WorldWideScience

Sample records for absorption heat pump

  1. Absorption heat pumps

    Science.gov (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  2. Multistage quantum absorption heat pumps.

    Science.gov (United States)

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  3. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  4. High performance heat pump absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.; Rossetto, L.

    1988-10-01

    Absorption heat pumps can provide high performances when operating in suitable cycles with multiple effects. This report describes some multistage cycles and evaluates the coefficient of performance realistically obtainable both in winter and summer working conditions.

  5. An open cycle absorption heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    By using absorption dehumidification it is possible to obtain an open cycle absorption heat pump fed by a natural gas burner. The machine couples great simplicity with very good thermodynamic performance. The main feature is the recovery of the latent heat of the air flow. The open cycle heat pump is applied here to building heating, internal temperature 20[sup o]C, relative humidity 50%, with forced ventilation. The system has essentially a packed tower bed for dehumidification, a regenerator fed by a natural gas burner, connected to a condenser, and some heat exchangers. (author).

  6. Commercial absorption heat pumps (design, performance)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. (Padua Univ. (Italy). Ist. di Fisica Tecnica)

    1986-04-01

    After a historical review of the development of absorption heat pumps, a critical analysis is presented of the design and operation of typical 25-40 kW, commercially available heat pumps. This engineering critique is followed by an analysis of the performance of 25 kW plant thoroughly tested to provide, by means of statistically significant data, a reliable assessment of the coefficient of performance and capacity in function of the cold source temperature for different return temperatures.

  7. Use of solar assisted absorption heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.

    An absorption system can be used for both ambient cooling and heating by solar energy. Heating by an absorption heat pump can represent an interesting alternative, especially in the countries where electric power is not always easily available. Some machines available on the market have been tested. The COP behavior and heating capacity have been examined as a function of the cold source temperature and with regard to different thermal levels. The COP has reached 1.7. Some simulations have been carried out - with two different climatic conditions - to compare the performances of various ''conventional'' solar installation types with solar assisted absorption heat pumps. The series system has shown better performances, 25% to 75%, in comparison with the simpler solar installation. 16 refs.

  8. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  9. Application of the absorption heat pump in an oil refinery

    OpenAIRE

    K.C., Sushil

    2015-01-01

    Absorption heat pumps (AHPs) have been popular due to their ability to convert thermal waste into useful energy. This study investigates the applicability of the absorption heat pump to the Porvoo oil refinery and compares the results to the ordinary heat pump (HP). The vacuum distillation unit 2 (TT2) and gas turbine (KTVL-3) units were considered for the case studies. Vacuum condenser is an inseparable part of the vacuum column DA-2201. The pressure at the top of the column DA-2201 is d...

  10. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard;

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... on an actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  11. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard;

    2015-01-01

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize the ...... to minimize the effect of cross couplings and improve stability with the right pairing of input and output. Simulation of selected candidate input-output pairings demonstrate that decentralized control can provide stable operation of the heat pump....

  12. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP...

  13. Heat recovery by means of innovative, already successfully tested absorption compression heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Mucic, V. [Schmeink und Cofreth GmbH and Co. KG, Bocholt (Germany)

    1996-07-01

    First the paper shows the thermodynamical advantages of mixtures compared to single substances as working fluids for compression heat pumps. It is especially the ammonia-water mixture which above all other known mixtures has the best thermodynamical characteristics as a working medium for high-temperature heat pumps used for industrial heat recovery. Then it is shown that the industrial waste heat which at present is uselessly delivered to the environment can be economically recovered by means of absorption compression heat pumps observing certain requirements specified in detail in the paper. (orig.)

  14. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    OpenAIRE

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix; Reinholdt, L.; Elmegaard, Brian

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated base...

  15. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  16. Application of customized absorption heat pumps for utilization of low-grade heat sources

    International Nuclear Information System (INIS)

    Based on established and proven technology of water/lithium bromide absorption chillers, customized single-stage and double-stage heat pump cycles adapted to specific applications can be designed, especially aiming at medium and large heating capacities of 500 kW and above. These heat pumps can either be fossil fired or driven by heat from combined heating and power (CHP) systems or other sources. In terms of primary energy saving, in many cases this is the most suitable technology to utilize the available heat sources. This is demonstrated by three examples of current installations in southern Germany. An analysis of the energetic performance and of the economic situation has been performed. At a municipal composting plant, waste heat is generated at a temperature level of about 40-50 deg. C. Previously, this waste heat had to be rejected to the ambient by means of a cooling tower. A direct-fired single-stage absorption heat pump has been installed which lifts the waste heat to a temperature level of 82 deg. C enabling its utilization in the local heating network of a commercial area. At a spa with various swimming pools located next to a thermal spring, a CHP engine plant is installed. The reject heat of the gas engine drives a novel two-stage absorption heat pump that utilizes the spring water as renewable heat source to provide heating of the pools and the building. In Munich, a solar-assisted local district heating system is installed in a new housing development area with about 300 accommodation units. At this site, a seasonal hot water storage for the solar system of about 5700 m3 is erected. At the beginning of the heating season, it serves the local heating network directly and afterwards - at a lower temperature level - it is utilized as heat source for an absorption heat pump that is driven by the municipal district heating network. By that concept two effects are accomplished: the available temperature change of the hot water storage is increased and

  17. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    Science.gov (United States)

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  18. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard;

    2015-01-01

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S⊘nderborg, Den...

  19. Development of solar driven absorption air conditioners and heat pumps

    Science.gov (United States)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  20. The use of an absorption heat pump by a thermal bathing establishment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G. (Padua Univ. (Italy)); Piccininni, F. (Bari Univ. (Italy). Ist. di Fisica Tecnica)

    1992-07-01

    An energy saving plant was realized by a thermal bathing establishment. The plant is composed of a three fluid plate heat exchanger and an absorption heat pump between the source preheated water and the discharged one. During the cold winter the establishment is maintained at a temperature of 5[sup o]C. The absorption heat pump uses the thermal water as the cold source. (Author).

  1. A new open absorption heat pump for latent heat recovery from moist gas

    International Nuclear Information System (INIS)

    Highlights: • A new open absorption heat pump system was proposed. • The new system aims at recovering latent heat from low-temperature moist gas. • The new system can utilize a lower temperature range of heat source. • COPh and heat recovery efficiency is high with the production of high-temperature steam. • Increasing generation temperature and humidity of gas is beneficial for the new system. - Abstract: Conventional drying processes discharge high humidity gas to the atmosphere. The exhaust gas contains large amount of energy. The direct discharging would result in relatively large energy waste. In order to improve the thermal efficiency of drying process, in this paper, a new open absorption heat pump system was proposed, which aims at recovering the latent heat from exhausted moist gas and producing steam for reutilization. The working principle was discussed in detail and thermodynamic models were established to analyze the performance of the new system. The new system can work under both single-stage and double-stage modes. Simulation results showed that the new system could utilize a heat source with lower generation temperature compared with that utilized by a traditional open absorption system. The temperature range of heat source for the double-stage mode is 130–160 °C, and that for the single-stage mode is 160–175 °C. The new system also eliminates the limitation of traditional close absorption system, whose evaporation temperature has to be lower than the dew point temperature of discharged moist gas to recover the latent heat of water steam. Simulation results also indicated an improved COPh of the new system compared with that of double-stage close absorption heat pump system. The COPh of the new system varied from 1.52 to 1.97 and the efficiency of heat recovery varied from 15.1% to 54.8% when the temperature of heat source varied from 135 °C to 175 °C and saturated steam of 100 °C was produced

  2. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  3. Experimental analysis of a solar assisted absorption heat pump with earth seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.

    A plant composed of an energy roof, a seasonal earth storage and an absorption heat pump has been tested. The purpose was to study the behaviour of the various components and their interaction. The surveys were carried out over a two year period. The following operations were considered: the charging of the earth storage by the energy roof and the working of an absorption heat pump connected either to the energy roof or to the earth storage.

  4. Dynamic Model and Performance of Absorption Heat Pump in Shut-down Process

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LU Zhen

    2002-01-01

    The dynamic model of LiBr absorption heat pump in shut-down process is established. The simulation results show good agreement with the experiments. The dynamic performance of high-pressure generator, low-pressure generator and heat exchanger are analyzed in detail. The proper shut-down mode of the heat pump is presented,which, in consideration of solution parameters, has a great effect on the possibility of crystallization of some components.

  5. Performance prediction of an absorption heat pump for utilization in industry

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy))

    1994-01-01

    Recently, an absorption heat pump has been put on the market for industrial utilization. It is a H[sub 2]O-LiBr absorption machine which heats up water to 90[sup o]C with cold source at 40[sup o]C. The capacity and Coefficient of performance (COP) of the machine have been studied by a computer program as a function of cold source temperature and heated fluid temperature. Also, a comparison with a compression heat pump is reported. (Author)

  6. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    International Nuclear Information System (INIS)

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH3/H2O are inferior to those of NH3/LiNO3, and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in longer

  7. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;

    2014-01-01

    compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  8. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  9. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    OpenAIRE

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour pressures. Using standard refrigeration components (28 bar) HACHP up to 100 °C are commercially available. Components developed for high pressure NH3 (52 bar) and transcritical CO2 (140 bar) increase th...

  10. Modelling of the Absorption and Desorption Process of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    A simple model for the desorption and absorption process of the chemical heat pump is presented in this paper .It is based on the assumption of a definite reaction front.The results from this model are compared with those obtained by finite difference method and it is observed that there is almost no difference between them.

  11. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  12. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...

  13. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  14. Application of customized absorption heat pumps with heating capacities above 500 kW

    OpenAIRE

    Radspieler, Michael; Zachmeier, Peter; Schweigler, Christian

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458

  15. Solar assisted absorption or motor driven heat pump with earth seasonal storage. Final report. Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.

    1987-01-01

    A plant composed of an energy roof, a seasonal earth storage and an absorption heat pump has been experimented. The purpose was to study the behaviour of the various components and their interaction. The surveys went on during two years. The following operations are considered: The charging of the earth storage by the energy roof and the working of an absorption heat pump connected either to the energy roof or to the earth storage.

  16. A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis

    International Nuclear Information System (INIS)

    Highlights: • A double-stage coupled air source absorption heat pump (ASAHP) is proposed. • The coupled ASAHP exhibits stable and high performance in very cold regions. • Energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. - Abstract: Energy consumption for heating and domestic hot water is very high. The heating system based on an air source absorption heat pump (ASAHP) had been assessed to have great energy saving potential. However, the single-stage ASAHP exhibits poor performance when the outdoor air temperature is very low. A double-stage coupled ASAHP is proposed to improve the energy-saving potential of single-stage ASAHP in cold regions. The heating capacity and primary energy efficiency (PEE) of the proposed system operated in both coupled mode and single-stage mode are simulated under various working conditions. The building load and primary energy consumption of different heating systems applied in cold regions are analyzed comparatively to investigate the energy-saving potential of the coupled ASAHP. Results show that the coupled ASAHP exhibits stable PEE and provides high heating capacity in very cold conditions. The energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. In addition, the energy-saving potential of the single-stage ASAHP in severely cold areas can be improved obviously by coupled ASAHP, with an improvement of 7.73% in Harbin

  17. Analysis of the application of an open-cycle absorption heat pump in industrial convection drying

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Gasparella, A.; Longo, G.A. [Dipt. di Tecnica e Gestione dei Sistemi Industriali, Univ. degli Studi di Padova, Vicenza (Italy)

    1999-07-01

    Heat recovery in convection driers has been investigated comparing different solutions (regenerative heat exchanger, vapour compression heat pump, sorption dehumidification heat pump) in a specific application of food industry. Systems based on chemical dehumidification show the best performance allowing a primary energy saving higher than 40% with respect to traditional plants. (orig.)

  18. Heat pumps in industry. Pt. 2: Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M. [Padova Univ., Vicenza (Italy). Ist. di Ingegneria Gestionale

    1995-04-01

    A selection of applications of heat pumps in industry is described, reporting plant lay-outs and performances. The selection includes compression heat pumps at different temperatures, vapour recompression systems, absorption heat pumps and heat transformers. (author)

  19. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    DEFF Research Database (Denmark)

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume;

    2013-01-01

    with natural gas. The natural gas is first converted to a mixture of H2 and CO which feed the anode after a preheating step. The cathode is supplied with preheated air and gives, as output, electrical energy. The anode output is the exhaust gas which represents the thermal energy reservoir for heating......In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system...... in order to meet the bought cooling and freezing demands. This is an innovative configuration for absorption heat pumps because the cascade is implemented only in vapour compression heat pumps. A smaller ratio of the exhausted gases supplies the energy demand for space heating. The SOFC is fuelled...

  20. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix;

    2014-01-01

    and the liquid circulation ratio both influence these constraints. The paper investigates feasible combinations of these parameters. A numerical HACHP model is developed in Engineering Equation Solver (EES). The constrained parameters are evaluated for a range of combinations for systems with supply temperatures......The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... pressures. Using standard refrigeration components (28 bar) HACHP up to 100 °C are commercially available. Components developed for high pressure NH3 (52 bar) and transcritical CO2 (140 bar) increase the limiting allowable pressures. It is therefore relevant to evaluate the feasible supply temperatures...

  1. Solar assisted absorption or motor driven heat pump with earth seasonal storage: Part 2, Tables and figures: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.

    1986-01-01

    A plant composed of an energy roof, a seasonal earth storage and an absorption heat pump has been tested. The purpose was to study the behavior of the various components and their interaction. The surveys went on during two years. The following operations are considered: the charging of the earth storage by the energy roof and the working of an absorption heat pump connected either to the energy roof or to the earth storage. This volume contains all the figures and tables for the report. 77 figs., 24 tabs.

  2. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  3. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    OpenAIRE

    Nattaporn Chaiyat; Tanongkiat Kiatsiriroat

    2014-01-01

    In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT) integrating with a two-stage vapor compression heat pump (VCHP) were carried out. The whole system was named as compression/absorption heat transformer (CAHT). The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connect...

  4. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks

    International Nuclear Information System (INIS)

    Thermodynamic analysis of absorption thermal systems is too complex because the analytic functions calculating the thermodynamic properties of fluid couples involve the solution of complex differential equations and simulation programs. This study aims at easing this complex situation and consists of three cases: (i) A special ejector, located at the absorber inlet, instead of the common location at the condenser inlet, to increase overall performance was used in the ejector absorption heat pump (EAHP). The ejector has two functions: Firstly, it aids the pressure recovery from the evaporator and then upgrades the mixing process and pre-absorption by the weak solution of the methanol coming from the evaporator. (ii) Use of artificial neural networks (ANNs) has been proposed to determine the properties of the liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiCl), which does not cause ozone depletion. (iii) A comparative performance study of the EAHP was performed between the analytic functions and the values predicted by the ANN for the properties of the couple. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. In the input layer, there are temperature, pressure and concentration of the couples. Specific volume is in the output layer. After training, it was found that the maximum error was less than 3%, the average error was less than 1.2% and the R2 values were about 0.9999. Additionally, in comparison of the analysis results between analytic equations obtained by using experimental data and by means of the ANN, the deviations of the refrigeration effectiveness of the system for cooling (COPr), exergetic coefficient of performance of the system for cooling (ECOPr) and circulation ratio (F) for all working temperatures were found to

  5. Demonstration project of a natural gas heated absorption heat pump for heating of buildings and service water; Demonstrationsprojekt einer mit Erdgas beheizten Absorptionswaermepumpe fuer Gebaeudeheizung und Brauchwasserbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Harald; Rieberer, Rene [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik

    2011-07-01

    For IEA HPP Annex 34 ''Thermally Driven Heat Pumps for Heating and Cooling'', the Institut fuer Waermetechnik of TU Graz university carried out a demonstration project in which the seasonal performance factor of two ammonia/water absorption heat pumps for space and water heating was to be investigated. Each of the heat pumps had a rated capacity of 48 kW; they are used for heating a storage hall and offices and also service water for a brewery at Graz. The ground is used as heat source, and heat is distributed via a low-temperature floor heating system. The heat pumps have an integrated heat exchanger for flue gas condensation, in which part of the water vapour contained in the flue gas is condensed, and the condensation heat is recirculated into the heating unit. Measurements took place through 2010; all relevant temperatures and heating rates were measured as well as the natural gas volume flow and the electric power consumption. The system worked reliably and with high efficiency. A seasonal performance factor of 1.54 was achieved in 2010 as referred to the lower calorific value of the natural gas. The measurements also showed potential for improvement, especially in service water heating in the summer season. [German] Im Rahmen des IEA HPP Annex 34 ''Thermally Driven Heat Pumps for Heating and Cooling'' wurde am Institut fuer Waermetechnik der TU Graz ein Demonstrationsprojekt durchgefuehrt, mit dem Ziel die Jahresarbeitszahl von zwei Ammoniak/Wasser-Absorptionswaermepumpen (AWP) zur Gebaeudeheizung und Brauchwasserbereitung zu erheben. Die installierten AWP besitzen eine Nennleistung von je ca. 40 kW und stellen die benoetigte Heizwaerme fuer eine Lagerhalle und Bueroraeumlichkeiten sowie fuer das Brauchwasser eines Lagerzentrums einer Brauerei in Graz bereit. Als Waermequelle werden Erdreichsonden verwendet und zur Waermeverteilung ist ein Niedertemperatur-Fussbodenheizungssystem vorgesehen. Eine Besonderheit der

  6. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  7. Advanced heat pump cycle

    Energy Technology Data Exchange (ETDEWEB)

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  8. Solar assisted absorption or motor driven heat pump with earth seasonal storage: Part 1, Final report, 1 July 1982-30 June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.

    1986-01-01

    A plant composed of an energy roof, a seasonal earth storage and an absorption heat pump has been tested. The purpose was to study the behavior of the various components and their interaction. The surveys went on during two years. The following operations are considered: the charging of the earth storage by the energy roof and the working of an absorption heat pump connected either to the energy roof or to the earth storage.

  9. Annual performance investigation and economic analysis of heating systems with a compression-assisted air source absorption heat pump

    International Nuclear Information System (INIS)

    Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period

  10. Development of Absorption Heat Pump Driven by Low Temperature Hot Water

    Science.gov (United States)

    Hoshida, Toshihiro; Nakamura, Naoto; Asai, Hiroshi; Hasatani, Masanobu; Watanabe, Fujio; Fujisawa, Ryou

    We developed an Adsorption Heat Pump (AHP) system, which applies silica-gel as adsorbent and H2O as refrigerant, and is possibly intended to use low temperature hot water (333K) as a driving force. The growing importance to save energy, leads us to develop energy saving systems such as Co-generation systems, including fuel cell system. It is important to use low temperature hot water in order to achieve high efficiency in total. It is, however, noticed that the lower water temperature is, the more difficult its' heat recovery becomes. We reported experimental results of the AHP system, and estimated the possibility to apply low temperature hot water from fuel cell system to the AHP system. We showed quantitatively that the AHP system is able to be driven by low temperature hot water(333K).

  11. Heating and cooling system with absorption heat pump and energy storage in rock caverns; Absorptiolaempoepumpulla ja varastolla varustetun kalliotilan laemmitys- ja jaeaehdytysjaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland); Ritola, J.; Vuopio, J. [VTT Communities and Infrastructure, Espoo (Finland). Infrastructure and Environment; Leino, O.; Hiltunen, M. [JP-Talotekniikka Oy (Finland)

    1999-10-01

    Absorption cooling technique for rock cavern shelters is studied in this report. Economy of heating and cooling with absorption pump is compared to compression pump technique. Bore holes and water pools in rock were used for energy storing in case studies. Three case studies were done. Renovation of cooling system in old rock cavern shelter is studied in case 1. Heating/cooling of new civil defence shelter in rock cavern was studied in case 2 including co-operation with buildings on the surface. Furthermore cooled rock tunnel for country skiing was studied in case 3, where heat energy from condenser of the cooling machine was led to swimming park. In old rock shelters, which have already cooling system based on water pool under the floor, the extra cooling storage capacity is not most often economical. Absorption machine using district heat supply is competitive choice, if the district heating has proper price in relation to electric price. In old shelter cooling capacity could be increased with cooling machine lowering the temperature of the water pool. Heat from cooling machine's condenser could be utilised for heating the rock cavern. If cooling machine is needed only for crisis, economy of the investment must be evaluated in that point of view. New rock cavern defence shelter could be cooled economically by absorption machine. Condensed heat of the machine can be utilised through pore hole heat storage. Heat from the storage can be used for preheating the inlet fresh air to the shelter and smelting snow in the street or courtyard area. In connection to small steel tank coolstorage smaller cooling machine capacity can be constructed and maximum cooling load hours of the machine can be increased. Co-operation between rock cavern skitunnel and swimming park, where the condensed heat from absorption cooling machine is led to swimming pools, is competitive alternative compared to compressor machine. The heat supply must have the price of heavy fuel oil or

  12. Absorption heat pump integrated in an effluent purification system; Bomba de calor por absorcion integrada a un sistema de purificacion de efluentes

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, Socrates; Siqueiros, Javier; Heard, Christopher; Santoyo, Edgar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The results derived of the integration of an absorption heat pump to an industrial effluents purification system, are presented. The advantages of these heat pumps with respect to heat pumps by mechanical compression of vapor, as well as the advantages in using absorption heat pumps in simple distillation systems, are mentioned. Finally, a description is made of the equipment designed and built, as well as the results obtained in a preliminary test. [Espanol] Se presentan los resultados derivados de la integracion de una bomba de calor por absorcion a un sistema de purificacion de efluentes industriales. Se mencionan las ventajas de este tipo de bombas de calor con respecto a las de calor por compresion mecanica de vapor, asi como las ventajas de usar bombas de calor en sistemas de destilacion simple. Finalmente, se describe el equipo disenado y construido, asi como los resultados obtenidos de una prueba preliminar.

  13. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  14. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  15. The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.

    OpenAIRE

    Van Der Walt, Stefan

    2012-01-01

    Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications. The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate ...

  16. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  17. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  18. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  19. Development of the Hybrid Operation Method of a Multi-Geothermal Heat Pump System and Absorption Chiller-Heater

    Directory of Open Access Journals (Sweden)

    Young-Ju Jung

    2015-08-01

    Full Text Available Considerable efforts have been made to reduce the energy consumption of buildings due to the energy crisis, and, the Korean government has supported the use of renewable energy through various grants. Among the possible renewable energy sources, geothermal energy can be used regardless of the outside weather. Therefore, energy consumption can be reduced considerably in summer and winter. Despite the increasing use of renewable energy, the use of renewables has not been operating appropriately. Therefore, this study examined some of the problems of the operation of renewable energy and some possible improvements. The aim of the study is to evaluate a building containing an actual installed multi-geothermal heat pump (Multi-GHP system, in terms of the energy efficiency. In addition, this study evaluated the present control system and the method of complex operation regarding existing heat sources systems and GHP systems through a simulation. The results can be regarded as the result of a hybrid operation method for the improvement of an existing operation. Therefore, the Multi-GHP system energy use of a hybrid operation condition of the Multi-GHP systems and the absorption (ABS chiller-heater system was reduced compared to the operation condition of the Multi-GHP system, and the total energy consumption of the heat source equipment was reduced. The proposed operation plan was evaluated after applying the system to a building. These results showed that the efficient operation of a Multi-GHP hybrid operation method is possible. As a result, the GHP energy use of Multi-GHP systems and the ABS chiller-heater system was reduced by 30% compared to existing operation and the total energy consumption of heat source equipment was reduced by 78%.

  20. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  1. Magnetic heat pump design

    Science.gov (United States)

    Kirol, L. D.; Dacus, M. W.

    1988-03-01

    Heat pumps utilizing the magnetocaloric effect offer a potentially attractive alternative to conventional heat pumps and refrigerators. Many physical configurations of magnetic heat pumps are possible. Major classes include those requiring electrical energy input and those with mechanical energy input. Mechanical energy is used to move magnets, working material, or magnetic shielding. Each type of mechanical magnetic heat pump can be built in a rotary (recuperative) or reciprocal (regenerative) configuration. Machines with electrical energy input utilize modulation of the magnetic field to cause working material to execute the desired thermodynamic cycle, and can also be recuperative or regenerative. Recuperative rotary heat pumps in which working material is moved past stationary magnets is the preferred configuration. Regenerative devices suffer performance degradation from temperature change of regenerator material and mixing and conduction in the regenerator. Field modulated cycles are not practical due to ac losses in superconducting magnets. Development of methods for recuperator fluid pumping is the major challenge in design of rotary recuperative devices. Several pumping options are presented, and the design of a bench scale heat pump described.

  2. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  3. Advanced heat pump

    Science.gov (United States)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  4. Open absorption heat pump for waste heat utilization in the forest industry. A study of technical and economic potential; Oeppen absorptionsvaermepump foer uppgradering av spillvaerme fraan skogsindustrin. Studie av teknisk och ekonomisk potential

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, Mats; Vidlund, Anna

    2006-02-15

    Waste heat from the forest industry is mainly humid air or humid flue gases with somewhat too low dew point for direct use as district heating or for other qualified purposes. Upgrading of the temperature by heat pumps is thus often necessary for the full use of the waste heat. This study evaluates an open absorption heat, based on hygroscopic condensation. The hygroscopic condenser has the potential to replace mechanical heat pumps or conventional absorption heat pumps (based on lithium bromide) for the upgrading of heat from humid gases. The goal for the project is to evaluate technology and potential for an open absorption heat pump for heat recovery from humid gases in the forest industry. In an open heat pump the humid gas is brought in direct contact with the hygroscopic liquid (whereas a conventional heat pump uses an intermediate circuit with evaporation of water in the evaporator). The direct contact makes it possible to recover the heat at a higher temperature than the dew point of the humid gas without the use of evaporator. The target group for the study is the forest industry and its suppliers of technology and knowledge. The study has been carried out in cooperation with representatives from the forest industry and from suppliers of equipment. The study shows that the forest industry has good potential to upgrade waste heat from humid air to district heating. The waste heat can be extracted from various humid gases such as exit air from paper machines, wood driers, green liquid quenchers and flue gases from soda boilers, mesa kilns, bark-fired boilers and gas engines. Hygroscopic condensation is considered to give economic and environmental advantages compared to conventional absorption heat pumps due to much less consumption of driving heat. An interesting special case is the regeneration of the hygroscopic medium by direct contact with hot flue gases and for this application a patent application has been filed. Upgrading of waste heat to process

  5. Power plant heating system integrating low temperature heat and absorption heat pumps%电厂低温热与吸收式热泵耦合供热系统研究

    Institute of Scientific and Technical Information of China (English)

    邱丽霞; 郝艳红

    2015-01-01

    On the basis of analysis on two kinds of waste heat utilization approaches,using the low-tempera-ture flue gas waste heat to heat the condensate water and feed water by installing heat exchangers in the tail flue duct,and improving the quality of steam turbine exhaust and circulating water to supply heat for users by adopting absorption heat pumps,a novel waste heat utilization system for thermal power plants was proposed.In this system,the flue gas after the air preheater is regarded as the heat pump's driving heat source,thus the absorption heat pump can recover the heat of condensation and heat the heating hot water. In addition,in order to meet the heating requirements in extremely cold periods,the heat exchanger is in-stalled after the economizer in the tail flue duct,in which the heating hot water from heat pump exit is heated by part of the flue gas extracted from outlet of the economizer.In this system,the low-temperature heat is recovered by the absorption heat pump,so that the exergy loss is reduced in the heat transfer process,the extraction steam from the steam turbine decreases and the output power increases.Further-more,combined with a 330 MW heat supply unit,this novel system's energy-saving effect was analyzed and the results were compared with that of the conventional flue gas waste heat utilization system (convention-al system I)and the conventional condensation heat heat pump system (conventional system2).The results show that,the annual standard coal consumption of the unit applying this novel system is 8 487.8 t less than that applying the conventional system I,and the output power is 1.3% to 2.7% higher than that ap-plying the conventional system II,which indicates the energy saving effect of this novel waste heat utiliza-tion system is remarkable.%基于常规烟气余热利用系统(常规系统1)及常规冷凝热热泵系统(常规系统2),提出了一种新型的电厂余热利用系统:将空气预热器(空预器)后的烟气作为

  6. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  7. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  8. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  9. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  10. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  11. Sorption Refrigeration / Heat Pump Cycles

    Science.gov (United States)

    Saha, Bidyut Baran; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and use of CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons). Up to now, only the desiccant evaporative cooling system of the open type has achieved commercial use, predominantly in the United States. Closed-type adsorption refrigeration and heat pump systems are rarely seen in the market, or are still in the laboratory testing stage. Promising recent development have been made in Japan for the use of porous metal hydrides and composite adsorbents. In this paper, a short description of adsorption theories along with an overview of present status and future development trends of thermally powered adsorption refrigeration cycles are outlined putting emphasis on experimental achievements. This paper also addressed some advanced absorption cycles having relatively higher COP, and also summarizes fundamental concepts of GAX cycles and various GAX cycles developed for heat pump applications.

  12. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    OpenAIRE

    Sekret Robert; Nitkiewicz Anna

    2014-01-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exc...

  13. Open absorption heat pump and application in flue gas waste heat recovering%开式吸收式热泵及在烟气余热回收中的应用

    Institute of Scientific and Technical Information of China (English)

    贾红书; 付林; 张世钢

    2013-01-01

    开式吸收式热泵具有结构简单、低品位热能驱动、省电等优点,推广利用该技术,对解决目前面临的城市热源不足及提高工业能源利用效率具有重要意义,但运行中存在设备腐蚀、不凝性气体等问题。本文总结了国内外开式吸收式热泵的研究进展,其应用领域涉及供暖、空调、制冷及工业生产,处理气流包括空气、燃烧后烟气,驱动热源包括太阳能、生物质锅炉、天然气锅炉及电厂锅炉等集中热源和分布式能源,结构形式多样化;简述了开式吸收式热泵在工业余热,特别是天然气锅炉烟气余热和湿法脱硫电厂饱和烟气潜热和水回收领域中的应用;分析了运行中出现的溶液腐蚀、不凝气气体及设备堵塞问题,并提出了解决方案。%Simple structure and low grade heat energy requirement are great advantages of open absorption heat pump. Proper use of this technology is important to solve the city heat shortage and improve energy efficiencies in industries. However,equipment corrosion,non-condensable gas and other issues often prevent the application of open absorption pump. This paper summarized the domestic and international research progressed of the open absorption heat pump. It can be used in heating,air conditioning,refrigeration and other industrial processes. Processing media including air, flue gas after combustion,driving heat source can be concentrated heat source and distributed energy, such as solar energy,biomass boiler,gas boiler and power plant boiler. Structures can be different based on heat sources and purposes of applications. Applications of open absorption heat pump in the industrial waste heat recovery,especially flue gas waste heat recovery were also briefly overviewed. The causes and possible solutions to corrosion and non-condensable gas plugging were analyzed as well.

  14. Thermoeconomic comparison of industrial heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Christen Malte; Reinholdt, L.;

    2011-01-01

    Four natural working fluids in various heat pump cycles are expected to cover the heating range between 50oC and 150°C. The different thermodynamic cycles are the Condensing Vapour, Transcritical and Compression/Absorption. As the considered technologies have significant differences in application......, limitations and design, a generic comparison is used. To establish the optimal individual temperature range of operation, a thermoeconomic evaluation is performed, with heat price as the decision parameter. Each individual heat pump is favourable in specific temperature intervals, which will vary according...... to the temperature lift between sink and source. At temperature lifts below 30°C the entire temperature range is covered. Exceeding this temperature lift, the range of sink temperatures is not completely covered above 125°C. Three of the heat pumps prove very cost competitive when compared to heating with natural...

  15. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  16. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  17. Heat pumps for the home

    CERN Document Server

    Cantor, John

    2013-01-01

    In recent years, heat pumps have emerged as a promising new form of technology with a relatively low environmental impact. Moreover, they have presented householders with an opportunity to reduce their heating bills. Heat pumps can heat a building by 'pumping' heat from either the ground or the air outside: an intriguing process which utilizes principles that are somewhat analogous to those employed in the domestic refrigerator. Armed with the practical information contained in these pages, homeowners will have the necessary knowledge to take advantage of this potentially low-carbon t

  18. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... are calculated using an energy system model which includes power plants, heat pumps and district heating consumption profiles. The model is developed with focus on accurate representation of the performance of the units in different locations and operating modes. The model can assist in investment decisions...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  19. 吸收式热泵回收高炉软水低温余热供热探讨%Low-temperature waste heat recovery of blast furnace using absorption heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    周春丽; 王治国

    2014-01-01

    Characteristic of closed loop soft water cooling system of blast furnace was introduced .Ab-sorption heat pump was used to recover low -temperature waste heat recovery of soft water out of BF . The technology is feasible with considerable economic benefits , social benefits and environmental bene-fits.Meet the heating demand of iron and steel enterprises in north area with less steam consumption as well as to supply civil heating nearby with extra capacity .%分析了高炉软水密闭循环冷却系统特点,采用吸收式热泵技术回收高炉软水低温余热用于采暖。技术上可行,经济、社会效益和环境效益显著。既满足北方钢铁企业自身采暖需求,又缓解北方钢铁企业冬季蒸汽紧张的局面,富裕热量还可外供附近市政采暖。

  20. Recycling Waste Heat of Circulating Water Using Absorption Heat Pump in Thermal Power Plant%利用吸收式热泵回收热电厂循环水余热

    Institute of Scientific and Technical Information of China (English)

    石会群; 高立江

    2013-01-01

    Recycle the waste heat of circulating water in heating power to heat water by using type I absorption heat pump. In this paper, it introduces the original design parameters, the system scheme and the selection of units. In addition, it introduces the energy efficiency, environmental benefits and the question of the project. Through the presentation of the use of heat pump technology for recovery of waste heat from power plant, the technology is feasible, reliable, and is worthy of popularizing in northern heating power plant.%利用第一类吸收式热泵技术回收供热电厂冷却循环水余热用于城市供热,本文从设计的原始参数、系统方案和机组选型等进行介绍,并介绍了项目达到的节能效益、环保效益,以及方案存在的问题,通过说明利用热泵技术回收电厂余热技术是可行、可靠的,在北方供热电厂值得大力推广。

  1. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  2. Heat pumps at the maltings

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Heat pumps have halved the energy costs of producing finished malt at two of the country's maltsters. The fuel-fired kilning processes described are now performed by heat pumps with considerable energy and production benefits at the maltings of J.P. Simpson and Co. (Alnwick) Ltd, in Tivetshall St Margaret, Norfolk, and of Munton and Fison Plc of Stowmarket, Suffolk. The heat pump system installed at the Station Malting of J.P. Simpson was devised by the Electricity Council Research Centre at Capenhurst near Chester. Energy cost benefits of Pound 6,000 a month are being realised at Simpsons, but there is the added benefit that the system has been designed to provide conditioned air to the germination cycle to ensure that the correct temperature is maintained throughout the year. At the Cedars factory of Munton and Fison, heat pumps were used on a trial basis for plant micropropagation and for a fish farming unit.

  3. Electrohydrodynamic inductively pumped heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A.S.

    1981-01-19

    The self-priming voltage controllable electrohydrodynamic inductively pumped heat pipe of the present invention greatly improves the maximum thermal throughout of heat pipes in low and medium temperature applications calling for the use of dielectric working fluids. An applied traveling potential wave induces a traveling wave of electrical charge in selected phase relation in the liquid phase of the dielectric working fluid providing an electrical traction which pumps the working fluid from the condensor to the evaporator.

  4. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  5. 吸收式热泵用于热电联产改造新技术%The Co-production of New Technology Transformation of Usage of Absorption Hot-pump to Recycle Waste Heat in Heat Power Plant

    Institute of Scientific and Technical Information of China (English)

    茹毅; 王飞

    2012-01-01

    热电厂的循环冷却水系统存在大量的低位热能。热泵系统具有将低位热能提升为高位热能的能力。本文即是根据山西某热电厂的节能改造方案介绍了利用吸收式热泵系统回收电厂冷凝余热用于集中供热的新技术;并对新型供热系统做出能效和经济性评价,认为新技术应用具有经济和环境的双重效益,有广阔发展前景。%There is a large number of low level heat energy in the circulating cooling water system of thermal power plant.Heat pump system has the ability to improve the heat energy level from low order into high order.This article introduced the new technology,application to central heating,of usage of absorption high temperature heat pump system for recycling waste heat of condensation which based on the energy-saving reform plan of one heat-power plant in Shanxi province.Based on the new central heating systems the energy efficiency and economic evaluation be giving in this paper.Through the analysis shows that the application of new technology has the double effect in economic efficiency and environmental protection that has broad prospects for development.

  6. Applicability Analysis on Absorption Ground Source Heat Pump System Assisted by Air Source Heat Pump%空气源热泵辅助吸收式地源热泵系统的适用性分析

    Institute of Scientific and Technical Information of China (English)

    韩宗伟; 王一茹; 阿不来提·依米提; 张艳红; 杨军; 孟欣

    2014-01-01

    针对严寒地区集中供热系统能源利用效率低的问题,结合该地区应用地源热泵系统存在土壤吸/排热不平衡的问题,本文提出将一次网的高温蒸汽(热水)作为吸收式热泵发生器热源的地源热泵系统,利用空气源热泵保障地下换热系统热平衡。介绍了复合系统的运行模式,确定了系统的运行控制策略,选取哈尔滨地区某办公建筑对系统的全年运行性能进行分析。通过计算,系统平均综合性能系数为2.1,相比传统的供暖空调方式节能33.1%。该系统全年运行土壤取/排热不平衡率为3.8%,可以保证土壤温度场以年为周期的热平衡;系统可以长期稳定运行。%In the present study, regarding the low energy efficiency of traditional central heating system in cold regions, and combining with the endothermic/reject heat unbalance of soil for application of ground source heat pump, the ground source heat pump system was proposed by using high temperature steam/water from primary network as the generator heat source and using air source heat pump to ensure the thermal balance of underground heat exchange system. The operation modes of the coupled system were introduced; the control strategy of the system operation was determined and the annual operation performance was analyzed on an office building in Harbin. The results showed that, the system average coefficient of overall performance was calculated to be 2.1, and the energy saving of the proposed system was 33.1%comparing with the traditional central heating way. The soil endothermic/reject heat unbalance rate of the system was 3.8%, which can ensure thermal balance of the soil temperature filed over one year cycle. The long-run effects of the system tended to be stable.

  7. 双效溴化锂吸收式热泵机组变工况性能模拟%SIMULATION OF OFF-DESIGN PERFORMANCE OF DOUBLE EFFECT LiBr-H2O ABSORPTION HEAT PUMP

    Institute of Scientific and Technical Information of China (English)

    杨筱静; 由世俊; 张欢

    2013-01-01

    According to the thermodynamic and heat-transfer theories, the nonlinear-coupled models of double effect LiBr-H2O absorption heat pump were built to analyze its cooling off-design performance and its heating nominal and off-design performances. These models were solved using interior-reflective Newton method. The simulation results show that the cooling COPC of double effect absorption heat pump with heat-source water flow and solution flow control method is better than that with heat-source water flow control method, but the heat-source water flow is also higher. Moreover, the heating nominal COPh of double effect absorption heat pump is 2.498, better than that of existing absorption water heater chiller. In addition, the off-design performance of absorption heat pump is the best and COPh is 2. 700 when heating load ratio is 40%.%通过对高温热水驱动的双效溴化锂吸收式热泵机组内传热部件进行热力及传热分析,建立非线性耦合模型,并采用内部映射牛顿法进行求解,分析采用高温热源水流量调节法和高温热源水流量与溶液循环量组合式调节法时吸收式热泵机组制冷变工况性能和制热名义工况、制热变工况时热泵机组性能.研究结果表明:泵机组制冷采用高温热源水流量与溶液循环量组合式调节法时COPc较好,但高温热源水流量略高;制热名义工况时机组COP为2.498,制热效果优于现有双效冷温水机组;机组制热变工况性能在负荷率为40%时最优,COPh高达2.700.

  8. A regenerative elastocaloric heat pump

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Dallolio, Stefano;

    2016-01-01

    a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg−1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices......A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years...... based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications....

  9. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Science.gov (United States)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  10. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Directory of Open Access Journals (Sweden)

    Sekret Robert

    2014-03-01

    Full Text Available Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  11. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  12. Staged regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  13. About Variable Speed Heating and Cooling Pumps

    OpenAIRE

    Cătălin Popovici; Jan Ignat

    2009-01-01

    The present work has the purpose of underlying the advantages of variable speed heating and cooling pumps use for the perspective of general and particular pumping costs and efficiency. The study approaches comparisons between constant flow pumps and variable flow pumps in different given situations and comparatively analyses the pumping costs.

  14. Plasma heat pump and heat engine

    International Nuclear Information System (INIS)

    A model system where cold charged particles are locally confined in a volume VP within a warm plasma of volume V (VPE. The law of thermodynamics involving PE and an equation of state for PE are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of PE are shown to be observable in colloidal solutions.

  15. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  16. District Heating System Using Heat Pump Installations and CHP

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-12-01

    Full Text Available The article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating puThe article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating pumps, evaporators heating and hot water. Heat pumps use carbon dioxide as refrigerant. During the transitional period of the year, and the summer heat pump for preparing hot-water supply system uses the heat of the surrounding air. The heat of the ambient air is used in the intermediate heat exchanger between the first and second stages of the heat pump to cool the gas after the first stage of the compressor of the heat pump.

  17. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling tech...... years for 283 residential heat pumps installed and operating in Denmark. The results are used to assess the flexibility of domestic heat pumps and their ability to follow production.......The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  18. Heat pumping with optically driven excitons

    CERN Document Server

    Gauger, Erik M

    2010-01-01

    We present a theoretical study showing that an optically driven excitonic two-level system in a solid state environment acts as a heat pump by means of repeated phonon emission or absorption events. We derive a master equation for the combined phonon bath and two-level system dynamics and analyze the direction and rate of energy transfer as a function of the externally accessible driving parameters. We discover that if the driving laser is detuned from the exciton transition, cooling the phonon environment becomes possible.

  19. Heat pumps in agricultural uses. Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R.D.

    1986-04-01

    This paper provides an elementary introduction to heat pumps and their potential for use in Ontario agricultural applications, taking into account local climatic conditions which mean high heating loads and small cooling loads. A heat pump's ability to remove heat from a variety of sources and boost this heat to a useable temperature enables such farm uses as recovery of heat from exhaust air in livestock barns, greenhouse heating using ground water, and heat extraction from manure. Basic types of heat pumps are evaluated and compared, and their costs are estimated.

  20. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  1. Advanced electric residential heat pump

    Science.gov (United States)

    Veyo, S. E.

    The heat pump concept developed uses the vapor compression refrigeration cycle with R22 as the working fluid. In order to achieve the target efficiency an improved reciprocating compressor with modulatable capacity was developed along with higher efficiency air movers, a breadboard microprocessor based control system and higher effectiveness heat exchangers. The relative proportions of the compressor, blower, fan, and heat exchangers are specified through system optimization to minimize annual ownership cost while constrained to provide comfort. The efficiency of this compressor is comparable to the best available while the ratio of minimum to maximum capacity can be selected as a parameter of optimization. The incremental cost of this compressor is estimated to be one third that of the compressor with two speed drive motor.

  2. Heat pump for heat recovery with superheated vapor

    Directory of Open Access Journals (Sweden)

    Liu Yin

    2015-01-01

    Full Text Available A heat pump for heat recovery is designed to produce hot water through recovering the heat from the superheated vapor and hot refrigerant in the condenser. The experimental results show that performance of the heat pump system with superheated vapor heat exchanger has obvious superiority over the regular condenser for hot water production.

  3. Heat pump for heat recovery with superheated vapor

    OpenAIRE

    Liu Yin; Ma Jing; Zhou Guang-Hui; Wan Wen-Lei

    2015-01-01

    A heat pump for heat recovery is designed to produce hot water through recovering the heat from the superheated vapor and hot refrigerant in the condenser. The experimental results show that performance of the heat pump system with superheated vapor heat exchanger has obvious superiority over the regular condenser for hot water production.

  4. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  5. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  6. 大型吸收式热泵应用于火电厂回收余热供热的试验研究%The Experiment Study on Waste Heat Recovery from Circulating Water in Thermal Power Plant Using Large Absorption Heat Pump

    Institute of Scientific and Technical Information of China (English)

    周崇波; 俞聪; 郭栋; 丁贯林

    2013-01-01

    An experiment on waste heat recovery thermal characteristics from circulating water in 125MW and 300MW thermal power plants using large absorption heat pump is conducted. The steam pressure, the temperature of the backwater from heat-supply network, the inlet circulating water temperature of the large absorption heat pump system are analyzed under other external conditions and different parameters. Then the effects of main external parameters on heating capacity, the recovery of residual heat, energy efficiency ratio and other important indicators in the large absorption heat pump are quantitatively discussed . The conclusion provide the firsthand information for the design of the waste heat recovery engineering and regular operation of large absorption heat pump.%针对已在125MW及300MW等级火电厂中投产的大型吸收式热泵系统的变工况热力特性进行试验测试,并分析其试验数据,对吸收式热泵系统在驱动蒸汽压力、热网水回水温度、余热水进水温度等主要外部条件和参数变化条件下的运行指标进行了测试和分析,从而获得了这些主要外部参数改变对吸收式热泵制热能力、余热回收量、能效比等重要指标的定量影响.该试验结果为采用大型吸收式热泵系统进行电厂冷凝热回收供热改造工程的初期设计及投产后的优化运行提供了第一手参考资料.

  7. Performance analysis of air——water dual source heat pump water heater with heat recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  8. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  9. Heat exchangers and the performance of heat pumps - Analysis of a heat pump database

    International Nuclear Information System (INIS)

    Heat pumping is a highly energy-efficient technology that could help reduce energy and environmental problems. The efficiency of a heat pump greatly depends on the individual and integral performance of the components inside. In this study, heat pump performance is investigated with a special focus on heat exchangers. Experimental data obtained from comprehensive heat pump measurements performed at the Austrian Institute of Technology (AIT) were analyzed with the help of thermodynamic models developed for this purpose. The analysis shows that the performance of heat exchangers varies widely resulting in substantial COP differences among the heat pumps. The models and methodology developed in this study are found capable of extracting useful information from measurement data quickly and accurately and could be useful for the industry. - Research highlights: → A heat pump database has been analyzed focussing on the influences of heat exchangers on COP. → It was shown that an empirical equation could excellently correlate experimental COP data with relevant parameters. → It was found that heat exchanger design alone caused 15-20% difference in COP.

  10. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger;

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  11. Energy efficient ammonia heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  12. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  13. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  14. Two simple models of classical heat pumps

    OpenAIRE

    Marathe, Rahul; Jayannavar, A. M.; Dhar, Abhishek

    2006-01-01

    Motivated by recent studies on models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact s...

  15. Nonlinear Aspects of Heat Pump Utilization

    Directory of Open Access Journals (Sweden)

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  16. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min−1 range for the integrated pump and reservoir, and approximately 70 µL min−1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  17. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  18. An open oscillatory heat pipe water pump

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, R.T. [University of Stellenbosch, Matieland (South Africa). Department of Mechanical Engineering

    2005-03-01

    The use of an open oscillatory heat pipe (or open pulsating heat pipe) for pumping water is considered, as the need to pump water in rural areas remains a primary requirement in developing rural areas. A possible design for the pump is given and has been constructed and tested and the pumping results are reported. A mathematical model whereby the pump may be theoretically simulated and its performance calculated is also given. The theoretical model is shown to reflect the complex non-linear behaviour of such a pump and a sensitivity analysis is conducted. Experimental flow rates of typically 0.2 mg/s at a pumping height of 100 mm were obtained. The simulation model calculated mechanical and theoretical efficiencies of 3% and 0.03% respectively. An experimentally determined thermal efficiency in the order of 0.00003% was obtained. It is concluded that unless the low pumping flow rates and pumping height limitations can be overcome that it is unlikely that an open oscillatory heat pipe water pump will be suitable for pumping the relatively large quantities of water required for agricultural purposes. (author)

  19. Jet pump assisted arterial heat pipe

    Science.gov (United States)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  20. Présentation d'une boucle prototype de pompe à chaleur à absorption haute température industrielle de 100 kW Description of a 100-Kw Prototype Loop for an Industrial High-Temperature Absorption Heat-Pump

    Directory of Open Access Journals (Sweden)

    Thomas D.

    2006-11-01

    Full Text Available II apparait indispensable, dans le contexte énergétique actuel, de mettre au point de nouvelles techniques de revalorisation d'énergie. Les pompes à chaleur à absorption peuvent, dans certains secteurs industriels, apporter des solutions particulièrement intéressantes par rapport aux pompes à chaleur à compression notamment, en particulier dans le domaine des hautes températures de revalorisation (120-150 °C. Pour mener à bien les études entreprises sur ce thème, le Gaz de France travaille en étroite collaboration avec l'Institut du Génie Chimique de Toulouse et la Société Creusot-Loire. Dans une première partie, les auteurs rappellent les principes de fonctionnement des pompes à chaleurs à absorption et leurs caractères spécifiques. Quelques exemples d'applications industrielles sont proposés. Ils présentent, dans une deuxième partie, la boucle prototype de 100 kW qui a été réalisée et décrivent ses caractéristiques, son cycle de fonctionnement et le programme des essais. Ce pilote de taille semi-industrielle utilise le couple eau-bromure de lithium. La définition d'un prototype industriel de pompe à chaleur à absorption haute température et les compléments de recherche entrepris dans ce domaine constituent la troisième partie de la communication. In the present energy context, it seems absolutely necessary to develop new techniques for energy upgrading. In some industrial sectors, absorption heat pumps may bring particularly interesting solutions compared, in particular, to compression heat pumps, especially in the field of high-temperature upgrading (120-150°C. Reasearch is being done in this field by Gaz de France in close collaboration with the Institut du Génie Chimique in Toulouse and with Creusot-Loire. ,The first part of this article reviews the operating principles of absorption heat pumps and their specific features. Some examples of industrial applications are then proposed. The second part

  1. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  2. Multi-photon Absorption in Optical Pumping of Rubidium

    CERN Document Server

    Xu, Xinyi

    2015-01-01

    In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.

  3. Heat Pump with Two Heat Sources on Different Temperature Levels

    OpenAIRE

    Bertsch, Stefan; Uhlmann, Michael; Heldstab, Andres

    2014-01-01

    Aim of the project is the development of a new heat pump system with economizing that is able to improve the heating performance using two or more different heat sources. These heat sources preferably on different temperature levels are incorporated in the system with minimal loss of exergy, by adding the heat at different pressure levels. Applications are i.e. buildings with heat pump and a solar thermal collector. While solar thermal systems can be used for heating and domestic hot water in...

  4. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  5. Developing a Magnetocaloric Domestic Heat Pump

    DEFF Research Database (Denmark)

    Bahl, Christian R.H.

    2014-01-01

    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  6. High-efficiency absorption-type heat pumps and refrigerators. From topology to the pilot plant; Hocheffiziente Absorptionsmaschinen zur Versorgung mit Kaelte und Waerme. Von der Topologie zur Pilotanlage

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, F.; Demmel, S.; Lamp, P. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V. (ZAE Bayern), Wuerzburg (Germany); Kahn, R. [Technische Univ. Muenchen (Germany). Physik Dept. E19; Alefeld, G.

    1998-12-31

    Absorption-type heat pumps or refrigerators are systems operated with heat. They have been known for a long time and are frequently used especially in airconditioning in the USA and south-east Asia. However, the conventional technique used is subject to many physical limitations, restricting their broader use. The paper demonstrates ways of overcoming these restrictions, for instance by multi-stage design. The exploitation of topological principles much facilitates the synthesis of novel circuits. The technical relevance of such developments is demonstrated by means of selected examples of executed laboratory and pilot plants. Modern absorption technology saves resources and prevents environmental pollution by consuming less fossil energy compared with the conventional technique, for instance by harnessing the thermal potential of solar energy or utilizing waste heat and residual heat, and, not least, thanks to the use of natural refrigerants. (orig.) [Deutsch] Absorptionswaermepumpen oder -kaeltemaschinen sind durch Waerme angetriebene Anlagen, die seit langem bekannt sind und besonders in der Klimatechnik in den USA und im suedostasiatischen Raum haeufig eingesetzt werden. Die dabei verwendete konventionelle Technik unterliegt allerdings vielfaeltigen physikalischen Einschraenkungen, die ihre noch breitere Anwendung verhindern. Es wird gezeigt, wie diese Einschraenkungen beispielsweise durch Mehrstufigkeit ueberwunden werden koennen. Durch die Verwendung topologischer Grundsaetze wird die Synthese neuartiger Kreislaeufe stark vereinfacht. Die technische Bedeutung solcher Entwicklungen wird an ausgewaehlten Beispielen ausgefuehrter Labor- und Pilotanlagen gezeigt. Durch den im Vergleich zu konventioneller Technik geringeren Verbrauch an fossiler Energie, beispielsweise durch die thermische Nutzung von Sonnenenergie oder durch die Nutzung von Ab- oder Restwaerme und nicht zuletzt durch die Verwendung natuerlicher Kaeltemittel werden bei Einsatz moderner

  7. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  8. ENERGY STAR Certified Geothermal Heat Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  9. Electricity Market Optimization of Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Pedersen, Tom S.;

    2013-01-01

    We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further......, the aggregator is able to place upward and downward regulating bids in the regulating power market based on the consumption flexibility. A simulation is carried out based on data from a Danish domestic heat pump project, historical spot prices, regulating power prices, and spot price predictions. The simulations...... show that price reductions of 18 − 20 % can be achieved compared to the heat pumps currently in operation....

  10. Conventional and advanced exergoenvironmental analysis of an ammonia-water hybridabsorption-compression heat pump

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application...

  11. An important feature of air heat pump cycle: Heating capacity in line with heating load

    International Nuclear Information System (INIS)

    In the conventional vapor-compression heat pumps, the heating capacity and the heating load usually vary in opposite directions, which results in a mismatch of the heating capacity and the heating load at off-design conditions. Air (reversed Brayton) cycle is a potential substitute for the conventional vapor-compression cycles. This paper proved that in theory the air heat pump cycle can make the heating capacity in line with the heating load at a stable level of heating COP (coefficient of performance). A thermodynamic model for the air heat pump cycle with practical compressor and expander was developed. The optimal heating COP and the corresponding pressure ratio were derived from the model. Then the cycle performance was analytically expressed under the optimal COP conditions. The heating capacity under different operating conditions was found in line with the heating load. Comparisons between the air heat pump cycle and two typical vapor-compression heat pump cycles were numerically done for further verification. It also turned out that the energy efficiency of air heat pump is comparable to the transcritical CO2 heat pump, particularly at large temperature difference. - Highlights: • We developed a thermodynamic model for air heat pump cycle. • The optimal COP (coefficient of performance) was derived and the corresponding cycle performance was analyzed. • Comparison of air heat pump cycle and vapor-compression cycles was numerically done. • We proved air heat pump cycle can make heating capacity in line with heating load

  12. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  13. Efficiency optimization of the classical molecular heat pump

    Science.gov (United States)

    Zheng, Dong-Qin; Zhong, Wei-Rong

    2011-07-01

    We investigate a three-terminal heat pump through classical molecular dynamics simulations. It is reported an asymmetrical structure is necessary for the molecular heat pump. There exists an optimum pumping efficiency by controlling the asymmetry and the average temperature of the heat pump. The efficiency increases with the decreasing of the temperature difference between the hot and cold heat baths.

  14. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  15. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  16. 300 MW 机组循环水余热-热泵回收系统的经济性分析%Economic Analysis of the Introduction of Absorption Heat Pump to Reclaim Waste-heat of Circulating Water In a 300 MW Unit

    Institute of Scientific and Technical Information of China (English)

    高建强; 王玉兰; 李寒冰; 王玉皓

    2015-01-01

    In the thermal power plant ,circulating cooling water contains abundant residual heat resources .Turbine-generator thermal efficiency is greatly improved by the introduction of absorption heat pump .This thesis takes thermal system energy efficiency distribution matrix equation ( EEDM ) to analyze and calculate a 300 MW unit which adopts the fifth segment extraction steam to drive the heat pump .The results show that cycle efficiency and heat energy utilization ratio increased respectively by 1.246% and 10.67%, because of the introduction of the heat pump technology , which can greatly save energy and reduce pollution .%热力发电厂循环冷却水蕴含较为丰富的低温余热资源,利用吸收式热泵技术将这一部分热量回收能够大幅度提高机组的热效率。采用热力系统能效分布矩阵方程(EEDM)对采用5段抽汽驱动热泵的某300MW机组进行分析计算,结果表明采用热泵技术使机组循环效率和热能利用率分别提高了1.246%和10.67%,能够很大程度的节约能源,减少污染。

  17. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    2013-01-01

    Domestic heat pumps for shallow geothermal heating of family houses are popular and the range and supply of standard solutions is large. However, in applications for large capacities and temperatures, like district heating in the mega Watt range, standard solutions for high temperatures are scarce...

  18. Performance evaluation of heat pump dryer

    OpenAIRE

    Pal, U. S.; Khan, M. K.

    2010-01-01

    A batch type heat pump assisted dehumidified air dryer was developed successfully with a medium range of temperatures (30–41°C) for safe drying of heat sensitive crops. Dehumidification system of the developed heat pump dryer (HPD) maintained the relative humidity (RH) of air entering the drying chamber below 40%. The inlet drying air temperature decreased during early hours of drying followed by rapid rise between the 2nd and 10th h, after which the temperature was almost stable. The RH of i...

  19. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  20. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  1. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NOx, and comparable CO2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NOx production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NOx production from electric heat pumps. Gas engine heat pumps produce about one-half CO2 compared to electric heat pumps

  2. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  3. Capillary-Pumped Heat-Transfer Loop

    Science.gov (United States)

    1989-01-01

    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  4. Heat pump R and D at Oak Ridge National Laboratory

    Science.gov (United States)

    Ellison, R. D.; Creswick, F. A.

    Heat pump system and component performance evaluations at steady state and under frosting conditions are described. A computer model of electric motor driven heat pumps was developed to explore the practical limits of steady-state heating efficiency of conventional air-source heat pumps, and to demonstrate an approach to computer-aided heat pump design techniques. Scoping calculations of alternative heat pump systems, such as aircycle heat pumps and electric motor driven Stirling heat pumps are presented. Computer programs were written to model the expected performance of vertical-pipe ground-coupled heat exchangers, and for the detailed performance analysis of air-to-refrigerant heat exchangers with complex refrigerant circuiting by calculating the performance of each tube of the heat exchanger individually. Seasonal performance factors for air-source heat pumps using hour-by-hour calculations with empirical temperature dependent degradation factors were estimated.

  5. Some comments on air source heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Haukaas, H.T. (Norges tekniska hoegskola, Trondheim (Norway)). Institutt for kuldeteknikk

    1982-02-01

    Some vital conditions regarding air/water heat pumps are analyzed by use of computer simulators of a middle sized heat pump system. Heat pumps, and specially air source units, should always be used in combination with conventional heating equipment for peak load supply. (Bivalent systems). The economic optimum heat pump capacity compared to system design load is strongly related to the climate. At typical coastal conditions a ratio of 60-70 per cent is found favourable, while 40-50 per cent will be the correct choice for Norwegian inland area. Analysis of the evaporator shows that it should be designed for 120-130 W/m/sup 2/ specific load and 2-2.2 m/s inlet air velocity, which is well below common practice in designing standard air coolers. The condenser LMTD (logaritmic mean temperature difference) should be chosen about 4 degrees C, while the corresponding 'sellers optimum' is calculated to app. 8.5 degrees C. The difference in total heating costs between systems fully designed according to 'sellers optimum' and 'buyers optimum' respectively is found to be about 0.01 Nkr/kWh.

  6. Heat pumps and technological innovation: Civil use in 80's (2nd part)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1990-10-01

    Absorption heat pumps have rapidly spread as prototypes in machines used over the year with an excellent power performance. Developments concerning engines are also interesting, mainly in the light of a fresh interest for the Stirling. Research in the field of substances is considerable, both to find more suitable substances from a thermodynamic point of view and to replace chlorofluorocarbons which endanger the ozone layer. Important developments have also occurred in the recovery of heat build-ups in the ground and in roofs as sources for heat pumps, whereas, in some countries, more attention is paid to the use of heat pumps for district heating.

  7. Analyzis of exhaust air-source heat pump

    OpenAIRE

    Strautnikas, Jonas

    2014-01-01

    First there are heat losses calculations to find out needed amount of the energy for heating purposes. Then it is analized an exhaust air-source heat pump. Calculated annual electricity energy consumption and annual costs of the exhaust air-source heat pump. In the end it is compared two different heat pumps. Found out which (exhaust air-source or ground source) heat pump consumes less electricity energy consumption.

  8. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2012-10-01

    Full Text Available The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require energy. Needless to say food industry plants constantly seek ways to improve their energy efficiency such as the reintroduction of waste heat into the technology and the use of renewables. Heat recovering heat exchangers are used in the pasteurisation technology of milk. In case of lower temperatures, however, simple heat exchangers are of no use. Few practical examples of heat recovery obtained upon cooling products or raw materials exist in the food industry even though the possibility of this is available using heat pumps. Heat pumps have been successfully applied to heat apartments with thermal energy recovered from the cooling of soils, water or air or to utilise the excess heat of thermal spring waters. Our present article introduces the application possibility in a soda water plant, fundamentally determining the quality of soda water and showing an example of rational utilisation.

  9. Aggregated Control of Domestic Heat Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work an aggregated control system using heat pumps in single family houses to help balancing the grid is investigated....... The control system is able to adjust the consumptions of the heat pump without affecting the comfort in the houses and uses this ability to shift the total consumption to hours with high wind energy production....

  10. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  11. Determination of absorption efficiency of side pumped Nd:YAG laser and effect of pumped polarization

    International Nuclear Information System (INIS)

    Three and four array side pumped diode lasers are considered for Nd:YAG rod. The pumped beams are designed to illuminate the rod symmetrically. The effect of P and S polarization on the rod absorption efficiency as a function of light illumination (slit width) is also calculated.

  12. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  13. Mass and Heat Transfer Enhancement of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.

  14. Practical and efficient magnetic heat pump

    Science.gov (United States)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  15. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  16. Manually operated elastomer heat pump

    Science.gov (United States)

    Hutchinson, W. D.

    1970-01-01

    Device consisting of a rotating mechanism, a frame with multiple wide bands of rubber, and a fluid bath, demonstrates the feasibility of a human operated device capable of cooling or producing heat. This invention utilizes the basic thermodynamic properties of natural rubber.

  17. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  18. Dual-stroke heat pump field performance

    Science.gov (United States)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  19. Heat pumps in industry: Pt. 1; Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M. (Padua Univ. (Italy). Ist. di Ingegneria Gestionale)

    1994-11-01

    Industrial heat pumps are reviewed, classifying them according to the way by which the working fluid is taken from the lower to the higher pressure: mechanical or thermal. Each group is further subdivided in closed and open cycle. The most recent technological developments are considered for each classification. (author)

  20. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vineyard, Edward Allan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-30

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  1. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  2. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  3. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    improvement in components, system and external preconditions. In the future it might be more interesting to use turbine driven heat pumps instead of electric motors. The absorption process is not considered to be an alternative to replace present heat pumps, but there is a certain niche where heat source and driving energy, considering temperature levels, are more suitable for district heating. A technique that seems to be an alternative to the compression cycle is a combination of compression and absorption. Using the media pair water and ammonia might be an interesting solution and should be compared to the alternative using carbon dioxide. A further study is recommended on this subject.

  4. Proceedings: Meeting customer needs with heat pumps, 1991

    International Nuclear Information System (INIS)

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  5. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix;

    2015-01-01

    is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one......This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  6. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinsin, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance results from a test house equipped with a parallel solar augmented heat pump system with off-peak storage and a utility interconnection back-up, are presented. The collector array consisted of 12 air heating flat plates with a 9 l/sec flow. Thermal storage was consigned to a 260 cu ft crushed limestone pebble bed, with an 8.8 kW heat pump used to draw heat from storage during off-peak hours and a 15 kW electrical resistance heater used to charge the pebble bed. Monitoring and data recording were carried out on all energy inputs and outputs of the systems, and a modified TRNSYS program was employed to model the system performance. The data indicate that although the system offered the possibility of reducing the utility capacity, the addition of the solar system did not significantly augment the performance of the heat-pump system, at least in terms of the cost of supplementary electricity.

  7. Magnetic heat pumping near room temperature

    Science.gov (United States)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  8. DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. R.

    2010-12-14

    This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

  9. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  10. Estimation of Power Efficiency of Combined Heat Pumping Stations in Heat Power Supply Systems

    OpenAIRE

    I. I. Matsko

    2010-01-01

    The paper considers realization of heat pumping technologies advantages at heat power generation for heat supply needs on the basis of combining electric drive heat pumping units with water heating boilers as a part of a combined heat pumping station.The possibility to save non-renewable energy resources due to the combined heat pumping stations utilization instead of water heating boiler houses is shown in the paper.The calculation methodology for power efficiency for introduction of combine...

  11. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    were identified and compared based on a thermodynamic analysis. The operational performance of the configurations were investigated at both local and system level considering different DH network temperatures, different fuels and different production technologies in the DH network. The analysis show...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... applicability of components causes a significantly increased cost at high temperature lifts, compared to the most competitive thermodynamic cycle. At high and medium temperature lifts cycle efficiencies of 45 - 50 % of the theoretical maximum (Lorenz cycle limit) can be achieved, whereas for low temperature...

  12. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode

    International Nuclear Information System (INIS)

    Highlights: • The work focuses on direct expansion ground source heat pumps in heating mode. • The evaporating process of the refrigerant fluid into boreholes is analyzed. • A method to design the direct expansion borehole heat exchangers is presented. • Direct expansion and the common secondary loop heat pumps are compared. • The comparison is carried out in terms of both borehole length and performance. - Abstract: Ground source heat pump systems represent an interesting example of renewable energy technology for heating and cooling of buildings. The connection with the ground is usually done by means of a closed loop where a heat-carrier fluid (pure water or a solution of antifreeze and water) flows and, in heating mode, moves heat from ground to refrigerant fluid of heat pump. A new solution is the direct expansion heat pump. In this case, the heat-carrier fluid inside the ground loop is the same refrigerant fluid of heat pump. This paper focuses on the energy performance of direct expansion ground source heat pump with borehole heat exchangers in heating mode, looking at residential building installations. For this purpose, the evaporating process of the refrigerant fluid inside vertical tubes is investigated in order to analyze the influence of the convective heat transfer coefficient on the global heat transfer with the surrounding ground. Then, an analytical model reported in literature for the design of common borehole heat exchangers has been modified for direct expansion systems. Finally, the direct expansion and common ground source heat pumps have been compared in terms of both total borehole length and thermal performance. Results indicate that the direct expansion system has higher energy performance and requires lower total borehole length compared to the common system. However, when the two systems are compared with the same mean fluid evaporating temperature, the overall length of the ground heat exchanger of the direct expansion heat

  13. A Numerical Study on System Performance of Groundwater Heat Pumps

    OpenAIRE

    Jin Sang Kim; Yujin Nam

    2015-01-01

    Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs) are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomia...

  14. NGTC`s natural gas heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Binet, M. [Natural Gas Technologies Centre, Boucherville, PQ (Canada)

    1996-12-01

    An overview of natural gas heat pumps and cooling systems evaluation projects carried out by the Natural Gas Technologies Centre (NGTC) in Boucherville, Quebec, was presented. Technological description of three natural gas engine-driven technologies were provided, as well as the results of laboratory and field tests. The residential sector was covered by the 3-ton York Triathlon heat pump, the commercial sector by the 10-ton Trico natural gas engine-driven condensing unit, and the institutional sector by 25-ton Carrier engine-driven rooftops. The York Triathlon heat pump showed a good performance at the given conditions, with an average COP of 1.29 in cooling mode and of 1.03 in heating mode. The Trico unit was fully instrumented at NGTC; performance testing will be carried out later in 1996. The Carrier rooftops showed performance levels below those of the manufacturer`s suggested characteristics, although user satisfaction with the comfort provided by the units was high. 7 refs., 9 figs., 3 tabs.

  15. Reflection of ground-source heat pump systems' application

    Institute of Scientific and Technical Information of China (English)

    ZHANGSuyun; LINZhenguo; WUXiangsheng; WUTian

    2003-01-01

    Ground-source heat pump system is an air-conditioning form of energy efficient and environment protection. This article introduced the forms of ground-source heat pump systems, analyzed the problems of ground-source heat pump systems in application in China, and put forward the solutions to these problems.

  16. Affordable Hybrid Heat Pump Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    TeGrotenhuis, Ward E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butterfield, Andrew [Jabil, St. Petersburg, FL (United States); Caldwell, Dustin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crook, Alexander [Jabil, St. Petersburg, FL (United States)

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  17. Solar heating and cooling with absorption refrigeration

    OpenAIRE

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  18. Potential of the heat pump; Potenziale der Waermepumpe

    Energy Technology Data Exchange (ETDEWEB)

    Flade, F. [Bundesverband WaermePumpe (BWP) e.V., Muenchen (Germany)

    2005-07-01

    Heat pumps have been around for years. They are a mature and economically efficient heating technology which will reduce primary energy consumption and CO2 emissions quickly and sustainably. In 2002, 251,000 million l of heating oil and 289,000 million cubic metres of gas were consumed for heating in Germany, which might have been greatly reduced with heat pumps. At a seasonal performance factor of 4.5 as is common in groundwater and ground source heat pumps, heat pumps will produce 40 percent less CO2 than gas-fuelled high-efficiency boilers. At 'normal' values of 3.5 which are more or less standard values for air-to-water heat pumps, CO2 emissions will be reduced by 30 percent. The heat pump is an ecologically effective and economically efficient alternative to conventional heating systems. (orig.)

  19. Advanced heat pumps and their economic aspects. The case for super heat pump

    International Nuclear Information System (INIS)

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  20. Phonon cooling by an optomechanical heat pump

    OpenAIRE

    Dong, Ying; Bariani, F.; Meystre, P.

    2015-01-01

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single pre-cooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  1. Phonon Cooling by an Optomechanical Heat Pump

    Science.gov (United States)

    Dong, Ying; Bariani, F.; Meystre, P.

    2015-11-01

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  2. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  3. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering the...

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  7. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  8. Advanced Design Heat PumpRadiator for EVA Suits

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  9. Research on ground heat exchanger of Ground Source Heat Pump technique

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-sheng; SUN You-hong; GAO Ke; WU Xiao-hang

    2004-01-01

    Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its pattems are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.

  10. The Effect of Temperature Reduction on Heat Pump Performance

    OpenAIRE

    Siaudvytis, Julius

    2016-01-01

    The Ground Source Heat Pumps (GSHP) in Finland are becoming a more and more popular way to provide buildings with necessary heat. This type of heat pump is usually installed as a main heat source, which covers the total heat demand for both Domestic Hot Water (DHW) and space heating. More challenging process is to heat up the DHW due to the higher temperatures required than for space heating. It leads to the relatively lower operational efficiency of the heat pumps. In order to improve th...

  11. Ground as a possible heat pump source

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. [Padova Univ. (Germany). Dipt. di Tecnica e Gestione die Istemi Industriali

    2001-06-01

    Heat pumps are devices that can increase the thermal level of heat taken from an available source. Their performances are usually very sensible to the temperatures. This is the reason why sources different from the outside air are welcome, since that source is thermally unfavourable. The ground is a possible very favourable source: temperature variations are damped in the ground so much the more deeper one descends. The variations are also delayed, so that in the coldest period one can find equality very good thermal levels. The two main used systems are: horizontal tubes at a depth between 0.8 and 1.5m and vertical tubes. This last technology has gained an increasing popularity with depths which are sometimes deeper than 100m. It interests a large volume of ground with a comparatively small surface area. It is a technology already widespread in Switzerland (where more than 15.000 ground heat pumps were installed in these years), Germany and Austria. It could be a very favourable technology also in Italy and other mediterranean countries both for the presence of good thermal levels underground with excellent characteristics of heat exchange and for the possible use of the ground as a suitable summer thermal sink. (orig.)

  12. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  13. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  14. Thermodynamic efficiency of pumped heat electricity storage.

    Science.gov (United States)

    Thess, André

    2013-09-13

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400 °C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES.

  15. Carbon dioxide heat pump for dual-temperature drinking fountain

    Institute of Scientific and Technical Information of China (English)

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  16. Heat pump assisted drying of agricultural produce—an overview

    OpenAIRE

    Patel, Krishna Kumar; Kar, Abhijit

    2011-01-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser...

  17. Optimization of heat pump using fuzzy logic and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  18. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  19. Chemical dehumidification and heat recovery: Open-cycle heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F. (Padua Univ. (Italy). Ist. di Fisica Tecnica)

    1992-02-01

    This article examines an open-cycle heat pump based on a stacked column working with an absorbing solution. The column treats both the expelled air and the fumes generated by the combustion of the methane feeding the solution regenerator. The system is quite easy: it consists of a stacked column, a regenerator with its condenser and four heat exchangers. A simulation - based on a 12kW charge with a 1000 kg/h air exchange - proved that it is possible to obtain an REP higher than 1.5.

  20. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  1. Demand flexibility from residential heat pump

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;

    2014-01-01

    Demand response (DR) is considered as a potentially effective tool to compensate generation intermittency imposed by renewable sources. Further, DR can instigate to offer optimum asset utilization and to avoid or delay the need for new infrastructure investment. Being a sizable load together...... with high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...... price based scheduling followed by a demand dispatch based central control and a local voltage based adaptive control, to realize HP demand flexibility. Two-step control architecture, namely local primary control encompassed by the central coordinative control, is proposed to implement...

  2. Profile: Department of Refrigeration and Heat Pump Technology

    OpenAIRE

    Sluis, S.M. van der

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for generating, distributing and using reftigeration; — heat pumps for heating purposes and industrial processes.

  3. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  4. Absorption air conditioning press kit: natural gas air conditioning - market shows Gaz de France's falling back, technologies - absorption heat pumps are coming to France, heat recovery - free energy for a waste processing facility, natural gas air conditioning - ideal temperature in the departments of a supermarket, teaching - an absorption machinery in a college of Marseille; Dossier Absorption: clim au gaz - le marche accuse le repli de gaz de France, technologies - les pompes a chaleur a absorption arrivent en France, recuperation de chaleur - de l'energie gratuite pour un centre de traitement des dechets, climatisation au gaz naturel - temperature ideale dans les rayons d'un supermarche, enseignement - une machine a absorption dans un lycee de Marseille

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, J.; Maes, P.

    2005-03-01

    The reorganization of Gaz de France (GdF) company (the former historical French gas utility) in the framework of the opening of energy markets has deeply changed the natural gas air conditioning sector. The professionals now have to promote this solution without the active sustain of GdF. The natural gas air conditioning technologies should develop in Europe in the coming years. The electricity prices and the necessity to reduce the summer consumption play in favor of natural gas. The ability of absorption air conditioning to valorize various heat sources is in good agreement with the sustainable development prospects and is one of the promotion way chosen in France by absorption equipment retailers. This press kit about absorption air conditioning systems comprises 5 articles dealing with: the natural gas air conditioning market in France, the start-up of absorption heat pumps commercialization in France, the in-situ valorization of wood wastes for the space heating and air conditioning at the municipal waste sorting facility of Plantaurel (Ariege, France), the natural gas air conditioning of a supermarket in Gap (Southern Alps, France), and a pedagogical gas air-conditioning facility in a technical college of Marseille (France). (J.S.)

  5. Refrigerant charge management in a heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  6. EVALUATION AND OPTIMIZATION RESEARCH OF GROUND SOURCE HEAT PUMP

    OpenAIRE

    Zhou, Taian

    2011-01-01

    Nowadays energy efficiency and environmental protection have got particular attention. After the sustainable development theory had been put forward decades ago. Ground source heat pump with air conditioning system has pointed out a new way for saving energy as well as reducing air pollution and carbon emission. This thesis describes the theories of ground source heat pump and lists the differences between ground source heat pump with air conditioning system and other air conditioning sy...

  7. Green Technology Applying Heat Pump Drying, Modelling and Simulation

    OpenAIRE

    Mukhatov, Kirill

    2014-01-01

    This work has focused on the development of atmospheric freeze and non-freeze drying applying a heat pump system as an environmental friendly and economically preferable technology compare to vacuum freeze drying. The main reason of the research is a lack of knowledge and information in the literature about the atmospheric heat pump drying, while the more common vacuum freeze drying process is widely covered.The main objective for developing atmospheric heat pump drying as a new drying techno...

  8. Potential and limits of sodium hydroxide as an additive to the binary system ammonia/water in absorption heat pumps; Potenzial und Grenzen von Natriumhydroxid als Zusatz zum Stoffpaar Ammoniak/Wasser in Absorptions-Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kotenko, Oleksandr; Moser, Harald; Fenzl, Thomas; Rieberer, Rene [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik

    2011-07-01

    Several authors proposed the use of sodium hydroxide (NaOH) as an additive to the ammonia/water working fluid mixture (NH{sub 3} / H{sub 2}O), especially in solar air conditioners. Measured vapour-liquid equilibrium data of this tertiary mixture are found in the relevant literature. Thermodynamic calculations carried out with these data show that the efficiency (COP) will be enhanced in theory while the rectification time will decrease. To verify these theoretical considerations and to gain practical experience with the tertiary mixture NH{sub 3} / H{sub 2}O / NaOH, a test stand was constructed at the Institut fuer Waermetechnik, and measurements were carried out on the mixture NH{sub 3} / H{sub 2}O, i.e. without NaOH, and with 5% NaOH. The technical feasibility of the process was established, although NaOH depositions in the refrigerating circuit caused operational disturbances, so that the mixture had to be renewed regularly and the plant had to be flushed with water. The expected efficiency improvement was not observed. Analyses using ''ASPEN Plus'' showed that this was the result of lower absorber efficiency, which may be due to the higher circulation rate and higher viscosity of the working fluid mixture. Measurements showed a moderate improvements of heat transfer in the expeller after addition of NaOH; no effects were found in the evaporator, solvent heat exchanger and rectification column. The findings suggest that fast implementation of NH{sub 3} / H{sub 2}O / NaOH-AWP is not realistic. Considerable research and development will still be required for optimisation of the absorber for operation with NaOH. [German] Die Verwendung von Natriumhydroxid (NaOH) als Zusatz zum Arbeitsstoffgemisch Ammoniak / Wasser (NH{sub 3} / H{sub 2}O) wurde von verschiedenen Autoren insbesondere fuer das Anwendungsgebiet der solaren Klimatisierung vorgeschlagen. In der einschlaegigen Literatur wurden gemessene Dampf-Fluessig-Gleichgewichts-Daten von diesem

  9. Heat Pump Clothes Dryer Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  10. Performance analysis of ground source heat pumps for buildings applications

    OpenAIRE

    Omer, Abdeen Mustafa

    2012-01-01

    Geothermal heat pumps (GSHPs), or direct expansion (OX) ground source heat pumps, are a highly efficient renewable energy technology, which uses the earth, groundwater or surface water as a heat source when operating in heating mode or as a heat sink when operating in a cooling mode. It is receiving increasing interest because of its potential to reduce primary energy consumption and thus reduce emissions of GHGs. The main concept of this technology is that it utilises the lower temperature o...

  11. Model Based Diagnosis of an Air Source Heat Pump

    OpenAIRE

    Alfredsson, Sandra

    2011-01-01

    The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a heat source, for example water, air, or ground. In the air source heat pump that has been studied during this master thesis, a refrigerant exchanges heat with the outdoor air and with a water distribution system. The heat pump is controlled through the circuit containing the refrigerant and it is therefore crucial that this circuit is functional. To ensure this, a diagnosi...

  12. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  13. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  14. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [ENVIRON; Yavuzturk, Cy [University of Hartford; Pinder, George [University of Vermont

    2015-04-15

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  15. Heat pump assisted drying of agricultural produce-an overview.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, Abhijit

    2012-04-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser), and a compressor, which are connected by using copper tubes. In this paper we also provided a review discussion on different type of heat pump assisted drying system ready for remarkable and commercial use in different type of food industries. Here we also have given some major advantage and disadvantage of heat pump assisted drying.

  16. Solar/gas Brayton/Rankine cycle heat pump assessment

    Science.gov (United States)

    Rousseau, J.; Liu, A. Y.

    1982-05-01

    A 10-ton gas-fired heat pump is currently under development at AiResearch under joint DOE and GRI sponsorship. This heat pump features a highly efficient, recuperated, subatmospheric Brayton-cycle engine which drives the centrifugal compressor of a reversible vapor compression heat pump. The investigations under this program were concerned initially with the integration of this machine with a parabolic dish-type solar collector. Computer models were developed to accurately describe the performance of the heat pump packaged in this fashion. The study determined that (1) only a small portion (20 to 50 percent) of the available solar energy could be used because of a fundamental mismatch between the heating and cooling demand and the availability of solar energy, and (2) the simple pay back period, by comparison to the baseline non-solar gas-fired heat pump, was unacceptable (15 to 36 years).

  17. Recent advances in magnetic heat pump technology

    Science.gov (United States)

    Uherka, Kenneth L.; Hull, John R.; Scheihing, Paul E.

    Magnetic heat pump (MHP)/refrigeration systems, incorporating state-of-the-art superconducting magnet technology, were assessed for industrial applications ranging from the liquefaction of gases (20 K to 100 K range) to cold storage refrigeration for food preservation (250 K to 320 K range). Initial market penetration of MHP technology is anticipated to occur in the gas liquefaction sector, since the performance advantages of magnetic refrigeration cycles relative to gas compression cycles and other conventional systems are more pronounced in the lower temperature ranges. Design options for rotary MHP devices include alternative regeneration schemes to obtain the temperature spans necessary for industrial applications. The results of preliminary design assessment studies indicate that active magnetic regenerator concepts, in which the magnetic working material also serves as the regenerative medium, offer advantages over alternative MHP designs for industrial applications.

  18. Norwegian participation in the IEA Heat Pump Programme Annex 34 - final report

    Energy Technology Data Exchange (ETDEWEB)

    Nordtvedt, S.R.

    2012-07-01

    This report is the Norwegian team contribution to Task A within the IEA Heat Pumps Programme Annex 34 on #Left Double Quotation Mark#Thermally driven heat pumps#Right Double Quotation Mark#. It aims to give an overview of the thermally driven heat pump (TDHP) and chiller (TDC) market, recent developments in the area of TDHP and TDC, as well as to give an outlook of the progress of this technology. There are no Norwegian manufacturers on the TDHP market. There are only seven existing thermally driven absorption system installations in Norway. Three are district heat driven water/LiBr chillers, one is a steam driven water/LiBr chiller, one water/LiBr heat pump for flue gas condensation in a wood chip heating unit, and two gas driven ammonia-water chillers. The future market for thermally driven heat pumps and chillers in Norway is expected to be in combination of biomass, district heat or waste heat. (Author)

  19. On side refrigerant measurement of heat pump seasonal performances

    OpenAIRE

    Tran, Cong-Toan; Rivière, Philippe; Marchio, Dominique; Arzano-Daurelle, Christine; Coevoet, M.

    2011-01-01

    Heat pump systems have become very popular for space heating in the residential sector in Europe. However, there is no data available on the in situ seasonal heating performances of air-to-air heat pumps. This is due to the difficulty of measuring their thermal capacity on field over a long period. Several methods relying on air flow rate and enthalpy measurements are being considered for in-situ measurement for air-to-air heat pumps. But accuracy and reliability of these methods are still un...

  20. Ground coupled solar heat pumps: analysis of four options

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.

    1981-01-01

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  1. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  2. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  3. Performance Comparison of Hydronic Secondary Loop Heat Pump and Conventional Air-Source Heat Pump

    OpenAIRE

    Bell, Ian; Braun, James

    2012-01-01

    In residential heat pump systems, the motivation for secondary loop systems is to allow for the use of flammable or toxic refrigerants with lower global warming potentials than the currently employed HFC refrigerants. The addition of radiant panels as integral building components (embedded in concrete at construction or attached to the underside of wood flooring) is becoming more common. Combining the large surface area of the radiant panel and an efficient primary loop, a hydronic secondary ...

  4. Harnessing geothermal energy with heat pumps : a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Arisi, J.A. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Dept. of Civil Engineering

    2009-07-01

    Fossil fuel combustion emits large amounts of greenhouse gases (GHGs) into the atmosphere. Renewable fuel sources that do not have a negative impact on the environment are needed to reduce the risk of climatic change. This abstract discussed recent research related to geothermal energy. Two types of geothermal energy were investigated: (1) deep underground heat using turbines to produce electricity; and (2) shallow depth heat using heat pumps to provide space heating. A review of recent research on shallow depth heat harnessing was presented. The costs and GHG emission reductions related to the installation of a geothermal heat pump system for space heating were also discussed.

  5. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  6. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  7. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo......An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...

  8. Heat pumps in Denmark - From ugly duckling to white swan

    DEFF Research Database (Denmark)

    Nyborg, Sophie; Røpke, Inge

    2015-01-01

    into the electricity system via, among other things, intelligent interoperation with domestic heat pumps, which consume the 'green' electricity. Unfortunately, recent years' sales of heat pumps have been disappointing. Several studies have investigated the 'dissemination potential' of heat pumps in Denmark, primarily......Over the last 10 years, the smart grid and heat pumps have increasingly gained attention in Denmark as an integral part of the low carbon transition of the energy system. The main reason being that the smart grid enables the integration of large amounts of intermittent wind energy...... through conventional market research approaches. However, there is clearly a lack of studies that take a more socio-technical approach to understanding how technologies such as the heat pump develop and how they come to have a place in society as a result of contingent, emergent and complex historical...

  9. History of heat pumps - Swiss contributions and international milestones

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, M.

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  10. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  11. Heat pumps in nursing homes; Warmtepompen in verzorgingshuizen

    Energy Technology Data Exchange (ETDEWEB)

    Dieleman, M. [Erbeko raadgevende ingenieurs, Hilversum (Netherlands)

    1996-04-01

    The most important options for the sector nursing homes to save 20-30% energy are the combined generation of heat and power (CHP or cogeneration) and the use of heat pumps. Cogeneration is cost-effective for a natural gas consumption of 200,000 m{sup 3} per year. The heat pump is a good option for both small and large nursing homes. 2 tabs.

  12. Efficiency of heat pump ventilation and water heating system in an indoor swimming pool

    OpenAIRE

    Безродний, Михайло Костянтинович; Кутра, Дмитро Сергійович; Морощук, Олександр Олександрович

    2014-01-01

    The thermodynamic efficiency of the heat pump ventilation and water heating system of indoor swimming pool with partial exhaust air recirculation and heat pump bypass is analyzed in the paper. The purpose of the work is to determine the system efficiency depending on the change of fresh supply air temperature, ventilation system intensity and heat pump bypassing factor. As a result of implementing the developed mathematical model using the method of successive approximations, dependences of t...

  13. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  14. Sorption heat pumping technologies: Comparisons and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, F. [Technische Universitaet Berlin, Institut fuer Energietechnik, KT 2, Marchstrasse 18, D-10587 Berlin (Germany)

    2009-06-15

    Heat pumping devices which are operating on sorption effects comprise at least two times two categories, namely liquid or solid sorption cycles on the one hand, and open or closed cycles on the other hand. For the benefit of energy saving and the environment as well as for the further development of the technology it is important to be able to compare and evaluate these options in the context of the respective application. Some ideas to this end are shown in this paper. First the meaning of temperatures and humidity for the difference between open and closed systems is discussed, and there are a lot of similarities. Then some differences between solid and liquid sorption which are especially important for the question of minimum operating temperature and part load behavior are being reviewed, and we find that there is something to learn, mutually. Finally the consequences of solar fraction, auxiliary power consumption, and cogeneration efficiency are being highlighted, in order to check the perception of sorption systems to be environmentally benign. These consequences are important for all kinds of sorption cooling systems. It can be expected that there are significant improvements in the efficiency of power plants and compression cooling systems; consequently we find that sorption technology must improve its performance considerably also in order to stay competitive. (author)

  15. Ground-source Heat Pump Barometer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The double whammy dealt by the economic crisis and housing slump has stifled expansion of the ground-source heat pump market in many European countries. The European Union market contracted for the second year running (by 2.9% between 2009 and 2010), and this despite the fact that more than 100,000 units were sold over the twelve-month period, taking the number of installed units past the one million mark. [French] La crise economique ainsi que la crise immobiliere qui touchent de nombreux pays europeens ne facilitent pas l'essor du marche de la pompe a chaleur geothermique. Pour la deuxieme annee consecutive, le marche de l'union europeenne est en baisse (-2,9 % entre 2009 et 2010). il parvient tout de meme a se maintenir au-dessus des 100 000 unites vendues par an, ce qui lui permet de depasser pour la premiere fois le cap du million d'unites installees.

  16. The Feasibility Analysis of Wastewater Source Heat Pump Using the Urban Wastewater Heat

    OpenAIRE

    Yaxiu Gu; Huqiu Deng

    2012-01-01

    There is a large potential in the heat losses from the urban wastewater. By integrating a heat pump to utilize this heat, we can produce a higher temperature heat supply while maintaining a low temperature-lift requirement. This leads to the possibility of directly regenerating the hot water supply through wastewater heat recovery. Based on the plan of Xi’an urban Wastewater Source Heat Pump (WWSHP) system, the discussion and summary about wastewater characteristic parameters were made accord...

  17. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    OpenAIRE

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the si...

  18. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  19. Simulation of a micro heat pump cycle / Martin van Eldik

    OpenAIRE

    van Eldik, Martin

    1998-01-01

    The purpose of this study was to develop a thermal cycle simulation for a micro heat pump. A feature of the simulation is that it can simulate the four qasic components in detail, based on fundamental principles. The product of this study is a simulation routine which can be used as a design tool for micro heat pumps as well as its individual components. Experimental tests were conducted on an existing R-134a micro heat pump.and the results were successfully used to verify the simulation rout...

  20. Stochastic pumping of heat: approaching the Carnot efficiency.

    Science.gov (United States)

    Segal, Dvira

    2008-12-31

    Random noise can generate a unidirectional heat current across asymmetric nano-objects in the absence (or against) a temperature gradient. We present a minimal model for a molecular-level stochastic heat pump that may operate arbitrarily close to the Carnot efficiency. The model consists a fluctuating molecular unit coupled to two solids characterized by distinct phonon spectral properties. Heat pumping persists for a broad range of system and bath parameters. Furthermore, by filtering the reservoirs' phonons the pump efficiency can approach the Carnot limit.

  1. Thermodynamic analysis of geothermal heat pump during the cold season

    Science.gov (United States)

    Dumitrașcu, G.; Dumencu, A.; Horbaniuc, B.; Atanasiu, M. V.

    2016-08-01

    The paper is analysing the performances (COP, power and, heating heat rate function of time) for a ground-coupled heat pump that is used to heat a space during winter, for a period of 180 days. The analysis purpose is to evaluate the time based changes in values of COP and, energy transfers of a geothermal heat pump, considering a scenario for the variation of the ambient temperature in time and an analytical solution for the time dependence of the soil one. The temperatures and the energy transfer rates were determined on the basis of the irreversible entropy balance equation.

  2. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... cost increasefor the climate zones arise mainly due to a varying number of operating hours.Absolute cost increase is considerable in the average and especially colder climate zoneand can only partly be reduced by enlarging the evaporator.© 2014 Elsevier Ltd and IIR. All rights reserved....

  3. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  4. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian;

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  5. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    Driving a ground source heat pump in a central heating system with the minimum power consumption is studied. The idea of control is based on the fact that, in a heat pump, the temperature of the forward water has a strong positive correlation with the consumed electric power by the compressor. Th...

  6. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    Flue gas condensing is often both a technically and economically efficient method to increase the thermal efficiency in a plant using fuels with high moisture and/or high hydrogen content. The temperature of the return water in district heating systems in Sweden is normally 50 deg C, which gives quite high efficiency for a flue gas condenser. The flue gas after the flue gas condenser still contains energy that to some extent can be recovered by a combustion air humidifier or a heat pump. The object of this project is to technically and economically analyse flue gas condensing with heat pump. The aim is that plant owners get basic data to evaluate if a coupling between a flue gas condenser and a heat pump could be of interest for their plant. With a heat pump the district heating water can be 'sub cooled' to increase the heat recover in the flue gas condenser and thereby increase the total efficiency. The project is set up as a case study of three different plants that represent different types of technologies and sizes; Aabyverket in Oerebro, Amagerforbraending in Copenhagen and Staffanstorp district heating central. In this report a system with a partial flow through the condenser of the heat pump is studied. For each plant one case with the smallest heat pump and a total optimization regarding total efficiency and cost for investment has been calculated. In addition to the optimizations sensitivity analyzes has been done of the following parameters: Moisture in fuel; Type of heat pump; Temperature of the return water in the district heating system; and, Size of plant. The calculations shows that the total efficiency increases with about 6 % by the installation of the heat pump at a temperature of the return water in the district heating system of 50 deg C at Aabyverket. The cost for production of heat is just below 210 kr/MWh and the straight time for pay-off is 5,4 years at 250 kr/MWh in heat credit and at 300 kr/MWh in basic price for electricity. The

  7. Geothermal Heat Pump Profitability in Energy Services

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-11-01

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  8. Exploring heating performance of gas engine heat pump with heat recovery

    Institute of Scientific and Technical Information of China (English)

    董付江; 刘凤国; 李先庭; 尤学一; 赵冬芳

    2016-01-01

    In order to evaluate the heating performance of gas engine heat pump (GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed (1400−2600 r/min), ambient air temperature (2.4−17.8 °C) and condenser water inlet temperature (30−50 °C). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance (COP) and system primary energy ratio (PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 °C to 17.8 °C, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 °C to 50 °C. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.

  9. Field Monitoring Protocol. Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  10. Solar assisted heat pumps: A possible wave of the future

    Science.gov (United States)

    Smetana, F. O.

    1976-01-01

    With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.

  11. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    OpenAIRE

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian; Franck, M.L.

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts...

  12. Process integration and opportunity for heat pumps in industrial processes

    OpenAIRE

    Becker, Helen; Maréchal, François; Vuillermoz, Aurélie

    2009-01-01

    Process integration methods allow one optimizing industrial processes. The main goals are decreasing energy demand and operating costs as well as reduction of pollutants emissions. High fuel costs promote installation of heat pumps. In a heat pump process waste energy is valorized by electrical power to produce higher quality energy. That is used to satisfy a part of the process demand so that less fuel is required and CO2 emission will decrease. This paper presents a methodology, based...

  13. Experimental research on a CFCs free thermally activated heat pump

    International Nuclear Information System (INIS)

    This paper deals with test results of a new type of Thermally Activated Heat Pump (TAHP) based on the highly efficient Vuilleumier cycle using helium gas as its refrigerant and natural gas as fuel of its external system. These test results show that, in addition to being CFCs free, this heat pump brings about lower CO2 and NOx emissions. (TEC). 7 figs., 6 refs

  14. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  15. Fundamental optimal relation of a generalized irreversible Carnot heat pump with complex heat transfer law

    Indian Academy of Sciences (India)

    Jun Li; Lingen Chen; Fengrui Sun

    2010-02-01

    The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.

  16. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  17. Feasibility analysis of heat pump dryer to dry hawthorn cake

    International Nuclear Information System (INIS)

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  18. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C., E-mail: wdechang@163.com [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Zhang, G.; Han, Y.P.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2011-08-15

    Highlights: {yields} A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. {yields} Low drying temperature and high COP of heat pump are obtained in drying beginning. {yields} HPD is more effective, economic than a traditional hot air dryer. {yields} Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  19. Hydrodynamic performance and heat generation by centrifugal pumps.

    Science.gov (United States)

    Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S

    2006-11-01

    For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals of some commercially-available pumps, is the use of the pump outside the allowable operating

  20. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  1. 燃气蒸汽联合循环与吸收式热泵的综合应用研究%Integrated Application for Gas-Steam Combined Cycle and Absorption Heat Pump

    Institute of Scientific and Technical Information of China (English)

    史明闯; 余晓明; 朱祥政; 张晓; 雷会玉

    2015-01-01

    与普通蒸汽轮机相比,燃气轮机在节能环保方面更具优势。尤其是燃气-蒸汽联合循环越来越受到重视。分析了热泵系统和联合循环系统,对热电联供系统进行了能量分析,最后通过案例分析得出结论:以天然气为燃料的热电联供系统能够减少环境污染,提高能量利用率,对我国节能低碳事业有重要意义。%Compared with the ordinary steam turbine, gas turbine has more advantage in energy conservation and environmental protection. Especially the gas-steam combined cycle has been paid more and more attention. This paper introduced the heat pump system and combined cycle system, and analyzed the energy relationships of the cogeneration system. In conclusion, cogeneration systems driven by gas can reduce environmental pollution and improve the energy utilization, and it has vital significance to the energy-saving and low carbon cause in China.

  2. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  3. Utilization of heat pumps in the brown coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Strehlau, R.

    1981-09-01

    This paper points out fields for possible energy recovery by heat pumps in the area of brown coal surface mines. It is stated that surface mine ground water from a depth of 80 m has a constant temperature of 10 to 11 C. The theoretical heat content of cooling 170,000 m/SUP/3/h of drainage water of all GDR surface mines from 10 C to 5 C is calculated to amount to 9 million MWh. Research is therefore being conducted on recovering heat from mine drainage and mine surface waters for use as space heating in buildings and installations of surface mines, which are at present electrically heated. Further sources of heat which are being examined for possible heat pump employment are heat generating plants and large surface mine machinery. Studies have been carried out by TAKRAF on determining feasibility and economic benefit of using waste heat from engine and transmission mechanisms of heavy surface mining equipment. Results of a further study on utilizing waste heat from a large transformer station show that a direct heat recovery system is definitely more efficient than employing a heat pump system, but only in the case of a transformer average load higher than 60%. (2 refs.)

  4. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    OpenAIRE

    Moo-Yeon Lee; Jong-Phil Won; Chung-Won Cho; Ho-Seong Lee

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and vol...

  5. Study of a heat rejection system using capillary pumping

    Science.gov (United States)

    Neal, L. G.; Wanous, D. J.; Clausen, O. W.

    1971-01-01

    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.

  6. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  7. A test facility for air-source heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-09-01

    This report describes equipment for laboratory testing of heat pumps using outdoor-air as the heat source and water as the heat transfer medium on the condenser side. The testing equipment is designed to accommodate heat pumps with a maximum capacity of 15 kW thermal output, 8 kW of thermal input, and 6.6 kW electric input to the compressor (the total electric power input, including supplementary heat, may be a maximum of 21 kW). Water flowrates can be controlled within a range of 0-6 m{sup 3}/h using a variable speed pump. The testing equipment includes all the necessary equipment for circulation of the heating heat transfer medium (water) and the heat source heat transfer medium (air) as well as an intermediate heat transfer medium for indirect systems. There is also comprehensive equipment for the control of operational parameters and to accomplish measurements and data collection. For air circulation through the heat pump, however, fans are presumed to be included in the tested unit. Testing can either be performed manually or automatically, using a main-frame computer to control the test procedure. The equipment was designed in 1983 to comply with all the different test requirements according to the Swedish standard SS 2095 (a draft at that time) for testing of heat pumps as well as the corresponding German standards (DIN 8900). In retrospect, the design requirements proved sufficient also for the coming EN 255 standards. Operational experience indicates that in actual testing water inlet temperatures can be controlled within {+-}0.1 K and water flowrates within {+-}0.01 m{sup 3}/h. Temporal control of air inlet temperature is within 0.2 K and spatial deviations are typically within {+-} 0.3 K. Finally, exempting defrost periods, humidity control is within {+-} 0.5 K DPT. However, in many situations these figures may be considerably better. 13 refs, 25 tabs, 22 figs

  8. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures...

  9. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  10. Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump

    International Nuclear Information System (INIS)

    Highlights: • Thermodynamic modeling of a two-stage irreversible heat pump is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • 3 answers given by the decision-making methods selected. - Abstract: This research study mainly deals with a comprehensive thermodynamic modeling and thermo-economic optimization of an irreversible absorption heat pump. For the optimization goal, various objective functions are considered comprising the specific heating load, coefficient of performance (COP) and the thermo-economic benchmark (F). In order to specify the optimum design variables, non-dominant sorting genetic algorithm (NSGA) is applied satisfying some restrictions. In this optimization study, all three objective functions (e.g. COP, F and specific heating load) are maximized. In addition, decision making is carried out using three well-suited approaches namely LINAMP and TOPSIS and FUZZY. Finally, sensitivity analysis and error analysis are conducted in order to improve understanding of the system performance

  11. Monitoring and evaluating ground-source heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  12. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering...... the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the sink temperature of 120 °C. For each set of heat sink and source temperatures the best available technology...... was determined. The results showed that four different heat pump systems propose the best available technology at different parts of the complete domain. Ammonia systems presented the best available technology at low sink outlet temperature. At high temperature difference between sink in- and outlet...

  13. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  14. Heat-pump-centered integrated community energy systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    A Heat Pump Centered-Integrated Community Energy System (HP-ICES) concept was explored and developed that is based on use of privately owned ice-making heat pumps in each building or complex within a community. These heat pumps will provide all of the space heating, space cooling and domestic hot water needs. All of the community input energy required is provided by electrical power, thereby eliminating a community's dependence on gas or oil supplies. The heat pumps will operate in both air and water source modes, deriving performance advantages of both. The possible forms of an HP-ICES system, the technical and economic limitations, environmental impacts and other factors are discussed from a general viewpoint. The concept is applied to a specific planned community and its performance and economic features are examined in detail. It is concluded that the HP-ICES concept is technically viable, but that its economic desirability as compared with conventional heat pump systems is hampered by much higher initial costs, and that the economic feasibility of HP-ICES systems will depend on future fuel source costs and supply and on electric power rates. (LCL)

  15. Heating and cooling with ground-loop heat pumps; Heizen und Kuehlen mit erdgekoppelten Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Afjei, Th.; Dott, R. [Institut Energie am Bau, Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Huber, A. [Huber Energietechnik AG, Zuerich (Switzerland)

    2007-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the SFOE-project 'Heating and cooling with ground coupled heat pumps' in which the benefits and costs of a heat pump heating and cooling system with a borehole heat exchanger were examined. In particular the dimensioning of the hydraulic system, control concept and user behaviour are dealt with. The results of the simulations of thermal building behaviour with MATLAB/SIMULINK, CARNOT, and EWS are discussed. The results of parameter studies carried out, including varying shading, cooling characteristic curves, temperature differences in the heat exchanger and the dead time between heating and cooling mode are discussed. These showed that a simple system with heat pump and borehole heat exchanger for heating or preparation of domestic hot water as well as for passive cooling proved to be the best choice.

  16. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik;

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  17. Gas heat pump of the Labour Office of Ulm

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, A.

    Seven possibilities of heat generation, had been investigated for the new building of the labour Office of Ulm: petroleum boiler, gas boiler, electric heat pump, gas heat pump, electric and gas heat pump and boiler. Although a district heat connection would have been the cheapest and simplest solution the decision was made in favour of the possibility which would lead to the highest conservation rate of primary energy and thus to the lowest operating costs in the long term; a gas heat pump with a peak boiler. Two water-to-water aggregates of 174 resp. 152 kW of heat performance and a 389 kW gas boiler were installed in order to cover the total heat demand of 669 kW. Last not least the determining factor was that the building had been constructed in the lowlands of the Danube where plenty of ground water could be taken off without a well-boring plant and the cooled water could be fed into a canalized brook on the estate.

  18. Better or worse? Heat pumps; Wohl oder Weh? Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    With no other heating system as in the case of heat pumps, the energy efficiency depends on so many details. An investigation of the Fraunhofer Institute for Solar Energy Systems (Freiburg, Federal Republic of Germany) gives information about the best systems, common errors as well as important improvements.

  19. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  20. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  1. PERFORMANCE INVESTIGATION OF SLINKY HEAT EXCHANGER FOR SOLAR ASSISTED GROUND SOURCE HEAT PUMP

    OpenAIRE

    ÖZSOLAK, Onur; ESEN, Mehmet

    2014-01-01

    In the following study, 12 m2 test chamber was heated by solar and ground source heat pump under the physical conditions of Elazığ. In order to place slinky heat exchanger pipes, a hole was dug with 1 meter width, 2 meters depth and 15 meters length. Slinky pipes were put horizontally in the hole and water-antifreeze mixture was circulated with the circulating pump in the slinky heat exchanger. The heat taken from the ground was transferred into the environment to be heated through the heat p...

  2. Optimization of Heat Transfer Systems and Use of the Environmental Exergy Potential - Application to Compact Heat Exchangers and Heat Pumps

    OpenAIRE

    Canhoto, Paulo

    2012-01-01

    In this thesis, the optimization of forced convection heat sinks and groundwater-source heat pumps is addressed with the purpose of improving energy efficiency. Parallel ducts heat sinks are considered under constrained (fixed) pressure drop, pumping power and heat transfer rate. The intersection-of-asymptotes method is employed together with numerical simulations and relationships for determining optimum hydraulic diameter are put forward. An optimal design emerges under fixed heat transfer ...

  3. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  4. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  5. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  6. Heat pumps barometer - EurObserv'ER - September 2015

    International Nuclear Information System (INIS)

    Heat pumps have moved up the ranks of renewable energy - producing heating technologies since the mid-2000's. The EU Member States' individual market trends are characterised by the technologies used and their heating and cooling needs. More than 1.7 million systems were sold in the European Union in 2014. According to EurObserv'ER, several market factors were responsible for sales dipping slightly below their 2013 level of just under 2 million

  7. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    OpenAIRE

    Mahmoud Huleihil; Bjarne Andresen

    2010-01-01

    A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r) versus coefficient of performance (w). For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine ...

  8. Magnetocaloric heat-pump cycles based on the AF-F transition in Fe-Rh alloys

    Energy Technology Data Exchange (ETDEWEB)

    Annaorazov, M.P. E-mail: annaoraz@bahcesehir.edu.trannaoraz@hotmail.com; Uenal, M.; Nikitin, S.A.; Tyurin, A.L.; Asatryan, K.A

    2002-10-01

    The proposal involves a heat-pumping scheme based upon the first-order antiferromagnetism-ferromagnetism transition in FeRh alloy. Using the model S-T diagram for this alloy, the heat-pump cycles, are drawn up based on the transition latent heat absorption and emission when the transition is induced by applying magnetic field. The calculated values of heat coefficient {phi} for the cycles are {approx}39 at {delta}T=5 K and {approx}30 at {delta}T=10 K, where {delta}T is the difference between the temperature surrounding and that of the heat receiver. These values are achieved using the comparatively low magnetic fields of {approx}2x10{sup 6} A m{sup -1}. The high values of {phi}, together with high value of cooling capacity, make it possible to consider Fe-Rh alloys as an effective magnetic heat-pump working body near the room temperature.

  9. Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings

    OpenAIRE

    Chuduk, Svetlana

    2010-01-01

    In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case study is low-rise residential building in Finland with under floor heating as a single heating system. The calculations of main parameters of under floor heating system and length of ground heat exchanger are conducted. As a result the conclusion about reasonable of using the studying system for low-rise residential building in Finn...

  10. Miniature reciprocating heat pumps and engines

    Science.gov (United States)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  11. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  12. Heating performance of a ground source heat pump system installed in a school building

    Institute of Scientific and Technical Information of China (English)

    Jaedo; SONG; Kwangho; LEE; Youngman; JEONG; Seongir; CHEONG; Jaekeun; LEE; Yujin; HWANG; Yeongho; LEE; Donghyuk; LEE

    2010-01-01

    The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.

  13. Advances in heat pump assisted distillation column: A review

    International Nuclear Information System (INIS)

    Highlights: • This article reviews the heat pump assisted distillation (HPAD) technologies. • It covers the use of vapor recompression in both batch and continuous columns. • It identifies future challenges involved in HPAD schemes. - Abstract: Progressive depletion of conventional fossil fuels with increasing energy demand and federal laws on environmental emissions have stimulated intensive research in improving energy efficiency of the existing fractionation units. In this light, the heat pump assisted distillation (HPAD) scheme has emerged as an attractive separation technology with great potential for energy saving. This paper aims at providing a state-of-the-art assessment of the research work carried out so far on heat pumping systems and identifies future challenges in this respect. At first, the HPAD technology is introduced with its past progresses that have centered upon column configuration, modeling, design and optimization, economic feasibility and experimental verification for steady state operation. Then the focus is turned to review the progress of a few emerging heat integration approaches that leads to motivate the researchers for further advancement of the HPAD scheme. Presenting the recently developed hybrid HPAD based heat integrated distillation configurations, the feasibility of heat pumping in batch processing is discussed. Finally the work highlights the opportunities and future challenges of the potential methodology

  14. Heat Recovery in a Pasta Factory. Pinch Analysis Leads to Optimal Heat Pump Usage.

    OpenAIRE

    Staine, Frédéric; Favrat, Daniel; Krummenacher, Pierre

    1994-01-01

    In the previous issue of the IEA Heat Pump Centre Newsletter (Vol, 12, No.3, pp. 29-31), an article by these authors described the use of pinch analysis (also known as pinch technology) in a buildings application. This article describes a similar procedure for integrating a heat pump into a pasta production process. Many industrial processes, and particularly those dealing with drying, are characterized by an overabundance of low- grade heat which often cannot be effi...

  15. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    OpenAIRE

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  16. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    OpenAIRE

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.; Reinholdt, Lars; Elmegaard, Brian

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures. Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and...

  17. Microgravity heat pump for space station thermal management.

    Science.gov (United States)

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift. PMID:14632004

  18. Absorption-free optical pumping spin control with the quantum Zeno effect

    CERN Document Server

    Nakanishi, T; Kitano, M

    2002-01-01

    We show that atomic spin motion can be controlled by circularly polarized light without light absorption in the strong pumping limit. In this limit, the pumping light, which drives the empty spin state, destroys the Zeeman coherence effectively and freezes the coherent transition via the quantum Zeno effect. It is verified experimentally that the amount of light absorption decreases asymptotically to zero as the incident light intensity is increased.

  19. Air Conditioning in cold region and utilization of heat pump. Kanchi no danreibo to heat pump riyo

    Energy Technology Data Exchange (ETDEWEB)

    Ochifuji, N. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1990-02-02

    Hokkaido and Tohoku District being about four times and two times, respectively as large as all Japan in average quantity of fuel, used for the air heating, the buildings there, as structured thermally insulated and aerially tightened, must be of a high quality environment with ventilation, aerial cleanness, etc. From the viewpoint that the heat pump, as able to utilize the low density energy,is appropriate exactly for the air heating in such a cold district, the heat pump was introduced in principle, categories and characteristics, problems of thermal source, and recent topics. With highness in temperature level of existing thermal source and lowness in that of air heating, the heat pump is thermodynamically explainable to be high in coefficient of performance (ratio of added quantity of heat on the high temperature side to the input power from the exterior). It is therefore the most important to maintain high quantity thermal sources, generally such as air, water, soil and waste water. Artificial waste heat is thermal source, the most noticeable as that in the cold region for the future. For example, local air conditioning system, utilizing waste heat from the subway operation, in Sapporo Station is taken notice of for its worldwidely first materialization. 21 refs., 21 figs., 6 tabs.

  20. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    OpenAIRE

    Péter Korzenszky; Gábor Géczi

    2012-01-01

    The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require ...

  1. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    International Nuclear Information System (INIS)

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  2. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  3. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  4. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  5. Energy Factor Analysis for Gas Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R [ORNL

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  6. Development of a vapor compression heat pump for space use

    Science.gov (United States)

    Berner, F.; Savage, C. J.

    1981-06-01

    A heat pump is presently developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system. It is expected to feature a high coefficient of performance because its power requirement is minimized through continuous adjustment of two operating parameters of its vapor compression cycle, i.e., evaporator pressure and compressor speed, to the instantaneous cooling requirements and heat rejection conditions. The heat pump system will achieve the highest possible cooling rate as long as the temperature of the payload to be cooled is significantly above the desired level, and it will minimize the difference between actual and set heat source temperature when this difference has become small. The most complicated component of the heat pump is the reciprocating vapor compressor. This component's main features are described and its experimentally determined performance parameters are given. Based on these parameters, operating maps, showing achievable heat source temperatures and cooling rates with curves of constant power consumption included, are presented for different temperatures of the fluid to which the heat is rejected.

  7. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  8. Investigation of direct expansion in ground source heat pumps

    Science.gov (United States)

    Kalman, M. D.

    A fully instrumented subscale ground coupled heat pump system was developed, and built, and used to test and obtain data on three different earth heat exchanger configurations under heating conditions (ground cooling). Various refrigerant flow control and compressor protection devices were tested for their applicability to the direct expansion system. Undistributed Earth temperature data were acquired at various depths. The problem of oil return at low evaporator temperatures and low refrigerant velocities was addressed. An analysis was performed to theoretically determine what evaporator temperature can be expected with an isolated ground pipe configuration with given length, pipe size, soil conditions and constant heat load. Technical accomplishments to data are summarized.

  9. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  10. Heat pumps: planning, optimisation, operation and maintenance; Waermepumpen. Planung - Optimierung - Betrieb - Wartung

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, P. [Kunz-Beratungen, Dietlikon (Switzerland); Afjei, T. [Fachhochschule Nordwestschweiz, Institut fuer Energie am Bau, Muttenz (Switzerland); Betschart, W.; Prochaska, V. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland); Hubacher, P. [Hubacher Engineering, Engelburg (Switzerland); Loehrer, R. [Scheco AG, Winterthur (Switzerland); Mueller, A. [Mueller und Pletscher AG, Winterthur (Switzerland)

    2008-01-15

    This handbook issued by the Swiss Federal Office of Energy (SFOE) in co-operation with a trade publication takes a look at the planning, optimisation, operation and maintenance of heat pumps. First of all, the basics of heat pump technology, heat pump components and refrigerants are discussed. Then, heat sources and heat distribution are looked at, followed by chapters on the integration of heat pumps into heating systems and noise protection topics. The definition of projects, commissioning and operation of heat pump systems are then discussed. Examples of installations round off the handbook.

  11. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    OpenAIRE

    Zhiyong Yang; Li Zhu; Yiping Wang

    2011-01-01

    A solar assisted heat pump (SAHP) system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement resu...

  12. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...... air-clad structures may thus suppress the pump-absorption efficiency η below the ergodic scaling law η∞ Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively....

  13. Optimum Organization and Maximum Capabilities of Heat-Pump Heating Systems

    Science.gov (United States)

    Tsirlin, A. M.; Kuz‧min, V. A.

    2016-05-01

    The authors obtained a lower bound for the energy consumption in heating (maintaining an assigned temperature distribution in the system of intercommunicating chambers) and the corresponding distributions of the total heat-transfer coefficients and the temperature of the working medium of a heat pump in contact with the chambers and the environment.

  14. Dynamic modeling of an air source heat pump water heater

    OpenAIRE

    Fardoun, Farouk; Ibrahim, Oussama; Zoughaib, Assaad

    2011-01-01

    International audience This paper presents a dynamic simulation model to predict the performance of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic system components i.e. evaporator, condenser, compressor, and expansion valve. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model simulation was carried out u...

  15. Energy Consequences of Non-optimal Heat Pump Parameterization

    OpenAIRE

    Tejeda, Alberto; Milu, Anamaria; Riviere, Philippe; Marchio, Dominique

    2014-01-01

    The substitution of low-performance gas and fuel boilers by air to water electrical heat pumps is a solution to meet the energy challenge to reduce GHG dwellings emissions. Indeed, most dwelling emissions in Europe are due to heating and DHW generation with fossil fuels. Apart from low carbon emissions, high energy savings are expected from rated performances, but an AWHP may not deliver the expected efficiency because of a bad commissioning. Nowadays, these machines present a high number of ...

  16. Radio frequency assisted heat pump drying of crushed brick

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.G.; Metaxas, A.C. [University of Cambridge (United Kingdom). Electricity Utilisation Group

    1999-04-01

    This paper describes an experimental heat pump batch particulate dryer which has been combined with radio frequency (rf) energy, the latter being operated in a continuous pulsed mode. The results show several improvements resulting from the combination drying process. A simplified mathematical model of the dryer, including the rf heating source, has been developed using mass and energy conservation, which show good agreement with experimental results. (author)

  17. A novel radio frequency assisted heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.G.; Metaxas, A.C.

    1999-09-01

    This paper compares an experimental heat pump batch dryer with the implementation of volumetric Radio Frequency (RF) heating, in the combination drying of crushed brick particulate. Results are presented showing overall improvements in drying. A simplified mathematical drying model including the RF energy source has been developed using mass and energy conservation, confirming the experimental results. Drying is a widespread, energy intensive industrial unit operation. The economics of a drying process operation largely depend upon the dryers performance and ultimately the cost of energy consumption. To enhance the performance of a drying system, the damp air stream that exits the drying chamber can be recycled to reclaim the enthalpy of evaporation that it carries, by using a heat pump (Hodgett, 1976). However, because the medium that dries is still warm air, this system also suffers from heat transfer limitations, particularly towards the falling drying rate period. Such limitations in drying performance can be overcome with the use of Radio Frequency (RF) energy which generates heat volumetrically within the wet material by the combined mechanisms of dipole rotation and conduction effects which speeds up the drying process (Metaxas et al, 1983). Despite the clear advantages that heat pumps and high frequency heating offer for drying, the combination of these two techniques until recently has not been studied (Kolly et al, 1990; Marshall et al, 1995).A series of experiments carried out comprising a motor driven heat pump which was retro-fitted with the ability of imparting RF energy into a material at various stages of the drying cycle are described and compared with a mathematical model.

  18. Theoretical heating coefficient of a heat pump water heater with heat recovery applied in household bathing room

    Institute of Scientific and Technical Information of China (English)

    KOUGuangxiao; WANGHanqing; GUWeili; KOUJianguo

    2003-01-01

    Presents the components and flow diagram of a heat pump water heater with heat reclaim applied In household bathing room, analyzes its characteristics from thermodynamical principle, calculates its theoretical heating coefficient under different operating conditions. The result shows that the maximum value of its heating coefficient is 12.9 under a typical operating condition.

  19. Smart Depths: Geothermal Heat Pumps Design Manual

    NARCIS (Netherlands)

    Troian, S.

    2012-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. One of the possible ways for smart and sustainable designs is the use of geothermal energy for space heating. This manual explains the possible use in designs, the functioning and treats different systems.

  20. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    OpenAIRE

    Folasayo Fayose; Zhongjie Huan

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump ...

  1. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    Science.gov (United States)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  2. Heat pumping technologies in Sri Lanka: applications and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tharumaratnam, V.; Mendis, D.L.O. [Mini Well Systems (pvt) Ltd. (Sri Lanka)

    1998-09-01

    New applications of heat pumping technologies have been introduced in Sri Lanka. These include manufacture of made tea, drying fruits and vegetables, and drying coconut for manufacture of export quality copra. Tea has been the backbone of the export economy for many years, and only recently has it been overtaken by garment exports. It also accounts for a large amount of energy, in terms of electricity supplied from the national grid, biomass in the form of firewood, and petroleum products , chiefly diesel oil. It has been demonstrated in pilot scale commercial trials by the company that application of heat pumping technology reduces the cost of energy in manufacture of tea from about Rs 5 per kilogram of made tea to about Rs 3. Mobile drying units have been manufactured to demonstrate the application of heat pumping technology for drying fruits, vegetables and other agricultural produce on a commercial scale. This has resulted in considerable interest in the CISIR, the Industrial Development Board, and various private sector organizations. Application of heat pumping to drying coconut for manufacture of copra has been very successful. The quality of copra has been consistently supra-grade, since there is no contamination as in the traditional method of manufacture using biomass fuels in the form of coconut shells, which causes discolouration. (author)

  3. Maximizing Storage Flexibility in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.; Andersen, Palle

    2014-01-01

    To balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines will be a problem in the near future in Denmark. Smart grid solutions with new storage capacities are essential. In this work single family houses with heat pumps are investigated...

  4. Profile: Department of Refrigeration and Heat Pump Technology

    NARCIS (Netherlands)

    Sluis, S.M. van der

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for

  5. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  7. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  8. Geothermal Heat Pumps Score High Marks in Schools.

    Science.gov (United States)

    National Renewable Energy Lab (DOE).

    Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…

  9. EnergyPlus Air Source Integrated Heat Pump Model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  10. Simulation Based Assessment of Heat Pumping Potential in Non-Residential Buildings – Part 1: Modeling

    OpenAIRE

    Bertagnolio, Stéphane; Stabat, Pascal; Soccal, Benjamin; Gendebien, Samuel; Andre, Philippe

    2010-01-01

    1 Introduction A solution to reduce the energy consumption in office and health care buildings consist in better exploiting the potential of the heat pump technology. This can be done by recovering heat at the condenser when the chiller is used to produce cold (simultaneous heating and cooling demands) or by using the chiller in heat pump mode (non-simultaneous heating and cooling demands). Both strategies appear particularly feasible when cooling and heating needs and the heat pump techno...

  11. Multifunctional absorption technology in district heating systems; Absorptionsteknik med multifunktion i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria; Setterwall, Fredrik

    2010-05-15

    Within the framework of the IEA's implementing agreement on heat pumping technologies, a state-of-the-art assessment of absorption technology was presented the year 2000. There, barriers for increased implementation of absorption technology were pointed out as being the high investment cost, as well as lack of knowledge with engineers and other actors. The project presented herein has analyzed the situation ten years later, with a wide scope of using the absorption technology - from ice to steam production in a district energy system. The overall aim of the presented project is to provide new knowledge on the technical and economical possibilities of integrating multiple function absorption technology in district energy systems. Also, new knowledge on important design parameters for practical and cost-effective design is given, for example the influence of temperatures (heat source as well as heat sink) and desired COP. A combination of renewed state-of-the-art assessment and new calculations has been used to reach this goal. The state-of-the-art assessment show that the increased focus on combined heat and power (CHP) for resource-efficient energy conversion go hand in hand with an increased interest in thermally driven cooling (TDC) technology. This project has identified the following to be specifically district energy adapted in absorption cooling: - design for low return temperature of the heat carrier leaving the generator part - design for 'high enough' COP maintained at part load for heat source temperatures as low as 70 deg C. - cost minimization by optimal sizing of heat exchanger surfaces for district energy design criteria (as opposed to accepting 'off-the-shelf' designs intended for higher operating temperatures). The overall analysis and findings regarding trigeneration concludes that: a. a holistic view of the production of power, heat and cold should be adopted when considering absorption technology in district energy

  12. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  13. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    Science.gov (United States)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  14. Heating of super high vacuum system in the pumping out by the nitrogen forevacuum pump

    International Nuclear Information System (INIS)

    Highvacuum system training technology by heating at chamber pressures from atmospheric to 10 mm Hg provided with nitrogen condensation pump has been suggested and tested. The small chamber warm-up to 300 deg C for several hours with further pumping out by helium high vacuum pump results in attaining partial pressures of water vapours and hydrocarbons less than 10-11 mm Hg. Large chamber warm-up of 0.5 m3 volume at temperatures about 150 deg C decreases the level of degassing of surfaces locating in vacuum by water vapours and hydrocarbons down to values about 10-10 and 10-12 mm Hg l/s-1xcm-2 respectively. It is proposed to apply the given procedure of surface decontamination when pumping out of thermonuclear system chambers

  15. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Directory of Open Access Journals (Sweden)

    Аlla Е. Denysova

    2015-06-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.

  16. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  17. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    Science.gov (United States)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  18. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.;

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures...... for the coefficient of performance, COP. By comparing the cycles it is found that for each set of operating conditions the two refrigerants perform equally well at one given inlet temperature of the heat sink. Above this temperature ammonia cycles have the best COP and below CO2 cycles perform best. A general...

  19. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Science.gov (United States)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  20. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  1. Environmental Assessment of Ground Source Heat Pump Systems

    Science.gov (United States)

    Bayer, P.; Saner, D.; Juraske, R.; Kübert, M.

    2009-12-01

    Ground source heat pump systems (GSHPs) represent the most frequent geothermal application. Because of the economic and environmental benefits of GSHPs in comparison with other technologies for space-heating, cooling, and warm-water provision, an exponential growth rate for these systems is predicted for the coming decades. GSHPs are considered to have a low environmental impact. However, they are not fully renewable. Devices such as borehole heat exchangers have to be installed and maintained, and during operation a heat pump continuously consumes electricity from the grid. In order to assess the environmental benefits of such technologies, the complete life-cycle of all technological elements has to be examined. This life-cycle includes drilling, installation, operation and disposal phase of GSHP application, and all background process for device production, transport and power generation. This paper presents a comprehensive analysis of a GSHP life cycle. The environmental relevance of individual technological elements is rated for a number of environmental indicators, including CO2 savings potential, ozone layer depletion, soil ecotoxicological potential, and impacts on the local aquifer. The role of primary energy used for heat pump operation is discussed, and comparison is made with alternative conventional space-conditioning systems.

  2. Geothermal heat pumps, a booming technology in North America; Geothermal Heat Pumps - der Boom der oberflaechennahen Geothermie in Nordamerika

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften

    1997-12-01

    Over the last years, the interest in and the use of ground-source heat pumps has substantially increased in North America. In a market dominated by space cooling heat pumps can show clearly their advantages. This paper describes the development in Canada and USA, gives examples of the technologies used and presents some large plants. The differences to the Central European situation are discussed. Also mentioned are the various activities in market penetration, which peaked in the foundation of the `Geothermal Heat Pump Consortium` in Washington in 1994. (orig.) [Deutsch] In den letzten Jahren hat das Interesse an und der Einsatz von erdgekoppelten Waermepumpen in Nordamerika stark zugenommen. In einem von der Raumkuehlung dominierten Markt koennen Waermepumpen ihre Vorteile voll ausspielen. Der Beitrag beschreibt die Entwicklung in Kanada und den USA, stellt Beispiele der eingesetzten Technik vor und geht auf einige Grossanlagen ein. Ausserdem werden die Unterschiede zu der Situation in Mitteleuropa herausgearbeitet und die verschiedenen Aktivitaeten zu `Markt Penetration` behandelt, die 1994 in die Gruendung des `Geothermal Heat Pump Consortiums` in Washington muendeten. (orig.)

  3. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.;

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  4. TEM Pump With External Heat Source And Sink

    Science.gov (United States)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  5. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  6. Incorporating the Variability of Wind Power with Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Hongyu Long

    2011-10-01

    Full Text Available With the mass introduction of wind power in Northern China, wind power variability has appeared. In this article, both existing electric heat pumps (EHPs and coal-fired combined heat and power (CHP facilities, which are generally equipped with extraction-condensing steam turbines coupled with district heating for space heating purposes, are proposed to incorporate the variability of wind power equivalently. The authors’ proposal arises from the facts that: (1 EHPs can provide space heating in the domestic sector with little thermal comfort change (e.g., energy carriers for space heating purposes can be switched from heating water to electricity; (2 coal-fired CHP units in Northern China can usually generate more electrical power corresponding to a shaved thermal power production. Thus, it is suggested that heating water from CHP units be shaved when the wind generation is low due to the variability of wind power, so as to enable more electrical power production and compensate for the corresponding insufficient wind generation. Following this, in the future and for some space heating loads at appropriate distances, electricity used as energy carrier should be converted by electric heat pumps for space heating. Thus, more electricity consumption will be achieved so as to avoid wasting wind power when the wind generation it is high. A numerical simulation is performed in order to illustrate the authors’ proposal. It is shown that the impact of variability of wind generation can be equivalently reduced to a great extent, which enable more wind power integration instead of curtailment and potential energy conservation. Moreover, in contrast to before, both the thermal and electrical power of coal-fired CHP units are no longer constants. In addition, the ratio of electrical to thermal power of CHP units is no longer constant either, and results in less energy consumption compared with fixed ratio. Finally, electricity consumed by end users’ EHPs

  7. ASPECTS OF THE PROBLEM OF INCENTIVES FOR IMPLEMENTATION OF HEAT PUMPS

    OpenAIRE

    Berzan V.; Robu S.; Sit M.

    2011-01-01

    There were identified reasons for incentives of the implementation of heat pumps by the Governement of industial developped countries. It is considered scheme of obtaining of benefits for the Governement as a result of heat pump incentives.

  8. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele

    2004-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  9. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  10. Heat Generation by Heat Pump for LNG Plants

    OpenAIRE

    Moe, Bjørn Kristian

    2011-01-01

    Abstract The LNG production plant processing natural gas from the Snøhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally with gas turbines. Building a new production train supplied with electricity from the power grid is being evaluated as a possible solution for reducing CO2 emissions from the plant. Buying electricity from the grid rather than producing it in a combined heat and power plant makes it necessary to find new ways to cover the heat loads at ...

  11. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    OpenAIRE

    Jinshun Wu; Chao Chen; Song Pan; Jun Wei; Tianquan Pan; Yixuan Wei; Yunmo Wang; Xinru Wang; Jiale Su

    2013-01-01

    Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, ...

  12. The Seasonal Coefficient of Energy Transformation for Real Heat Pump

    Directory of Open Access Journals (Sweden)

    Rolandas Jonynas

    2011-04-01

    Full Text Available The resort of low potential energy for buildings heating and preparation of domestic hot water (DHW are discussed in this paper. Real heat pump system, which was designed and mounted for individual house heating and DHW preparation, was analyzed. The purpose of this research was to explore the seasonal factor of performance for heat pump. Manufacturer and salespeople claim that the coefficient of performance (COP for their offered equipment is 4.5 or even higher. They also calculate the energy transformation through the entire season referring to it. Actually, it is likely that the COP cannot be used when calculating the seasonal energy transformation in reality. Electricity that is seasonally consumed and the heat that is produced in all the period should be analyzed in this context. The results of this exploration show that the real seasonal factor of performance is 3.02. With reference to experience of financial support for that type of heating systems in various European countries, there is a great necessity to create similar support schemes in Lithuania. The methodology of assessing the seasonal heat pump’s factors for performance also should be prepared in Lithuania.Article in Lithuanian

  13. Heat pump for district cooling and heating at Oslo Airport, Gardermoen[Aquifer thermal energy systems (ATES)

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Geir; Vangsnes, Geir

    2006-07-01

    At Gardermoen, one of the largest groundwater reservoirs in Norway is located. This aquifer is used for both heating and cooling of Gardermoen Airport. In the summer, ground water is pumped from cold wells and used for cooling before it is returned to the warm wells. In winter, this process is turned around, as ground water from the warm wells is used as heat source for the heat pump. The heat pump is mainly designed for cooling, and the design cooling demand is 9 MW. The district cooling water is pre-cooled by the ground water, and post cooled by the combined heat pump/refrigeration plant. The base heat load is covered by the heat pump. Additional heat is supplied from a heat energy central with bio fuels as well as oil heated and electrically heated boilers. During the last years, heat production from the heat pump was about 11 GWh/year, and the heat pump also provides about 8 GWh/year of the cooling demand. In addition, approximately 3 GWh/year cold is produced by direct heat exchange with ground water. Compared with a district heating system heated by fossil fuels, and a conventional refrigeration system for district cooling, the pay back period for the aquifer heat pump system is within a couple of years (author) (ml)

  14. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  15. Analysis of CO2 heat pump for low energy residential building

    OpenAIRE

    Thoreby, Aleksander Olsen

    2013-01-01

    In low energy buildings heat loss is reduced through energy-saving measureslike heat recovery of ventilation air and a well-insulated buildingenvelope. Consequently the demand for domestic hot water often makesup a larger share of the annual heating demand than in traditional buildings.For this application heat pumps using CO2 as a working fluid areseen as a promising alternative to conventional heat pumps. In the currentstudy a transcritical CO2 heat pump model for use in building simulation...

  16. Analysis of CO2 heat pump for low energy residential building

    OpenAIRE

    Thoreby, Aleksander Olsen

    2013-01-01

    In low energy buildings heat loss is reduced through energy-saving measureslike heat recovery of ventilation air and a well-insulated buildingenvelope. Consequently the demand for domestic hot water often makesup a larger share of the annual heating demand than in traditional buildings.For this application heat pumps using CO2 as a working fluid areseen as a promising alternative to conventional heat pumps. In the currentstudy a transcritical CO2 heat pump model for use in building simulation...

  17. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  18. Experimental Evaluation of High Performance Integrated Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Berry, Robert [Unico Inc., St. Louis, MO; Durfee, Neal [ORNL; Baxter, Van D [ORNL

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate the refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.

  19. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Science.gov (United States)

    2010-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions...

  20. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 Test Procedures for Central Air Conditioners and Heat Pumps: Public... discuss methodologies and gather comments on testing residential central air conditioners and heat pumps... residential central air conditioners and heat pumps that are single phase with rated cooling capacities...

  1. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... conditioners and heat pumps. 66 FR 7170. The amended standards would have increased the minimum SEER to 13 for... and heat pumps; the analytical framework, models, and tools that DOE is using to evaluate amended... Heat Pumps, EERE-2008-BT- STD-0006, 1000 Independence Avenue, SW., Washington, DC 20585-0121....

  2. In the Loop : A look at Manitoba's geothermal heat pump industry

    International Nuclear Information System (INIS)

    This booklet outlines the position of Manitoba's heat pump market with the objective of promoting the widespread use of geothermal heat pumps in the province. It makes reference to the size of the market, customer satisfaction with heat pumps, and opinion of key players in the industry regarding the heat pump market. The information in this booklet is drawn on market research and lessons learned in Europe and the United States. In October 2001, a group of key stakeholders in Manitoba's heat pump market attended an industry working meeting to address the issues of market barriers, market enablers and market hot buttons. Market barriers include the high cost of geothermal heat pumps, lack of consumer awareness, lack of consistent standards, and public perception that heat pumps are not reliable. Market enablers include the low and stable operating costs of geothermal heat pumps, high level of comfort, high quality and reliability of geothermal heat pumps, and financial incentives under Manitoba Hydro's Power Smart Commercial Construction Program. Market hot buttons include lowering the cost of geothermal heat pumps, improving industry performance, increasing consumer awareness, and forming a Manitoba Geothermal Trade Association. Approximately 2,500 heat pump systems have been installed in Manitoba. In 2001, heat pump sales in Manitoba grew 40 per cent. 1 tab., 6 figs

  3. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  4. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-03-01

    Full Text Available The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volume flow rate of the coolant water of the electrical devices. Heating capacity, compressor work, and heating COP were measured; their behaviors with regard to the parameters were observed. Experimental results showed that heating COP increased with decrease of outdoor temperature, from 20.0 °C to 0 °C, and it observed to be 3.0 in the case of 0 °C outdoor temperature. The observed characteristics of the heating COP suggest that the heat pump is applicable as the cabin heater of an electric vehicle, which is limited by short driving range.

  5. Theory of Attosecond Transient Absorption Spectroscopy of Krypton for Overlapping Pump and Probe Pulses

    OpenAIRE

    Pabst, Stefan; Sytcheva, Arina; Moulet, Antoine; Wirth, Adrian; Goulielmakis, Eleftherios; Santra, Robin

    2012-01-01

    We present the first fully ab initio calculations for attosecond transient absorption spectroscopy of atomic krypton with overlapping pump and probe pulses. Within the time-dependent configuration interaction singles (TDCIS) approach, we describe the pump step (strong-field ionization using a near-infrared pulse) as well as the probe step (resonant electron excitation using an extreme- ultraviolet pulse) from first principles. We extent our TDCIS model and account for the spin-orbit splitting...

  6. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth;

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  7. A Dynamic Analysis of Free Piston Vuilleumier Cycle Heat Pumps

    OpenAIRE

    MATSUE, Junji; Nakazato, Takashi; Shirai, Hiroyuki

    2000-01-01

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed by a time-stepping integration method. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components, in addition to the pressure change of working gas, nonlinear viscous dissipative force due to an oscillating flow and discontinuous damping force caused by solid friction. The displacement of pistons and pressure changes in the Vuilleumier cyc...

  8. Hourly Calculation Method of Air Source Heat Pump Behavior

    OpenAIRE

    Ludovico Danza; Lorenzo Belussi; Italo Meroni; Michele Mililli; Francesco Salamone

    2016-01-01

    The paper describes an hourly simplified model for the evaluation of the energy performance of heat pumps in cooling mode maintaining a high accuracy and low computational cost. This approach differs from the methods used for the assessment of the overall energy consumption of the building, normally placed in the so-called white or black box models, where the transient conduction equation is deterministically and stochastically solved, respectively. The present method wants to be the expressi...

  9. Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery

    International Nuclear Information System (INIS)

    Different heat pump systems were used to recover the heat from waste water with mean temperature of 45 °C and produce hot water with the temperature up to 95 °C. Those systems include single-stage vapor compression heat pump (system 1), two-stage heat pump with external heat exchanger (system 2), two-stage heat pump with refrigerant injection (system 3), two-stage heat pump with refrigerant injection and internal heat exchanger (system 4), two-stage heat pump with flash tank (system 5) and two-stage heat pump with flash tank and intercooler (system 6). Thermodynamic and economic analyses were conducted to compare the performance of each system. Results showed that the COP and exergy efficiency for both system 5 and system 6 are quite close, and much higher than those of other systems. Besides, the payback period of both system 5 and system 6 are also shorter as compared to other systems. Considering both the thermodynamic performance and economic quality of the system, system 5 is finally preferred since less initial investment is required for system 5 as compared to system 6. - Highlights: • Different heat pump systems were introduced to recover the heat of waste water. • Thermodynamic and economic performances of those systems were analyzed and compared. • The two-stage heat pump system with flash tank was preferred

  10. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  11. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    Science.gov (United States)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  12. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  13. Analysis of operating modes of a ground source heat pump with short helical heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • The work focuses on the short helical-shaped pipe ground heat exchanger. • Multi-year integrated simulations of ground source heat pumps are carried out. • The simulation tool is validated with field measurements in cooling operation. • The effect of operating modes on the energy efficiency of the heat pump is shown. • The influence of grouting material and diameter of heat exchanger is analysed. - Abstract: This study focuses on different operating modes of a ground source heat pump system in residential buildings. Ground coupling was made using a closed loop system consisting of a helical shaped pipe installed at a shallow depth. Few studies have examined this particular ground heat exchanger. The analysis was carried out using a detailed numerical model capable of considering the geometry of the helical ground heat exchanger as well as the effects of axial thermal conduction and the weather at ground level, variables which cannot be ignored when shallow depths are being investigated. Field measurements were used to validate the model before it was utilized. In addition, the simulation tool considered the entire ground source heat pump system, including both the borehole field and the heat pump. The energy efficiency of the heat pump in three operating modes (continuous daytime, continuous nighttime, and intermittent mode) over a ten year period was analysed. The simulations were performed in two different climatic zones maintaining the daily energy load of the building unmodified. Finally, the effect of the grouting material of the helical ground heat exchanger and of the diameters of both the borehole and the helix on the system’s energy performance was also investigated. Results indicated that the seasonal energy efficiency of the heat pump was approximately the same for the three operating modes and that energy efficiency was nearly constant during the day when the system was operating on an hourly intermittent basis. When the

  14. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  15. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  16. Development of a System Identification Model for an Air Source Heat Pump

    OpenAIRE

    Han, Dong Won; Chang, Youngsoo; Kim, Seo Young; Kim, Yongchan

    2012-01-01

    Heat pump system can save energy and installation cost and reduces CO2 emissions. In this study, a system identification of an air source heat pump system using R410A with a variable speed compressor was experimentally investigated under various ambient and indoor temperature and cooling or heating capacity. The experimental study was also performed under cold and hot climate conditions as well as normal ambient temperature in cooling and heating mode. A heat pump system was installed and tes...

  17. Comparison of Microwave and Conventional Driven Adsorption Heat Pump Cycle Duration

    OpenAIRE

    Demir, Hasan

    2015-01-01

    The present experimental study includes comparison of microwave regenerated and conventional heated adsorbent bed of adsorption heat pump. The novel adsorption heat pump driving with microwave heating system was designed and manufactured. Microwave oven was constructed for providing homogeneous temperature distribution in the adsorbent bed. Temperature and pressure variations in the adsorption heat pump for both microwave and conventional regenerated cycles were measured and investigated. Dur...

  18. Control and energy optimization of ground source heat pump systems for heating and cooling in buildings

    OpenAIRE

    Cervera Vázquez, Javier

    2016-01-01

    [EN] In a context of global warming concern and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, ground source heat pump (GSHP) systems are widely considered as being among the most efficient and comfortable heating and cooling renewable technologies currently available. Nevertheless, both an optimal design of components and an optimal operation of the system as a whole become crucial so that these ...

  19. Determining the potential impact of a micro heat pump for domestic water heating / Pieter Willem Jordaan

    OpenAIRE

    Jordaan, Pieter Willem

    2002-01-01

    Hot water used in the South African domestic sector is mostly heated by in-tank electrical resistance heaters. These so-called "geysers" are the major contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. These peak demands continue to be of concern to Eskom. The "reduced capacity in-line water heating system design methodology" was developed to address this problem. A parallel inline heat pump water heater further red...

  20. Development of Vertical Ground Heat Exchanger for Ground-Source Heat Pump System

    OpenAIRE

    Jalaluddin

    2012-01-01

    ABSTRACT: Geothermal energy as environmentally friendly energy source with wide range of applications such as for space heating and cooling, hot water supply and applications in the agricultural field has been used in practical engineering. The well-known application is for space heating and cooling in residential and commercial buildings with using ground-source heat pump (GSHP) system. An advantage of using the geothermal energy is the stability of the temperature range of ground at tens...

  1. Boiling of Binary Zeotropic Blends in the Plate Heat Exchanger of the Heat Pump

    Directory of Open Access Journals (Sweden)

    Mezentseva Nadezhda N.

    2016-01-01

    Full Text Available In this paper, we consider the process of boiling in the evaporator of the heat pump. Zeotropic binary refrigerants R32/R152a (30/70% and R32/R134a (30/70% are used as working medium. Calculations are made for brazed plate heat exchanger during boiling of zeotropic blend refrigerants with account of peculiarities of this process. Results of calculation of the heat transfer coefficient for zeotropic blends are given.

  2. The Integration of Heat Resources in a Solar Thermal-Heat Pump Hydronic System

    OpenAIRE

    DeGrove, John

    2015-01-01

    According to the U.S. Department of Energy, roughly 41% of the energy consumed in the U.S. is used the power buildings. Within that number, almost half is used to heat or cool the building. Current technologies allow for consistent thermal management, but most utilize energy harvested from fossil fuels or convert electricity back into thermal energy. Background literature shows that the utilization of alternative heat resources such as heat pumps and solar thermal collectors can greatly reduc...

  3. Development of a Residential Ground-Source Integrated Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Baxter, Van D [ORNL; Hern, Shawn [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL; Shen, Bo [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  4. The Impact of thermostatic expansion valve heating on the performance of air-source heat pumps in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [Oak Ridge National Laboratory, PO BOX 2008, MS6472, Oak Ridge, TN 37831-6472 (United States)

    2010-04-15

    This paper discusses the strategy of improving the efficiency of air-source heat pumps by adding a small amount of heat to the sensor of the thermostatic expansion valve (TXV). TXV heating retards the closing of the valve and boosts energy efficiency in heating mode. Test results demonstrate that appropriate TXV heating achieves an improvement in coefficient of performance (COP) and thermal comfort. The required heating power is no more than 40 W and the additional equipment cost is less than $20 at manufacturer cost (2006). Thus, the strategy of TXV heating is both technologically practical and low cost. (author)

  5. The Impact of thermostatic expansion valve heating on the performance of air-source heat pumps in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Gao Zhiming, E-mail: gaoz@ornl.go [Oak Ridge National Laboratory, PO BOX 2008, MS6472, Oak Ridge, TN 37831-6472 (United States)

    2010-04-15

    This paper discusses the strategy of improving the efficiency of air-source heat pumps by adding a small amount of heat to the sensor of the thermostatic expansion valve (TXV). TXV heating retards the closing of the valve and boosts energy efficiency in heating mode. Test results demonstrate that appropriate TXV heating achieves an improvement in coefficient of performance (COP) and thermal comfort. The required heating power is no more than 40 W and the additional equipment cost is less than $20 at manufacturer cost (2006). Thus, the strategy of TXV heating is both technologically practical and low cost.

  6. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  7. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  8. Dynamics of Efficiency Change by Temperature in Diode Pumped Nd:YAG Heat Capacity Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Jun; TANG Bing; SHU Xiao-Jian

    2007-01-01

    We investigate the influence of temperature on the efficiency of diode pumped Nd:YAG heat capacity laser is studied. It is shown that the efficiency of such a laser system is greatly reduced at higher temperature. This bad behaviour is mainly caused by the doped-ion redistribution among various Stark levels of the ground state, and by a thermal equilibrium between the upper laser level and the pump level. Meanwhile, the thermal excitations from the ground state to the lower laser level also play a role. We derive a model to describe those effects, with the considerations of emission spectrum of laser diodes, the subtle Stark structures and the linewidth of absorption and of simulated-emission.

  9. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  10. Optimization analysis of high temperature heat pump coupling to desiccant wheel air conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Fang, Lei;

    2014-01-01

    The high temperature heat pump and desiccant wheel (HTHP&DW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHP&DW system was investigated experimentally, and the optimization analysis of H...

  11. Economic COP Optimization of a Heat Pump with Hierarchical Model Predictive Control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik;

    2012-01-01

    A low-temperature heating system is studied in this paper. It consists of hydronic under-floor heating pipes and an air/ground source heat pump. The heat pump in such a setup is conventionally controlled only by feed-forwarding the ambient temperature. Having shown >10% cut-down on electricity...

  12. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  13. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  14. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  15. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    CERN Document Server

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whispering-gallery modes in air-clad structures resembling an overall cylindrical symmetry. Highly symmetric air-clad structures may thus suppress the pump-absorption efficiency eta below the ergodic scaling law eta proportional to Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively.

  16. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    Science.gov (United States)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  17. Optical pumping effect in absorption imaging of F=1 atomic gases

    CERN Document Server

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  18. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  19. Heat recovery from waste water by energy-saving heat pump systems in connection with water treatment plants

    Science.gov (United States)

    Wiedmann, U.; Flohrschuetz, R.

    1980-04-01

    The advantages of waste water recovery as an energy source were investigated. It was found that heat pump systems reach the highest performance coefficients and their primary energy ratios are competitive with conventional heating systems. It is concluded that the utilization of waste water treatment plants by large heat pump systems provides a considerable annual energy saving of light oil.

  20. Hydrothermal treatment of sorption materials. Implications on adsorption heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, S.K.; Mueller, S.; Ratzsch, K.F.; Schossig, P.; Henning, H.M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Dept. of Thermal Systems and Buildings; Munz, G. [PSE AG, Freiburg (Germany)

    2010-07-01

    Material stability of adsorbents for thermally driven systems like heat storage and heat transformation plays a key role. In particular high power-density applications like adsorption heat pumps and chillers in combination with recently developed adsorption materials lead to a significant increased number of cycles over the lifetime (<100'000) making cycle stability crucial. With regard to current developments on composite structures improving the heat and mass transfer, additional stability analysis like thermo-mechanical properties are now getting into focus. This contribution gives a broad overview on the stability of current available sorption materials like silica gels and zeolites, recently developed (silica-) aluminophosphates (AIPO/SAPO) and most novel synthesized metal organic framework (MOF) materials under hydrothermal treatment. The results give a first indication on the suitability of these materials for the use in heat storage, thermally driven sorption heat pumps and cooling machines. Pure powders as well as composites have been analysed under continuous cycling conditions. Whereas the stability of powders and granules have been analysed in-situ by thermogravimetric cycle measurements, a cycling-test rig has been developed in order to realise a lifetime stress of composites consisting of active sorption material and a support structure. The need for a first stage short-cycle analysis is demonstrated impressively by the dramatic loss of more than 50% in sorption capacity of a SAPO-34 sample within the first 10 cycles. Several composite samples have passed a treatment of 30'000 cycles or more and show continuous degradation effects leading to a reduction in sorption capacity of 20% compared to the initial value. (orig.)

  1. Uncooled two-stroke gas engine for heat pump drive

    Science.gov (United States)

    Badgley, Patrick; McNulty, Dave; Woods, Melvin

    This paper describes the design and analysis of a family of natural gas fueled, uncooled, two-stroke, lean burn, thermal-ignition engines. The engines were designed specifically to meet the requirements dictated by the commercial heat pump application. The engines have a power output ranging from 15 to 100 kW; a thermal efficiency of 36 percent; a mean time between failure greater than 3 years; and a life expectancy of 45,000 hours. To meet these specifications a family of very simple, uncooled, two-stroke cycle engines were designed which have no belts, gears or pumps. The engines utilize crankcase scavenging, lubrication, stratified fuel introduction to prevent raw fuel from escaping with the exhaust gas, and use of ceramic rolling contact bearings. The Thermal Ignition Combustion System (TICS) is used for ignition to enable the engines to operate with a lean mixture and eliminate spark plug erosion.

  2. Percutaneous absorption of tritium-gas-contaminated pump oil

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A. [Radiation Biology and Health Physics Branch, Ontario (Canada)

    1995-08-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium`s ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. 19 refs., 5 figs., 4 tabs.

  3. Percutaneous absorption of tritium-gas-contaminated pump oil

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1995-07-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium's ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. (author)

  4. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    OpenAIRE

    Silvia Cocchi; Sonia Castellucci; Andrea Tucci

    2013-01-01

    The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling), through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP) uses the shallow ground a...

  5. Mobile Heat Pump Exploration Using R445A and R744

    OpenAIRE

    Musser, Andrew; Hrnjak, Predrag S.

    2014-01-01

    The increased usage of hybrid and electric vehicles where waste heat availability is limited has spurred research and development of mobile heat pump systems. Many options exist for heat pump system architectures and refrigerants to be used. Currently R134a use is prevalent in vehicle air conditioning systems but offers poor heat pump performance at low ambient temperatures. Two refrigerants will be explored in this paper, R744 and R445A. Both of these refrigerants are getting attention in ve...

  6. Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage

    OpenAIRE

    Yu Jin Nam; Xin Yang Gao; Sung Hoon Yoon; Kwang Ho Lee

    2015-01-01

    A ground source heat pump system (GSHPS) utilizes a relatively stable underground temperature to achieve energy-saving for heating and cooling in buildings. However, continuous long-term operation will reduce the soil temperature in winter, resulting in a decline in system performance. In this research, in order to improve the system performance of a GSHPS, a ground heat pump system integrated with solar thermal storage was developed. This solar-assisted ground heat pump system (SAGHPS) can b...

  7. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  8. Photo-induced absorption in the pump probe spectroscopy of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Zhu Zi-Peng

    2013-01-01

    Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the singlewalled carbon nanotube transient spectrum.The two advantages of the experiment,a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species,greatly facilitate the identification of the photoinduced absorption signal of one tube species.It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the Eii state.This finding prompts a new explanation for the origin of the photoinduced absorption:the transition from the ground state to a phonon coupled state near the Eii state.The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals,which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes.The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.

  9. Optimization of the Geometrical Parameters of a Solar Bubble Pump for Absorption-Diffusion Cooling Systems

    Directory of Open Access Journals (Sweden)

    N. Dammak

    2010-01-01

    Full Text Available Problem statement: The objective of this study was to optimize the geometrical parameters of a bubble pump integrated in a solar flat plate collector. Approach: This solar bubble pump was part of an ammonia/water/helium (NH3/H2O/He absorption-diffusion cooling system. Results: An empirical model was developed on the basis of momentum, mass, material equations and energy balances. The mathematical model was solved using the simulation tool “Engineering Equation Solver (EES”. Conclusion/Recommendations: Using metrological data from Gabes (Tunisia various parameters were geometrically optimized for maximum bubble pump efficiency which was best for a bubble pump tube diameter of 6 mm, a tube length of 1.5 m, an inclination to the horizontal between 30 and 50° of the solar flat plate collector and a submergence ratio between 0.2 and 0.3.

  10. Central model predictive control of a group of domestic heat pumps, case study for a small district

    NARCIS (Netherlands)

    Leeuwen, van R.P.; Fink, J.; Smit, G.J.M.; Helfert, Markus; Krempels, Karl-Heinz; Donnellan, Brian; Klein, Cornel

    2015-01-01

    In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and

  11. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    International Nuclear Information System (INIS)

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the −6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ► A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ► In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ► Different inlet distributor/outlet tubes configurations were tested to

  12. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt;

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  13. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  14. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  15. Human Health Science Building Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leidel, James [Oakland Univ., Rochester, MI (United States)

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 vertical borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.

  16. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  17. Water source heat pumps for greenhouse soil cooling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spieser, H.

    1987-06-01

    In an attempt to diversify and grow flowers which are in high demand, growers are looking to produce certain exotic flowers which require unique growing conditions. One example is the Alstroemerias also knwon as the Peruvian Lily. If the plants are grown continuously at about 12-15/sup 0/C soil temperature, the plant will continue to flower regardless of air temperature and photoriod. These latter two factors are considered secondary to the importance of cool soil temperatures. Alstroemeria production is still relatively new to the greenhouse industry. Some controversy still exists as to the direct benefits of planned soil cooling. This project was set up to evaluate a mechanical soil cooling system for continuous year round Alstroemeria production. A heat pump soil cooling system was installed in two greenhouses each with dimensions of 16 m by 61 m. Combined these greenhouses have a growing area of 1952 m/sup 2/. These greenhouses are older wooden greenhouses, covered by double poly, air-inflated glazing. This system worked very well, maintaining the soil temperature at the proper levels throughout the spring and summer months. During the rest of the year the soil cooling system is used less intensely. During winter months when soil cooling is not required, the heat pumps provide base load heating to the greenhouse through fan forced unit heaters.

  18. National Certification Standard for Ground Source Heat Pump Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John [Geothermal Heat Pump Consortium

    2013-07-31

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  19. Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency

    International Nuclear Information System (INIS)

    Highlights: • The newly designed dual hot gas spray defrosting method was examined. • Uninterrupted heating of an air source heat pump during defrosting. • We compared newly designed dual hot gas and traditional reverse cycle defrost. • Total energy efficiency was increased by 8% compared to traditional method. - Abstract: During winter operation, an air-source heat pump extracts heat from the cold outside air and releases the heat into the living space. At certain outside air conditions, when it operates in heating mode, frost can form on the air-cooled heat exchanger, decreasing the heating performance. Conventionally, reverse-cycle defrosting (RCD) has been the common method of frost removal. But this method requires the interruption of heating during defrosting, as well as a period of time to reheat the cooled pipes of the indoor units after defrosting. In this study, a new technology called continuous heating was developed, which utilize only a hot gas bypass valve to remove the frost from the outdoor heat exchanger and thus enabling the supply of hot air to indoors without any interruption. For this, a new high temperature and low pressure gas bypass method was designed, which is differentiated from the common high pressure hot gas bypass methods by its use of low pressure. Various refrigerant mass flow distributions were examined, and the most effective defrosting mass flow was 50% in this case. Heating capacity was increased by 17% because of continuous heating, and the cumulated energy efficiency was increased by 8% compared to the traditional reverse cycle defrosting over 4 h including two defrost operations. Also, cumulated energy efficiency was increased by 27% compared to electronic heaters that supply the same heating capacity during defrosting. By this new technology, it has been proved that continuous heating and energy savings could be achieved without adopting expensive technologies

  20. International heat pump status and policy review 1993-1996. Part 1. Analysis

    International Nuclear Information System (INIS)

    Four years after the publication of the International heat pump status and policy review, the International Energy Agency (IEA) Heat Pump Centre set out to compile an update of this study. The update reviews developments in the years 1993-96 and provides an outlook on future developments. Where available it includes data on 1997 as well. In 1997, roughly 90 million heat pumps were in operation worldwide (55 million in 1992). The main objective of the update of the International heat pump status and policy review is to provide an assessment of basic factors affecting heat pumps, policy measures regarding heat pumps, the status of various heat pump technologies and the current and expected penetration of heat pumps in all marker sectors. The analysis is based on a survey of the heat pump situation in 18 countries: Austria, Canada, China, Denmark, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, South Africa, South Korea, Spain, Sweden, Switzerland, UK and USA. In part one, the information from all these countries is brought together, compared and analysed. The information is gathered from detailed reviews of the situations in the individual countries, the so-called National Position Papers, which can be found in part two of the report for which a separate abstract has been prepared. The report reveals that overall the heat pump market showed a favourable development in the years 1993-96

  1. Response functions and thermal influence for various multiple borehole configurations in ground coupled heat pump systems

    OpenAIRE

    Pešl, Metka; Goričanec, Darko

    2012-01-01

    Ground coupled heat pump (GCHP) utilizes the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. GCHP systems are generally comprised of watersource heat pumps and ground heat exchangers (GHEs). Consisting of closedloop of pipes buried in boreholes, ground heat exchangers (GHEs) are devised for extraction or injection of thermal energy from/into the ground. Despite the low energy and lower maintenance benefits of...

  2. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  3. A key review of wastewater source heat pump (WWSHP) systems

    International Nuclear Information System (INIS)

    Highlights: • Comprehensively reviewing WWSHP systems for the first time. • Varying the COP values for heating of the reviewed systems between 1.77 and 10.63. • Ranging the COP values for cooling of the reviewed systems from 2.23 to 5.35. • Being the majority of the performance assessments on the energetic basis. - Abstract: Heat pumps (HPs) are part of the environmentally friendly technologies using renewable energy and have been utilized in the developed countries for years. Wastewater is seen as a renewable heat source for HPs. At the beginning of the 1980s, waste (sewage) water source heat pumps (WWSHPs) were widely applied in North European countries like Sweden and Norway and partially applied in China. In the past two decades, the WWSHP has become increasingly popular due to its advantages of relatively higher energy utilization efficiency and environmental protection. The present study comprehensively reviews WWSHP systems in terms of applications and performance assessments including energetic, exergetic, environmental and economic aspects for the first time to the best of the authors’ knowledge. In this context, a historical development of WWSHPs was briefly given first. Next, wastewater potential and its characteristics were presented while a WWSHP system was introduced. The previously conducted studies on WWSHPs were then reviewed and classified in a tabulated form. Finally, some concluding remarks were listed. The COP values of the reviewed studies ranged from 1.77 to 10.63 for heating and 2.23 to 5.35 for cooling based on the experimental and simulated values. The performance assessments are mostly made using energy analysis methods while the number of exergetic evaluations is very low and has not been comprehensively performed. It is expected that the comprehensive review here will be very beneficial to those dealing with the design, analysis, simulation and performance assessment of WWSHP systems

  4. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.;

    2016-01-01

    the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used......This study presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select....... The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each...

  5. Modelling and Analysis of Heat Pumps for Zero Emission Buildings

    OpenAIRE

    Småland, Leif

    2013-01-01

    The work of this Master thesis is a continuation of a project work. This defines qualitative and quantitative parameters needed to make a simulation tool for early-stage decision making with regards to the energy supply strategy for non-residential Zero Emission Building (ZEB). The work is based on the assumption that the heat pump (HP) technology will be one of the core technologies for the energy supply strategy in the ZEB concept. The simulation tool proposed should be able to find the bes...

  6. North Village Ground Source Heat Pump Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  7. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte;

    2015-01-01

    load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...... theory and statistics. After presenting this methodology, the general trend of the HP consumption is estimated and an hour-ahead forecast is conducted by employing Seasonal Autoregressive Integrated Moving Average modeling. In this manner, the flexible consumption is predicted, establishing the basis...

  8. Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Tomas; Henning, Hans-Martin [Fraunhofer Institut for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany); Mittelbach, Walter [SorTech AG, Weinbergweg 23, 06120 Halle a.d. Saale (Germany)

    2007-09-15

    The scope of this paper is to present the development of a prototype of a small adsorption heat pump working on the adsorption pair silica gel-water. The development of this prototype with remarkable high power densities has been carried out during the last year and is a result of continued joint work on adsorption heat transformation systems carried out at SorTech AG and the Fraunhofer Institute. (author)

  9. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    Science.gov (United States)

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  10. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  11. Characterization of a mini-channel heat exchanger for a heat pump system

    Science.gov (United States)

    Arteconi, A.; Giuliani, G.; Tartuferi, M.; Polonara, F.

    2014-04-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  12. Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design

    International Nuclear Information System (INIS)

    Highlights: ► A new configuration of thermoelectric heat pump is introduced. ► An optimization method based on an analytical model is presented. ► Optimization of the device is realized by maximization of the global COP. ► Results obtained by maximization of the COP or EGM are equivalent. ► An optimal design of the device and operating conditions are deduced of the optimization. - Abstract: This paper introduces an optimization method for improving thermoelectric heat pump performance by operating condition management of the thermoelectric modules (TEMs) and design optimization of the heat exchangers linked to the TEMs. The device studied, corresponding to an original configuration of the thermoelectric heat pump, comprises two commercial thermoelectric modules and two mini-channel heat sinks through which water flows, in contact with both sides of the TEMs. The objective function is the maximization of the device’s coefficient of performance (COP), including the electrical and mechanical consumption of the thermoelectric modules and the circulating auxiliaries. First, the optimization variables are the number and the diameter of mini-channels, and the mass flows for both heat sinks (hot and cold sides). The results show that similar results are obtained by minimization of the entropy generation in the device. Finally, the hot thermal power demand is included in the optimization variables for complete optimization of the device. The results of full optimization converge with those obtained with the previous partial optimization.

  13. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  14. Development of ANC-type empirical two-phase pump model for full size CANDU primary heat transport pump

    International Nuclear Information System (INIS)

    The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)

  15. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Huleihil

    2010-01-01

    Full Text Available A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r versus coefficient of performance (w. For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine cycle. Although the dissipation mechanisms are different (e.g., heat leak and Joule heating in the thermoelectric refrigerator, isentropic losses in the reverse Brayton cycle, and limits arising from the equation of state in the reverse Rankine cycle, the r−w characteristic curves have a general loop shape. There are four limiting types of operation: open circuit in which both r and w vanish in the limit of slow operation; short circuit in which again r and w vanish but in the limit of fast operation; maximum r; maximum w. The behavior of the considered systems is explained by means of the proposed model. The derived formulae could be used for a quick estimation of w and the temperatures of the working fluid at the hot and cold sides.

  16. Heat pumps barometer - EurObserv'ER - October 2013

    International Nuclear Information System (INIS)

    Demand on the European heat pump market has been a series of peaks and troughs since 2008 after several years of very strong growth. These fluctuations in annual sales affect the whole of Europe, and its individual countries. Sales have been hit by a blend of economic slowdown, financial uncertainties and low new construction figures. The 2012 trend pointed to further decline, because of tighter conditions in some of the key markets. The assessment made by EurObserv'ER of the air source and ground source HP market for domestic heating and cooling shows that sales decreased from 1.79 million units in 2011 to 1.65 million units in 2012, i.e. a 7.9% drop

  17. A new heat pump desiccant dehumidifier for supermarket application

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. M.; Castellotti, F. [Department of Management and Engineering, University of Padova, Vicenza (Italy)

    2007-07-01

    Recently a new equipment for dehumidification was put onto the market. It is a self-regenerating liquid desiccant cooling system able to dehumidify, heating or cooling the ambient air by an electric heat pump that is a part of the equipment. Its operation is here studied in a supermarket application where air temperature and relative humidity play a very important role and the air-conditioning becomes necessary not only to assure a suitable thermal comfort, but also to make the refrigerated display cabinets operate properly. In this paper possible energy savings, compared to a traditional mechanical dehumidification, are evaluated by means of a numerical model that simulates a typical Italian supermarket. (author)

  18. First experience gained with heat-pump utilization in animal-husbandry plants

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmritz, W.; Schaeffel, W.

    1982-10-01

    For cleaning and desinfection of all milk-conducting plant parts, the LPG Tierproduktion at the town of Berlstedt (capacity of 2000 animal stands) needs a daily amount of c. 60 cbm of heated water. Recently 50% of this useful-water requirement has been covered by four small-size heat pumps WW 12 of a water/water configuration. In the heating house, two heat pumps have been installed on top of each other in each case. The circuit plan of the heat-pump facility is demonstrated. The facility operates at open and closed loop, contains two-step rotary pumps and heats useful water to 50-60/sup 0/C. Two heat pumps are operated via shift water throughout the year, the remaining two use brook water in summer and well water in winter as their heat source. 40 t of fuel oil were saved in 1981.

  19. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    OpenAIRE

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whis...

  20. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  1. Integration of heat pumps in distribution grids: economic motivation for grid control

    NARCIS (Netherlands)

    Nykamp, S.; Molderink, A.; Bakker, V.; Toersche, H.A.; Hurink, J.L.

    2012-01-01

    Electric heat pumps combined with heat buffers are important elements in smart grids since they together allow to shift the consumption of electricity in time. In this paper the effects of different control algorithms for heat pumps on the investment costs for distribution grids are investigated. Fo

  2. Integration of Heat Pumps in Distribution Grids: Economic Motivation for Grid Control

    NARCIS (Netherlands)

    Nykamp, S.; Molderink, A.; Bakker, V.; Toersche, H.A.; Hurink, J.L.; Smit, G.J.M.

    2012-01-01

    Electric heat pumps combined with heat buffers are important elements in smart grids since they together allow to shift the consumption of electricity in time. In this paper the effects of different control algorithms for heat pumps on the investment costs for distribution grids are investigated. Fo

  3. Influence of the laser-diode temperature on crystal absorption and output power in an end-pumped Nd:YVO4 laser

    Indian Academy of Sciences (India)

    Ebrahim Safari

    2011-01-01

    In this work, we studied the influence of heat loaded into the laser crystal in an endpumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 laser output power are approximately similar to that of a system of the low power type, but by increasing the pump power, different values can be obtained.

  4. Geothermal heat pump system assisted by geothermal hot spring

    Science.gov (United States)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  5. Energy and exergy analysis of fossil plant and heat pump building heating system at two different dead-state temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, S.P. [Kathmandu University, Dhulikhel (Nepal)

    2010-08-15

    In this paper, we deal with the energy and exergy analysis of a fossil plant and ground and air source heat pump building heating system at two different dead-state temperatures. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for heat pump building heating system. Since energy and exergy demand are key parameters to see which system is efficient at what reference temperature, we did a study on the influence of energy and exergy efficiencies. In this regard, a commercial software package IDA-ICE program is used for calculation of fossil plant heating system, however, there is no inbuilt simulation model for heat pumps in IDA-ICE, different COP (coefficient of performance) curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy. The outcome of the energy and exergy flow analysis at two different dead-state temperatures revealed that the ground source heat pumps with ambient reference have better performance against all ground reference systems as well as fossil plant (conventional system) and air source heat pumps with ambient reference. (author)

  6. Hourly Calculation Method of Air Source Heat Pump Behavior

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-04-01

    Full Text Available The paper describes an hourly simplified model for the evaluation of the energy performance of heat pumps in cooling mode maintaining a high accuracy and low computational cost. This approach differs from the methods used for the assessment of the overall energy consumption of the building, normally placed in the so-called white or black box models, where the transient conduction equation is deterministically and stochastically solved, respectively. The present method wants to be the expression of the grey box model, taking place between the previous approaches. The building envelope is defined using a building thermal model realized with a 3 Resistance 1 Capacitance (3R1C thermal network based on the solution of the lumped capacitance method. The simplified model evaluates the energy efficiency ratio (EER of a heat pump through the determination of the hourly second law efficiency of a reversed Carnot cycle. The results of the simplified method were finally compared with those provided by EnergyPlus, a dynamic building energy simulation program, and those collected from an outdoor test cell in real working conditions. The results are presented in temperatures and energy consumptions profiles and are validated using the Bland-Altman test.

  7. Performance analysis of a re-circulating heat pump dryer

    Directory of Open Access Journals (Sweden)

    Yamankaradeniz Nurettin

    2016-01-01

    Full Text Available A re-circulating heat pump dryer (HPD system was designed, constructed and tested at steady state and transient conditions. Refrigerant 134a was used as a refrigerant in this system. The tests were performed to observe behavior of HPD system. So, changes of temperature and relative humidity of drying air through the dryer and heat pump operating temperatures were observed during the drying process and effects of bypass air ratio (BAR on the system’s parameters as system performance and specific moisture extracted ratio (SMER at steady state were investigated. The HPD system was also tested to investigate temperatures and relative humidity changes of drying air during drying process on the system’s parameters depend on time. Air flow rate circulated through the HPD system was 554m3/h during the all tests. According to test results, the system’s parameters did not change up to 40% of BAR. Then the COP and SMER values were decreased after 40% of BAR. While SMER values changed between 1.2 and 1.4, COPsys changed between 2.8 and 3.3 depend on BAR. As well as during the drying process, the COP and SMER values were also affected and decreased depend on time.

  8. Raising the temperature of the UK heat pump market: Learning lessons from Finland

    International Nuclear Information System (INIS)

    Heat pumps play a central role in decarbonising the UK's buildings sector as part of the Committee on Climate Change's (CCC) updated abatement scenario for meeting the UK's fourth carbon budget. However, the UK has one of the least developed heat pump markets in Europe and renewable heat output from heat pumps will need to increase by a factor of 50 over the next 15 years to be in line with the scenario. Therefore, this paper explores what lessons the UK might learn from Finland to achieve this aim considering that its current level of heat pump penetration is comparable with that outlined in the CCC scenario for 2030. Despite the two countries’ characteristic differences we argue they share sufficient similarities for the UK to usefully draw some policy-based lessons from Finland including: stimulating new-build construction and renovation of existing stock; incorporating renewable heat solutions in building energy performance standards; and bringing the cost of heat pumps in-line with gas fired heating via a combination of subsidies, taxes and energy RD&D. Finally, preliminary efforts to grow the heat pump market could usefully focus on properties unconnected to the gas-grid, considering these are typically heated by relatively expensive oil or electric heating technologies. -- Highlights: •Heat pumps are expected to play a key role in meeting the UK's 4th carbon budget. •Today, heat pump deployment per capita in the UK is one of the lowest in Europe. •Finland offers some policy lessons given its high level of heat pump deployment. •Policies: raising build rates, building standards and heat pump cost-effectiveness. •Deployment efforts should focus on buildings not heated by relatively low-cost gas

  9. Design and Thermodynamic Analysis of a Steam Ejector Refrigeration/Heat Pump System for Naval Surface Ship Applications

    Directory of Open Access Journals (Sweden)

    Cüneyt Ezgi

    2015-12-01

    Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.

  10. Experimental research on LiBr refrigeration - Heat pump system applied in CCHP system

    International Nuclear Information System (INIS)

    A new heat recovery technique for a LiBr refrigeration-heat pump system applied in CCHP(Combined Cooling, Heating and Power system) system is proposed in this paper. The system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. Experimental research on the operating characteristics of the compound system is carried out and the obtained conclusions are as follows: The LiBr refrigeration-heat pump system is able to perform stably and flexibly. The heat pump system has a relative large coefficient of performance (COPP) which can be as high as 6.13. When the outlet temperature of the demineralized water is 67.8 oC, the CCHP system brings 26.6% decrease in primary energy rate consumption compared with the combined heat and power production system (CHP) plus electricity-driven refrigeration. It is suggested that heat pumps should be used in CCHP system to heat the demineralized water of the boiler by recovering the exhaust heat of the LiBr refrigeration system. - Highlights: → LiBr refrigeration-heat pump system applied in CCHP system is proposed. → This system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. → Using heat pump to recover exhaust heat can increase the energy efficiency of the whole CCHP.

  11. The Effects of Gas Cooler Inlet Pressure on System Performance in Heat Pump Tumble Dryers

    OpenAIRE

    Erdem, Serkan; Onan, Cenk; Heperkan, Hasan Alpay; Özkan, Derya Burcu

    2014-01-01

    Heat pumps working with CO2 as a refrigerant have low energy consumptions if right application areas and operating conditions are selected. The use of CO2 in heat pump dryers is feasible if operating temperatures are appropriate. In heat pump dryers working with CO2 according to the transcritical cycle, one of the most important operating conditions is optimum gas cooler inlet pressure, which gives the maximum coefficient of performance (COP). In this study, a model was developed by using MAT...

  12. Heat pumps and technological development: Civil use in 80's (1st part)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1990-09-01

    This article analyses the technological development of heat pumps for civil purposes. These devices belong to the big family of heat pumps: electrical compression devices, thermally driven machines, adsorption machines, internal and external combustion engines. Electrical heat pumps saw an interesting development in their components, particularly in the compressor (with the adoption of screw and scroll compressors) and in the thermal exchange batteries, without forgetting the progress in electronics, from the setting to the expansion valve and the defrosting system.

  13. Application analysis of ground source heat pumps in building space conditioning

    OpenAIRE

    Qian, Hua

    2014-01-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of ...

  14. Heat pump applications and water heating by means of solar collectors. Waermepumpenanwendungen und Wasserwaermung mit Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Szokody, G.

    1990-01-15

    About 25 to 30% of all newly constructed single-family houses in Switzerland are equipped with heat pump systems. This increasing attractivity is partly due to new techniques, e.g. microprocessor control, as well as to higher component efficiencies, a more efficient heat exchange technology, and to the compactness of systems. Active solar energy conversion, i.e. by means of solar collectors, is another technique which is predominantly applied for water heating in single-family buildings. Public investments in this field are scarce. (BWI).

  15. Solar heat and heat pump. What benefits?; Solarthermie und Waermepumpe. Was bringt's?

    Energy Technology Data Exchange (ETDEWEB)

    Droescher, Angela; Heinz, Andreas [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik; Gerardts, Bernhard [Solid GmbH, Graz (Austria)

    2013-11-08

    If solar heating and heat pumps work together, then usually in a single-family house. The fact that there is another way, shows a large solar heating system in Graz. Investigations show what potential there is in this type of system and where special attention is needed. [German] Wenn Solarwaerme und Waermepumpen zusammenarbeiten, dann meist im Einfamilienhaus. Dass es auch anders geht, zeigt eine Grossanlage bei Graz. Untersuchungen zeigen, welche Potenziale es bei Systemen dieser Art gibt und worauf besonders zu achten ist.

  16. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    OpenAIRE

    Hedegaard, Karsten; Morthorst, Poul Erik; Münster, Marie; Detlefsen, Nina

    2013-01-01

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, main focus is put on individual heat pumps in the residential sector and the possibilities for flexible operation, using the heat storage options available. Extensive model development is...

  17. ENERGY CONSERVATION ANALYSIS BY APPLICATION OF HEAT PUMP SYSTEM - A CASE STUDY

    OpenAIRE

    Mr.S.N.Nalawade; Mr.G.B.Jadhav; Prof.N.N.Shinde

    2015-01-01

    Heat pump application delivers an efficient way to replace the electrical energy for heating application in an industry, specifically for large - scale installations. This technology is very cost effective, Eco friendly source for water heating application which significantly reduces the use of elect rical energy consumption. An analysis of heat pump system for water heating application at the process industry established a new option for water heater. This paper prese...

  18. Heat pump-based geothermal energy. Technical and economic study. The costs of heat-pump-based geothermal energy

    International Nuclear Information System (INIS)

    This study aims at identifying the financial basis on which actors of a geothermal project for heating, cooling and hot water production can rely. It also aims at describing the three main technical solutions for very-low-energy geothermal: horizontal sensors, vertical probes, and geothermal doublets on aquifer. After a presentation of the adopted methodology and of the different economic, thermal and technical hypotheses, the respective costs of these technical solutions are assessed and a comparison between these systems and conventional energies is reported. The economic study is performed for different markets: individual housing, collective housing, and office building. Different aspects of each operation are studied: underground works (drilling) and surface equipment (heat pump and support). Investment, maintenance and operational costs are analysed

  19. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  20. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  1. DEVELOPMENT OF THE HEAT PUMP MARKET IN POLAND IN RELATION TO NEW LEGAL REGULATIONS

    Directory of Open Access Journals (Sweden)

    Anna Wachowicz-Pyzik

    2015-10-01

    Full Text Available Heat pump market in Poland is one of the most dynamically developing branches of renewable energy sources (RES. Installations using different types of low-temperature heat pumps are becoming more and more popular especially among owners of detached houses. The article presents the characteristics of the heat pump market in Poland in recent years. Most important changes introduced on 20 February 2015 in the Act on Renewable Energy Sources (Journal of Laws 2015 pos. 478, were discussed. Also future prospects associated with increased use of heat pumps installations in the face of new regulations were analyzed.

  2. The cost-effectiveness of heat pumps in specific buildings in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Greyvenstein, G.P.; Meyer, J.P. (Potchefstroom Univ. for CHE (South Africa). Dept. of Mechanical Engineering)

    1993-09-01

    Water heating heat pumps are extremely energy efficient and large savings can be realized when they are compared to direct electrical resistance heaters. In spite of the energy efficiency of heat pumps, a large number of residential buildings in South Africa still use electrical heaters to heat water. The reason for this is that heat pumps are considerably more expensive than electrical heaters. Building owners tend to choose the system with the smallest initial cost and do not compare the two systems on the basis of life-cycle cost. It is also difficult to calculate the life-cycle cost of a heat pump because it depends on many factors like climatological conditions and water temperature. In this paper a methodology is developed to calculate the life-cycle cost of a heat pump hot water installation. The model is used to investigate the effect of daily runtime, electricity tariff, hot water consumption and geographical location on the cost-effectiveness of heat pumps. The cost-effectiveness of heat pumps increases with daily run time, water consumption and electricity tariff. Heat pumps are more cost-effective near the coast than in the interior. If sized correctly, heat pumps are more cost-effective than electrical heaters for all major cities in South Africa. The cost-effectiveness of heat pumps for two specific buildings, one a university student hostel in Potchefstroom and the other a hotel in Durban, is also investigated. For both cases it was found that heat pumps are more cost-effective than direct electrical resistance heaters. (author)

  3. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  4. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  5. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  6. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  7. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles

    Directory of Open Access Journals (Sweden)

    Benhmidene Ali

    2011-01-01

    Full Text Available The mathematical model will be able to predict the operated condition (required tube diameters, heat input and submergence ratio….. That will result in a successful bubble pump design and hence a refrigeration unit. In the present work a one-dimensional two-fluid model of boiling mixing ammonia-water under constant heat flux is developed. The present model is used to predict the outlet liquid and vapor velocities and pumping ratio for different heat flux input to pump. The influence of operated conditions such as: ammonia fraction in inlet solution and tube diameter on the functioning of the bubble pump is presented and discussed. It was found that, the liquid velocity and pumping ratio increase with increasing heat flux, and then it decreases. Optimal heat flux depends namely on tube diameter variations. Vapour velocity increases linearly with increasing heat flux under designed conditions.

  8. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  9. Earliest Deadline Control of a Group of Heat Pumps with a Single Energy Source

    Directory of Open Access Journals (Sweden)

    Jiří Fink

    2016-07-01

    Full Text Available In this paper, we develop and investigate the optimal control of a group of 104 heat pumps and a central Combined Heat and Power unit (CHP. The heat pumps supply space heating and domestic hot water to households. Each house has a buffer for domestic hot water and a floor heating system for space heating. Electricity for the heat pumps is generated by a central CHP unit, which also provides thermal energy to a district heating system. The paper reviews recent smart grid control approaches for central and distributed levels. An online algorithm is described based on the earliest deadline first theory that can be used on the aggregator level to control the CHP and to give signals to the heat pump controllers if they should start or should wait. The central controller requires only a limited amount of privacy-insensitive information from the heat pump controllers about their deadlines, which the heat pump controllers calculate for themselves by model predictions. In this way, a robust heat pump and CHP control is obtained, which is able to minimize energy demand and results in the desired thermal comfort for the households. The simulations demonstrate fast computation times due to minor computational and communication overheads.

  10. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  11. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  12. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  13. Operation Performance of Air Source Heat Pump System for Space Heating in Tianjin

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun; CHEN Yan; QU Hang; LI Xinguo

    2007-01-01

    An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior.Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hotwater production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.

  14. Unsteady free convection from a heated sphere in the presence of internal heat generation or absorption

    International Nuclear Information System (INIS)

    This paper is concerned with an unsteady, laminar, free convective flow over a heated sphere with the effect of internal heat generation/absorption. The dimensionless governing equations have been solved employing the finite difference method as well as a perturbation method for short time and an asymptotic method for long time. We examine the effects of the physical parameters, such as, the Prandtl number, Pr, and the heat generation/absorption parameter, γ, on the friction factor and heat transfer rate as well as the velocity and temperature profiles. It is observed that when the Prandtl number, Pr, is increased, the friction factor decreases while the heat transfer rate increases. In the presence of internal heat generation, the friction factor increases while the heat transfer rate reduces. The reverse pattern is found with the heat absorption parameter. The momentum and thermal boundary layers become thicker with an increase of the heat generation parameter. A comparison among the numerical solutions, the perturbation solutions for short time and the asymptotic solutions for long time has been presented which provides a good agreement among the solutions. (authors)

  15. Ground Source Integrated Heat Pump (GS-IHP) Development

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  16. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    Science.gov (United States)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  17. Thermodynamic characteristics of a Brownian heat pump in a spatially periodic temperature field

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper has studied the thermodynamic performance of a thermal Brownian heat pump,which consists of Brownian particles moving at a periodic sawtooth potential with external forces and contacting with the alternating hot and cold reservoirs along the space coordinate.The heat flows driven by both potential and kinetic energies are taken into account.The analytical expressions for the heating load,coefficient of performance(COP) and power input of the Brownian heat pump are derived and the performance characteristics are obtained by numerical calculations.It is shown that due to the heat flow via the change of kinetic energy of the particles,the Brownian heat pump is always irreversible and the COP can never attain the Carnot COP.The study has also investigated the influences of the operating parameters,i.e.the external force,barrier height of the potential,asymmetry of the sawtooth potential and temperature ratio of the heat reservoirs,on the performance of the Brownian heat pump.The effective regions of external force and barrier height of the potential in which the Brownian motor can operates as a heat pump are determined.The results show that the performance of the Brownian heat pump greatly depends on the parameters;if the parameters are properly chosen,the Brownian heat pump may be controlled to operate in the optimal regimes.

  18. Application and installation quality analysis of residential heat pump equipment in Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.F. [Alabama Power Co., Verbena, AL (United States). Heat Pump Training Center; Johnson, B.W. [Alabama Power Co., Birmingham, AL (United States)

    1997-12-31

    Compliance of heat pump installations to Guidelines for Application and Installation of Heat Pump Systems by approved heating, ventilating, and airconditioning (HVAC) contractors has been observed for many years in most regions of the state of Alabama. Since 1964, various programs have been implemented to monitor dealer compliance with common sense criteria to ensure quality heat pump installations that provide for customer comfort, equipment reliability, and economy of operation. This paper discusses a historical overview of these programs. The primary focus is on the summary for programs implemented in 1995 and 1996 to observe and monitor field problems in application and installation of heat pump equipment. An electronically filed customer satisfaction survey form was the basis for the 1995 program. The 1996 program implemented a dealer complaint form to track customer complaints regarding the quality and performance of heat pump equipment installations.

  19. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  20. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Folasayo Fayose

    2016-01-01

    Full Text Available Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified.

  1. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    Science.gov (United States)

    Fayose, Folasayo; Huan, Zhongjie

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668

  2. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa.

    Science.gov (United States)

    Fayose, Folasayo; Huan, Zhongjie

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified.

  3. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa.

    Science.gov (United States)

    Fayose, Folasayo; Huan, Zhongjie

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668

  4. Assessment of solar-assisted gas-fired heat pump systems

    Science.gov (United States)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  5. Solar-assisted heat pump research and development

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.R.; Karayiannis, T.G. (South Bank Univ., London (United Kingdom). School of Engineering and Design)

    1994-01-01

    The main findings of a detailed literature search on solar-assisted heat pumps (SAHP) are presented. The various system types are described and the relevant performance criteria by which systems can be assessed are defined. While most work in the literature has focused on series systems there is no evidence that these can compete with parallel systems, either in non-purchased energy delivery or, more significantly, in cost. Efforts to improve control strategies for series systems are unable to achieve better performance. Technology is sufficiently advanced to exploit the best of these systems if the economic climate becomes favourable. Some suggestions are advanced as to where future research effort can make a useful contribution. (author)

  6. Transient analysis of a capillary pumped loop heat pipe

    Science.gov (United States)

    Kiper, A. M.; Feric, G.; Anjum, M. I.; Swanson, T. D.

    1990-01-01

    A bench-top Capillary Pumped Loop (CPL) test system has been developed and tested to investigate the transient mode operation of this system by applying a step power input to the evaporators. Tests were conducted at several power input and evaporator inlet subcooling combinations. In addition, a lumped-heat-capacity model of the CPL test system has been presented which is used for predicting qualitatively the transient operation characteristics. Good agreement has been obtained between the predicted and the measured temperature variations. A simple evaporator inlet subcooler model has also been developed to study effects of inlet subcooling on the steady-state evaporator wall temperature. Results were compared with the test data collected.

  7. Low-power communication with a photonic heat pump.

    Science.gov (United States)

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3.

  8. Low-power communication with a photonic heat pump.

    Science.gov (United States)

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3. PMID:25607478

  9. Heat pumps: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The bibliography contains citations concerning design, development, and applications of heat pumps for industrial processes. Included are thermal energy exchanges based on air-to-air, ground-coupled, air-to-water, and water-to-water systems. Specific applications include industrial process heat, drying, district heating, and waste processing plants. Other Published Searches in this series cover heat pump technology and economics, and heat pumps for residential and commercial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde;

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  11. Empirical Platform Data Analysis to Investigate how Heat Pumps Operate in Real-Life Conditions

    DEFF Research Database (Denmark)

    Carmo, Carolina; Elmegaard, Brian; Nielsen, Mads Pagh;

    2015-01-01

    Heat pumps have been widely acknowledged, by academia and industry, as highly efficient thermal energy technologies, for space heating and domestic hot water production. However, there is a lack of information about real performance in residential single family houses with active participation...... heat pump configurations are considered depending on source (ground or air) and sink (radiators, floor heating and/or combined systems). This unique study intends to point out the benefits and limitations of such technologies in terms of energy efficiency and comfort delivery, as well as investigating...... the suitability of heat pumps to support fossil-fuel free energy systems....

  12. Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.

    2014-03-01

    This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

  13. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  14. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems

    International Nuclear Information System (INIS)

    Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted. -- Highlights: ► Heat pump heating systems with thermal energy storage are considered. ► System behavior is investigated during a DSM strategy for reducing peak energy demand. ► Heat pump heating systems demonstrate to be able to have an active role in DSM programs. ► A TES system must be coupled with the heat pump in presence of low thermal inertia heating distribution systems. ► Central role played by incentives schemes to promote this technology

  15. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  16. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...... load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...

  17. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  18. Development of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus

    OpenAIRE

    H. I. Abu-Mulaweh

    2009-01-01

    A bench-top air-to-water heat pump experimental apparatus was designed,developed, and constructed for instructional and demonstrative purposes. Thisair-to-water heat pump experimental apparatus is capable of demonstratingthermodynamics and heat transfer concepts and principles. This heat pumpexperimental setup was designed around the vapor compression refrigerationcycle. This experimental apparatus has an intuitive user interface, reliable, safefor student use, and portable. The interface is ...

  19. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    OpenAIRE

    Januševičius, K; Streckienė, G

    2013-01-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of...

  20. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.