systems also operate at wavelengths further from the visible spectrum (e.g. 1550nm) for eye safety reasons. This corresponds to a water absorption band and can be sensitive to attenuation if surfaces contain moisture. Alternatively, some systems operate in the visible range (e.g. 532nm) for specialised applications requiring simultaneous mapping of terrestrial and bathymetric surfaces. All these wavelengths provide analogous 3D canopy structure reconstructions and thus offer the potential to be combined for spatial comparisons or temporal monitoring. However, a systematic comparison of wavelength-dependent foliage profile and gap probability (index of transmittance) is needed. Here we report on two multispectral lidar missions carried out in 2013 and 2015 over conifer, deciduous and mixed stands in Ontario, Canada. The first used separate lidar sensors acquiring comparable data at three wavelengths, while the second used a single sensor with 3 integrated laser systems. In both cases, wavelenegths sampled were 532nm, 1064nm and 1550nm. The experiment revealed significant differences in proportions of returns at ground level, the vertical foliage distribution and gap probability across wavelengths. Canopy attenuation was greatest at 532nm due to photosynthetic plant tissue absorption. Relative to 1064nm, foliage was systematically undersampled at the 10% to 60% height percentiles at both 1550nm and 532nm (this was confirmed with coincident terrestrial lidar data). When using all returns to calculate gap probability, all

  7. Rigorous LiDAR Strip Adjustment with Triangulated Aerial Imagery

    OpenAIRE

    Zhang, Y. J.; Xiong, X. D.; Hu, X Y

    2013-01-01

    This paper proposes a POS aided LiDAR strip adjustment method. Firstly, aero-triangulation of the simultaneously obtained aerial images is conducted with a few photogrammetry-specific ground control points. Secondly, LiDAR intensity images are generated from the reflectance signals of laser foot points, and conjugate points are automatically matched between the LiDAR intensity image and the aero-triangulated aerial image. Control points used in LiDAR strip adjustment are derived from...

  8. Model based wind vector field reconstruction from lidar data

    OpenAIRE

    Schlipf, David; Rettenmeier, Andreas; Haizmann, Florian; Hofsäß, Martin; Courtney, Mike; Cheng, Po Wen

    2012-01-01

    In recent years lidar technology found its way into wind energy for resource assessment and control. For both fields of application it is crucial to reconstruct the wind field from the limited information provided by a lidar system. For lidar assisted wind turbine control model based wind field reconstruction is used to obtain signals from wind characteristics such as wind speed, direction and shears in a high temporal resolution. This work shows how these methods can be used for lidar based ...

  9. New lidar systems at the German Aerospace Center

    OpenAIRE

    Kaifler, Bernd; Kaifler, Natalie; Büdenbender, Christian; Witschas, Benjamin; Gomez Kabelka, Pau; Rapp, Markus; Mahnke, Peter; Sauder, Daniel; Geyer, Gerhard; Speiser, Jochen

    2015-01-01

    This work gives an overview of the lower-, middle and upper atmosphere lidar projects at the German Aerospace Center (DLR). The Temperature Lidar for Middle Atmosphere research (TELMA) is a combined sodium/Rayleigh/Brillouin-lidar integrated into an 8-foot container. It will provide temperature profiles with high temporal and spatial resolution from near ground level up to approximately 110 km altitude. The lidar system is designed for remote/autonomous operation. First observations with the...

  10. Applications of LiDAR measurement for road management

    OpenAIRE

    AKIYAMA, Shinpei; TAKAGI, Masataka

    2012-01-01

    Since LiDAR (Light Detection And Ranging) is a suitable equipment for archiving three-dimensional surface data of any objects. Moreover, aerial LiDAR is used for the topographical survey, urban planning or forest measurement. On the other hand, ground based LiDAR has a potential for other purposes, such as landslide monitoring or landcover change monitoring. This paper reports method of landslide and landcover monitoring using LiDAR for road management. Firstly, landslide monitoring technique...

  11. Terrain classification using multi-wavelength LiDAR data

    OpenAIRE

    Thomas, Judson J. C.

    2015-01-01

    Approved for public release; distribution is unlimited With the arrival of Optech’s Titan multispectral LiDAR sensor, it is now possible to simultaneously collect three different wavelengths of LiDAR data. Much of the work performed on multispectral LiDAR data involves gridding the point cloud to create Digital Elevation Models and multispectral image cubes. Gridding and raster analysis can have negative implications with respect to LiDAR data integrity and resolution. Presented here is a ...

  12. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Science.gov (United States)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  13. El grado universitario en música : Alcances y límites del enfoque dialéctico

    OpenAIRE

    Leguizamón, Mariel; Arturi, Marcelo E.

    2005-01-01

    El presente trabajo se inscribe dentro del Proyecto “El Grado Universitario en Música. Un enfoque curricular”, cuyo objetivo consiste en desarrollar fundamentos que posibiliten plantear abordajes-según nuevas bases-para el análisis de los currícula de Música y contribuir a la redefinición de los planes universitarios en música desde una concepción dialéctica de la educación. Se propone el estudio de los planes de grado en música desde los supuestos de la metateoría curricular crítica, conside...

  14. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and...

  15. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  16. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  17. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  18. LIDAR sensing of aerosol processes over sofia region in the frame of the European Aerosol Research Lidar Network (EARLINET)

    International Nuclear Information System (INIS)

    An overview is given of the remote sensing of the atmospheric processes over Sofia region by using lidars. Results obtained in the Institute of Electronics in the frame of the European Aerosol Research Lidar Network are presented and discussed

  19. Applications of KHZ-CW Lidar in Ecological Entomology

    Science.gov (United States)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  20. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  1. Applications of KHZ-CW Lidar in Ecological Entomology

    OpenAIRE

    Malmqvist Elin; Brydegaard Mikkel

    2016-01-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  2. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  3. Efficient Open Source Lidar for Desktop Users

    Science.gov (United States)

    Flanagan, Jacob P.

    Lidar --- Light Detection and Ranging --- is a remote sensing technology that utilizes a device similar to a rangefinder to determine a distance to a target. A laser pulse is shot at an object and the time it takes for the pulse to return in measured. The distance to the object is easily calculated using the speed property of light. For lidar, this laser is moved (primarily in a rotational movement usually accompanied by a translational movement) and records the distances to objects several thousands of times per second. From this, a 3 dimensional structure can be procured in the form of a point cloud. A point cloud is a collection of 3 dimensional points with at least an x, a y and a z attribute. These 3 attributes represent the position of a single point in 3 dimensional space. Other attributes can be associated with the points that include properties such as the intensity of the return pulse, the color of the target or even the time the point was recorded. Another very useful, post processed attribute is point classification where a point is associated with the type of object the point represents (i.e. ground.). Lidar has gained popularity and advancements in the technology has made its collection easier and cheaper creating larger and denser datasets. The need to handle this data in a more efficiently manner has become a necessity; The processing, visualizing or even simply loading lidar can be computationally intensive due to its very large size. Standard remote sensing and geographical information systems (GIS) software (ENVI, ArcGIS, etc.) was not originally built for optimized point cloud processing and its implementation is an afterthought and therefore inefficient. Newer, more optimized software for point cloud processing (QTModeler, TopoDOT, etc.) usually lack more advanced processing tools, requires higher end computers and are very costly. Existing open source lidar approaches the loading and processing of lidar in an iterative fashion that requires

  4. Technique to separate lidar signal and sunlight.

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise. PMID:27410314

  5. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    Science.gov (United States)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  6. Enhancements to INO's broadband SWIR/MWIR spectroscopic lidar

    Science.gov (United States)

    Lambert-Girard, Simon; Babin, François; Allard, Martin; Piché, Michel

    2013-09-01

    Recent advances in the INO broadband SWIR/MWIR spectroscopic lidar will be presented. The system is designed for the detection of gaseous pollutants via active infrared differential optical absorption spectroscopy (DOAS). Two distinctive features are a sub-nanosecond PPMgO:LN OPG capable of generating broadband (10 to plane array used in the output plane of a grating spectrograph. The operation consists in closely gating the returns from back-scattering off topographic features, and is thus, for now, a path integrated measurement. All wavelengths are emitted and received simultaneously, for low concentration measurements and DOAS fitting methods are then applied. The OPG approach enables the generation of moderate FWHM continua with high spectral energy density and tunable to absorption features of many molecules. Recent measurements demonstrating a minimum sensitivity of 10 ppm-m for methane around 3.3 μm with ˜ 2 mW average power in less than 10 seconds will be described. Results of enhancements to the laser source using small or large bandwidth seeds constructed from telecom off-the-shelf components indicate that the OPG output spectral energy density can have controllable spectral widths and shapes. It also has a slightly more stable spectral shape from pulse to pulse than without the seed (25 % enhancement). Most importantly, the stabilized output spectra will allow more sensitive measurements.

  7. LIDAR Products, LiDAR bare earth point text files from NC Floodplain Program, Published in 2007, 1:2400 (1in=200ft) scale, Iredell County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This LIDAR Products dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as 'LiDAR bare...

  8. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Science.gov (United States)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  9. Fully digital intensity modulated LIDAR

    Directory of Open Access Journals (Sweden)

    Fabio Pollastrone

    2016-08-01

    Full Text Available In several applications, such as collision avoidance, it is necessary to have a system able to rapidly detect the simultaneous presence of different obstacles. In general, these applications do not require high resolution performance, but it is necessary to assure high system reliability also within critical scenarios, as in the case of partially transparent atmosphere or environment in presence of multiple objects (implying multiple echoes having different delay times. This paper describes the algorithm, the architecture and the implementation of a digital Light Detection and Ranging (LIDAR system based on a chirped optical carrier. This technique provides some advantages compared to the pulsed approach, primarily the reduction of the peak power of the laser. In the proposed architecture all the algorithms for signal processing are implemented using digital hardware. In this way, some specific advantages are obtained: improved detection performance (larger dynamics, range and resolution, capability of detecting multiple obstacles having different echoes amplitude, reduction of the noise effects, reduction of the costs, size and weight of the resulting equipment. The improvement provided by this fully digital solution is potentially useful in different applications such as: collision avoidance systems, 3D mapping of environments and, in general, remote sensing systems which need wide distance and dynamics.

  10. The High Spectral Resolution Lidar

    Science.gov (United States)

    Eloranta, E. W.; Roesler, F. L.; Sroga, J. T.

    1983-01-01

    The High Spectral Resolution Lidar (HSRL) system was developed for the remote measurement of atmospheric optical properties. Measurements are obtained by the separation of the backscattered signal into aerosol and molecular channels using a high spectral resolution Fabry-Perot optical interferometer to separate the aerosol contributions to backscatter near the laser wavelength from the Doppler-shifted molecular component of the backscatter. The transmitter consists of an optically pumped pulsed dye laser of the oscillator-amplifier design which emits at 467.88 nm, with a bandwidth of less than 0.3 pm. The transmitter and receiver share a common Schmidt-Cassegrain telescope, although they do not share the same field stop, but rather two conjugate stops. The HSRL system uses a computer-controlled dual-channel photon-counting data acquisition system providing for stable measurements at very low power levels and an excellent dynamic range. The system has been used to obtain airborne measurements of height profiles of aerosol and molecular backscatter cross sections.

  11. Conically scanning lidar error in complex terrain

    Directory of Open Access Journals (Sweden)

    Ferhat Bingöl

    2009-05-01

    Full Text Available Conically scanning lidars assume the flow to be homogeneous in order to deduce the horizontal wind speed. However, in mountainous or complex terrain this assumption is not valid implying a risk that the lidar will derive an erroneous wind speed. The magnitude of this error is measured by collocating a meteorological mast and a lidar at two Greek sites, one hilly and one mountainous. The maximum error for the sites investigated is of the order of 10 %. In order to predict the error for various wind directions the flows at both sites are simulated with the linearized flow model, WAsP Engineering 2.0. The measurement data are compared with the model predictions with good results for the hilly site, but with less success at the mountainous site. This is a deficiency of the flow model, but the methods presented in this paper can be used with any flow model.

  12. Atmospheric lidar: Legal, scientific and technological aspects

    International Nuclear Information System (INIS)

    The Atmospheric Lidar is one of the systems of the Mobile Laboratory of Laser Remote Sensing under development at the ENEA Research Center of Frascati. This technical report addresses the legislative, scientific and technological aspects that are the basis for the identification of the requirements, the definition of the architecture and the fixation of the specifications of the Atmospheric Lidar. The problems of air pollution are introduced in section 2. A summary of the Italian laws on that topic is then given. Section 4 provides a survey of the atmospheric measurements that can be achieved with the lidar. The sensitivity in the monitoring of pollutants is discussed in section 5. The other systems of the Mobile Laboratory of Laser Remote Sensing are shortly described in section 6. The last section is devoted to conclusions and perspectives

  13. Entre olhares e (invisibilidades: reflexões sobre fotografia como produção dialógica

    Directory of Open Access Journals (Sweden)

    Laura Kemp de Mattos

    2014-12-01

    Full Text Available A proposta deste artigo é tensionar, em fotografias produzidas por crianças com deficiência visual, o que se vê e o que se deixa de ver, as visibilidades e invisibilidades objetivadas nas fotos. Sendo as fotografias concebidas como produção discursiva e dialógica, a leitura das mesmas possibilita problematizar a relação que elas estabelecem com a realidade em que vivem. Como procedimentos metodológicos foram eleitos a produção de fotografias e o desenvolvimento de uma oficina estética. Para a análise estabelecemos uma confrontação das fotos no plano da significação, com base na análise dialógica do discurso, a partir da concepção do Círculo de Bakhtin (2010a. Os sentidos enfocados trazem à luz a realidade das crianças, independentemente de serem crianças com deficiência visual. Este aspecto foi muito significativo: os modos de (viver o mundo expressos nas imagens são antes de tudo olhares de meninas e meninos.

  14. La Terapia Dialéctico Conductual para el tratamiento del Trastorno Límite de la Personalidad.

    Directory of Open Access Journals (Sweden)

    Matilde Elices

    2011-06-01

    Full Text Available La Terapia Dialéctico Conductual (TDC ha sido creada por la Dra. Marsha Linehan, para el tratamiento de pacientes con intentos suicidas recurrentes y diagnóstico de Trastorno Limite de la Personalidad (TLP. Es un modelo terapéutico perteneciente a la “tercera ola” en psicoterapias cognitivas, puesto que se basa en las ciencias del comportamiento e incluye elementos de Mindfulness y de la filosofía dialéctica. En la actualidad la TDC es el tratamiento con mayor evidencia empírica para el TLP, demostrando ser efectiva en la reducción de varios problemas asociados a este trastorno, como ser: autolesiones, intentos de autoeliminación, ideación suicida, desesperanza, depresión y comportamientos asociados a la bulimia. El objetivo de este artículo es desarrollar los fundamentos teóricos y conceptuales básicos sobre los que se construye la TDC, y exponer sus principales directrices de tratamiento. También se establecen las principales diferencias con la terapia cognitivo – conductual standard.

  15. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    Science.gov (United States)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  16. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    Directory of Open Access Journals (Sweden)

    B. Rosati

    2015-07-01

    Full Text Available Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50–800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time before the mixed layer (ML was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR between 30 and 70 sr for the altitudes probed with the

  17. Modulated pulse bathymetric lidar Monte Carlo simulation

    Science.gov (United States)

    Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia

    2015-10-01

    A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.

  18. Ghost imaging lidar via sparsity constraints

    CERN Document Server

    Zhao, Chengqiang; Chen, Mingliang; Li, Enrong; Wang, Hui; Xu, Wendong; Han, Shensheng

    2012-01-01

    For remote sensing, high-resolution imaging techniques are helpful to catch more characteristic information of the target. We extend pseudo-thermal light ghost imaging to the area of remote imaging and propose a ghost imaging lidar system. For the first time, we demonstrate experimentally that the real-space image of a target at about 1.0 km range with 20 mm resolution is achieved by ghost imaging via sparsity constraints (GISC) technique. The characters of GISC technique compared to the existing lidar systems are also discussed.

  19. Integration of LIDAR and IFSAR for mapping

    OpenAIRE

    Dowman, I. J.

    2004-01-01

    LiDAR and IfSAR data is now widely used for a number of applications, particularly those needing a digital elevation model. The data is often complementary to other data such as aerial imagery and high resolution satellite data. This paper will review the current data sources and the products and then look at the ways in which the data can be integrated for particular applications. The main platforms for LiDAR are either helicopter or fixed wing aircraft, often operating at low altitudes, ...

  20. LIDAR, Point Clouds, and their Archaeological Applications

    Energy Technology Data Exchange (ETDEWEB)

    White, Devin A [ORNL

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.