WorldWideScience

Sample records for absorption cycle refrigeration

  1. Performance of diffusion absorption refrigeration cycle with organic working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, A.; Jelinek, M.; Levy, A.; Borde, I. [Pearlstone Center for Aeronautical Engineering Studies, Mechanical Engineering Department, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2009-09-15

    A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia-water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC - dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia-water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 C governed these systems. (author)

  2. Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Taieb, Ahmed; Mejbri, Khalifa; Bellagi, Ahmed

    2016-01-01

    This paper proposes an advanced simulation model for a Diffusion-Absorption Refrigerator DAR using ammonia/water/hydrogen as working fluids, and developed to describe and predict the behavior of the device under different operating conditions. The system is supposed to be cooled with ambient air and actuated with solar hot water available at 200 °C. The DAR is first simulated for a set of basic data; a COP of 0.126 associated to a cooling capacity of 22.3 W are found. Basing on the obtained results an exergetic analysis of the system is performed which shows that the rectifier contribution to the exergy destruction is the most important with 34%. In a second step, the thermal capacities of all heat exchangers of the DAR are evaluated and the mathematical model so modified that the calculated capacities are now used as input data. A parametric study of the cycle is then carried out. The COP is found to exhibit a maximum when the heat supplied to the boiler or to the bubble pump is varied. Similar behavior is observed for variable submergence ratio. It is further noted that the COP is very sensitive to the ambient air temperature and to the absorber efficiency. - Highlights: • A detailed model of a Diffusion Absorption is developed and simulated. • Irreversibility of each component of the cycle is examined. • A modified model based on thermal capacity of components of the DAR is elaborated. • System performance is calculated over a series of practical operating conditions.

  3. Parametric analysis for a new combined power and ejector-absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Zhang Taiyong; Ma Shaolin

    2009-01-01

    A new combined power and ejector-absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector-absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.

  4. The influence of diffusion absorption refrigeration cycle configuration on the performance

    International Nuclear Information System (INIS)

    Zohar, A.; Jelinek, M.; Levy, A.; Borde, I.

    2007-01-01

    Based on a full thermodynamic model for ammonia-water diffusion absorption refrigeration (DAR) cycle with hydrogen as the auxiliary inert gas, the performance of two fundamental configurations of a DAR cycle, with and without condensate sub-cooling prior to the evaporator entrance, were studied and compared. The performances of the two cycles were examined parametrically by computer simulations. Mass and energy conservation equations were developed for each component of the cycles and solved numerically. It was found that the DAR cycle without condensate sub-cooling shows higher COP of 14-20% in compare with the DAR cycle with the condensate sub-cooling, but it occurs at higher evaporator temperature of about 15 deg. C

  5. Integration of absorption refrigeration systems into Rankine power cycles to reduce water consumption: A thermodynamic analysis

    International Nuclear Information System (INIS)

    Salgado, R.; Belmonte, J.F.; Almendros-Ibáñez, J.A.; Molina, A.E.

    2017-01-01

    A high percentage of the heat that is supplied to thermoelectric power plants is discarded to ambient and must be handled by an external cooling system. This cooling system typically consists of wet cooling towers because of the excellent thermo-physical properties of water. However, the amount of water consumed for power production has reached alarming levels in developed countries. Air-cooled heat exchangers (ACHXs) appear to be the most adequate technology to substitute for wet cooling towers, but the use of this technology has some limitations. The most important limitation is the higher condenser pressures in the cycle, which produce backpressures at the condensing turbine's exit, increases in heat rejection and losses in the net plant efficiency. This paper presents a concept for the use of ACHXs in the cooling systems of power plants using an absorption refrigeration system (ARS) as an intermediary. Heat from the steam condenser is handled by the evaporator of the ARS and “lifted” to a higher temperature level, where the ACHXs are fitted to work. The generator of the ARS is fed by the power plant itself, extracting (bleeding off) some of the steam that flows through the steam turbine at the correct pressure and temperature. - Highlights: • Integration of absorption refrigeration system into the Rankine cycle of power plant. • The absorption refrigeration system will be driven by bleeding off steam turbine. • Lift rejection temperatures to a higher level to operate with air cooled condensers. • The water savings are estimated to be in the range of 1.12–5.58 m 3 /MWh. • Studying the integration with single- and double-effect absorption machines.

  6. Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Salek, Farhad; Moghaddam, Alireza Naghavi; Naserian, Mohammad Mahdi

    2017-01-01

    Highlights: • Coupling ORC and Ammonia absorption cycles with diesel engine to recover energy. • By using designed bottoming system, recovered diesel engine energy is about 10%. • By using designed bottoming system, engine efficiency will grow about 4.65%. - Abstract: In this paper, Rankine cycle and Ammonia absorption cycle are coupled with Diesel engine to recover the energy of exhaust gases. The novelty of this paper is the use of ammonia absorption refrigeration cycle bottoming Rankine cycle which coupled with diesel engine to produce more power. Bottoming system converts engine exhaust thermal energy to cooling and mechanical energy. Energy transfer process has been done by two shell and tube heat exchangers. Simulation processes have been done by programming mathematic models of cycles in EES Program. Based on results, recovered energy varies with diesel engine load. For the particular load case of current research, the use of two heat exchangers causes 0.5% decrement of engine mechanical power. However, the recovered energy is about 10% of engine mechanical power.

  7. Standard GAX versus hybrid GAX absorption refrigeration cycle: From the view point of thermoeconomics

    International Nuclear Information System (INIS)

    Mehr, A.S.; Zare, V.; Mahmoudi, S.M.S.

    2013-01-01

    Highlights: • The SGAX cycle is found to be thermoeconomically efficient compared to HGAX cycle. • The HGAX cycle has higher COP and exergy efficiency compared to SGAX cycle. • Minimum product cost is found 180.5 $/GJ and 159.1 $/GJ for HGAX and SGAX, respectively. - Abstract: The main goal of this research is to compare thermoeconomic performance of a GAX absorption cycle and a hybrid GAX absorption cycle in which a compressor is employed to raise the absorber pressure. In order to do this, the ammonia–water standard GAX (SGAX) and hybrid GAX (HGAX) absorption refrigeration cycles are investigated and optimized from the viewpoints of thermodynamics and economics. Parametric studies are carried out and with the help of genetic algorithm (GA), the cycles’ performance is optimized based on the COP and exergy efficiency as well as the cost of unit product. Results indicate that although, compared to the GAX cycle, the HGAX cycle demonstrates a better performance from the view points of both the first and second laws of thermodynamics, the unit product cost for the HGAX cycle is higher. At the optimum operating conditions, the cost of unit product for the HGAX cycle is calculated as 180.5 $/GJ while the corresponding value for the SGAX cycle is obtained as 159.1 $/GJ. Also, the exergoeconomic analyses unfold that the condenser has the lowest exergoeconomic factor, f, in both the systems. In addition, inspired from nature, a new graphical plot is proposed to illustrate the fuel cost, product cost, capital investment and operating and maintenance cost and cost rates associated with the exergy destruction and losses within the system’s components

  8. The performance analysis of a novel absorption refrigeration cycle used for waste heat with large temperature glide

    International Nuclear Information System (INIS)

    Shi, Yuqi; Chen, Guangming; Hong, Daliang

    2016-01-01

    Highlights: • A new absorption chiller utilizing heat with a large temperature glide is proposed. • Thermodynamic calculations are conducted to analyze the system performance. • Steady-state parametric studies are conducted for this system. • ω of the new cycle is much higher than that of a single effect cycle. • The new cycle can obtain lower temperature and use lower grade heat. - Abstract: To make full utilization of waste heat with large temperature glide, a new absorption refrigeration cycle with a simple construction is proposed. In this cycle, the solution flowing out from a low-pressure and high-temperature absorber absorbs refrigerant vapor in a low-pressure and low-temperature absorber which is cooled by evaporating refrigerant in a high-pressure evaporator. The refrigerant vapor to be absorbed in the low-pressure and low-temperature absorber comes from a low-pressure evaporator. The vapor flowing out from the high-pressure evaporator is absorbed by solution in a high-pressure absorber. This solution sent to a liquid pump comes from a low-pressure and low-temperature absorber. Compared to a single-effect absorption cycle, the molar fraction of refrigerant of the solution into generator is much greater, resulting in drastic temperature decline for the displaced exhaust gas/water of this cycle, which means the new cycle can effectively utilize waste heat with large temperature glide. Theoretical simulation results show that the cooling capacity per unit mass of exhaust gas of the proposed cycle is about 20% higher than that of a single-effect absorption cycle, especially for the situation that temperature of supplied waste heat is lower and/or refrigeration temperature is lower.

  9. Quantum Absorption Refrigerator

    Science.gov (United States)

    Levy, Amikam; Kosloff, Ronnie

    2012-02-01

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  10. Absorption cycle commercial refrigerator using wood burning cook stove; Geladeira de absorcao acionada por fogao a lenha

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Jose Tomaz Vieira; Martins, Gilberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1990-12-31

    The current utilization of wood burning cook stoves in Brazil and the socio-economical profile of their users were surveyed. A traditional heavy-mass wood-burning cook stove was studied as a thermal equipment. Simple changes in the geometry of the combustion chamber were suggested to improve the cooking efficiency. A closed two-phase thermosyphon using water as working fluid was designed, built and connected between the combustion chamber of the cook stove and a depressurized absorption refrigeration system to determine the heat flux and the temperature level. A commercial refrigerator unit, using the absorption cycle, was coupled with the wood stove through the thermosyphon. The overall results of the coupling point to successful country-side applications. (author) 12 refs., 9 figs., 4 tabs.

  11. Simulation of absorption refrigeration system for automobile application

    OpenAIRE

    Ramanathan Anand; Gunasekaran Prabhakaran

    2008-01-01

    An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixtu...

  12. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  13. Absorption refrigeration cycle applied to offshore platforms; Refrigeracao por absorcao aplicada a plataformas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maximino Joaquim Pina [KROMAV Engenharia, Rio de Janeiro, RJ (Brazil); Pinto, Luiz Antonio Vaz; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    To produce cold from the heat seems a task unlikely or even impossible. However, absorption systems produce cooling from heat sources and it exist since the century XIX. In industrial places is very important to improve the energy use, even more in places where the activities involve great costs and incomes. Traditionally the alternatives conflict in the aspects of initial and operational costs. This paper describes the absorption systems operation and its main advantages and disadvantages, when compared to the traditional systems with compressor. The known fact that a vapor compressor system presents larger efficiency is not enough to validate it for all of the applications. In this sense, the initial and operational analysis of the costs of the absorption systems becomes interesting. In spite of, double effect absorption systems are demonstrating the evolution of the absorption cycle in order to obtain better performance. Turbo-generators and Turbo-compressors of the offshore platforms are thermal machines that reject great amount of heat in the exhaust gases. This heat is used for heating of water used in the Process Plant. The processes of separation of the mixture water-oil-gas from the well, for instance, use that heat. Even after the passage of the water in the Plant of Process, the residual heat is still enough for the use in absorption systems. A simulation is done using real data of an offshore platform. Two possible alternatives are compared under technical and economical aspects. Sensibility analysis is also performed in order to verify possible impacts of variations of electric power cost. (author)

  14. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  15. Thermodynamic performances of [mmim]DMP/Methanol absorption refrigeration

    Science.gov (United States)

    Chen, Wei; Liang, Shiqiang; Guo, Yongxian; Cheng, Keyong; Gui, Xiaohong; Tang, Dawei

    2012-12-01

    In order to study the theoretical cycle characteristic of [mmim]DMP (1-methyl-3-methylimidazolium dimethylphosphate) /methanol absorption refrigeration, the modified UNIFAC group contribution model and the Wilson model are established through correlating the experimental vapor pressure data of [mmim]DMP/methanol at T=280˜370 K and methanol mole fraction x= 0.529˜0.965. Thermodynamic performances of absorption refrigeration utilizing [mmim]DMP/methanol, LiBr/H2O and H2O/NH3 are investigated and compared with each other under the same operating conditions. From the results, some conclusions are obtained as follows: 1) the circulation ratio of the [mmim]DMP /methanol absorption refrigeration is higher than that of the LiBr/H2O absorption refrigeration, but still can be acceptable and tolerable. 2) The COP of the [mmim]DMP/methanol absorption refrigeration is smaller than that of the LiBr/H2O absorption refrigeration, while it is higher than that of the H2O/NH3 absorption refrigeration under most operating conditions. 3) The [mmim]DMP/methanol absorption refrigeration are still available with high COP when the heat source temperature is too high to drive LiBr/H2O absorption refrigeration.

  16. Solar heating and cooling with absorption refrigeration

    OpenAIRE

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  17. Exergy-analysis based comparative study of absorption refrigeration and electric compression refrigeration in CCHP systems

    International Nuclear Information System (INIS)

    Li, Yajun; Hu, Rentian

    2016-01-01

    Highlights: • Performs a comparative study between two different refrigeration systems in CCHP. • Focuses on the impact of steam transport distance on energy and exergy efficiency. • The choice of refrigeration system in CCHP under given conditions is presented. - Abstract: Fueling with natural gas, combined cooling, heating and power (CCHP) system is expected to be widely applied in China, for its potential on energy efficiency and CO 2 emissions reduction. In the design of CCHP, the choice of refrigeration system is now a hot topic because it greatly influences the performance. This paper has made a comparative study between the absorption refrigeration system and electric compression refrigeration system, in terms of exergy efficiency of refrigeration system in CCHP and energy efficiency of CCHP. A GE 9171E gas–steam combined cycle based CCHP system is chosen and analyzed as an example. The comparative study shows that the distance between power station and refrigeration station, namely the steam transport distance, has an effect on the performances of absorption refrigeration system in CCHP and CCHP based on it. As a result, under the conditions studied, absorption refrigeration is more effective when the distance is shorter than 5 km, and if longer than 9.3 km, electric compression refrigeration is a better choice. With distance between 5 and 9.3 km, the kind of refrigeration should depend on specific conditions. This paper does make important guiding significance for the choice of refrigeration system in the design of CCHP.

  18. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC LiBr-water ). The KC subsystem discharges heat to the AC LiBr-water desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  19. Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant

    International Nuclear Information System (INIS)

    Ayou, Dereje S.; Currás, Moisés R.; Salavera, Daniel; García, Josefa; Bruno, Joan C.; Coronas, Alberto

    2014-01-01

    Highlights: • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) absorption heat transformer cycles are studied. • Influence of various operating conditions on cycle’s performance is investigated. • Performance comparisons with H 2 O + LiBr and TFE + TEGDME cycles are done. • Enthalpy data for TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) liquid mixtures are calculated. • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) cycles have higher gross temperature lift (GTL). - Abstract: A detailed thermodynamic performance analysis of a single-stage absorption heat transformer and double absorption heat transformer cycles using new working pairs composed of ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF 4 ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ])) as absorbent and 2,2,2-trifluoroethanol (TFE) as refrigerant has been studied. Several performance indicators were used to evaluate and compare the performance of the cycles using the TFE + [emim][BF 4 ] and TFE + [bmim][BF 4 ] working pairs with the conventional H 2 O + LiBr and organic TFE + TEGDME working pairs. The obtained results show that the ionic liquid based working pairs are suitable candidates to replace the conventional H 2 O + LiBr working pairs in order to avoid the disadvantages associated with it mainly crystallization and corrosion and also they perform better (higher gross temperature lift) than TFE + TEGDME working pair at several operating conditions considered in this work

  20. Analysis of crystallization risk in double effect absorption refrigeration systems

    International Nuclear Information System (INIS)

    Garousi Farshi, L.; Seyed Mahmoudi, S.M.; Rosen, M.A.

    2011-01-01

    Absorption refrigeration systems are an alternative to vapor compression ones in cooling and refrigeration applications. In comparison with single effect absorption units, double effect systems have improved performance. Also, they are more available commercially than the other multi effect absorption cycles. An important challenge in the operation of such systems is the possibility of crystallization within them. This is especially true in developing air-cooled absorption systems, which are attractive because cooling tower and associated installation and maintenance issues can be avoided. Therefore, distinguishing the working conditions that may cause crystallization can be useful in the design and control of these systems. In this paper a computational model has been developed to study and compare the effects of operating parameters on crystallization phenomena in three classes of double effect lithium bromide-water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities. It is shown that the range of operating conditions without crystallization risks in the parallel and the reverse parallel configurations is wider than those of the series flow system. - Highlights: → We study crystallization of double effect absorption refrigeration systems. → We consider series, parallel and reverse parallel cycles. → We study the effect of operating conditions on crystallization. → We choose optimum distribution ratio for parallel and reverse parallel systems. → Crystallization possibility is low in parallel and reverse parallel cycles.

  1. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  2. Thermodynamic Analysis of the Irreversibilities in Solar Absorption Refrigerators

    Directory of Open Access Journals (Sweden)

    Emma Berrich Betouche

    2016-03-01

    Full Text Available A thermodynamic analysis of the irreversibility on solar absorption refrigerators is presented. Under the hierarchical decomposition and the hypothesis of an endoreversible model, many functional and practical domains are defined. The effect of external heat source temperature on the entropy rate and on the inverse specific cooling load (ISCL multiplied by the total area of the refrigerator A/Qe are studied. This may help a constructor to well dimension the solar machine under an optimal technico-economical criterion A/Qe and with reasonable irreversibility on the refrigerator. The solar concentrator temperature effect on the total exchanged area, on the technico-economical ratio A/Qe, and on the internal entropy rate are illustrated and discussed. The originality of these results is that they allow a conceptual study of a solar absorption refrigeration cycle.

  3. The use of absorption refrigeration systems in combined cycle power plants; Empleo de sistemas de refrigeracion por absorcion en plantas de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Ambriz, J.J.; Vargas, M.; Godinez, M.; Gomez, F.; Valdez, L.; Pantoja, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, Mexico D. F. (Mexico)

    1995-12-31

    Day after day the electric power generation tends to be done in the most efficient way in order to diminish the generation costs and the rate of environmental pollution per KWh generated. This paper discusses the application of absorption refrigeration systems for the cooling of the air entering the compressor of a gas turbine in a combined cycle, in order to increase the mass air flow and with it the turbine output. The flows with remanent energy content that are not used in a combined cycle can be used for the operation of the absorption refrigeration system. This way, the required thermal energy for the cooling system is free. With this system it is possible to raise the gas turbine generation output from 5% to 25%. [Espanol] La generacion electrica dia con dia pretende realizarse de la manera mas eficiente posible con el objeto de disminuir los costos de generacion y la tasa de contaminacion ambiental por Kwh generado. En el presente trabajo se introduce la aplicacion de sistemas de refrigeracion por absorcion para el enfriamiento del aire de entrada al compresor de la turbina de gas de un ciclo combinado, con el objeto de aumentar el flujo masico del aire y con ello la potencia de salida de la turbina. Las corrientes con contenido remanente de energia termica que no se usan en una planta de ciclo combinado pueden servir para operar el sistema de refrigeracion por absorcion. De esta manera, la energia termica requerida para el sistema de enfriamiento es gratuita. Con este sistema es posible incrementar la potencia de generacion de la turbina de gas de 5 a 25%.

  4. Dynamic model of an autonomous solar absorption refrigerator

    International Nuclear Information System (INIS)

    Ali Fellah; Tahar Khir; Ammar Ben Brahim

    2009-01-01

    The performance analysis of a solar absorption refrigerator operating in an autonomous way is investigated. The water/LiBr machine satisfies the air-conditioning needs along the day. The refrigerator performances were simulated regarding a dynamic model. For the solar driven absorption machines, two applications could be distinguished. The sun provides the thermal part of the useful energy. In this case, it is necessary to use additional energy as the electric one to activate the pumps, the fans and the control system. On the other hand, the sun provides all the necessary energy. Here, both photovoltaic cells and thermal concentrators should be used. The simulation in dynamic regime of the cycle requires the knowledge of the geometric characteristics of every component as the exchange areas and the internal volumes. Real characteristics of a refrigerator available at the applied thermodynamic research unit (ATRU) at the engineers' national school of Gabes are notified. The development of the thermal and matter balances in every component of the cycle has permitted to simulate in dynamic regime the performances of a solar absorption refrigerator operating with the water/LiBr couple for air-conditioning needs. The developed model could be used to perform intermittent refrigeration cycle autonomously driven. (author)

  5. Not all counterclockwise thermodynamic cycles are refrigerators

    Science.gov (United States)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  6. The Absorption Refrigerator as a Thermal Transformer

    Science.gov (United States)

    Herrmann, F.

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential. (Contains 1 footnote and 6 figures.)

  7. Quantum absorption refrigerator with trapped ions

    Science.gov (United States)

    Gan, Jaren; Maslennikov, Gleb; Hablützel Marrero, Roland; Ding, Shiqian; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    We report on an experimental realization of a quantum absorption refrigerator in a system of the three trapped 171Yb+ ions. The normal modes of motion are coupled by a trilinear Hamiltonian a† bc + h . c . and represent ``hot'', ``work'' and ``cold'' bodies of the refrigerator. We investigate the equilibrium properties of the refrigerator, and demonstrate the absorption refrigeration effect with the modes being prepared in thermal states. We also investigate the coherent dynamics and steady state properties of such a system away from equilibrium operation. We compare the cooling capabilities of thermal versus squeezed thermal states prepared in the work mode as a quantum resource for cooling. Finally, we exploit the coherent dynamics of the system and demonstrate single-shot cooling in the refrigerator. By stopping the evolution in the right moment, we show a significant advantage in cooling as compared to both the steady state and equilibrium performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  8. Comparative study of vapour compression, thermoelectric and absorption refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, P.K.; Martin, A. [Auckland Univ., Dept. of Mechanical Engineering, Auckland (New Zealand)

    2000-07-01

    This paper investigates the performance characteristics of the three domestic refrigerators, namely the vapour compression (VC), the thermoelectric (TE) and the absorption refrigeration (AR). AR and TE refrigerators are the result of research and development in refrigeration systems in the quest to find a cooling system which does not use any refrigerant that damages the ozone layer. Three refrigerators of similar capacity (about 50l) were compared for their usage in the hotel industry in view of their energy efficiency, noise produced and cost (owning as well as running). It was found that the VC refrigerator consumed the least energy, was least costly but was the noisiest. The absorption refrigerator was the quietest of the three but was the least energy efficient and most expensive. The thermoelectric refrigerator was the costliest, nearly as noisy as the VC but was a little less energy efficient than the absorption refrigerator. (Author)

  9. Thermodynamic evaluation of new absorbent mixtures of lithium bromide and organic salts for absorption refrigeration machines

    Energy Technology Data Exchange (ETDEWEB)

    Donate, Marina; Rodriguez, Luis; Lucas, Antonio De; Rodriguez, Juan F. [Department of Chemical Engineering, University of Castilla-La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain)

    2006-01-01

    Mixtures of lithium bromide and organic salts of sodium and potassium (formate, acetate and lactate) have been evaluated as alternative absorbents for absorption refrigeration machines. The main objective is to overpass the limitations of lithium bromide and improve the characteristics and the efficiency of the refrigeration cycle. In order to select the mixture that presents better properties for its employment in absorption refrigeration cycles, a thermodynamic analysis have been done. Density, viscosity, enthalpies of dilution, solubility and vapour pressure data of the proposed mixtures have been measured. A simulation program has been developed to evaluate temperatures, heats exchanged in the different sections and the efficiency of the cycle. (author)

  10. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  11. Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator

    International Nuclear Information System (INIS)

    Qin Xiaoyong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples

  12. Influence of Refrigerant Mass Fraction in the Performance of an Ammonia Absorption Refrigerator

    Science.gov (United States)

    Takeshita, Keisuke; Amano, Yoshiharu; Hashizume, Takumi; Takei, Toshitaka; Tomizawa, Masao

    The performance of the rectifying column affects the coefficient of performance (COP) of an ammonia absorption refrigerator. Ammonia mass fraction of refrigerant is one of the key parameters indicating the performance of the rectifying column. We propose a method to estimate the refrigerant mass fraction with mass and energy balance equations around the separator at the inlet of the evaporator, and describe the results of experiments which measured the refrigerant mass fraction by sampling from the refrigerant receiver. Throughout these investigations, the refrigerant mass fraction turned out to be lower than the expected value calculated from the condition of dry-saturated vapor at the top of the rectifying column. The refrigerant mass fraction can be estimated within an accuracy of 0.3% by the estimation method based on mass and energy balance equations.

  13. THERMODYNAMIC ANALYSIS AND SIMULATION OF A NEW COMBINED POWER AND REFRIGERATION CYCLE USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Hossein Rezvantalab

    2011-01-01

    Full Text Available In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural network (ANN is used to simulate the thermodynamic properties and the relationship between the input thermodynamic variables on the cycle performance. It is shown that turbine inlet pressure, as well as heat source and refrigeration temperatures have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. In addition, the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of cycle performance.

  14. Parametric analysis and optimization for a combined power and refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Gao Lin

    2008-01-01

    A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia-water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition

  15. COMPARISON OF ENERGY AND EXERGY EFFICIENCIES OF ABSORPTION REFRIGERATION SYSTEM WITH MECHANICAL COMPRESSION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Gülay YAKAR

    2005-02-01

    Full Text Available In this study, energy and exergy analysis of absorption refrigeration system using LiBr- water and mechanical compression refrigeration system using R134-a were performed at different evaporation temperatures. The results are presented in tables and figures.

  16. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  17. A Cold Cycle Dilution Refrigerator for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The cold cycle dilution refrigerator is a continuous refrigerator capable of cooling to temperatures below 100 mK that makes use of a novel thermal magnetic pump....

  18. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  19. An absorption-diffusion refrigerator operated by solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, T.I.; Hanafy, A.E.; Klup, A.M.A. [Menoufla Univ. (Egypt)

    1993-12-31

    The design of a commercially available vapor absorption electrical refrigerator was changed to make it suitable for running on solar energy. The refrigerator was attached to a thermo-siphonic flat-plate solar oil heating system with small tank-collector volume ratio collector to supply heat to the generator of the refrigerator. The test results revealed that the minimum evaporator temperature was around 2 C. The designed solar heating system was suitable for the operation of the refrigerator by solar energy. From the analysis of the operation of the refrigerator by both electrical as well as solar energy, it was found that the ambient temperature is a dominant factor affecting the system performance. (Authors). 10 refs., 14 figs., 1 tab.

  20. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  1. Heat exchanger bypass system for an absorption refrigeration system

    Science.gov (United States)

    Reimann, Robert C.

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  2. Closed cycle refrigeration for routine magnetotransport measurements

    Science.gov (United States)

    Gunawardana, Binuka; Ye, Tianyu; Wegscheider, Werner; Mani, Ramesh

    2015-03-01

    Condensed matter physics is often interested in the behavior of materials at very low temperatures. Low temperatures have traditionally been realized using liquid helium. However, the recent scarcity of liquid helium and the rapid rise in its cost has encouraged the development of alternative approaches, based on closed cycle refrigerators, for realizing low temperatures. Here, we convey our experiences in developing a home-made, low cost, variable temperature closed cycle refrigeration system for routine magnetotransport measurements down to 10K, and present measurements obtained with this system relating to the electronic properties of the high mobility GaAs/AlGaAs 2D semiconductors system. The setup was constructed to examine 0.5cm × 0.5cm semiconductor chips including up to 49 leads and reach ~ 10K within 3 hours. A computer controlled data acquisition system was assembled to collect resistivity and Hall effect data, and extract the carrier Hall mobility and density as a function of the temperature.

  3. Experimental Investigation on an Absorption Refrigerator Driven by Solar Cells

    Directory of Open Access Journals (Sweden)

    Zi-Jie Chien

    2013-01-01

    Full Text Available This experiment is to study an absorption refrigerator driven by solar cells. Hand-held or carried in vehicle can be powered by solar energy in places without power. In the evenings or rainy days, it is powered by storage battery, and it can be directly powered by alternating current (AC power supply if available, and the storage battery can be charged full as a backup supply. The proposed system was tested by the alternation of solar irradiance 550 to 700 W/m2 as solar energy and 500ml ambient temperature water as cooling load. After 160 minutes, the proposal refrigerator can maintain the temperature at 5–8°C, and the coefficient of performance (COP of NH3-H2O absorption refrigeration system is about 0.25. Therefore, this system can be expected to be used in remote areas for refrigeration of food and beverages in outdoor activities in remote and desert areas or long-distance road transportation of food or low temperature refrigeration of vaccine to avoid the deterioration of the food or the vaccines.

  4. Optimization of a solar driven absorption refrigerator in the transient regime

    International Nuclear Information System (INIS)

    Hamed, Mouna; Fellah, Ali; Ben Brahim, Ammar

    2012-01-01

    Highlights: ► Dynamic behavior of a solar absorption refrigerator endoreversible model. ► Using the principles of classical thermodynamics, mass and heat transfers. ► Minimizing heat exchange time to reach maximum performances. ► Major influence of the collector temperature on the model’s characteristics. ► Analogous effects of both the thermal load and the thermal conductance. -- Abstract: This contribution deals with the theoretical study in dynamic mode of an absorption refrigerator endoreversible model. The system is a cold generating station driven by solar energy. The main elements of the cycle are a refrigerated space, an absorption refrigerator and a solar collector form. A mathematical model is developed. It combines the classical thermodynamics and mass and heat transfers principles. The numerical simulation is made for different operating and conceptual conditions. A global minimizing time optimization is performed in view to reach maximum performances. Appropriate dimensionless groups are defined. The results are presented in normalized charts for general applications. The collector temperature presents major influence on the conceptual and functional characteristics compared to the stagnation temperature influence. On the other hand the thermal load in the refrigerated space and the thermal conductance of the walls has analogous effects, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar collector based energy systems.

  5. Refrigeration Cycle Design for Refrigerant Mixtures by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Francová, Magda; Kowalski, M.; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 4 (2010), s. 383-391 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720710 Grant - others:NSERC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : refrigerants * molecular simulations * vapor–liquid equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  6. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  7. Applying design of experiments to a compression refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Nuno Ricardo Costa

    2015-12-01

    Full Text Available Refrigeration cycles are used in a large diversity of industrial and domestic (residential and non-residential equipment and their efficiency depend on several variables. To better understanding of how controllable variables impact on a compression refrigeration cycle efficiency, statistically designed experiments were conducted and data were analyzed. A quadratic polynomial model was fitted to Coefficient of Performance and variable settings to maximize cycle efficiency identified. Results give confidence to use the illustrated approach for refrigeration cycle design and operation improvement purposes.

  8. Modelling of the generation phase of an absorption cooling cycle operating intermittently; Modelisation de la phase generation d'un cycle de refrigeration par absorption solaire a fonctionnement intermittent

    Energy Technology Data Exchange (ETDEWEB)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar [Unite de Recherche, Thermodynamique Appliquee (99/UR/11-21), Universite de Gabes, Ecole Nationale d' ingenieurs, 6072 Gabes (Tunisia)

    2011-01-15

    No abstract prepared. [French] La modelisation en regime dynamique de la phase generation d'une installation frigorifique a absorption solaire a fonctionnement intermittent utilisant le couple ammoniac/eau a ete elaboree. L'etude basee sur l'intermittence du fonctionnement a permis d'elaborer, a travers les bilans matieres et thermiques, un modele thermodynamique reliant les temperatures, les debits et les fractions massiques dans les differents compartiments. Des journees ensoleillees representatives des quatre saisons de l'annee ont ete considerees. Les variations du taux d'ensoleillement, des temperatures et des concentrations ont ete explorees. Les resultats ont montre, moyennant les hypotheses adoptees en particulier a pression de fonctionnement constante, que la demarche proposee a permis d'avoir une temperature de generation autour de 135 C et une temperature de condensation de 60 C. Ces temperatures sont atteinte par l'adaptation de la convection naturelle a l'air pour le fonctionnement du condenseur. (orig.)

  9. Applying design of experiments to a compression refrigeration cycle

    OpenAIRE

    Nuno Ricardo Costa; João Garcia

    2015-01-01

    Refrigeration cycles are used in a large diversity of industrial and domestic (residential and non-residential) equipment and their efficiency depend on several variables. To better understanding of how controllable variables impact on a compression refrigeration cycle efficiency, statistically designed experiments were conducted and data were analyzed. A quadratic polynomial model was fitted to Coefficient of Performance and variable settings to maximize cycle efficiency identified. Results ...

  10. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers

    International Nuclear Information System (INIS)

    Zhou, Mengliu; Wang, Xiao; Yu, Jianlin

    2013-01-01

    Highlights: • A novel dual-nozzle ejector enhanced refrigeration cycle is proposed. • The novel cycle is evaluated by using the developed mathematical model. • The results show the performances of the novel cycle could be significantly improved. • The novel cycle shows its promise in household refrigerator-freezers applications. - Abstract: In this study, a novel dual-nozzle ejector enhanced refrigeration cycle is presented for dual evaporator household refrigerator-freezers. The proposed ejector equipped with two nozzles can efficiently recover the expansion work from cycle throttling processes and enhance cycle performances. The performances of the novel cycle are evaluated by using the developed mathematical model, and then compared with that of the conventional ejector enhanced refrigeration cycle and basic vapor-compression refrigeration cycle. The simulation results show that for the given operating conditions, the coefficient of performance (COP) of the novel cycle using refrigerant R134a is improved by 22.9–50.8% compared with that of the basic vapor-compression refrigeration cycle, and the COP improvement is 10.5–30.8% larger than that of the conventional ejector enhanced refrigeration cycle. The further simulation results of the novel cycle using refrigerant R600a indicate that the cycle COP and volumetric refrigeration capacity could be significantly improved

  11. Using waste heat of ship as energy source for an absorption refrigeration system

    International Nuclear Information System (INIS)

    Salmi, Waltteri; Vanttola, Juha; Elg, Mia; Kuosa, Maunu; Lahdelma, Risto

    2017-01-01

    Highlights: • A steady-state thermodynamic model is developed for absorption refrigeration in a ship. • Operation profile of B.Delta37 bulk carrier is used as an initial data. • Suitability of water-LiBr and ammonia-water working pairs were validated. • Coefficient of performance (COP) was studied in ISO and tropical conditions. • Estimated energy savings were 47 and 95 tons of fuel every year. - Abstract: This work presents a steady-state thermodynamic model for absorption refrigeration cycles with water-LiBr and ammonia-water working pairs for purpose of application on a ship. The coefficient of performance was studied with different generator and evaporator temperatures in ISO and tropical conditions. Absorption refrigeration systems were examined using exhaust gases, jacket water, and scavenge air as energy sources. Optimal generator temperatures for different refrigerant temperatures were found using different waste heat sources and for the absorption cycle itself. Critical temperature values (where the refrigeration power drops to zero) were defined. All of these values were used in order to evaluate the cooling power and energy production possibilities in a bulk carrier. The process data of exhaust gases and cooling water flows in two different climate conditions (ISO and tropical) and operation profiles of a B. Delta37 bulk carrier were used as initial data in the study. With the case ship data, a theoretical potential of saving of 70% of the electricity used in accommodation (AC use) compressor in ISO conditions and 61% in tropical conditions was recognized. Those estimates enable between 47 and 95 tons of annual fuel savings, respectively. Moreover, jacket water heat recovery with a water-LiBr system has the potential to provide 2.2–4.0 times more cooling power than required during sea-time operations in ISO conditions, depending on the main engine load.

  12. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  13. Industrial refrigeration by absorption/compression; Refrigeracion industrial por absorcion/compresion

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, Ramon; Heard, Christopher Lionel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The use of the absorption/compression refrigeration in the industrial area is analyzed. It is estimated than in Mexico 50% of the food is wasted for lack of refrigeration in the producing centers and by the inefficient distribution system, as well as for the hot climate. The functioning of the absorption refrigeration and the hybrid system absorption/compression which can operate with the two thermodynamic cycles in variable proportions, depending on the specific application, looking for operational advantages and energy efficiency is described. This type of technology could be applied in Mexico due to the lack of industrial refrigeration and to the need of substituting compressors in some companies which have up to 20 years of use [Espanol] Se analiza el uso de la refrigeracion por absorcion/compresion en el area industrial. En Mexico se estima que se desperdicia el 50% de los alimentos por falta de refrigeracion en los centros productores y por el deficiente sistema de distribucion, asi como por el clima calido. Se describe el funcionamiento de la refrigeracion por absorcion y la refrigeracion por absorcion/compresion o sistema hibrido, el cual puede funcionar con los dos tipos de ciclos termodinamicos, en proporciones variables, dependiendo de la aplicacion especifica, buscando ventajas de operacion y eficiencia energetica. Este tipo de tecnologia podria aplicarse en Mexico debido a la falta de refrigeracion industrial y a la necesidad de sustituir compresores en algunas empresas los cuales tienen hasta 20 anos de uso

  14. Second law analysis of the transcritical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Fartaj, Amir; Ting, David S.-K.; Yang, Wendy W.

    2004-01-01

    Because of the global warming impact of HFCs, the use of natural refrigerants has received worldwide attention. Efficient use of refrigerants is of pressing concern to the present automotive and HVAC industries. The natural refrigerant, carbon dioxide (CO 2 ), exhibits promise for use in automotive air conditioning systems, in particular the transcritical CO 2 refrigeration cycle. The objective of this work is to identify the main factors that affect CO 2 system performance. A second law of thermodynamic analysis on the entire CO 2 refrigeration cycle is conducted so that the effectiveness of the components of the system can be deduced and ranked, allowing future efforts to focus on improving the components that have the highest potential for advancement. The analysis reveals that the compressor and the gas cooler exhibit the largest non-idealities within the system, and hence, efforts should be focused on improving these components

  15. An innovative ecological hybrid refrigeration cycle for high power refrigeration facility

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2015-09-01

    Full Text Available Searching for new refrigerants is one of the most significant scientific problems in refrigeration. There are ecological refrigerants commonly known: H2O and CO2. H2O and CO2 known as natural refrigerants, but they have problems:a high freezing point of H2O and a low triple point of CO2. These problems can be solved by the application of a hybrid sorption-compression refrigeration cycle. The cycle combines the application possibility of H2O in the high temperature sorption stage and the low temperature application of CO2 in the compression stage. This solution gives significant energy savings in comparison with the two-stage compressor cycle and with the one-stage transcritical CO2 cycle. Besides, the sorption cycle may be powered by low temperature waste heat or renewable heat. This is an original idea of the authors. In the paper an analysis of the possible extension of this solution for high capacity industrial refrigeration is presented. The estimated energy savings as well as TEWI (Total Equivalent Warming Impact index for ecological gains are calculated.

  16. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration

    International Nuclear Information System (INIS)

    Ebrahimi, Khosrow; Jones, Gerard F.; Fleischer, Amy S.

    2015-01-01

    Highlights: • Absorption refrigeration is powered by data center waste heat. • Waste heat from 3 to 5 server racks produces cooling for an additional rack. • An economic analysis shows the payback period can be as short as 4–5 months. - Abstract: This paper addresses the technical and economic issues associated with waste heat recovery in data centers through the use of absorption cooling machines. The theoretical possibility of utilizing the heat dissipated by a server, or a number of servers, to power an absorption system, which in turn produces cooling for other servers in the data center, is investigated. For this purpose, a steady-state thermodynamic model is developed to perform energy balance and exergy analyses for a novel configuration of an on-chip two-phase cooling system and an absorption refrigeration system. This combination is created by replacing the condenser in the on-chip cooling circuit with the generator of an absorption refrigeration cycle. The performance of the developed model in simulating both LiBr–water and water–ammonia absorption cooling systems is examined through verification of the model results against the reference data available in the literature. The verification indicates the superiority of LiBr–water absorption system for data center/server operating conditions. Therefore, a LiBr–water absorption refrigeration system is modeled in the novel combined heat recovery system. For these systems it is shown that the traditional definition for the coefficient of performance (COP) is not appropriate to evaluate the performance and, in its place, introduce a new figure of merit. Through a sensitivity analysis, the effects of server waste heat quality, server coolant type, solution peak concentration, solution heat exchanger effectiveness, evaporator temperature, and operating pressures on the performance of the novel system are investigated. Finally, using the thermodynamic model and cost information provided by the

  17. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    Science.gov (United States)

    Wang, Hao; Wu, Guo-Xing

    2013-08-01

    An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle.

  18. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  19. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  20. Simulator for design absorption refrigeration system; Simulador para projeto de ciclos de refrigeracao por absorcao

    Energy Technology Data Exchange (ETDEWEB)

    Morejon, C.F.M.; Brum, N. de C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Mecanica]. E-mails: Camilo_freddy@hotmail.com; Nisio@serv.com.ufrj.br

    2000-07-01

    This work presents a development of a thermal fluid dynamics model and a solution of a steady state absorption refrigeration cycle, with ammonia water as the working fluid. Analytical thermodynamics models expressing the enthalpy in function of pressure, temperature and composition (h=f(P,T,x)), are used with the aim to design all of the cycle devices, moved by any type of energy such as solar, natural gas, steam or electrical energy (Morejon and Hackenberg, 1978). The development of the analysis is carried out by the application of thermal fluid dynamics concepts together with a detailed study of the heat and mass transfer in the different cycle stages. The thermodynamic cycle model, obtained from equation of state for ammonia - water mixtures (Ziegker and Trepp, 1984), is represented by the relation h - x (enthalpy-composition) for different pressures and temperatures. The obtained models are used to implement computational codes in MAPLE-V facilitating the design and simulation of refrigeration system. This study can be applied in the systems of air conditioning and refrigeration chambers design. (author)

  1. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  2. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  3. Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, N.A.; Al-Hashimi, S.H.; Al-Mansoori, A.S. [The Chemical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2008-11-15

    The Robur absorption-refrigeration water-ammonia (ARWA) system is analyzed using Aspen Plus flowsheet simulator. The results are compared with experimental and some manufacturer data reported in the open literature. Among performance parameters analyzed are coefficient of performance (COP), heat duties of the evaporator, absorber, and the condenser, refrigerant concentration in the weak and strong solution, and flow rates of the weak solution and the flow rate of refrigerant passing through the evaporator. In general, a very good agreement between the simulator's results and the experimental measurements was found. Also, results obtained for the effect of separator (input) heat duty on the COP agree well with the reported experimental data with a maximum percentage deviation of 1.8%. Efficiency of the separator in splitting off the refrigerant at the column top is shown to be of crucial importance; COP increased by 15% in going from 1 to 5 theoretical equivalent mass transfer stages in the separator. Some innovative modifications to Robur cycle aimed at enhancing the separator operation have shown a promising improvement in the COP. In particular, introducing a throttling process directly before the separator can alleviate the separator heat load and enhance the COP by up to 20%. Use of stripping gas injected at the bottom of the boiler is another strategy that has been investigated in this work. (author)

  4. Superfluid Stirling-cycle refrigeration below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1991-01-01

    A new method for cooling below 1 K, the superfluid Stirling cycle, uses the gaslike thermodynamic properties of the 3 He solute in a superfluid 3 He- 4 He solution. The first prototype superfluid Stirling-cycle refrigerator cools to 0.6 K from a starting temperature of 1.2 K, with cooling powers at the lowest temperatures of a few tens of microwatts. The cycle works in both classical-gas and Fermi-gas regimes

  5. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  6. Design of an ejector cycle refrigeration system

    International Nuclear Information System (INIS)

    Grazzini, G.; Milazzo, A.; Paganini, D.

    2012-01-01

    Highlights: ► A design procedure is presented for an ejection refrigeration system. ► Properties of applicable operating fluids are presented and R245fa is selected. ► Real gas properties are used. ► The diffuser is designed with a profile that controls momentum change. ► Fluid friction is accounted for along all main components. - Abstract: A design procedure, based on a one-dimensional simulation, is presented for an ejection refrigeration system. Heat exchangers are included in the calculation, accounting for temperature differences between the fluids and for pressure losses. The ideal gas assumption, which is quite common in the literature concerning ejector systems, is avoided. Furthermore, the supersonic diffuser is designed with a continuous profile, without cylindrical piece, controlling the variation of momentum along the flow path and accounting for friction. At design conditions, this should reduce the irreversibility due to the normal shock. A comparison between different operating fluids is presented and R245fa is selected. The results of the design procedure and the expected performance, in terms of first and second law efficiency, are presented.

  7. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    NARCIS (Netherlands)

    Lin, G.; Bruck, E.H.; Tegus, O.; Zhang, L.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general

  8. Thermal Losses Effect on the Performance of an Intermittent Solar Refrigeration Cycle for Generation Phase

    International Nuclear Information System (INIS)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar

    2009-01-01

    In this contribution, a study of the thermal losses effect undergone by the different parts of an intermittent absorption solar refrigeration cycle using the Ammonia/Water mixture is presented. After having shown the interest of the intermittent cycles through the discussion of the problem of the adaptation of these cycles to solar energy, mass and thermal assessments for each compartment of the installation were established for the two cases without and with thermal losses. The resulting differential equations system is solved numerically. The theoretical results obtained concern the temperature variations, the vapor flow as well as the compositions of the rich and the poor solutions

  9. A LiBr-H2O Absorption Refrigerator Incorporating a Thermally Activated Solution Pumping Mechanism

    Directory of Open Access Journals (Sweden)

    Ian W. Eames

    2017-02-01

    Full Text Available This paper provides an illustrated description of a proposed LiBr-H2O vapour absorption refrigerator which uses a thermally activated solution pumping mechanism that combines controlled variations in generator vapour pressure with changes it produces in static-head pressure difference to circulate the absorbent solution between the generator and absorber vessels. The proposed system is different and potentially more efficient than a bubble pump system previously proposed and avoids the need for an electrically powered circulation pump found in most conventional LiBr absorption refrigerators. The paper goes on to provide a sample set of calculations that show that the coefficient of performance values of the proposed cycle are similar to those found for conventional cycles. The theoretical results compare favourably with some preliminary experimental results, which are also presented for the first time in this paper. The paper ends by proposing an outline design for an innovative steam valve, which is a key component needed to control the solution pumping mechanism.

  10. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  11. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  12. Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems.

    Science.gov (United States)

    Abedin, Rubaiyet; Heidarian, Sharareh; Flake, John C; Hung, Francisco R

    2017-10-24

    We used computational tools to evaluate three working fluid mixtures for single-effect absorption refrigeration systems, where the generator (desorber) is powered by waste or solar heat. The mixtures studied here resulted from combining a widely used hydrofluorocarbon (HFC) refrigerant, R134a, with three common deep eutectic solvents (DESs) formed by mixing choline chloride (hydrogen bond acceptor, HBA) with urea, glycerol, or ethylene glycol as the hydrogen bond donor (HBD) species. The COSMOtherm/TmoleX software package was used in combination with refrigerant data from NIST/REFPROP, to perform a thermodynamic evaluation of absorption refrigeration cycles using the proposed working fluid mixtures. Afterward, classical MD simulations of the three mixtures were performed to gain insight on these systems at the molecular level. Larger cycle efficiencies are obtained when R134a is combined with choline chloride and ethylene glycol, followed by the system where glycerol is the HBD, and finally that where the HBD is urea. MD simulations indicate that the local density profiles of all species exhibit very sharp variations in systems containing glycerol or urea; furthermore, the Henry's law constants of R134a in these two systems are larger than those observed for the HFC in choline chloride and ethylene glycol, indicating that R134a is more soluble in the latter DES. Interaction energies indicate that the R134a-R134a interactions are weaker in the system where ethylene glycol is the HBD, as compared to in the other DES. Radial distribution functions confirm that in all systems, the DES species do not form strong directional interactions (e.g., hydrogen bonds) with the R134a molecules. Relatively strong interactions are observed between the Cl anions and the hydrogen atoms in R134a; however, the atom-atom interactions between R134a and the cation and HBD species are weaker and do not play a significant role in the solvation of the refrigerant. In all systems, R134a has

  13. Implementation of an object-oriented dynamic modeling library for absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu, D.G.; Lu, Z. [Institute of Refrigeration and Cryogenics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, No. 1954, Hua Shan Road, Shanghai 200030 (China); Poncia, G. [United Technologies Research Center, East Hartford, CT 06108 (United States)

    2006-02-01

    The integration of absorption refrigeration equipment into Cooling, Heating and Power systems must guarantee economic viability, operability and reliability. Accurate control design is mandatory to fulfill such requirements, and make system design successful. The use of model-based control techniques and the introduction of controls testing via numerical simulation rely on the availability of accurate, robust and flexible dynamic models. In this paper, a model library of absorption systems with different working mediums and cycle configurations is presented. Library flexibility and extensibility is achieved through the adoption of object-oriented modeling techniques, allowing considerable reduction of the development time through model reuse. The library has been used to simulate the transient behavior, including startup and shutdown, of several systems. Validation against experimental data has proven the accuracy of modeling assumption. (author)

  14. Analysis of an absorption/absorption–compression refrigeration system for heat sources with large temperature change

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes an absorption/absorption–compression refrigeration system. • The temperature of the waste gas exhausted from the system is quite low. • The system cooling capacity per unit mass of flue gas is 58.95 kJ kg −1 at −15 °C. • Key parameters were investigated to provide guidance to the system optimization. - Abstract: Absorption refrigeration systems are a promising way to reduce electricity consumption in the field of refrigeration and cooling. To improve the thermal energy utilization performance of the absorption refrigeration system, an absorption/absorption–compression refrigeration system with a large working range is proposed in this paper. The new system consists of a conventional single-effect absorption subcycle and an absorption–compression refrigeration subcycle, and they share the condenser, evaporator, absorber and some other relative components. The temperature of the waste gas exhausted from the system can be 35 °C lower than that of the waste gas from a traditional, single-effect absorption refrigeration system. For the proposed system, the cooling capacity per unit mass of flue gas reaches 58.95 kJ kg −1 when the evaporation temperature is −15 °C, which is 28.21% higher than that of the single-effect absorption refrigeration system. The exergy efficiency of the proposed system is as high as 25.94%. To indicate the direction of system optimization, the new system is further studied using a parametric analysis. The new absorption/absorption–compression refrigeration system provides a promising way to efficiently utilize heat sources with large temperature change or multiple heat sources with different temperatures.

  15. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  16. A compact 2.5-Kelvin closed-cycle refrigerator

    Science.gov (United States)

    Britcliffe, Mike

    1990-01-01

    A helium refrigerator utilizing the Gifford-McMahon/Joule-Thomson cycle was designed and tested to demonstrate the feasibility of using small closed-cycle refrigerators as an alternative to batch filled-cryostats for operating temperatures below 4 K. The systems could be used to cool low-noise microwave maser amplifiers located in large parabolic antennas. These antennas tilt vertically, making conventional liquid-filled dewars difficult to use. The system could also be used for a nontilting beam waveguide antenna to reduce the helium consumption of a liquid helium cryostat. The prototype system is adjustable to provide 700 milliwatts of cooling at 2.5 K to 3 watts at 4.3 K. The performance of the unit is not significantly affected by operation in any physical orientation.

  17. Cooling, freezing and heating with the air cycle: air as the ultimate green refrigerant

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    2000-01-01

    Due to the recent concern about the damage that CFCs cause to the environment (ozone layer, global warming) and the absence of commonly acceptable alternative refrigerants, the search for alternative refrigeration concepts is going on. Air as refrigerant in the Joule-Brayton cycle (air cycle) is one

  18. Industrial ammonia absorption refrigeration plants in combination with gas engines; Groupes de refrigeration industriels a absorption d'ammoniac combines avec des moteurs a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Bassols, J. [Colibri bv (Netherlands); Sahu, J. [Gas Natural SDG, S.A. (Spain)

    2000-07-01

    In many industrial sectors, co-generation systems with gas turbines or engines and ammonia absorption refrigeration plants are being introduced for the simultaneous production of electricity and refrigeration in order to meet the energy requirements inherent to each process and to reduce the operating costs. The different possibilities to link the absorption refrigeration plant to the cogeneration system and to the consumers are described. Different examples of realised projects are used to illustrate the different systems. Despite the fact that, compared to compression refrigeration machines, ARP's have lower COP (coefficient of performance) and higher investment costs, the advantage of using thermal energy as a driving energy instead of electricity makes the combination cogeneration-ARP very attractive. The plants can easily be integrated into an existing refrigeration installation. The full automatic control systems provide a trouble-free operation. Because most of the components of an ARP are heat exchangers, the plants only need little maintenance and are not susceptible to trouble. For their maintenance, no special knowledge is necessary. Plants working with NH{sub 3}-H{sub 2}O use ammonia as a refrigerant, which is a natural and environment-friendly fluid. (authors)

  19. Regenerator optimization for stirling cycle refrigeration

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1994-01-01

    A cryogenic regenerator for a Stirling cycle is discussed by minimizing the entropy gain as the criterion of performance. Only the gas losses are treated here. The authors argue that the optimum design corresponds to uniform channel flow with minimum turbulence. The optimization depends upon minimizing the sum of three sources of entropy generation, those due to transverse and parallel heat conduction and that due to friction with the wall. This leads to criteria for the width, length, and velocity of the gas, which for helium become W= 1.6x10 -4 T O /(σP O ) cm, L= 6.7x10 -5 T O /(σ 2 P O ) cm, and v/C s = σ/2 respectively where σ is the ratio (entropy gain)/(entropy transferred), C s is sound speed, P O is the pressure in atmospheres, and T O is the ratio of temperature to room temperature. The thermal properties of the channel wall must then accommodate the heat flow of the gas without substantially increasing the loss fraction. That problem is reserved to another paper

  20. Parametric study of an absorption refrigeration machine using advanced exergy analysis

    International Nuclear Information System (INIS)

    Gong, Sunyoung; Goni Boulama, Kiari

    2014-01-01

    An advanced exergy analysis of a water–lithium bromide absorption refrigeration machine was conducted. For each component of the machine, the proposed analysis quantified the irreversibility that can be avoided and the irreversibility that is unavoidable. It also identified the irreversibility originating from inefficiencies within the component and the irreversibility that does not originate from the operation of the considered component. It was observed that the desorber and absorber concentrated most of the exergy destruction. Furthermore, the exergy destruction at these components was found to be dominantly endogenous and unavoidable. A parametrical study has been presented discussing the sensitivity of the different performance indicators to the temperature at which the heat source is available, the temperature of the refrigerated environment, and the temperature of the cooling medium used at the condenser and absorber. It was observed that the endogenous avoidable exergy destruction at the desorber, i.e. the portion of the desorber irreversibility that could be avoided by improving the design and operation of the desorber, decreased when the heat source or the temperature at which the cooling effect was generated increased, and it decreased when the heat sink temperature increased. The endogenous avoidable exergy destruction at the absorber displayed the same variations, though it was observed to be less affected by the heat source temperature. Contrary to the aforementioned two components, the exergy destruction at the evaporator and condenser were dominantly endogenous and avoidable, with little sensitivity to the cycle operating parameters. - Highlights: • Endogenous, exogenous, avoidable and unavoidable irreversibilities were calculated for a water–LiBr absorption machine. • Overall, desorber and absorber concentrated most of the exergy destruction of the cycle. • The exergy destruction was mainly endogenous and unavoidable for the desorber and

  1. Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature

    International Nuclear Information System (INIS)

    Steyert, W.A.

    1978-01-01

    The application (or removal) of a magnetic field to the ferromagnetic Gd metal near its Curie point (293 K) will produce adiabatic heating (or cooling) of 14 K or isothermal expulsion (or absorption) of 32 kJ of heat per liter of Gd metal. A refrigerator and a heat engine are described for which porous Gd metal forms the rim of a wheel rotating into and out of a magnetic field region. Fluid forced to flow through the porous metal exchanges heat; the field and flow configurations are such that the metal executes a magnetic Stirling cycle allowing a very wide temperature span (many times 14 K) while maintaining the 32-kJ/l capacity. Efficiencies approaching that of Carnot are expected at 1-Hz rotation rates, resulting in 32-kW/l refrigeration or heating capacity

  2. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa

    International Nuclear Information System (INIS)

    Tan, Yingying; Wang, Lin; Liang, Kunfeng

    2015-01-01

    In this paper, an auto-cascade ejector refrigeration cycle (ACERC) is proposed to obtain lower refrigeration temperature based on conventional ejector refrigeration and auto-cascade refrigeration principle. The thermodynamic performance of ACERC is investigated theoretically. The zeotropic refrigerant mixture R32 + R236fa is used as its working fluid. A parametric analysis is conducted to evaluate the effects of some thermodynamic parameters on the cycle performance. The study shows that refrigerant mixture composition, condenser outlet temperature and evaporation pressure have effects on performance of ACERC. The theoretical results also indicate that the ACERC can achieve the lowest refrigeration temperature at the temperature level of −30 °C. The application of zeotropic refrigerant mixture auto-cascade refrigeration in the ejector refrigeration cycle can provide a new way to obtain lower refrigeration temperature utilizing low-grade thermal energy. - Highlights: • An auto-cascade ejector refrigerator with R32 + R236fa mixed refrigerant is proposed. • The cycle can obtain a refrigeration temperature at −30 °C temperature range. • The effects of some thermodynamic parameters on the cycle performance are evaluated

  3. World's first ejector cycle for mobile refrigerators to stop global warming

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Hirotsugu [Denso Corporation, Kariya (Japan); Gyoeroeg, Tibor [DENSO AUTOMOTIVE Deutschland GmbH, Eching (Germany)

    2010-07-01

    The development of energy-saving technologies is in great demand recently to stop global warming. We are committed to developing the Ejector Cycle as an energy-saving technology for refrigerators and air conditioners. The ejector, which is an energy-saving technological innovation, improves the efficiency of the refrigeration cycle by effectively using the expansion energy that is lost in the conventional vapor-compression cycle, and is applicable to almost all vapor-compression refrigerating air conditioners, thus improving the efficiency of the refrigeration cycle. Concerning the application of the Ejector Cycle in truck-transport refrigerators, we released Ejector Cycle products for large and medium-size freezer trucks, which have been favorably accepted by customers in 2003. Simultaneously we also developed the domestic water supply system using heat pump with natural refrigerant (CO{sub 2}). We developed a new Ejector Cycle, completed in 2007 a cool box which uses the refrigeration cycle of the mobile air-conditioning system to cool drinks and the commercial compact refrigerator. In 2008 a domestic water supply heat pump system using a heat pump with the natural refrigerant CO{sub 2} and the next-generation Ejector Cycle II that substantially improves performance was brought to the market. A new generation of Ejector Cycle is under development which will significantly improve the efficiency of mobile air conditioning systems (orig.)

  4. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  5. Synthesis of integrated absorption refrigeration systems involving economic and environmental objectives and quantifying social benefits

    International Nuclear Information System (INIS)

    Lira-Barragán, Luis Fernando; Ponce-Ortega, José María; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-01-01

    This paper presents a new methodology for energy integration of systems that require absorption refrigeration. It allows heat exchange among process hot and cold streams and the integration of excess process heat as well as external utilities provided by solar energy, fossil fuels and biofuels. An optimization formulation is developed to address the multiple objectives of simultaneously minimizing the total annualized cost and the greenhouse gas emissions while the social impact is measured by the number of jobs generated by the project in the entire life cycle. The economic function accounts for the tax credit obtained by the reduction of greenhouse gas emissions when cleaner technologies are used. The proposed model also considers the optimal selection of different types of solar collectors and the optimal time-based usage of solar energy, fossil fuel, and biofuel. Two example problems are presented to show the applicability of the proposed methodology. -- Highlights: ► An approach for the thermal integration of refrigeration processes is proposed. ► Different forms of sustainable energies are considered in the optimization process. ► Economic and environmental objectives are considered quantifying the number of jobs. ► The availability for the different forms of energy is taken into account. ► Results show significant advantages obtained with the proposed approach

  6. Experimental investigation of the ecological hybrid refrigeration cycle

    Science.gov (United States)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  7. Triple-effect absorption refrigeration system with double-condenser coupling

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  8. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  9. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  10. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    Science.gov (United States)

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  11. Geothermal absorption refrigeration for food processing industries. Final report, December 13, 1976--November 13, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.L.; Olson, G.K.; Mah, C.S.; Bujalski, J.H.

    1977-11-01

    The first step in the economic analysis of the integration of geothermally powered absorption refrigeration into a food processing plant was an evaluation of the potential geothermal sites in the Western United States. The evaluation covered availability of raw materials, transportation, adequate geothermal source, labor, and other requirements for food processing plants. Several attractive geothermal sites were identified--Raft River, Idaho; Sespe Hot Springs, California; Vale Hot Springs, Oregon; Weisler-Crane Creek, Idaho; Cosco Hot Springs, California; and the Imperial Valley, California. The most economically attractive food processing industry was then matched to the site based on its particular energy, raw material, and transportation requirements. The more promising food processors identified were for frozen potato or vegetable products, freeze-dried products, and meat processing. For the refrigeration temperature range of +32/sup 0/F to -40/sup 0/F and geothermal temperature range of 212/sup 0/F to 300/sup 0/F, an absorption refrigeration system had to be identified, designed, and evaluated. Both the conventional ammonia/water and an organic absorption refrigeration system using monochlorodifluoromethane (R-22) as the refrigerant and dimethyl formamide (DMF) as the absorbent were studied. In general, only a 60/sup 0/F to 100/sup 0/F temperature drop would be effectively used for refrigeration leaving the remainder of the allowable temperature drop available for other use. The economic evaluation of the geothermal system installed in a food processing plant required the comparison of several principal alternatives. These alternatives were evaluated for three different food processing plants located at their optimum geothermal site: a forzen potato product processing plant located at Raft River, Idaho; a freeze-dried product plant located at Sespe Hot Springs, California; a beef slaughter operation located in the Imperial Valley of California. (JGB)

  12. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    Energy Technology Data Exchange (ETDEWEB)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  13. Performance estimation of ejector cycles using heavier hydrocarbon refrigerants

    International Nuclear Information System (INIS)

    Kasperski, Jacek; Gil, Bartosz

    2014-01-01

    Computer software basing on theoretical model of Huang et al. with thermodynamic properties of hydrocarbons was prepared. Investigation was focused on nine hydrocarbons: propane, butane, iso-butane, pentane, iso-pentane, hexane, heptane and octane. A series of calculations was carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Calculation results show that none of the hydrocarbons enables high efficiency of a cycle in a wide range of temperature. Each hydrocarbon has its own maximal entrainment ratio at its individual temperature of optimum. Temperatures of entrainment ratios optimum increase according to the hydrocarbon heaviness with simultaneous increase of entrainment ratio peak values. Peak values of the COP do not increase according to the hydrocarbons heaviness. The highest COP = 0.32 is achieved for iso-butane at 102 °C and the COP = 0.28 for pentane at 165 °C. Heptane and octane can be ignored. - Highlights: • Advantages of use of higher hydrocarbons as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of vapor generation for each hydrocarbon was calculated

  14. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    Science.gov (United States)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  15. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    International Nuclear Information System (INIS)

    Selbas, Resat; Kizilkan, Onder; Sencan, Arzu

    2006-01-01

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system-i.e., condenser, evaporator, subcooling and superheating heat exchangers-can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology

  16. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  17. Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2013-01-01

    Full Text Available The cycle performance of refrigeration cycles depends not only on their configuration, but also on thermodynamic properties of working pairs regularly composed of refrigerant and absorbent. The commonly used working pairs in absorption cycles are aqueous solutions of either lithium bromide water or ammonia water. However, corrosion, crystallization, high working pressure, and toxicity are their major disadvantages in industrial applications. Therefore, seeking more advantageous working pairs with good thermal stability, with minimum corrosion, and without crystallization has become the research focus in the past two decades. Ionic liquids (ILs are room-temperature melting salts that can remain in the liquid state at near or below room temperature. ILs have attracted considerable attention due to their unique properties, such as negligible vapor pressure, nonflammability, thermal stability, good solubility, low melting points, and staying in the liquid state over a wide temperature range from room temperature to about 300°C. The previously mentioned highly favorable properties of ILs motivated us for carrying out the present research and reviewing the available ILs found in the literature as the working fluids of absorption cycles. Absorption cycles contain absorption heat pumps, absorption chillers, and absorption transformers.

  18. A LiBr-H2O Absorption Refrigerator Incorporating a Thermally Activated Solution Pumping Mechanism

    OpenAIRE

    Ian W. Eames

    2017-01-01

    This paper provides an illustrated description of a proposed LiBr-H2O vapour absorption refrigerator which uses a thermally activated solution pumping mechanism that combines controlled variations in generator vapour pressure with changes it produces in static-head pressure difference to circulate the absorbent solution between the generator and absorber vessels. The proposed system is different and potentially more efficient than a bubble pump system previously proposed and avoids the need f...

  19. Investigation Regarding the Operation of Absorption Refrigerator using Waste Heat of Phosphoric acid Fuel Cell

    Science.gov (United States)

    Kimijima, Shinji; Waragai, Shisei; Uekusa, Tsuneo; Kawai, Sunao

    Fuel cells are emerging as a major power generation system that is suitable for distributed power generation from a view point of high efficiency and low pollutant emission, In order to develop high efficiency system, it is indispensable to take into consideration effective use of waste heat recovered from power generation unit. And the system design that is based on the characteristics of individual component and all of the system is significant. In this report, characteristics of phosphoric acid fuel cell (PAFC) cogeneration system, especially waste heat recovery from PAFC cell stack and exhaust gas is discussed, and operation of absorption refrigerator using waste heat of PAFC are investigated. PAFC cogeneration test facility is constructed, power generation and waste heat recovery experiment is carried out, and system performance is evaluated, As a result, beneficial knowledge are obtained as follows: It is clarified that the cell stack waste heat is dominant for the exhaust gas heat recovery characteristics, and the cooling performance of absorption refrigerator in partial load operation of PAFC. And, the effect of cooling water temperature on the performance of waste heat recovery and absorption refrigerator is obtained.

  20. Dynamic investigation of the diffusion absorption refrigeration system NH3-H2O-H2

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge Adjibade

    2017-09-01

    Full Text Available This paper reports on a numerical and experimental study of a diffusion absorption refrigerator. The performance of the system is examined by computer simulation using MATLAB software and Engineering Equations Solver. A dynamic model is developed for each component of the system and solved numerically in order to predict the transient state of the diffusion absorption refrigeration. The experiment set included 0.04 m3 commercial absorption diffusion refrigerator working with the ammonia-water-hydrogen (NH3-H2O-H2 solution. The transient numerical results were validated with the experimental data. The investigations are focused on the dynamic profile of the temperature of each component. The results obtained agree with the experiment; the relative error between numerical and experimental models doesn’t exceed 15% for all temperatures of each component. The increase of the average ambient temperature from 23.04 °C to 32.56 °C causes an increase of the condensation temperature from 29.46 °C to 37.51 °C, and the best evaporation temperature obtained was 3 °C, with an ambient temperature of 23.04 °C. The results show that a minimum starting temperature of 152 °C and 63.8 W electric power are required to initiate the decrease of evaporation temperature.

  1. New Solutions for Solar Absorption Refrigeration Systems and Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2017-04-01

    Full Text Available The mission of the research includes the following objectives: the development of new circuit decisions for the alternate refrigerating systems based on the use of an open absorptive circuit and on the use of solar energy for absorbent solution regeneration; an assessment of the energy and environmental characteristics of the developed systems; obtaining of the experimental data for an assessment of the principal capabilities of the proposed new solar air-conditioning systems. The multistage principle of the creation of drying and cooling contours with the increase of concentration of absorbent on cooler steps is offered. The absorber with internal steam cooling allowing the improvement of the scheme of the alternate refrigerating system is developed. On the basis of the obtained experimental data the analysis of the main opportunities of the developed solar air-conditioning systems was made which showed that the created systems: provide the required comfortable parameters indoors without engaging of traditional refrigerating technics; allow to use only one - or two-stage option of refrigerating system for application in the conditions of Ukraine and of Europe. In comparison with traditional vapor-compression systems, the developed solar systems provide the considerable decrease in energy consumption (to 30%, their use leads to the decrease of exhaustion of natural resources, influences less global climate change.

  2. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  3. Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle

    International Nuclear Information System (INIS)

    Yan, Gang; Chen, Jiaheng; Yu, Jianlin

    2015-01-01

    Highlights: • A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 is proposed. • The performance of new and basic cycles is compared by simulation method. • The new cycle outperforms the basic cycle in both energetic and exergy aspects. • Both cycles have optimum mixture compositions to obtain optimal performance. - Abstract: A new ejector enhanced auto-cascade refrigeration cycle using R134a/R23 refrigerant mixture is proposed in this paper. In the new cycle, an ejector is used to recover part of the work that would otherwise be lost in the throttling processes. The performance comparison between the new cycle and a basic auto-cascade refrigeration cycle is carried out based on the first and second laws of thermodynamics. The simulation results show that both the coefficient of performance and exergy efficiency of the new cycle can be improved by 8.42–18.02% compared with those of the basic cycle at the same operation conditions as the ejector has achieved pressure lift ratios of 1.12–1.23. It is found that in the new cycle, the highest exergy destruction occurs in the compressor followed by the condenser, cascade condenser, expansion valve, ejector and evaporator. The effect of some main parameters on the cycle performance is further investigated. The results show that for the new cycle, the achieved performance improvement over the basic cycle is also dependent on the mixture composition and the vapor quality at the condenser outlet. The coefficient of performance improvement of the new cycle over the basic cycle degrades with increasing vapor quality. In addition, there exists an optimum mixture composition to obtain the maximum coefficient of performance for the new cycle when other operation conditions are given. The optimum mixture composition of both cycles may be fixed at about 0.5 under the given evaporating temperature.

  4. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.

  5. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  6. Quantum and classical dynamics of a three-mode absorption refrigerator

    Directory of Open Access Journals (Sweden)

    Stefan Nimmrichter

    2017-12-01

    Full Text Available We study the quantum and classical evolution of a system of three harmonic modes interacting via a trilinear Hamiltonian. With the modes prepared in thermal states of different temperatures, this model describes the working principle of an absorption refrigerator that transfers energy from a cold to a hot environment at the expense of free energy provided by a high-temperature work reservoir. Inspired by a recent experimental realization with trapped ions, we elucidate key features of the coupling Hamiltonian that are relevant for the refrigerator performance. The coherent system dynamics exhibits rapid effective equilibration of the mode energies and correlations, as well as a transient enhancement of the cooling performance at short times. We find that these features can be fully reproduced in a classical framework.

  7. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  8. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  9. Optimization analysis of the performance of an irreversible Ericsson refrigeration cycle in the micro/nanoscale

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guoxing; Fu Yueming

    2011-01-01

    A general micro/nanoscaled model of the Ericsson refrigeration cycle is established in which finite-rate heat transfer, heat leak and regeneration time are taken into account. Based on the model, expressions for several important parameters such as the coefficient of performance (COP), cooling rate and power input are derived. By using numerical calculation and illustration, the influence of 'thermosize effects' on the performance of the Ericsson refrigeration cycle is discussed and evaluated. The optimal ranges of the COP, cooling rate and power input are determined. Furthermore, some special cases are discussed in detail. The results obtained here will provide theoretical guidance on designing a micro/nanoscaled Ericsson cycle device.

  10. Effect of geometrical shape of the working substance Gadolinium on the performance of a regenerative magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Diguet, Gildas; Lin, Guoxing; Chen, Jincan

    2013-01-01

    Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H 0 plus the exchange field H W =λM and the demagnetizing field H d =−NM, where the demagnetizing factor N depends on the shape of magnetic materials. Hereby, the impacts of the demagnetizing factor N on the magnetic entropy, magnetic entropy change and main thermodynamics performance of a regenerative magnetic Brayton refrigeration cycle using Gd as the working substance are investigated and evaluated in detail. The results obtained underline the importance of the shape of the working substance used in magnetic refrigerators for room-temperature application; elongated materials provide better thermodynamics performance such as higher COP and net heat absorption. It is pointed out that for low external fields, the magnetic refrigerator ceased to be functional if flat materials were used. - Highlights: ► Gd entropy is calculated as a function of temperature and internal magnetic field. ► Magnetic Brayton cycle properties generally depend on the demagnetizing factor. ► Redundant heat transfer is highly sensitive to the demagnetizing factor. ► The net cooling quantity is highly sensitive to the demagnetizing factor. ► Coefficient of performance is dependant to the magnetic material shape.

  11. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-01-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle. - Highlights: • Thermodynamic performance of ferromagnetic material is analyzed. • An irreversible regenerative ferromagnetic Ericsson refrigeration cycle is set up. • The thermoeconomic objective function is introduced and optimized. • Impacts of the thermoeconomic and other parameters are discussed.

  12. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  13. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle

    International Nuclear Information System (INIS)

    Dai Yiping; Wang Jiangfeng; Gao Lin

    2009-01-01

    A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition.

  14. Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system

    Directory of Open Access Journals (Sweden)

    Cihan Ertugrul

    2017-01-01

    Full Text Available Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system were studied theoretically in this paper. In order to complete refrigeration process, the obtained kinetic energy was supplied to the compressor of the refrigeration cycle. Turbine, in power cycle, was driven by organic working fluid that exits boiler with high temperature and pressure. Theoretical performances of proposed system were evaluated employing five different organic fluids which are R123, R600, R245fa, R141b, and R600a. Moreover, the change of thermal and exergy efficiencies were examined by changing the boiling, condensing, and evaporating temperatures. As a result of energy and exergy analysis of the proposed system, most appropriate organic working fluid was determined as R141b.

  15. PARAMETRIC STUDY OF ENERGY, EXERGY AND THERMOECONOMIC ANALYSES ON VAPOR-COMPRESSION SYSTEM CASCADED WITH LIBR/WATER AND NH3/WATER ABSORBTION CASCADE REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    ahmet selim dalkilic

    2017-03-01

    Full Text Available Energy savings on cooling systems can be performed by using novel refrigeration cycles. For this aim, vapour compression-vapour absorption cascade refrigeration systems can be considered as substitute to single-stage vapour compression refrigeration systems. Renewable energy sources of geothermal and solar heat, waste heat of processes have been used by these cycles to provide cooling and they also require less electrical energy than vapour compression cycles having alternative refrigerants. In this study, a vapour compression (VC and vapour absorption (VA cascade systems are analysed with the second law analysis for varied cooling capacities. While lithium bromide-water and NH3/H2O are the working fluids in VA part, various refrigerants are used in VC section. The refrigerants of R134a and R600a, R410A and R407C are tested as drop in alternatives for R12 and R22, respectively. The effects of alteration in cooling capacity, superheating and sub cooling in VC part, temperature in the generator and absorber, and degree of overlap in cascade condenser in VA part on the coefficient of system performance are studied. Validation of the results have been performed by the values given in the literature. Improvement in COP of VC, VA and cascade system are obtained separately. According to the analyses, cascade systems’ COP values increase with increasing the temperatures of generator and evaporator and they also increase with decreasing the condenser and absorber temperatures. Moreover, the generator has the highest exergy destruction rates, second and third one were the condenser and absorber, respectively. Electricity consumption and payback period are also determined considering the various parameters of the study.

  16. Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine

    International Nuclear Information System (INIS)

    Wonchala, Jason; Hazledine, Maxwell; Goni Boulama, Kiari

    2014-01-01

    The water–lithium bromide absorption cooling machine was investigated theoretically in this paper. A detailed solution procedure was proposed and validated. A parametric study was conducted over the entire admissible ranges of the desorber, condenser, absorber and evaporator temperatures. The performance of the machine was evaluated based on the circulation ratio which is a measure of the system size and cost, the first law coefficient of performance and the second law exergy efficiency. The circulation ratio and the coefficient of performance were seen to improve as the temperature of the heat source increased, while the second law performance deteriorated. The same qualitative responses were obtained when the temperature of the refrigerated environment was increased. On the other hand, simultaneously raising the condenser and absorber temperatures was seen to result in a severe deterioration of both the circulation ratio and first law coefficient of performance, while the second law performance indicator improved significantly. The influence of the difference between the condenser and absorber exit temperatures, as well as that of the internal recovery heat exchanger on the different performance indicators was also calculated and discussed. - Highlights: • Analysis of a water–LiBr absorption machine, including detailed solution procedure. • Performance assessed using first and second law considerations, as well as flow ratio. • Effects of heat source and refrigerated environment temperatures on the performance. • Effects of the difference between condenser and absorber temperatures. • Effects of internal heat exchanger efficiency on overall cooling machine performance

  17. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  18. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  19. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil

    2018-01-01

    An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this end......W) and the temperature of the cooling water (15–35 °C). The results of this work motivate to apply the simultaneous optimization approach to seek for new multi-effect absorption refrigeration system configurations with parallel and reverse flow as well as other series flow arrangements that minimize the total annual...

  20. Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost

    International Nuclear Information System (INIS)

    Kim, Hyung Chul; Keoleian, Gregory A.; Horie, Yuhta A.

    2006-01-01

    Although the last decade witnessed dramatic progress in refrigerator efficiencies, inefficient, outdated refrigerators are still in operation, sometimes consuming more than twice as much electricity per year compared with modern, efficient models. Replacing old refrigerators before their designed lifetime could be a useful policy to conserve electric energy and greenhouse gas emissions. However, from a life cycle perspective, product replacement decisions also induce additional economic and environmental burdens associated with disposal of old models and production of new models. This paper discusses optimal lifetimes of mid-sized refrigerator models in the US, using a life cycle optimization model based on dynamic programming. Model runs were conducted to find optimal lifetimes that minimize energy, global warming potential (GWP), and cost objectives over a time horizon between 1985 and 2020. The baseline results show that depending on model years, optimal lifetimes range 2-7 years for the energy objective, and 2-11 years for the GWP objective. On the other hand, an 18-year of lifetime minimizes the economic cost incurred during the time horizon. Model runs with a time horizon between 2004 and 2020 show that current owners should replace refrigerators that consume more than 1000 kWh/year of electricity (typical mid-sized 1994 models and older) as an efficient strategy from both cost and energy perspectives

  1. Applications of closed cycle refrigerator for some physical experiments

    International Nuclear Information System (INIS)

    Simkin, V.G.; Pokotilovski, Yu.N.

    2006-01-01

    Full text: It is known that CCRs give a good possibility to conduct various experiments in a wide range of temperatures from 2.5 K up to 500 deg. C. These do not need nor liquid helium, nor liquid nitrogen and create a quick, precise and stable conditions for researchers. Some applications of such CCRs from Lake Shore corporation will be consider ed in this communication. The first one is a measurement of temperature dependence of the viscosity by drop-falling method of some special liquids which can be used in ultra cold neutron investigations. The second one is an experiment for receiving the perfect solid crystals of methane which are need in producing ultra cold neutrons in medium power reactors. For these experiments some special arrangements were installed on the cold head of refrigerator with long vertical or small round windows on the screens through which the processes studied were visually observed and measured. (authors)

  2. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  3. The optimal performance of a quantum refrigeration cycle working with harmonic oscillators

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan; Hua Ben

    2003-01-01

    The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here are compared with those of an Ericsson or Stirling refrigeration cycle using an ideal gas as the working substance. Finally, the optimal performance of a harmonic quantum Carnot refrigeration cycle at high temperatures is derived easily

  4. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  5. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

    International Nuclear Information System (INIS)

    Dai, Baomin; Liu, Shengchun; Zhu, Kai; Sun, Zhili; Ma, Yitai

    2017-01-01

    New configurations of transcritical CO 2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXP HM and TES+EXP ML ) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXP HM , EXP ML , and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXP ML cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO 2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature. - Highlights: • New configurations of transcritical CO 2 refrigeration cycle are proposed. • New cycles are optimized and compared with other cycles. • The position of expander has an evident influence on the performance of CO 2 cycle. • TES+EXP ML cycle shows the highest COP and lowest discharge pressure. • The range of application for the TES+EXP ML cycle is recommended.

  6. A solar absorption refrigeration system operating with the mixture ammonia-lithium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, W.; Martinez, F.; Garcia-Valladares, O. [Centro de Investigacion en Energia de la Univ. Nacional Autonoma de Mexico, Mor (Mexico); Rivera, C.O. [Univ. Veracruzana, Campus Coatzacoalcos (Mexico)

    2007-07-01

    An intermittent solar absorption refrigeration system for ice production operating with the ammonia-lithium nitrate mixture has been developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico. The system consists basically of a compound parabolic concentrator (CPC), a generator-absorber, a condenser, a condensate tank, an expansion valve and an evaporator. The system was evaluated in sunny days with insolations above 20 MJ/m{sup 2}-day at different condenser temperatures. The generator temperatures varied from 108 to 121 C and the evaporator temperatures inside the camera from -8 to 0 C. The coefficients of performance (COP) varied from 0.13 to 0.26 depending of the operating temperatures of the system and the solar irradiation. (orig.)

  7. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...... small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach...

  8. Industrial refrigeration with high efficiency absorption; Refrigeracion industrial por absorcion de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, R.; Heard, C. L. [Instituto de Investigaciones Electricas, Cuernavaca, (Mexico); Pardubicki, J. [LAJ International, Mexico D. F. (Mexico)

    1995-12-31

    The absorption refrigeration ammonia-lithium nitrate offers great advantages compared with the mechanical compression refrigeration with ammonia as well as with the absorption ammonia-water refrigeration. With heat temperatures of 1000 to 1400 Celsius degrees, for instance low pressure steam the generation of cold at low temperatures (-100 to -200 Celsius degrees) is possible. The system has less components and is much less expensive than the ammonia-water equipment with a price very similar to the ammonia mechanical compression equipment. The equipment consists of five main heat exchangers and a solution pump, resulting in a high reliability of its operation, requiring a minimum maintenance. The operation cost depends directly of the cost of the energy source. In case of using residual heat the operation cost is only the maintenance cost. Nowadays the cost of the electric energy is below the production cost, which can be a short term situation. In time terms of the comparable useful life time of an absorption refrigeration system (in excess of 20 years), it is reasonable to think that the operation costs will be less than the operation costs of an equipment with mechanical compression. To this day it is available a demonstration unit to exhibit the system in industrial plants with different energy sources. [Espanol] La refrigeracion por absorcion amoniaco/nitrato de litio ofrece grandes ventajas comparada tanto con la refrigeracion por compresion mecanica con amoniaco como con la refrigeracion por absorcion amoniaco/agua. Este sistema es mas eficiente y sencillo que el sistema de amoniaco/agua. Con calor de temperatura (100 a 140 grados centigrados por ejemplo vapor de baja presion, se permite la generacion de frio a temperaturas bajas (-10 a -20 grados centigrados). El sistema tiene menos componentes y es mucho mas barato que equipo de amoniaco/agua con un precio muy similar a sistemas por compresion mecanica de amoniaco. El sistema consiste en cinco

  9. A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system

    International Nuclear Information System (INIS)

    Yılmaz, İbrahim Halil; Saka, Kenan; Kaynakli, Omer

    2016-01-01

    One of the parameters affecting the COP of the absorption system can be considered as the thermal balance between the high pressure condenser (HPC) and the low pressure generator (LPG) since heat rejected from the HPC is utilized as an energy source by the LPG. Condensation of the water vapor in the HPC depends on the heat removal via the LPG. This circumstance is significant for making an appropriate design and a controllable system with high performance in practical applications. For this reason, a thermodynamic analysis for the HPC of a double effect series flow water/lithium bromide absorption refrigeration system was emphasized in this study. A simulation was developed to investigate the energy transfer between the HPC and LPG. The results show that the proper designation of the HPC temperature improves the COP and ECOP due its significant impact, and its value necessarily has to be higher than the outlet temperature of the LPG based on the operating scheme. Furthermore, the COP and ECOP of the absorption system can be raised in the range of 9.72–35.09% in case of 2 °C-temperature increment in the HPC under the described conditions to be applied. - Highlights: • Thermal balance in HPC/LPG unit of a double effect absorption system was studied. • A simulation program was developed and its outputs were validated. • A parametric study was conducted for a wide range of component temperatures. • Proper designation of the HPC temperature improves the COP and ECOP. • The system performance raised 9.72–35.09% by controlling the HPC temperature.

  10. Experimental investigation on an ammonia-water-lithium bromide absorption refrigeration system without solution pump

    International Nuclear Information System (INIS)

    Wu Tiehui; Wu Yuyuan; Yu Zhiqiang; Zhao Haichen; Wu Honglin

    2011-01-01

    Highlights: → An absorption refrigeration system with ternary solution of NH 3 -H 2 O-LiBr was set up. → Performance of the NH 3 -H 2 O-LiBr system without solution pump was firstly tested. → Generator pressure in NH 3 -H 2 O-LiBr system was lower than the one in NH 3 -H 2 O system. → The COP of the NH 3 -H 2 O-LiBr system was 51.89% larger than the NH 3 -H 2 O binary system. → The optimum mass fraction of LiBr of about 23% led to the largest COP of 0.401. -- Abstract: Experimental researches were carried out on a novel ammonia-water-lithium bromide ternary solution absorption refrigeration and air-conditioning system without solution pump and distillation equipments. The experiments were conducted by using three kinds of NH 3 -H 2 O binary solution and 17 kinds of ternary solution with difference in mass fraction of NH 3 and LiBr. The experimental results showed that the vapor pressure of the generator in the system would be lower than that of the generator in an ammonia-water absorption system. In above two situations the same ammonia mass fraction and the same solution temperature were kept. The amplitude of vapor pressure decrease of the system generator would be larger with the increase of the mass fraction of LiBr. The maximum amplitude of decrease would be of 50%. With the increase of the mass fraction of LiBr, the coefficient of performance (COP) of the system would be increased initially, and then decreased later when the mass fraction of LiBr exceeded a certain value. This value was about 23% for the solution with ammonia mass fraction of 50% and 55%, and about 30% for the solution with ammonia mass fraction of 60%. Compared with the ammonia-water system, the COP of the ternary solution system with the same mass fraction of ammonia would increase up to 30%. With the ammonia mass fraction of 60% and LiBr mass fraction of 30% applied, the COP of the ternary solution system was increased up to 0.401. It was 51.89% higher than that when binary

  11. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  12. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    Science.gov (United States)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  13. The optimal performance of a quantum refrigeration cycle working with harmonic oscillators

    CERN Document Server

    Lin Bi Hong; Hua Ben

    2003-01-01

    The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here ...

  14. A closed-cycle refrigerator for cooling maser amplifiers below 4 Kelvin

    Science.gov (United States)

    Britcliffe, M.

    1989-01-01

    A helium refrigerator utilizing the Gifford-McMahon/Joule-Thomson (GM/JT) cycle was designed and tested to demonstrate the feasibility of using small closed-cycle refrigerators as an alternative to batch-filled cryostats for operating temperatures below 4 K. The systems could be used to cool low-noise microwave maser amplifiers located in large parabolic antennas. These antennas tilt vertically, making conventional liquid-filled dewars difficult to use. The system could also be used for a non-tilting beam waveguide antenna to reduce the helium consumption of a liquid helium cryostat. The prototype system is adjustable to provide 700 mW of cooling at 2.5 K to 3 W at 4.3 K. Performance of the unit is not significantly affected by physical orientation. The volume occupied by the refrigerator is less than 0.1 cu m. Two JT expansion stages are used to maximize cooling capacity per unit mass flow. The heat exchangers were designed to produce minimum pressure drop in the return gas stream. Pressure drop for the entire JT return circuit is less than 5 kpa at a mass flow of 0.06 g/sec when operating at 2.5 K.

  15. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2006-01-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed

  16. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  17. An analysis of the performance of an ejector refrigeration cycle working with R134a

    Science.gov (United States)

    Memet, F.; Preda, A.

    2015-11-01

    In the context of recent developments in the field of energy, the aspect related to energy consumption is of great importance for specialists. Many industries rely on refrigeration technologies, a great challenge being expressed by attempts in energy savings in this sector. In this respect, efforts oriented towards efficient industrial refrigeration systems have revealed the necessity of a proper design. The most commonly used method of cooling is based on vapor compression cycles. Compared to vapor compression refrigeration systems, an ejector refrigeration system shows an inferior performance, indicated by the Coefficient of Performance of the cycle, but it is more attractive from energy saving point of view. In this respect, the present study deals with a theoretically analysis of an Ejector Refrigeration System, started with the presentation of the typical ejector design. It is stated that ejector refrigeration is a thermally driven system which requires low grade thermal energy for its working. After a short description of the analyzed system, are given equations for thermal loads and Coefficient of Performance calculation, on First Law basis. The working fluid considered in this research is Freon R134a. The developed study is focused on the effect of generating temperature variation on the Coefficient of Performance (COP) and on the work input to the pump when the cooling effect, the condensation temperature, the evaporation temperature and the reference state temperature are kept constant. Are obtained results in the following conditions: the condensation temperature is tc = 33°C, the evaporation temperature is te = 3°C, the reference state temperature is to = 23°C. The generating temperature varies in the range 82 ÷ 92°C and the cooling effect is 1 kW. Also, are known the isentropic efficiencies of the ejector, which are 0.90, and the isentropic efficiency of the pump, which is 0.75. Calculation will reveal that the Coefficient of Performance is

  18. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  19. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2017-11-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  20. Energetic analysis of a commercial absorption refrigeration unit using an ammonia-water mixture

    Directory of Open Access Journals (Sweden)

    Josegil Jorge de Araújo

    2017-09-01

    Full Text Available The ROBUR® absorption refrigeration system (ARS, model ACF60, with a capacity of 17.5 kW, is tested, modeled and simulated in the steady state. To simulate the thermal load a heating system with secondary coolant was used, in which a programmable logic controller (PLC kept the inlet temperature EVA at around 285.15 K. The mathematical model used was based on balancing the mass, energy and ammonia concentrations and completed by closing equations such as, Newton's cooling equation. The mathematical model was implemented using the Engineering Equation Solver – EES®. The results obtained after modeling and a numerical permanent simulation are studied using the Duhring diagram. Potential points of internal heat recovery are visualized, and by using graphs of the binary mixture, it is possible to identify the thermodynamic states of all monitored points. The data obtained in the numerical simulation of the ARS was compared with data acquired in the actual tests of the ARS with the ROBUR® apparatus.

  1. Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz

    2016-01-01

    Highlights: • Exergy analysis of LiBr/H 2 O absorption systems with identical COP was carried out. • Exergy destruction rank: absorber followed by generator, condenser and evaporator. • Lower heat source and chilled water inlet temperature reduced exergy destruction. • Higher cooling water inlet temperature reduced exergy destruction. • Lower HTF mass flow rate increased exergy efficiency even for fixed system COP. - Abstract: The main limitation of conventional energy analysis for the thermal performance of energy systems is that this approach does not consider the quality of energy. On the other hand, exergy analysis not only provides information about the systems performance, but also it can specify the locations and magnitudes of losses. A number of studies investigated the effect of parameters such as the component temperature, and heat transfer fluid (HTF) temperature and mass flow rate on the exergetic performance of the same absorption refrigeration system; thus, reported different coefficient of performance (COP) values. However, in this study, the system COP was considered to remain constant during the investigation. This means comparing systems with different heat exchanger designs (based on HTF mass flow rate and temperature) having the same COP value. The effect of HTF mass flow rate and inlet temperature of the cooling water, chilled water and heat source on the outlet specific exergy and exergy destruction rate of each component was investigated. It was found that the lower HTF mass flow rate decreased exergy destruction of the corresponding component. Moreover, the lower temperature of heat source and chilled water inlet increased the system exergetic efficiency. That was also the case for the higher cooling water inlet temperature. Based on the analysis, since the absorber and condenser accounted for a large portion of the total exergy destruction, cooling tower modification with lower cooling water mass flow rate is recommended

  2. Thermodynamic property evaluation and magnetic refrigeration cycle analysis for gadolinium gallium garnet

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.

    1994-12-01

    Based on relevant material property data and previous model formulations, a magnetothermodynamic property map for gadolinium gallium garnet (Gd{sub 3}Ga{sub 5}O{sub 12}) was adapted for refrigeration cycle analysis in the temperature range 4-40 K and the magnetic field range 0-6 T. Employing methods similar to those previously developed for other materials and temperature ranges, assessments of limitations and relative performance were made for Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. It was found that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as the limitations for materials previously examined, considerable improvement in cooling capacity and temperature lift combinations can be achieved by using regenerative cycles if serious loss mechanisms are avoided.

  3. Some comments about the comparison between a conventional and a solar powered absorption refrigeration system

    International Nuclear Information System (INIS)

    Corbella, O.D.; Garibotti, C.R.

    1983-08-01

    Two statements about the performance of solar refrigeration systems are discussed. First, concepts of efficiency and coefficient of performance are studied. Second, the influence of inflation and rise of fuel prices are considered, in relation to the comparison between solar and conventional refrigeration systems. (author)

  4. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  5. Comprehensive Parametric Study of a Solar Absorption Refrigeration System to Lower Its Cut In/Off Temperature

    Directory of Open Access Journals (Sweden)

    Osman Wageiallah Mohammed

    2017-10-01

    Full Text Available Solar-driven ammonia-water absorption refrigeration system (AARS has been considered as an alternative for the conventional refrigeration and air-conditioning systems. However, its high initial cost seems to be the main problem that postpones its wide spread use. In the present study, a single-stage NH3/H2O ARS is analyzed in depth on the basis of energetic and exergetic coefficients of performance (COP and ECOP, respectively to decrease its cut in/off temperature. This study was carried out to lower the required heat source temperature, so that a less-expensive solar collector could be used. Effects of all parameters that could influence the system’s performance and cut in/off temperature were investigated in detail. Presence of water in the refrigerant and evaporator temperature glide was considered. Results revealed that appropriate selection of system’s working condition can effectively reduce the driving temperature. Besides, the cut in/off temperature can be significantly decreased by inserting an effective solution heat exchanger (SHX. Required driving temperature can be lowered by up to 10 °C using SHX with 0.80 effectiveness. The results also showed that effects of water content in the refrigerant could not be neglected in studying NH3/H2O ARS because it affects both COP and ECOP. Additionally, a large temperature glide in the evaporator can substantially decrease the ECOP.

  6. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  7. Predicting off-design range and performance of refrigeration cycle with two-stage centrifugal compressor and flash intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Turunen-Saaresti, Teemu; Roeyttae, Pekka; Honkatukia, Juha; Backman, Jari [Lappeenranta University of Technology, Institute of Energy Technology, Laboratory of Fluid Dynamics, P.O. Box 20, 53851 Lappeenranta (Finland)

    2010-09-15

    A modern refrigeration process requires constant control to provide required cooling for the user. To properly and economically accommodate this need, a wide operation range of the compressor is necessary. Therefore, it is of interest to investigate the off-design operation of a cooling cycle and compressor. The refrigeration cycle equipped with a two-stage centrifugal compressor and a flash intercooler is studied. The compressor operation maps are generated with two different design codes and the operation values of the compressors are interpolated from the compressor maps in the simulation of the entire cooling cycle. Based on the previous studies of the utilised refrigeration cycle, R245fa is selected as coolant. The aim of this study is to demonstrate the control capacity of the centrifugal compressor and the performance of the cooling loop in off-design conditions. This configuration provides better and wider control over the cooling range than the traditional on-off control of displacement compressors. (author)

  8. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  9. Applying mechanical subcooling to ejector refrigeration cycle for improving the coefficient of performance

    International Nuclear Information System (INIS)

    Yu, Jianlin; Ren, Yunfeng; Chen, Hua; Li, Yanzhong

    2007-01-01

    This paper describes a new ejector refrigeration system with mechanical subcooling which uses an auxiliary liquid-gas ejector to enhance subcooling for the refrigerant from condenser. The new system can have larger subcooling degree when circulating pump consumes a little more power compared with conventional ejector refrigeration system. Based on the built mathematical model, the performance of the new ejector refrigeration system was discussed and compared with that of a conventional ejector refrigeration system for refrigerant R142b. Theoretical analyzing results show that the new system can efficiently improve the coefficient of performance (COP) of ejector refrigeration

  10. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    International Nuclear Information System (INIS)

    Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R.

    2012-01-01

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COP T ) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COP T and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  11. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Mohammadi, Amir H.; Feidt, Michel; Pourkiaei, Seyed Mohsen

    2014-01-01

    Highlights: • A parametric investigation of irreversible Stirling cryogenic refrigerator cycles is presented. • Both internal and external irreversibilities are included in this study, moreover, heat capacities of external reservoirs are involved. • Multi-objective evolutionary algorithm based on NSGA-II approach is utilized. • Three robust decision making approaches are utilized to determine final optimum solution. - Abstract: The main aim of this research article is a parametric demonstration of irreversible Stirling cryogenic refrigerator cycles that includes irreversibilities such as external and internal irreversibilities. In addition, through this study, finite heat capacities of external reservoirs are considered accordingly. To reach the addressed goal of this research, three objective functions that include the input power of the Stirling refrigerator, the coefficient of performance (COP) and cooling load (R L ) have been involved in optimization process simultaneously. The first aforementioned objective function has to minimize; the rest objective functions, on the other hand, have to maximize in parallel optimization process. Developed multi objective evolutionary approaches (MOEAs) based on NSGA-II algorithm is implemented throughout this work. Moreover, cold-side’s effectiveness of the heat exchanger, hot-side’s effectiveness of the heat exchanger, heat source’s heat capacitance rate, heat sink’s capacitance rate, temperature ratio ((T h )/(T c ) ), temperature of cold side are assigned as decision variables for decision making procedure. To gain a robust decision, different decision making approaches that include TOPSIS, LINMAP and fuzzy Bellman–Zadeh are used. Pareto optimal frontier was determined precisely and then three final outputs have been gained by means of the mentioned decision making approaches

  12. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize...

  13. Thermoacoustic refrigeration

    Science.gov (United States)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-12-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  14. Integrated vacuum absorption steam cycle gas separation

    Science.gov (United States)

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  15. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  16. Second law analysis of solar-powered triple fluid Einstein refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    QenawY, A.M.; El-Dib, A.F.; Ghoraba, M.M. [Cairo Univ., Cairo (Egypt). Faculty of Engineering, Dept. of Mechanical Power

    2007-07-01

    The second law of thermodynamics was used to investigate the performance of a solar-powered Einstein refrigeration cycle. The entropy generation of all system components was calculated, as well as the coefficient of performance (COP) of the cycle. All components in the system were modelled using conservation of mass and energy laws. All components were assumed to operate under steady state conditions. Solar radiation data from previous experiments were used to determine useful heat gain as well as to model the difference between absorbed solar radiation and thermal losses. A parametric study was conducted to select the most appropriate design pressure of the cycle. Components included the generator; evaporator; condenser; pre-cooler; pre-heater; and total system irreversibility. Pressure was varied and the irreversibility of each component in the system was calculated as well as the total irreversibility of the system. Results suggested that the generator was the most inefficient component. Increases in cycle pressure resulted in lower cycle performance. Exergy destruction within the system increased when cycle pressure increased. 15 refs., 3 figs.

  17. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  18. Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Talukdar, K.

    2014-01-01

    Highlights: • Exergy analysis of a combined power–absorption cooling system is provided. • Exergetic efficiency of the power cycle and absorption cooling system are calculated. • Irreversibility in each component and total system irreversibility are calculated. • Effect of operating parameters on exergetic performance and irreversibility is analyzed. • Optimum operating parameters are identified based on energy and exergy based results. - Abstract: In this paper, exergy analysis of a combined reheat regenerative steam turbine (ST) based power cycle and water–LiBr vapor absorption refrigeration system (VARS) is presented. Exergetic efficiency of the power cycle and VARS, energy utilization factor (EUF) of the combined system (CS) and irreversibility in each system component are calculated. The effect of fuel flow rate, boiler pressure, cooling capacity and VARS components’ temperature on performance, component and total system irreversibility is analyzed. The second law based results indicate optimum performance at 150 bar boiler pressure and VARS generator, condenser, evaporator and absorber temperature of 80 °C, 37.5 °C, 15 °C and 35 °C respectively. The present exergy based results conform well to the first law based results obtained in a previous analysis done on the same combined system. Irreversibility distribution among various power cycle components shows the highest irreversibility in the cooling tower. Irreversibility of the exhaust flue gas leaving the boiler and the boiler are the next major contributors. Among the VARS components, exergy destruction in the generator is the highest followed by irreversibility contribution of the absorber, condenser and the evaporator

  19. Performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle and reverse Brayton cycle for cooling 80 to 120 K temperature-distributed heat loads

    Science.gov (United States)

    Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.

    2017-12-01

    Thermodynamic performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.

  20. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle

    International Nuclear Information System (INIS)

    Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A. Jr.; Moorman, J.O.

    1994-01-01

    The low-temperature, high magnetic field heat capacity (1.5 to 70 K and 0 to 9.85 T), dc and ac magnetic behaviors of the compound (Gd 0.54 Er 0.46 )AlNi show that field-induced magnetic entropy change is significant and almost constant over the temperature region of ∼15 to ∼45 K. The resulting temperature dependence of the magnetocaloric effect, nearly constant over a 30+ K temperature range, is unprecedented (most magnetic materials have a caretlike shape temperature dependence). These data show that (Gd 0.54 Er 0.46 )AlNi can be used as an effective active magnetic regenerator material for an Ericsson-cycle magnetic refrigerator, and could substitute for complex composite layered materials suggested earlier

  1. Optimization of coalbed methane liquefaction process adopting mixed refrigerant cycle with propane pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, T.; Lin, W.S.; Gu, A.Z.; Gu, M. [Shanghai Jiao Tong University, Shanghai (China)

    2009-07-01

    Coalbed methane (CBM) is an important energy resource in the world, and to recover this important energy, liquefaction is a good option. Different from ordinary natural gas, CBM usually consists of a lot of nitrogen, which cannot be removed by the ordinary purification technology of LNG. One way of separating nitrogen from CBM is by distillation after liquefaction. In this way, nitrogen is liquefied together with methane, so the liquefaction process and its system performance may be different from that of the ordinary natural gas and will change along with the nitrogen content of CBM feed gas. The liquefaction process adopting a mixed refrigerant cycle with propane pre-cooling is discussed in this paper, which is widely used in LNG liquefaction plants. Taking the unit product liquefaction power consumption as the major index for analysis, the optimum parameters of the liquefaction processes at different nitrogen content of CBM feed gas are worked out, and the corresponding system performance is obtained and compared.

  2. An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory

    International Nuclear Information System (INIS)

    Chen, Qun; Xu, Yun-Chao; Hao, Jun-Hong

    2014-01-01

    Highlights: • An optimization method for practical thermodynamic cycle is developed. • The entransy-based heat transfer analysis and thermodynamic analysis are combined. • Theoretical relation between system requirements and design parameters is derived. • The optimization problem can be converted into conditional extremum problem. • The proposed method provides several useful optimization criteria. - Abstract: A thermodynamic cycle usually consists of heat transfer processes in heat exchangers and heat-work conversion processes in compressors, expanders and/or turbines. This paper presents a new optimization method for effective improvement of thermodynamic cycle performance with the combination of entransy theory and thermodynamics. The heat transfer processes in a gas refrigeration cycle are analyzed by entransy theory and the heat-work conversion processes are analyzed by thermodynamics. The combination of these two analysis yields a mathematical relation directly connecting system requirements, e.g. cooling capacity rate and power consumption rate, with design parameters, e.g. heat transfer area of each heat exchanger and heat capacity rate of each working fluid, without introducing any intermediate variable. Based on this relation together with the conditional extremum method, we theoretically derive an optimization equation group. Simultaneously solving this equation group offers the optimal structural and operating parameters for every single gas refrigeration cycle and furthermore provides several useful optimization criteria for all the cycles. Finally, a practical gas refrigeration cycle is taken as an example to show the application and validity of the newly proposed optimization method

  3. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions

    International Nuclear Information System (INIS)

    Lin Bihong; Zhang Yue; Chen Jincan

    2006-01-01

    The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed

  4. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  5. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    Science.gov (United States)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  6. Composite magnetic refrigerants for an Ericsson cycle: New method of selection using a numerical approach

    International Nuclear Information System (INIS)

    Smaieli, A.; Chahine, R.

    1997-01-01

    The efficient operation of an Ericsson cycle requires the magnetic entropy change (AS) be constant as a function of temperature. To realize this condition using composite materials, a numerical method has been developed to determine the optimum proportions of the components. The Gd x Er 1-x (x = 0.69, 0.90) alloys have been used to investigate the validity of the numerical method. The values of ΔS have been determined from experimental magnetization curves of these alloys, in the 0.1-9 T magnetic field and the 200-290 K range. The calculations have led to the mass ratio y = 0.56 for the composite (Gd 0.90 Er 0.10 ) y (Gd 0.69 Er 0.31 ) 1-y . The ΔS of this composite is fairly constant in the 225-280 K range. To confirm this result, the magnetization curves of the composite material have been determined experimentally, and the corresponding ΔS was compared with the one predicted numerically. A good agreement was found proving the method's ability to properly determine the required fractions of the refrigerant's constituent materials

  7. Sustainable cold generation by district heat driven absorption refrigerating machinery. High chilling of return flow; Nachhaltige Kaelteerzeugung durch Fernwaermeangetriebene Absorptionskaeltemaschine. Hohe Auskuehlung des Ruecklaufs

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2011-06-15

    Cold generation with district heat is still an exception in Germany. The trend towards combined heat and power generation and the increasing demand for reserve power within minutes and at acceptable cost, the economic efficieny of thermal refrigeration processes will be easier to define in the future. The author presents an exemplary building in the German city of Giessen, where a cafe on the 13th level as well as a doctor's surgery are cooled in summer by an absorption refrigerator cooled by district heat.

  8. Refrigerating machine oil

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  9. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  10. OPTIMIZATION OF ABSORPTION SYSTEMS: CASE OF THE REFRIGERATORS AND HEAT PUMPS

    OpenAIRE

    Tchinda , René; Wouagfack , Ngouateu ,

    2017-01-01

    International audience; The new thermo-ecological performance optimization of absorption is investigated by taking the ecological coefficient of performance ECOP as an objective function. ECOP has been expressed in terms of the temperatures of the working fluid in the main components of the system. The maximum of ECOP and the corresponding optimal temperatures of the working fluid and other optimal performance design parameters such as coefficient of performance, specific cooling load of abso...

  11. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  12. Feasibility and Basic Design of Solar Integrated Absorption Refrigeration for an Industry

    KAUST Repository

    Akhtar, Saad

    2015-08-28

    This paper presents a review of existing solar cooling technologies and a feasibility study of a solar absorption cooling system for a packaging facility at Tetrapak Lahore, Pakistan. The review includes brief description of existing chiller technologies and solar collectors. The case study includes analysis of the solar potential and design of the cooling system at considered site. The design calculations upon which the feasibility analysis is carried out are solar collector area and type, cooling capacity, cooling area. A comparison is made between solar cooling potential of Pakistan and existing sites all across the globe. Finally an economic analysis is carried out to demonstrate the financial viability of the new cooling system.

  13. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    Science.gov (United States)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  14. Study of thermodynamic properties of HFC refrigerant mixtures for Loretz-cycled niew generation air-conditioning equipment; Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsu rikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Sato, H. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-02-01

    This paper describes thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipment. Equipment has been completed for simultaneous measurement of density and vapor-liquid equilibrium property, accurate measurement of latent heat of vaporization, and accurate measurement of specific heat at constant pressure in liquid phase. Final adjustment and preliminary measurements are currently conducted. Through analytical investigation using actually measured data of thermodynamic properties of HFC refrigerant mixtures, five state equations were obtained, i.e., modified Peng-Robinson state equation which can reproduce the vapor-liquid equilibrium property of refrigerant mixtures, modified Patel-Teja state equation, Helmholtz function type state equation which is applicable in the whole fluid region of refrigerant mixtures, and so on. An evaluation test equipment has been fabricated as a trial for Lorentz-cycled air-conditioning equipments using HFC refrigerant mixtures, and demonstration test is conducted to confirm the validity. 9 refs., 5 figs.

  15. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  16. Reciprocating magnetic refrigerator

    Science.gov (United States)

    Johnson, D. L.

    1985-05-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  17. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Ahmadi, Mohammad Ali

    2015-01-01

    Highlights: • Thermodynamic modeling of Ericsson refrigeration is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • Different decision makers are utilized to determine optimum values of outcomes. - Abstract: Optimum ecological and thermal performance assessments of an Ericsson cryogenic refrigerator system are investigated in different optimization settings. To evaluate this goal, ecological and thermal approaches are proposed for the Ericsson cryogenic refrigerator, and three objective functions (input power, coefficient of performance and ecological objective function) are gained for the suggested system. Throughout the current research, an evolutionary algorithm (EA) and thermodynamic analysis are employed to specify optimum values of the input power, coefficient of performance and ecological objective function of an Ericsson cryogenic refrigerator system. Four setups are assessed for optimization of the Ericsson cryogenic refrigerator. Throughout the three scenarios, a conventional single-objective optimization has been utilized distinctly with each objective function, nonetheless of other objectives. Throughout the last setting, input power, coefficient of performance and ecological function objectives are optimized concurrently employing a non-dominated sorting genetic algorithm (GA) named the non-dominated sorting genetic algorithm (NSGA-II). As in multi-objective optimization, an assortment of optimum results named the Pareto optimum frontiers are gained rather than a single ultimate optimum result gained via conventional single-objective optimization. Thus, a process of decision making has been utilized for choosing an ultimate optimum result. Well-known decision-makers have been performed to specify optimized outcomes from the Pareto optimum results in the space of objectives. The outcomes gained from aforementioned optimization setups are discussed and compared employing an index of deviation presented in this

  18. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    Since then, the refrigeration technology has grown tremen- dously .... Montreal Protocol. (See Box 1). This has led to a renewed interest in the refrigerators operating on the Lorenz–Meutzner cycle. Figure 4. The shaded area .... In fact, man and animals emit significant amounts of GHGs due to their metabolic activity.

  19. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  20. Molecular-Level Computer Simulation of a Vapor-Compression Refrigeration Cycle

    Czech Academy of Sciences Publication Activity Database

    Figueroa-Gerstenmaier, S.; Francova, M.; Kowalski, M.; Lísal, Martin; Nezbeda, Ivo; Smith, W.R.

    2007-01-01

    Roč. 259, č. 2 (2007), s. 195-200 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507 Grant - others:NRCC(CA) OGP 1041 Institutional research plan: CEZ:AV0Z40720504 Source of funding: V - iné verejné zdroje Keywords : alternative refrigerants * joule-thomson expansion * adiabatic process Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.506, year: 2007

  1. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1996-04-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  2. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  3. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  4. High temperature refrigerator

    Science.gov (United States)

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  5. Refrigeration oils for low GWP refrigerants in various applications

    Science.gov (United States)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  6. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  7. Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

    OpenAIRE

    Shunsen Wang; Kunlun Bai; Yonghui Xie; Juan Di; Shangfang Cheng

    2014-01-01

    A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE) by integrating the transcritical carbon dioxide (CO2) refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet). The results indicate that replacin...

  8. Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique

    Science.gov (United States)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2017-01-01

    Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.

  9. Method for Refrigerators Efficiency Increasing

    Science.gov (United States)

    Suchilin, V. A.; Sumzina, L. V.; Maksimov, A. V.

    2017-11-01

    The article shows that in condenser-type domestic refrigerators the condenser is one of the main parts of the refrigeration system where the refrigerant (freon) compressed by the compressor condenses from the vapor state to the liquid. The condensation process is an exothermic process, i.e., the condensation of steam generates thermal energy. The condenser is heated and, to perform the refrigeration cycle, this heat must be removed from the refrigeration system. Heat removal is carried out in household refrigerators due to the natural circulation of ambient air around the condenser, which must have a significant heat-reflecting area to do this. Although the condenser is most often made of thin tubes that occupy almost the entire rear wall of the refrigerator, the cooling process is not effective enough. A new method for the condenser cooling is proposed which will improve the efficiency of the condenser and household refrigerators as a whole.

  10. Magnetic refrigeration cycle analysis using selected thermodynamic property characterizations for gadolinium gallium garnet

    International Nuclear Information System (INIS)

    Murphy, R.W.

    1992-01-01

    Magneto-thermodynamic property characterizations were selected, adapted, and compared to material property data for gadolinium gallium garnet in the temperature range 4--40 K and magnetic field range 0--6 T. The most appropriate formulations were incorporated into a model in which methods similar to those previously developed for other materials and temperature ranges were used to make limitation and relative performance assessments of Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. Analysis showed that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as those for materials previously examined, substantial improvements in cooling capacity/temperature lift combinations can be achieved using regenerative cycles within specified fields limits if significant loss mechanisms are mitigated

  11. FY1995 study of thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipments; 1995 nendo Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsurikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A hydrochlorofluorocarbon (HCFC) refrigerant, R-22, is currently being used almost exclusively as a refrigerant for conventional air-conditioning equipments. Since HCFCs are expected to be banned shortly, it is considered a crucial issue to support R and D of the air-conditioning system Lorentz-cycled with hydrofluorocarbon (HFC) refrigerants mixtures. In the present research project, therefore, it is aimed to reveal some of the essential thermodynamic properties of HFC refrigerant mixtures systematically. On the basis of a series of achievements for the last several years by the present research coordinator and his group regarding thermodynamic properties of single-component and blended HFC refrigerants, we have conducted following three major research programs rather systematically on which no challenges have ever been reported worldwide. Throughout a series of experimental as well as analytical researches performed so as to meet the objectives mentioned above, some novel knowledge and valuable outcomes could be obtained in the present study. (1) Precise measurements of vapor-liquid equilibrium properties with simultaneous determination of densities, latent heats of vaporization, and isobaric specific heat capacities in liquid phase. (2) Analytical studies to establish thermodynamic property modeling. (3) Feasibility study of evaluating the Lorentz-cycled performance. (NEDO)

  12. Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3-LiNO3 absorption refrigeration system

    International Nuclear Information System (INIS)

    Herrera, J.V.; Garcia-Valladares, O.; Gomez, V.H.; Best, R.

    2010-01-01

    This paper describes the work made at the Centro de Investigacion en Energia in the development of an absorption refrigeration system for cooling and refrigeration applications with a capacity of 10 kW. The single effect unit utilizes ammonia-lithium nitrate as working pair and it is air cooled. The generator is a falling film type with horizontal tubes where the heating oil flows inside the tube bank and the ammonia-lithium nitrate solution flows as a falling film on the tube outside, where it is heated and ammonia vapor is generated. The generator consists of tree columns and four rows per column of horizontal tubes. The system was tested at controlled conditions with heating oil obtained from an electric resistance heating loop. A numerical model of the horizontal falling film generator was developed that divided the system into three different thermal elements: the flow inside the tube, the heat conduction in the tube wall and the falling film solution flow. The mathematical model was tested and validated with experimental data and a study of the influence of the heat transfer coefficient for ammonia-lithium nitrate solution in the numerical model was carried out. A comparison between experimental and numerical data for the heat flux in the system and the temperature profiles in the oil and solution flows shown a good degree of correlation.

  13. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Honeywell and the Oak Ridge National Laboratory (ORNL) is to develop a Life Cycle Climate Performance (LCCP) modeling tool for optimally designing HVAC&R equipment with lower life cycle greenhouse gas emissions, and the selection of alternative working fluids that reduce the greenhouse gas emissions of HVAC&R equipment. In addition, an experimental evaluation program is used to measure the coefficient of performance (COP) and refrigerating capacity of various refrigerant candidates, which have differing GWP values, in commercial refrigeration equipment. Through a cooperative effort between industry and government, alternative working fluids will be chosen based on maximum reduction in greenhouse gases at minimal cost impact to the consumer. This project will ultimately result in advancing the goals of reducing greenhouse gas emissions through the use of low GWP working fluids and technologies for HVAC&R and appliance equipment, resulting in cost-competitive products and systems.

  14. The Effect of New Collision-Induced Absorption Coefficients on the Early Mars Limit Cycle Hypothesis

    Science.gov (United States)

    Hayworth, B. P.; Payne, R. C.; Kasting, J. F.

    2017-11-01

    Updating the Limit Cycling (LC) Model for early Mars with new absorption coefficients to test for changes to LC behavior and to potentially lower needed concentrations of greenhouse gases. Thought will be given to the effect of LC on habitability.

  15. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  16. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  17. Studi Variasi Flowrate Refrigerant pada Sistem Organic Rankine Cycle dengan Fluida Kerja R-123

    Directory of Open Access Journals (Sweden)

    Aria Halim Pamungkas

    2013-09-01

    Full Text Available Saat ini kelangkaan sumber energi fosil telah menjadi isu utama di seluruh dunia. Hal tersebut memberikan dampak yang signifikan di setiap aspek kehidupan dan salah satunya adalah di bidang pembangkit listrik. Salah satu sistem pembangkit listrik yang tidak menggunakan energi fosil adalah Organic rankine cycle (ORC. Pada penelitian ini dilakukan dengan metode eksperimental pada suatu sistem Organic rankine cycle yang telah dibangun. Penelitian ini yang divariasikan adalah flowrate dari fluida kerja dalam hal ini R-123. Variasi flowrate yang digunakan yaitu 3-1 GPM (Galon per menit dengan penurunan 0,5 GPM setiap pengambilan data. Hasil yang didapatkan dari penelitian ini berupa grafik–grafik daya pada turbin, kondensor, pompa dan evaporator, efisiensi siklus dan back work ratio  fungsi flowrate fluida kerja. Efisiensi siklus tertinggi adalah 5,86% yang terjadi pada flowrate 3 GPM dan efisiensi siklus terendah adalah 4,32% yang terjadi pada flowrate 1 GPM.

  18. Modeling of Artificial Neural Network for Predicting Specific Heat capacity of working fluid LiBr-H2O used in Vapor Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Dheerendra Vikram Singh

    2011-05-01

    Full Text Available The objective of this work is to model an artificial neural network (ANN to predict the value of specific heat capacity of working fluid LiBr-H2O used in vapour absorption refrigeration systems. A feed forward back propagation algorithm is used for the network, which is most popular for ANN. The consistence between experimental and ANN’s approach result was achieved by a mean relative error -0.00573, sum of the squares due to error0.00321, coefficient of multiple determination R-square 0.99961and root mean square error 0.01573 for test data. These results had been achieved in Matlab environment and the use of derived equations in any programmable language for deriving the specific heat capacity of LiBr-H2O solution.

  19. Calculation procedure to determine average mass transfer coefficients in packed columns from experimental data for ammonia-water absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sieres, Jaime; Fernandez-Seara, Jose [University of Vigo, Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, Vigo (Spain)

    2008-08-15

    The ammonia purification process is critical in ammonia-water absorption refrigeration systems. In this paper, a detailed and a simplified analytical model are presented to characterize the performance of the ammonia rectification process in packed columns. The detailed model is based on mass and energy balances and simultaneous heat and mass transfer equations. The simplified model is derived and compared with the detailed model. The range of applicability of the simplified model is determined. A calculation procedure based on the simplified model is developed to determine the volumetric mass transfer coefficients in the vapour phase from experimental data. Finally, the proposed model and other simple calculation methods found in the general literature are compared. (orig.)

  20. Magnetic Refrigeration and the Magnetocaloric Effect

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2006-01-01

    Magnetic refrigeration at room temperature is an emerging technology for refrigeration, which promises low energy consumption and is environmentalle friendly. Magnetic refrigeration is based on the magnetocaloric effect, which manifests itself as a reversibel increase in temperature when magnetic...... material are plased in a magnetic field. This paper introduces and describes magnetic refrigeration cycles and the magnetocaloric effect, and shows how magnetic refrigeration can be an alternative to vapour-compression refrigeration,. A review of the Danish research on magnetic refrigeration at Risø...

  1. Performance analysis and optimization for generalized quantum Stirling refrigeration cycle with working substance of a particle confined in a general 1D potential

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2018-03-01

    A generalized irreversible quantum Stirling refrigeration cycle (GIQSRC) is proposed. The working substance of the GIQSRC is a particle confined in a general 1D potential which energy spectrum can be expressed as εn = ℏωnσ . Heat leakage and non-ideal regeneration loss are taken into account. The expressions of coefficient of performance (COP) and dimensionless cooling load are obtained. The different practical cases of the energy spectrum are analyzed. The results of this paper are meaningful to understand the quantum thermodynamics cycles with a particle confined in different potential as working substance.

  2. Corrosion and passivation behavior of various stainless steels in libr solution used in absorption-type refrigeration system

    International Nuclear Information System (INIS)

    Shahid, M.

    2007-01-01

    Various structural materials have been suggested for the refrigeration units to combat high corrosiveness of the absorbent. The corrosion behavior of three grades of austenitic stainless steels, have been investigated in lithium bromide (LiBr) solutions, using electrochemical techniques. Potentiodynamic E- log-i curves, potential-time scans and polarization resistance diagrams obtained by using three-electrode system connected to a computerized Gamry at the rate framework, have been used to analyze their corrosion and passivation behavior in various concentrations of LiBr i.e. commercial LiBr (850 g/J solution containing chromate inhibitor), 400 g/l LiBr and 700 g/J LiBr solutions, at room temperature. Relatively higher corrosion current was observed in SS304 exposed to inhibitor-free electrolyte compared to inhibited commercial solution. Inhibitor proved to be more efficient in case of AISI 304 as it showed significantly higher corrosion rate in un-inhibited solutions. (author)

  3. Japanese activities in refrigeration technology

    Science.gov (United States)

    Fujita, T.; Ohtsuka, T.; Ishizaki, Y.

    This paper reviews recent activities in refrigeration technology in Japan. The projects described are stimulated by growing industrial needs or form part of large national projects. The JNR project on the MAGLEV train is currently the most powerful activity and it demands knowledge in all the different disciplines of cryogenics in particular on various scales of refrigeration. Research activities are also directed towards the development of Stirling cycle and magnetic refrigerators for applications in a wider area.

  4. Analysis of advanced conceptual designs for single-family-sized absorption chillers. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-27

    The objectives of the research reported is to develop and analyze new concepts for absorption cycles to improve the performance or reduce the cost of a 3-ton absorption chiller that can be used with solar collected heat. New refrigerant-absorbent pairs are investigated, as are additives to currently used refrigerant-absorbent pairs. Results are given of a literature search on those topics. An initial screening is reported to check the values of the heats of mixing of candidate refrigerants and adsorbents, and also to screen several candidate absorbents against water as a refrigerant. A modified apparatus and procedures for measurement of refrigerant-absorbent solubilities are described. Pressure-temperature-composition data for the R-22/E-181 pair were measured. Based on theory and the information found in the literature, a set of criteria and guidelines was developed that gives the desirable properties of the refrigerants, absorbents, and pairs. (LEW)

  5. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  6. NLP model of a LiBr–H2O absorption refrigeration system for the minimization of the annual operating cost

    International Nuclear Information System (INIS)

    Rubio-Maya, Carlos; Pacheco-Ibarra, J. Jesús; Belman-Flores, Juan M.; Galván-González, Sergio R.; Mendoza-Covarrubias, Crisanto

    2012-01-01

    In this paper the optimization of a LiBr–H 2 O absorption refrigeration system with the annual operating cost as the objective function to be minimized is presented. The optimization problem is established as a Non-Linear Programming (NLP) model allowing a formulation of the problem in a simple and structured way, and reducing the typical complexity of the thermal systems. The model is composed of three main parts: the thermodynamic model based on the exergy concept including also the proper formulation for the thermodynamic properties of the LiBr–H 2 O mixture, the second is the economic model and the third part composed by inequality constraints. The solution of the model is obtained using the CONOPT solver suitable for NLP problems (code is available on request). The results show the values of the decision variables that minimize the annual cost under the set of assumptions considered in the model and agree well with those reported in other works using different optimization approaches. - Highlights: ► The optimization of an ARS is presented using the annual operating cost as the objective function. ► The problem is established as an NLP model allowing a formulation in a simple and structured way. ► Several formulations for the thermodynamic properties were tested to implement the simpler ones. ► The results obtained agree well with those reported in the work being in comparison.

  7. Dynamic design of gas sorption J-T refrigerator

    International Nuclear Information System (INIS)

    Chan, C.K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance

  8. Dynamic design of gas sorption J-T refrigerator

    Science.gov (United States)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  9. New magnetic refrigeration materials for the liquefaction of hydrogen

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Takeya, H.; Moorman, J.O.; Pecharsky, V.K.; Malik, S.K.; Zimm, C.B.

    1994-01-01

    Five heavy lanthanide ferromagnetic intermetallic compounds were studied as potential magnetic refrigerants for the liquefaction of hydrogen gas. (Dy 0.5 Er 0.5 )Al 2 and TbNi 2 appear to be better refrigerants than GdPd for a Joule-Brayton cycle refrigerator, while (Gd 0.54 Er 0.46 )AlNi seems to be a suitable refrigerant for an Ericsson cycle refrigerator

  10. Flammable refrigerants

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A.

    1999-01-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and

  11. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  12. Simulation and Optimization of an Innovative Dual Mixed Component Refrigerant Cycle (DMRC) for Natural Gas Offshore Liquefaction Plants

    International Nuclear Information System (INIS)

    SHAHBA, L.A.; Fahmy, M.F.M.

    2004-01-01

    Simulation and optimization of an innovative liquefaction process used for the LNG production , namely the Dual Mixed Refrigerant Process (DMRC) has been conducted using the HYSYS simulator .This new process is especially suitable for off shore natural gas liquefaction plants. A numerical optimization technique has been used to determine the optimum conditions for Egyptian natural gas feed source. The investigation of the effect of different compositions of the Mixed refrigerants used was conducted. Meanwhile, the investigation of the influence of the temperature of cooling water used was conducted. The best optimum conditions for the DMRC process were determined .The optimum results achieved for the DMRC process revealed that the DMRC process can be successfully applied as a promising technique for off shore natural gas liquefaction plants

  13. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  14. Transient behaviour of an adsorption refrigerator. Experimental study of the alcohol/activated carbon system; Comportement transitoire d`une machine frigorifique a absorption. Etude experimentale du systeme alcool / charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Luo, L. [Centre National de la Recherche Scientifique (CNRS), 54 - Nancy (France). Lab. des sciences du genie chimique; Feidt, M. [Nancy-1 Univ., 54 - Vandoeuvre-les-Nancy (France)

    1997-03-01

    The objective of this article is to present an experimental study of an adsorption refrigerator, accounting for the transient phenomena in each component of the machine, in particular in the adsorber. The couples adsorbate/adsorbent investigated (activated carbon/methanol or ethanol) have been chosen on the basis of an earlier comparative study. We have performed a full series of experiments to investigate the transient evolution of temperatures, pressures and the cycled mass, in a discontinuous cycle, and along the components of the refrigerating machine. The influence of various parameters is studies by varying one at a time: adsorbate/ adsorbent couple, alcohol load in adsorber, alcohol flowrate, heating power, initial desorption temperature. All these experimental observation are discussed and compared to transient models developed in a separate article. (authors) 12 refs.

  15. Technical and economic analysis of a gas turbine/absorption cycle cogeneration system in the Brazilian Amazon; Analise tecnico-economica da cogeracao utilizando turbina a gas e ciclo de refrigeracao por absorcao na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Leandro da Silva; Carvalho, Ricardo Dias Martins de; Venturini, Osvaldo Jose [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], e-mail: leandro8746@hotmail.com, e-mail: martins@unifei.edu.br, e-mail: osvaldo@unifei.edu.br

    2006-07-01

    The generation and distribution of electricity in the Brazilian Amazon are faced with a number of difficulties, spanning from management aspects to technical issues. These are thermal power plants and the high costs of fuel (including distribution) and maintenance make them unprofitable, often requiring government subsidies. On the other hand, there is a shortage of ice for food preservation in the Amazonian market. In this context, cogeneration could help improve the plants overall efficiency and reduce costs. The proposed paper carries out a technical and economic analysis of a gas turbine and absorption refrigeration cycle cogeneration system supposed located along the Coari-Manaus natural gas pipeline. Actual electricity demand, ice consumption, and weather data for one of the cities to be served by the pipeline are used in the analysis. The gas turbine operation was simulated using Gate Cycle software; the exhaust gases temperature and flow rate output were in turn used for the simulation of a single stage aqua-ammonia refrigeration (AAR) cycle employing Cycle Tempo software. The thermodynamic simulation of the AAR cycle made it possible to determine the optimal temperature at the generator outlet in order to maximize the refrigeration capacity. For the economic analysis, the electricity and ice production costs were carefully determined and local market sales values for both were used. Then, assuming electrical parity and an electricity demand profile typical of the region the annual plant profit was determined. On the assumption that the cogeneration plant could be exempted from the ICMS tax throughout the investment recovery time, the payback period was 7.8 and 6.9 years for capacity factors of 0.572 and 0.614, respectively. In case there is no ICMS tax exemption, the payback period is 13.0 years, making the cogeneration investment not viable economically. (author)

  16. Sistema de refrigeración solar por absorción para la comunidad de Kumay en Ecuador; Solar absorption refrigeration system for Kumay community in Ecuador

    Directory of Open Access Journals (Sweden)

    José Antonio Romero Paguay

    2015-04-01

    Full Text Available En el Ecuador existen muchas zonas aisladas, no electrificadas aún, especialmente en la provincia de Pastaza, en este artículo se presenta un sistema de refrigeración por absorción solar  como una alternativa para la climatización de un consultorio médico en la Comunidad de Kumay. Se realiza el cálculo de la estimación de carga térmica en el consultorio médico empleando el software Carrier E20, el cual arroja una necesidad de enfriamiento de 10 kW o 2,84 toneladas de refrigeración (TR. El sistema de refrigeración por absorción con energía solar propuesto está formado por una máquina de absorción, simple efecto de la marca ClimateWell 10, con 10 kW de potencia de enfriamiento que utiliza como absorbente el par cloruro de litio y agua, requiriéndose un área de captación de energía solar de 30 m2 que será entregada con diez colectores de tubos alvacío marca Thermomax, Modelo Solamax 30. In Ecuador there are many non-electrified remote areas, especially in the province of Pastaza, in this article a solar absorption cooling system is presented as an alternative for the air conditioning of a doctor's office (medical clinic in Community Kumay. The calculation of the estimated thermal load on the doctor's office is done using the software Carrier E20, which throws a necessity of cooling of 10 kW or 2,84 tons of refrigeration. The solar cooling system consist in an absorption machine of single effect, ClimateWell 10, with 10 kW of cooling power that uses as absorbent the lithium chloride and water pair, this system  required an area of reception of solar energy of 30 m2 that will be given with 10 vacuum tube collectors Thermomax, Model Solamax 30.

  17. Refrigerant capacity of europium sulfide and its use in magnetic refrigeration

    International Nuclear Information System (INIS)

    Potter, W.H.; Wood, M.E.

    1986-01-01

    The authors recently showed that the refrigerant capacity - the product of entropy absorbed by a refrigerant at the cycle cold temperature and the cycle temperature span, ΔS/sub c/ΔT - provides a very useful measure of refrigeration. Analyzing ΔS/sub c/ΔT as a function of refrigerant and cycle parameters provides a general approach to refrigeration optimization. In this paper the authors apply this approach to magnetic refrigeration using EuS, a ferromagnet with T/sub o/ = 16.5 K, as the refrigerant in a regenerative cycle. They examine the effects of irreversibilities and find that even for values of irreversible entropy production, S/sub IRR/, as large as ΔS/sub c/, optimized values of ΔT remain large for all applied fields, while the optimum values of T/sub c/ decrease slightly as S/sub IRR/ increases

  18. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  19. Vaccine refrigeration

    Science.gov (United States)

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  20. Stationary Refrigeration

    Science.gov (United States)

    Resources for HVACR contractors, technicians, equipment owners and other regulated industry to check rules and requirements for managing refrigerant emissions, information on how to become a certified technician, and compliance assistance documents.

  1. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.

    1980-03-25

    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  2. Magnetic refrigeration using flux compression in superconductors

    International Nuclear Information System (INIS)

    Israelsson, U.E.; Strayer, D.M.; Jackson, H.W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature superconductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications. 9 refs

  3. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    Science.gov (United States)

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output.

  4. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  5. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Science.gov (United States)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  6. Cogeneration with gas turbine associated to the absorption refrigeration system: a computer program for exergy economics analysis; Cogeracao com turbina a gas associada ao sistema de refrigeracao por absorcao: um programa computacional para analise exergoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Julio Santana [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Matematica] E-mail: santana@feg.unesp.br; Silveira, Jose Luz; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia

    2000-07-01

    This paper presents the development of a computer program for exergy and economic analysis of cogeneration systems applying gas turbine associated to the absorption refrigeration system. The computer program selects gas turbine systems viewing the operation under thermal parity through a data base composed by gas turbines commercially available in the market, under the ISO (International Standard Organization). The computer program corrects the system performance parameters selected for the installation local conditions. The exergy and economic analysis are made based on the lowest exergy manufacturing cost where the best system is considered. A case study of the computer program application is presented.

  7. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  8. Refrigeration Showcases

    Science.gov (United States)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  9. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  10. OPTIMIZATION OF A DOUBLE EFFECT LIBR-H20 ABSORPTION ...

    African Journals Online (AJOL)

    In the double-effect LiBr-H,0 absorption refrigeration cycle, weak solution leaving the. Absorber is pumped to the pressure of Generator 1,. Fig. l. External heat supplied to the weak solution in. Generator 1 releases water vapor from the solution. To reduce the quantity of external heat required by. Generator 1 and thus ...

  11. Recent investigations on refrigerants for magnetic refrigerators

    International Nuclear Information System (INIS)

    Hashimoto, T.

    1986-01-01

    In development of the magnetic refrigerator, an important problem is selection of magnetic materials as refrigerants. The main purpose of the present paper is to discuss the magnetic and thermal properties necessary for these refrigerants and to report recent investigations. Magnetic refrigerants can be expediently divided into two groups, one for the Carnottype magnetic refrigerator below 20 K and the other for the Ericsson-type refrigerator. The required physical properties of refrigerants in each type of the magnetic refrigerator are first discussed. And then, the results of recent investigations on the magnetic, thermal and magnetocaloric characters of several promising magnetic refrigerants are shown. Finally, a brief prospect of the magnetic refrigerants and refrigerators is given

  12. Refrigeration Servicing.

    Science.gov (United States)

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  13. Optimum operating regimes of common paramagnetic refrigerants

    CERN Document Server

    Wikus, P; Figueroa-Feliciano, E

    2011-01-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers {[}1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered. (C) 2011 Elsevier Ltd. All rights reserve...

  14. Analysis of Combined Power and Refrigeration Generation Using the Carbon Dioxide Thermodynamic Cycle to Recover the Waste Heat of an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Shunsen Wang

    2014-01-01

    Full Text Available A novel thermodynamic system is proposed to recover the waste heat of an internal combustion engine (ICE by integrating the transcritical carbon dioxide (CO2 refrigeration cycle with the supercritical CO2 power cycle, and eight kinds of integration schemes are developed. The key parameters of the system are optimized through a genetic algorithm to achieve optimum matching with different variables and schemes, as well as the maximum net power output (Wnet. The results indicate that replacing a single-turbine scheme with a double-turbine scheme can significantly enhance the net power output (Wnet and lower the inlet pressure of the power turbine (P4. With the same exhaust parameters of ICE, the maximum Wnet of the double-turbines scheme is 40%–50% higher than that of the single-turbine scheme. Replacing a single-stage compression scheme with a double-stage compression scheme can also lower the value of P4, while it could not always significantly enhance the value of Wnet. Except for the power consumption of air conditioning, the net power output of this thermodynamic system can reach up to 13%–35% of the engine power when it is used to recover the exhaust heat of internal combustion engines.

  15. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  16. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  17. Modeling of ammonia absorption chillers integration in energy systems of process plants

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.C.; Castells, F. [Universitat Rovira i Virgili, Tarragona (Spain). Dept. d' Enginyeria Quimica; Miquel, J. [Universitat Politecnica de Catalunya (Spain). Dept. de Mecanica de Fluids

    1999-12-01

    A mathematical programming approach is proposed to study the integration of absorption chillers in combined heat and power plants. The aim of this work is to determine the economic viability of the introduction of ammonia absorption chillers in energy systems instead of using the more conventional compression cycles. This procedure selects the best refrigeration alternative taking into account both absorption and compression cycles. To select the most suitable refrigeration cycle for a given refrigeration load, it is not only necessary to model the performance of each cycle, but also to take into account the interactions between the energy system and the considered cycles, optimizing the performance of the global plant. This approach has been implemented in the computer program XV, and tested in an energy plant in the petrochemical complex of Tarragona (Catalunya, Spain). The refrigeration demands to be met are at 0 and -20{sup o}C. The results highlighted the benefit obtained with the simultaneous presence of ammonia absorption cycles and a cogeneration based energy plant. (author)

  18. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S......⊘nderborg, Denmark. Since the model is too complex to study analytically, we vary different input variables within the permissible operating range of the heat pump and evaluate COP at the resulting steady-state operating points. It is found that the best set-point for each individual input is located at an extreme...... value of the investigated permissible range, and that the COP optimization is likely to be a convex problem. Further, we exploit this observation to propose a simple offline set-point optimization algorithm, which can be used as an automated assistance for the plant operator to optimize steady...

  19. Birth after 12 hours of oocyte refrigeration.

    Science.gov (United States)

    Coban, Onder; Hacifazlioglu, Oguzhan; Ciray, H Nadir; Ulug, Ulun; Tekin, H Ibrahim; Bahceci, Mustafa

    2010-12-01

    To assess cycle outcome after oocyte refrigeration. Case report. Private IVF center. One couple in a donor oocyte program. Intracytoplasmic sperm injection and blastocyst culture after refrigeration of oocytes for 12 hours. Birth. Fourteen two-pronuclei zygotes from 17 metaphase II refrigerated oocytes resulted in transfer of two blastocysts at day 5 and cryopreservation of six excess embryos at day 6. The patient delivered one healthy male baby after 38 weeks' gestation. The successful outcome of oocyte refrigeration indicates that this protocol could be useful in circumstances in which a delay in obtaining spermatozoa arises. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  1. High-efficiency absorption-type heat pumps and refrigerators. From topology to the pilot plant; Hocheffiziente Absorptionsmaschinen zur Versorgung mit Kaelte und Waerme. Von der Topologie zur Pilotanlage

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, F.; Demmel, S.; Lamp, P. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V. (ZAE Bayern), Wuerzburg (Germany); Kahn, R. [Technische Univ. Muenchen (Germany). Physik Dept. E19; Alefeld, G.

    1998-12-31

    Absorption-type heat pumps or refrigerators are systems operated with heat. They have been known for a long time and are frequently used especially in airconditioning in the USA and south-east Asia. However, the conventional technique used is subject to many physical limitations, restricting their broader use. The paper demonstrates ways of overcoming these restrictions, for instance by multi-stage design. The exploitation of topological principles much facilitates the synthesis of novel circuits. The technical relevance of such developments is demonstrated by means of selected examples of executed laboratory and pilot plants. Modern absorption technology saves resources and prevents environmental pollution by consuming less fossil energy compared with the conventional technique, for instance by harnessing the thermal potential of solar energy or utilizing waste heat and residual heat, and, not least, thanks to the use of natural refrigerants. (orig.) [Deutsch] Absorptionswaermepumpen oder -kaeltemaschinen sind durch Waerme angetriebene Anlagen, die seit langem bekannt sind und besonders in der Klimatechnik in den USA und im suedostasiatischen Raum haeufig eingesetzt werden. Die dabei verwendete konventionelle Technik unterliegt allerdings vielfaeltigen physikalischen Einschraenkungen, die ihre noch breitere Anwendung verhindern. Es wird gezeigt, wie diese Einschraenkungen beispielsweise durch Mehrstufigkeit ueberwunden werden koennen. Durch die Verwendung topologischer Grundsaetze wird die Synthese neuartiger Kreislaeufe stark vereinfacht. Die technische Bedeutung solcher Entwicklungen wird an ausgewaehlten Beispielen ausgefuehrter Labor- und Pilotanlagen gezeigt. Durch den im Vergleich zu konventioneller Technik geringeren Verbrauch an fossiler Energie, beispielsweise durch die thermische Nutzung von Sonnenenergie oder durch die Nutzung von Ab- oder Restwaerme und nicht zuletzt durch die Verwendung natuerlicher Kaeltemittel werden bei Einsatz moderner

  2. Exergetic sustainability evaluation of irreversible Carnot refrigerator

    Science.gov (United States)

    Açıkkalp, Emin

    2015-10-01

    Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.

  3. High Efficiency Refrigeration Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A refrigeration cycle is proposed for development which can reduce compressor work and increase cooling effect, by eliminating a portion of the irreversabilities...

  4. REACH. Refrigeration Units.

    Science.gov (United States)

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  5. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids

    Directory of Open Access Journals (Sweden)

    Courtney B. Ferrebee

    2015-03-01

    Full Text Available The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR and the G-protein-coupled bile acid receptor (TGR5.

  6. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia; Long, Timothy; Beraki, Bereket; Price, Sarah K.; Pratt, Stacy; Willem, Henry; Desroches, Louis-Benoit

    2013-11-14

    Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’s Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated

  7. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Young, Scott J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Hung-Chia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Long, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beraki, Bereket [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pratt, Stacy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Desroches, Louis-Benoit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,820 clean survey responses were obtained from four distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’s Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 2.9(–2.5,+4.5) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated

  8. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  9. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  10. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  11. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  12. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  13. A review of carbon dioxide as a refrigerant in refrigeration technology

    Directory of Open Access Journals (Sweden)

    Paul Maina

    2015-09-01

    Full Text Available Tough environmental laws and stringent government policies have revolutionised the refrigeration sector, especially concerning the cycle fluid known as the refrigerant. It has been observed that only natural refrigerants are environmentally benign. When other refrigerant qualities are considered, especially those relating to toxicity and flammability, carbon dioxide emerges as the best among the natural refrigerants. However, carbon dioxide based refrigerants are not without drawbacks. Even though the use of R744 a carbon dioxide based refrigerant gas has solved the direct effect of emissions on the environment, studies to investigate the indirect effects of these systems are needed. Improvement in existing technical solutions and the formulation of additional solutions to existing R744 refrigeration problems is paramount if this technology is to be accepted by all, especially in areas with warm climates. National policies geared to green technologies are important to clear the way and provide support for these technologies. It is clear that carbon dioxide is one of the best refrigerants and as environmental regulations become more intense, it will be the ultimate refrigerant of the future.

  14. Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions

    International Nuclear Information System (INIS)

    Saleh, A.; Mosa, M.

    2014-01-01

    Highlights: • A comprehensive analysis for optimizing solar absorption system in hot region. • The most important parameter to be controlled is hot source temperature. • Ensuring appropriate choice of parameters, COP of absorption unit exceeds 0.8. • Results show that solar cooling systems are promising in hot regions. • The research aims to play a vital role to promote the use of renewable energy. - Abstract: This investigation has been carried out to present a comprehensive analysis for optimizing the operation of solar absorption system in hot regions. To optimize performance of the system, the hot source temperature should be controlled in function of incident solar radiation, chilled and cooling water temperatures. With an appropriate control, these external conditions can be monitored to detect and implement the actual optimization conditions. Adopting typical values encountered in hot regions, the overall system performance takes its optimal value at temperatures between 75 and 80 °C. It was found that in designing or selecting solar collector, selective coating type is necessary to produce hot water with potential around 80–90 °C needed to optimize operation of absorption unit. By ensuring an appropriate choice of components temperatures, COP of absorption unit can exceed the value 0.8. Cooling water temperature above 40 °C reduces significantly the performance of the unit which requires, under conditions of extremely high external temperatures, dimensioning and selection of condensers and absorbers that guarantee values less than this limit

  15. Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia/lithium nitrate

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Vereda, C.; Rodriguez-Hidalgo, M.C.

    2017-01-01

    Highlights: • Two-stage double-effect cycle for combined power and cooling with flexibility. • Ammonia/lithium nitrate as solution for the absorption cycle. • Efficiency, when only producing power, of 19.5% for a generation temperature of 173 °C. • When combined cooling and power COP = 0.53 and electric efficiency of 5% for a generation temperature of 140 °C. • Better efficiencies than conventional double-effect cycles. - Abstract: The performance of a two-stage double-effect absorption machine for combined power and cold generation is proposed and studied theoretically, generating innovative schemes. The ammonia/lithium nitrate solution allows this cycle, consuming either solar thermal or residual heat. The machine is represented by means of a thermodynamic steady-state cycle. First, only power generation and only cold production are separately studied as function of the main internal temperatures, introducing the concepts of mixed and unmixed vapour and of virtual temperatures for allowing comparison. The results indicate that for producing power the efficiency of the cycle increases when rising the maximum pressure while for producing cold is the contrary. The maximum efficiency obtained for only power production with no superheating is 19.5% at a high generation temperature of 173 °C and at a moderate 20.3 bars of maximum pressure. The solution crystallization avoids a higher efficiency. The combined power and cooling cycle allows adapting the energy production to cold demand or to power demand by splitting the vapour generated. At a generation temperature of 132 °C, when splitting the vapour generated into half for power and half for cooling, the cycle obtains an electric efficiency of 6.5% and a COP of 0.52. This cycle is compared to a conventional double-effect cycle configured in parallel flow, obtaining the same electric efficiency but with a 32% higher COP.

  16. In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)13 magnetocaloric alloys for room-temperature refrigeration application

    Science.gov (United States)

    Hai, Xueying; Mayer, Charlotte; Colin, Claire V.; Miraglia, Salvatore

    2016-02-01

    Promising magnetocaloric material La(Fe,Si)13 with a first-order magnetic transition has been widely investigated. The observed instability of hydrogen in the material is detrimental for its industrial upscale and a better control of the hydrogen absorption/desorption is necessary to optimize its application potential. In this article, the hydrogen absorption kinetics is studied through an in-situ neutron diffraction experiment. The results allow us to have an inside look at the structure "breathing" to accommodate the interstitial atoms and compare the effect of hydrides with carbohydrides.

  17. Absorption chillers integration in a combined heat and power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J. C.; Fernandez, F.; Castells, F. [Barcelona Univ., Tarragona (Spain). Dept. d`Enginyeria Quimica i Bioqumica

    1996-11-01

    Inclusion of an absorption cycle within a combined heat and power plant (CHP) was evaluated. To determine the most suitable configuration of the energy network generation system and absorption chiller, a simulation and optimization model was constructed. To validate the optimization model, a case study using actual data from existing operating plants has been used. In the case described the cooling facilities from the absorption cycle were used to lower the inlet temperature to the compressor of the gas turbine to improve the overall plant efficiency. Waste steam from the steam network was used in the generator of the absorption chiller. A reduction in steam wastes, and an improvement in overall plant efficiency was observed. A simulation model of a single effect absorption chiller, using water-lithium bromide as the working fluid pair, was used to validate the methodology. Results showed that the benefits of integrating the absorption refrigeration cycle (ARC) depends directly on the refrigeration demand, and on the benefit produced by the waste steam recovered. The increase in power generation, allowing a reduction in primary energy consumption, showed a slight economic advantage over the conventional compression cycle. 13 refs., 7. tabs., 6 figs.

  18. 2017 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2017-01-01

    This year's lecture programme includes 117 presentations in the five working departments of DKV and 10 lectures at the special event ''Energy-efficient air conditioning in data centres''. The main topics in the respective departments were: (1) Cryogenics: Space applications; Cryogenic plants; Cryomedicine and cryobiology; Components, developments; Processes and plants; Valves, design. (2) Basics: Evaporation, material values; evaporation, condensation; absorption; adsorption, latent storage; cycle simulation. (3) Components: CO 2 plant engineering and components; refrigerants; process control, adsorption, sublimation and storage technology; refrigerating machine oils, heat exchangers and corrosion; components 4.0, sensors and control technology; simulation of plant processes. (4) Cold application: Application; Application / Natural Refrigerants; Mobile Applications Car; Mobile Applications; Supermarket / Efficiency; Optimization / Efficiency. (5) Air conditioning and heat pump applications: load shifting, smart home, flexibility; heat sources and industrial heat pumps; modelling, simulations; energy concepts heat pumps and photovoltaics; monitoring, evaluation; technology trends / working materials. Six papers are separately analyzed for this database. [de

  19. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  20. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    A magnetic refrigeration test device has been built and tested. The device allows variation and control of many important experimental parameters, such as the type of heat transfer fluid, the movement of the heat transfer fluid, the timing of the refrigeration cycle, and the magnitude...... of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  1. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. Performance Analysis of Multipurpose Refrigeration System (MRS on Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Ust Y.

    2016-04-01

    Full Text Available The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP, exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability. According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502. The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32.

  3. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  4. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    Science.gov (United States)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  5. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    tion system, refrigerant, ozone depletion, global warming, CFC,. HCFC, HFC, HFO, zeotropic mixture, natural fluids. With the mandate of Montreal Protocol banning ozone de- pleting substances, and Kyoto Protocol later on curtailing the use of substances which contribute to global warming, con- ventional refrigerants are to ...

  6. Contribution to magnetic refrigeration study at liquid helium study

    International Nuclear Information System (INIS)

    Lacaze, A.

    1985-10-01

    An experimental prototype of magnetic refrigerator operates, following a Carnot cycle, with gallium gadolinium garnet, from liquid helium at 4.2 0 K. Analysis of the cyle and heat exchanges allowed to improve performance up to get more than 50% of Carnot yield at 1.8 0 K and nearly 80% at 2.1 0 K. Operation conditions of a regenerator refrigerator between 4 and 20 0 K are studied. The association of a magnetic refrigerator and a gas refrigerator is analyzed. Among different ways to realize the magnetic stage, an active regenerator cycle is chosen. An experimental device is described [fr

  7. Development of Magnetic Refrigerator

    Science.gov (United States)

    Ogiwara, Hiroyasu; Nakagome, Hideki; Kuriyama, Tohru

    A series of R & D of magnetic refrigerators has been done in order to realize an advanced type cryocooler for superconducting magnets of maglev trains and MRI medical system. As a result of efforts on both the magnetic refrigerator and superconducting magnets, a parasitic type magnetic refrigeration system was proposed.

  8. Recent progress in magnetic refrigeration; Jiki reito no kenkyu doko

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-05-25

    Nearly 20 years have passed since the regular study in magnetic refrigeration commenced. However it has not been put to practical use, because the technology depends largely not only on magnetic materials but also on superconduction magnets, heat switches, and etc. This paper reviews the outline of studies in magnetic refrigeration and their future. The principle of magnetic refrigeration and the merit and demerit are described first under the heading of the special features of magnetic refrigeration. Magnetic materials developed so far are also introduced. Then a Carnot cycle magnetic refrigeration is explained. The study in space satellites by NASA, adiabatic demagnetization refrigerators and etc. are introduced. In the section of magnetic regenerative refrigerators, continuous Carnot active magnetic regenerators (AMR) and Brayton AMR are described. The actual proof study of AMR has been over and the application study has commenced. 36 refs., 14 figs., 2 tabs.

  9. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  10. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    Full Text Available This study aims to exploite the rejected heating energy from condenser and benefit from it to reheat the foods and other materials. It can also be employed to improve the coefficient of performance of a refrigerator at the same time by using approximately the same consumption electrical energy used to operate the compressor and refrigerator in general. This idea has been implemented by manufacturing of a refrigerator with using additional part has the same metal and condenser pipe diameters but its surface area does not exceed 40% from total surface area of the condenser and its design as an insulated cabinet from all sides to prevent heat leakage through it and located between the compressor and the condenser. Small electrical fan has been added inside this cabinet to provide a suitable air circulation and a homogenous temperature distribution inside the cabinet space. It is expected that the super heating energy of refrigerant (R134a which comes out of the compressor would be removed  inside this cabinet and this insist to condensate the refrigerant (cooling fluid with a rate higher than that used in the normal refrigerator only. Three magnetic valves have been used in order to control the refrigerant flow in state of operation the refrigerator only or to gather with heating cabinet. To measure the temperatures at each process of the simple vapor compression refrigeration cycle, nine temperature sensors at input and output of each compressor, condenser and an evaporator in additional to input of cabinet and inside it and on evaporator surface have been provided. Five pressure gages have been used to measure the value of pressure and compare it for the two states of operation. The consumption of electrical energy  can be calculated by adding an ammeter and a voltmeter and compare between the consumption energy of both states. The obtained results show that there is an improvement in the coeffecient of performance in state of operation the

  11. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    Science.gov (United States)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  12. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  13. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    ; global warming; CFC; HCFC; HFC; HFO; zeotropic mixture; natural fluids. Author Affiliations. G Venkatarathnam1 S Srinivasa Murthy1. Refrigeration and Airconditioning Laboratory, Department of Mechanical Engineering, Indian Institute of ...

  14. Optimization of energy plants including water/lithium bromide absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.C.; Castells, F. [Universitat Rovira i Virgili, Dept. d' Enginyeria Quimica, Tarragona (Spain); Miquel, J. [Universitat Politecnica de Catalunya, Dept. de Mecanica de Fluids, Barcelona (Spain)

    2000-07-01

    In this paper a methodology for the optimal integration of water/lithium bromide absorption chillers in combined heat and power plants is proposed. This method is based on the economic optimisation of an energy plant that interacts with a refrigeration cycle, by using a successive linear programming technique (SLP). The aim of this paper is to study the viability of the integration of already technologically available absorption chillers in CHP plants. The results of this alternative are compared with the results obtained using the conventional way of producing chilled water, that is, using mechanical vapour compression chillers in order to select the best refrigeration cycle alternative for a given refrigeration demand. This approach is implemented in the computer program XV, and tested using the data obtained in the water/LiBr absorption chiller of Bayer in Tarragona (Catalonia, Spain). The results clearly show that absorption chillers are not only a good option when low-cost process heat is available, but also when a cogeneration system is presented. In this latter case, the absorption chiller acts as a bottoming cycle by using steam generated in the heat recovery boiler. In this way, the cogeneration size can be increased producing higher benefits than those obtained with the use of compression chillers. (Author)

  15. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  16. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  17. Recent evolutions of refrigerating machineries and heat pumps; Evolutions recentes des machines a froid et thermopompes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This book of proceedings reports on 10 papers (or series of transparencies) concerning some recent developments about refrigerating machineries and heat pumps as used in space heating, air-conditioning and industrial refrigeration. Various aspects are developed: thermodynamic cycles, thermal performances, dimensioning, modeling, refrigerants substitution, design of flanged exchangers, compressors etc.. (J.S.)

  18. CO2LD: An Educational Innovation Project for Advanced Vocational Training in Refrigeration

    Science.gov (United States)

    Sánchez, Daniel; Llopis, Rodrigo; Patiño, Jorge; Cabello, Ramón; Torrella, Enrique

    2013-01-01

    Refrigeration is one of the technology sectors that has suffered the most changes in the last twenty years, because of the negative impact of the fluids used in the refrigeration cycles, i.e., refrigerants, due to their impact on the ozone layer and their contribution to global warming. As a result of their negative effects, the European Union has…

  19. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    improvement in components, system and external preconditions. In the future it might be more interesting to use turbine driven heat pumps instead of electric motors. The absorption process is not considered to be an alternative to replace present heat pumps, but there is a certain niche where heat source and driving energy, considering temperature levels, are more suitable for district heating. A technique that seems to be an alternative to the compression cycle is a combination of compression and absorption. Using the media pair water and ammonia might be an interesting solution and should be compared to the alternative using carbon dioxide. A further study is recommended on this subject.

  20. Refrigerants and environment

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  1. EXERGETIC PERFORMANCE OF A DOMESTIC REFRIGERATOR USING R12 AND ITS ALTERNATIVE REFRIGERANTS

    Directory of Open Access Journals (Sweden)

    BUKOLA O. BOLAJI

    2010-12-01

    Full Text Available Production and use of R12 and other chlorofluorocarbon refrigerants will be prohibited completely all over the world in the year 2010 due to their harmful effects on the earth’s protective ozone layer. Therefore, in this study, the exergetic performance of a domestic refrigerator using two environment-friendly refrigerants (R134a and R152a was investigated and compared with the performance of the system when R12 (an ozone depleting refrigerant was used. The effects of evaporator temperature on the coefficient of performance (COP, exergy flow destruction, exergetic efficiency and efficiency defect in the four major components of the cycle for R12, R134a and R152a were experimentally investigated. The results obtained showed that the average COP of R152a was very close to that of R12 with only 1.4% reduction, while 18.2% reduction was obtained for R134a in comparison with that of R12. The highest average exergetic efficiency of the system (41.5% was obtained using R152a at evaporator temperature of -3.0oC. The overall efficiency defect in the refrigeration cycle working with R152a is consistently better (lower than those of R12 and R134a. Generally, R152a performed better than R134a in terms of COP, exergetic efficiency and efficiency defect as R12 substitute in domestic refrigeration system.

  2. An examination of the proposition to use membrane transport in an aqueous solution absorption heat pump cycle

    Science.gov (United States)

    Yu, J. S.; Haskin, W. L.; Chang, W. S.

    1990-06-01

    A thermal transfer cycle utilizing membrane osmotic transport of water against a pressure rise is investigated from the viewpoint of the operation of a conventional absorption heat pump using an aqueous solution as the working fluid. Physical sorption, similar or equivalent to condensation, of water vapor in the membrane material is considered to be an essential step in the overall process of water transport. The thermal nature of this step during which the heat of sorption similar in amount to the heat of condensation for water vapor must evolve at the evaporator temperature or lower disqualifies the system in performance as a heat pump. Simple flow relations for the aqueous sugar solution are derived under simplifying assumptions. A set of numerical calculations is given as an illustration to show that the inferred steps are well within the limits of thermodynamics.

  3. Practical methods for measuring refrigerant mass distribution inside refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guoliang; Ma, Xiaokui; Zhang, Ping; Han, Weizhe [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Kasahara, Shinichi; Yamaguchi, Takahiro [Daikin Air-Conditioning R and D Laboratory, Ltd., 1304 Kanaoka-cho, Sakai, Osaka 591-8511 (Japan)

    2009-03-15

    The purpose of this paper is to present methods for measuring refrigerant mass distribution inside a refrigeration system conveniently and accurately. The quasi on-line measurement method (QOMM) was presented for measuring refrigerant mass inside heat exchangers. Compared with the existing liquid nitrogen method (LNM), QOMM can avoid the refrigerant waste and accelerate the measurement process. For measuring refrigerant mass inside the compressor, QOMM was used together with the oil level observation method. The liquid level method (LLM) was used to measure the refrigerant mass inside the accumulator and the receiver. In order to verify the accuracy of the measurement methods, not only the deviation of the measurement method for refrigerant in single component was analyzed, but also the prediction of the total refrigerant charge in an air conditioner was verified. The results showed that the maximal prediction deviation of the refrigerant charge in the whole refrigeration system is 1.7%. (author)

  4. Low Global Warming Refrigerants For Commercial Refrigeration Systems

    OpenAIRE

    Yana Motta, Samuel F.; Becerra, Elizabet Vera; Spatz, Mark W

    2012-01-01

    New refrigerants with the positive attributes of both high thermal performance and low environmental impact are currently in development. Initial evaluation of these refrigerants in refrigeration systems show good energy efficiency and significant lower global warming impact than current refrigerants. Some of those Low GWP refrigerants are non-azeotropic blends with moderate to high glide; therefore guidance on the use of these blends is needed to achieve the desired good performance and low ...

  5. Potential of the tractor-trailer and container segments as entry markets for a proposed refrigeration technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Davis, L.J.; Garrett, B.A.

    1987-05-01

    The refrigerated trailer and container segments of the transportation industry are evaluated as potential entry markets for a proposed absorption refrigeration technology. To perform this analysis the existing transportation refrigeration industry is characterized; this includes a description of the current refrigeration technology, rating systems, equipment manufacturers, maintenance requirements, and sales trends. This information indicates that the current transportation refrigeration industry is composed of two major competitors, Thermo King and Carrier. In addition, it has low profit potential, some barriers to entry and low growth potential. Data are also presented that characterize the transportation refrigeration consumers, specifically, major groups, market segmentation, consumer decision process, and buying criteria. This consumer information indicates that the majority of refrigerated trailer consumers are private carriers, and that the majority of refrigerated container consumers are shipping companies. Also, these consumers are primarily interested in buying reliable equipment at a low price, and are quite satisfied with existing refrigeration equipment.

  6. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  7. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  8. Electrochemical Hydrogen Refrigerator

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to develop and test a 1 W at 20K Joule‐Thomson cryocooler using an electrochemical compressor. A Joule Thomson refrigerator based on electrochemical...

  9. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  10. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  11. Computer-Aided Chemical Product Design Framework: Design of High Performance and Environmentally Friendly Refrigerants

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Zhang, Lei; Gani, Rafiqul

    Refrigerants are widely used in household and industrial applications, such as processes for energy transfer from low grade heat sources. Refrigerants are utilized in heat pump cycles for moving heat from one source to another with the task to heat or to refrigerate. Environmental issues have been...... a driving force for the industry to continuously seek novel refrigerants as current refrigerants risk phasing out due to environmental regulations. This trend has been seen since the Kyoto Protocol in 1997 and recently from the EU regulations from 2014, which will restrict the use of some known refrigerants...... today (Mota-Babiloni et al., 2015). However, design of new refrigerants poses a great challenge and finding an optimum solution for a given application often faces trade-off issues between cycle performance and environmental criteria. In addition, following issues are still to be addressed. What target...

  12. Theoretical thermodynamics analysis of cooling cycle bu advanced gas absorption using solar energy; Analisis teorico-experimental de un ciclo de refrigeracion por absorcion avanzado gax, operando con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, V. E.; Vidal, A. S.; Garcia, C. A.; Garcia-Valladares, O.; Best, R. B.; Hernandez, J. G.; Velazquez, N. L.

    2004-07-01

    In this article a solar system of refrigeration by absorption with heat exchange generator absorber (GAX) was analyzed. A theoretical thermodynamic analysis of the energetic behavior of the GAX absorption system was made. Experimental results were obtained with generation temperatures of 190 and 220 C, the evaporation temperature was set at 9 C and temperatures of cooling fluids (air and water) were set at 30 C and 28 C, respectively. It was possible to appreciate that the GAX effect decrease whether absorber, type falling film, is operated in option of parallel flow and it was increased when the absorber was operated in option of counterflow. (Author)

  13. Optimal configuration of a class of irreversible three-heat-source refrigerators

    International Nuclear Information System (INIS)

    Yan, Z.; Chen, J.

    1989-01-01

    In this paper, a class of three-heat-source refrigerators only affected by thermal resistance is studied. It is shown that the optimal configuration of such a class of refrigerators is an endoreversible three-heat-source refrigerator. Its optimum relation is derived, and is used to discuss in detail the optimal performance of such a class of cycles. Thus the fundamental effect of thermal resistance on the optimal performance of a three-heat-source refrigerator is expounded. The conclusions obtained here are more realistic than those of classical thermodynamics, and provide some new theoretical bases for the exploitation and application of the three-heat-source refrigerators

  14. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. [Calm (James M.), Great Falls, VA (United States)

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  15. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  16. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A she......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  17. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  18. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  19. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R.

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  20. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  1. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Directory of Open Access Journals (Sweden)

    Jankovich Dennis

    2015-01-01

    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  2. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  3. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  4. Fundamentals of Refrigeration.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  5. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    Science.gov (United States)

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  6. Review of secondary loop refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Eisele, Magnus; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-03-15

    Due to the environmental damage caused by HFC refrigerants, there is an increasing universal interest to research environmentally friendly fluids in refrigerants and alternative approaches to the traditional DX refrigeration system. These refrigerants include ammonia, carbon dioxide, hydrocarbon, R152a and HFO1234yf. Major drawbacks of these refrigerants are their potential flammability and safety hazards. One way to overcome this issue is to use the new refrigerants in conjunction with a secondary loop refrigeration system. Additional benefits of the secondary loop refrigeration system are refrigerant charges, leakage reduction, potential maintenance simplification, and low operating cost. This article presents a comprehensive review of the secondary loop refrigeration systems. Furthermore, this review covers the performance and risk assessment of flammable refrigerants, secondary refrigerants and components of the secondary loop refrigeration system within the following applications: commercial refrigeration, residential air conditioning/heat pumping, and mobile air conditioning. (author)

  7. Installation of a small central thermoelectric using biomass and cogeneration with absorption refrigeration system: alternative for small rural isolated communities; Instalacao de uma pequena central termeletrica a biomassa e cogeracao com sistema de refrigeracao por absorcao: alternativa para pequenas comunidades agricolas isoladas

    Energy Technology Data Exchange (ETDEWEB)

    Zukowski Junior, Joel Carlos; Marcon, Rogerio Olavo; Reys, Marcos Alves dos [Centro Universitario Luterano de Palmas (CEULP), TO (Brazil); Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)

    2004-07-01

    The lack of electrical energy in several localities of Brazil results in a slow perspective of in terms of economic growth and scientific and technological development. In order to minimize these problems it is proposed the use of co-generation systems with small thermoelectric plants burning rice rusk (an abundant biomass in certain regions of Brazil, as for example the Tocantins State) as a heat source and to utilize the discharged steam from the turbine to generate cold through an absorption refrigeration system. The work intends to show a possible solution to the problems originated from the absence of electric power in small and isolated rural villages, also problems of processing storage of agricultural residues and to generate cold for several applications. (author)

  8. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  9. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  10. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  11. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  12. International solar refrigeration system

    International Nuclear Information System (INIS)

    Jilavi, A.; Khalagi Asadi, M.

    2001-01-01

    An intermittent solar refrigeration system using ammonia as refrigerant and water as absorbent, is fabricated and tested in the Center for Renewable Energy Research and Application. In this system, using solar flat plate collectors, ammonia is separated from the water-ammonia solution with quality 60%, during the day and its cooling effect happens during the night time. The system can be used in areas with high solar intensity in Iran. A comparison between the theoretical and experimental results shows that the average amount of coefficient of performance are close (COP the =0.485, COP exp =0.432). This result represents the potent rol accessibility to temperature below 10 d eg C, while the ambient temperature is about 30 d eg C

  13. Multilayer Thermionic Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  14. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  15. How the refrigerator changed history

    CERN Document Server

    Bjornlund, Lydia

    2015-01-01

    How the Refrigerator Changed History examines the invention and evolution of the refrigerator and explores how refrigeration has changed the way people eat and live. Features include essential facts, a glossary, selected bibliography, websites, source notes, and an index, plus a timeline and maps, charts, and diagrams. Aligned to Common Core Standards and correlated to state standards. Essential Library is an imprint of Abdo Publishing, a division of ABDO.

  16. Thermal analysis of a compound parabolic concentrator for refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100

  17. A second law analysis and entropy generation minimization of an absorption chiller

    KAUST Repository

    Myat, Aung

    2011-10-01

    This paper presents performance analysis of absorption refrigeration system (ARS) using an entropy generation analysis. A numerical model predicts the performance of absorption cycle operating under transient conditions along with the entropy generation computation at assorted heat source temperatures, and it captures also the dynamic changes of lithium bromide solution properties such as concentration, density, vapor pressure and overall heat transfer coefficients. An optimization tool, namely the genetic algorithm (GA), is used as to locate the system minima for all defined domain of heat source and cooling water temperatures. The analysis shows that minimization of entropy generation the in absorption cycle leads to the maximization of the COP. © 2011 Elsevier Ltd. All rights reserved.

  18. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    International Nuclear Information System (INIS)

    Long, Rui; Liu, Wei

    2015-01-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon–Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed. (paper)

  19. Energy optimisation of domestic refrigerators

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    This paper describes the main results of a research project with the objective of reducing the energy consumption of domestic refrigerators by increasing the efficiency of the refrigeration system. The improvement of the system efficiency was to be obtained by:1) Introducing continuous operation...... by using a variable speed compressor for controlling the capacity of the refrigeration system.2) Introducing a variable speed fan for enhancing the heat transfer in the evaporator.It was the aim of the project to reduce the energy consumption of a standard refrigerator, available on the market today, by 50 %....

  20. Food transport refrigeration - Approaches to reduce energy consumption and environmental impacts of road transport

    International Nuclear Information System (INIS)

    Tassou, S.A.; De-Lille, G.; Ge, Y.T.

    2009-01-01

    Food transport refrigeration is a critical link in the food chain not only in terms of maintaining the temperature integrity of the transported products but also its impact on energy consumption and CO 2 emissions. This paper provides a review of (a) current approaches in road food transport refrigeration, (b) estimates of their environmental impacts, and (c) research on the development and application of alternative technologies to vapour compression refrigeration systems that have the potential to reduce the overall energy consumption and environmental impacts. The review and analysis indicate that greenhouse gas emissions from conventional diesel engine driven vapour compression refrigeration systems commonly employed in food transport refrigeration can be as high as 40% of the greenhouse gas emissions from the vehicle's engine. For articulated vehicles over 33 ton, which are responsible for over 80% of refrigerated food transportation in the UK, the reject heat available form the engine is sufficient to drive sorption refrigeration systems and satisfy most of the refrigeration requirements of the vehicle. Other promising technologies that can lead to a reduction in CO 2 emissions are air cycle refrigeration and hybrid systems in which conventional refrigeration technologies are integrated with thermal energy storage. For these systems, however, to effectively compete with diesel driven vapour compression systems, further research and development work is needed to improve their efficiency and reduce their weight

  1. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  2. Irreversible three-heat-source refrigerator with heat transfer law of Q{alpha}{delta}(T{sup -1}) and its performance optimization based on ECOP criterion

    Energy Technology Data Exchange (ETDEWEB)

    Ngouateu Wouagfack, Paiguy Armand [University of Dschang, L2MSP, Department of Physics, PO Box 67, Dschang (Cameroon); Tchinda, Rene [University of Dschang, LISIE, University Institute of Technology Fotso Victor, PO Box 134, Bandjoun (Cameroon)

    2011-11-15

    The new thermo-ecological optimization of an absorption system for cooling applications operating between three temperature levels with the linear phenomenological heat transfer law of Q{alpha}{delta}(T{sup -} {sup 1}) has been performed by taking account the losses of heat resistance, internal irreversibility and leakage. The considered objective function is the ecological coefficient of performance (ECOP) and is defined as the cooling load per unit loss rate of availability. The comparative analysis with the ecological optimization criterion (E) defined in the literature and also with the cooling load optimization criterion (R) has been carried out to prove the utility of the new thermo-ecological optimization criterion (ECOP) for three-heat-source refrigerators with linear phenomenological heat transfer law. The results show that the three-heat-source refrigeration cycle working at maximum ECOP conditions has a significant advantage in terms of entropy production rate and coefficient of performance over the maximum E and maximum R conditions. The obtained results may provide a general theoretical tool for the thermo-ecological design of absorption refrigerator. (orig.)

  3. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  4. New concept of refrigeration. ; Magnetic refrigeration. Goku teion gijutsu. ; Jiki reito wo chushin to shite

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, H.; Nakagome, H. (Toshiba Corp., Tokyo (Japan))

    1990-07-05

    This paper explained the principle, construction and problems of magnetic refrigeration which is an advanced refrigerartion technique. When strong field is applied to a paramagnet from the outside, the paramagnet bocomes a state of low entropy, that is, arranged electron spin. Adiabatic elimination of magnetic field deprives heat of lattice vibration of the paramagnet, returns it to the the entropy of electron spin without magnetic field, resulting itself to lower temperature state. This is the principle of adiabatic demaganetization by which a cycle to refrigerate and exhaust heat by a thermal switch can be constructed. But since the temperature range to which a paramagnet can exhibit the remarkable effect is limited, major problems are the selection of optimal paramagnet and how to get the AC or pulse magnetic field, although the practically necessary field may be obtained by a superconducting magnet. National Research Institute of Metals in Science and Technology Agency manufactured trially a stationary type magnetic refrigerator, of which maximum refrigerating capability was 100mW at 2K and minimum reachable temperature was 1.5K. 9 refs., 13 figs.

  5. Aspects on modeled and the design of a system of refrigeration by absorption attended with solar energy; Aspectos sobre el modelado y diseno de un sistema de refrigeracion por absorcion asistido con energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Cascales, J. R.; Vera Garcia, F.; Cano Izquierdo, J. M.; Delgado Marin, J. P.; Martinez Sanchez, R.

    2008-07-01

    In this paper, we study the global modelling of an absorption system working with Br Li-H{sub 2}O. It satisfies the air-conditioning necessities of a classroom in an educational centre in Puerto Lumbreras. Murcia. This system utilises a set of solar collector to satisfy the thermal necessities of the vapour generator in the absorption system. For the dynamical simulation of the system we have used the TRNSYS software. The air-conditioned place has been modelled by using a TRNSYS module called PREBID. In this work, special attention is paid to the absorption equipment model developed by using neural networks which has been implemented in TRNSYS. The paper is closed drawing some conclusions. (Author)

  6. Cryogenic system for the Large Helical Device. The helium refrigerator/liquefier for Large Helical Device

    International Nuclear Information System (INIS)

    Maekawa, Ryuji; Mito, Toshiyuki; Satoh, Sadao

    1997-01-01

    A large-scale helium refrigerator/liquefier has been developed to provide reliable and safe operation for the Large Helical Device (LHD). The refrigerator is required to satisfy four different types of cooling methods: forced-flow supercritical helium, a pool boiling method, two-phase helium flow and forced-flow low-temperature (40-80 K) helium gas. The forced-flow supercritical helium is widely used in modern large-scale superconducting magnets. This method requires a much more complex refrigeration system than does pool boiling because of the circulation of low-temperature helium within a very long cooling path. The overall refrigeration system is fairly complicated because of these multi-refrigeration requirements. As a matter of fact, it is not likely to find this type of refrigeration plant in the world. The helium refrigerator has a total refrigeration capacity of 5.65 kW at 4.4 K and 20.6 kW at 80 K and 650 l/h liquefaction. The refrigerator was designed to have high processing efficiency since the construction expense is much less than the operating cost. In order to achieve this, the refrigerator has two precooling cycles (300 to 80 K and 80 to 20 K) and has two turboexpanders running in parallel with different temperature levels at the cold end. To achieve a high mass flow rate in a low-temperature regime, eight screw-type compressors are operated at room temperature. There are two compressor groups, group A and group B, to reduce the overall work load. Each group consists of 1st and 2nd stage compression processes. The total mass flow rate becomes 960 g/s at 1.864 MPa. This article reviews the basic characteristics of a 10 kW class helium refrigerator/liquefier and a simple refrigeration cycle. (author)

  7. Experimental methods used to determine the amount of H{sub 2}O in the CO{sub 2} refrigeration cycle; Experimentelle Methoden zur Bestimmung des H{sub 2}O-Gehaltes im CO{sub 2}-Kaeltekreislauf

    Energy Technology Data Exchange (ETDEWEB)

    Petereit, Anna Katharina; Eggers, Rudolf [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsgruppe Waerme- und Stofftransport

    2012-07-01

    Water can be added to CO{sub 2} refrigeration circuits in the course of pressure testing of the system, in the course of the filling operation and also in the operation excess of the residual moisture content of the compressor oil. This water can be solved in CO{sub 2} as well as accumulate in certain parts of the system. This results in a deterioration of the operating performance. There are two forms of water separation to be differentiated: The separation as a liquid or as a solid phase (hydrate). In order to investigate the impact of water on the refrigeration process using CO{sub 2} as a refrigerant and on the refrigerating machine oils used in the process, it is therefore important to determine the water content in the process exactly. Therefore, various measuring devices for detecting the content of water dissolved in CO{sub 2} and the content of the discharged water are installed in a CO{sub 2} pilot plant. The determination of the water content in CO{sub 2} is performed by means of a fiber-optic moisture sensor which is integrated in the system between the gas cooler and the throttle. The total water content is determined via a lot of bypass piping systems at different positions in the circuit. Due to this structure, representative sample volumes can be withdrawn while the system is still running. These probe volumes can be analyzed by means of the Karl-Fischer method. The hydrate formation is investigated by means of two optical cells which are installed behind the throttle. Based on these measurement devices, an analysis of the changed operating behavior of the CO{sub 2} refrigeration plant and a localization of possible water sinks in the circuit are performed.

  8. Helical thermoelectrics and refrigeration.

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2018-02-01

    The thermoelectric properties of a three-terminal quantum spin Hall (QSH) sample are examined. The inherent helicity of the QSH sample helps to generate a large charge power efficiently. Along with charge the system can be designed to work as a highly efficient spin heat engine too. The advantage of a helical over a chiral sample is that, while a multiterminal quantum Hall sample can only work as a quantum heat engine due to broken time reversal (TR) symmetry, a multiterminal QSH system can work effectively as both a charge or spin heat engine and as a charge or spin refrigerator as the TR symmetry is preserved.

  9. Cryogenic Optical Refrigeration

    Science.gov (United States)

    2012-03-22

    εj (j = s, c) representing the surface areas and thermal emissivities of the chamber and sample, respectively. Minimization of Pbb requires Advances...refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007). 58. J. B. Khurgin, “ Surface plasmon-assisted laser cooling of solids,” Phys...ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980). 121. A. A. Kaminskii, Laser Crystals: Their

  10. Helical thermoelectrics and refrigeration

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2018-02-01

    The thermoelectric properties of a three-terminal quantum spin Hall (QSH) sample are examined. The inherent helicity of the QSH sample helps to generate a large charge power efficiently. Along with charge the system can be designed to work as a highly efficient spin heat engine too. The advantage of a helical over a chiral sample is that, while a multiterminal quantum Hall sample can only work as a quantum heat engine due to broken time reversal (TR) symmetry, a multiterminal QSH system can work effectively as both a charge or spin heat engine and as a charge or spin refrigerator as the TR symmetry is preserved.

  11. Energy conserving refrigeration device

    Energy Technology Data Exchange (ETDEWEB)

    Vork, W.D.; Lewis, R.D.

    1989-07-04

    This patent describes a gas refrigeration device having a primary generator, a secondary generator, an absorber, pumping means providing pressurized fluid to the primary generator and means for reducing the pressure of the output of the primary generator. The improvement comprises: a fluid powered motor plumbed to the output of the primary generator so as to utilize the energy in the pressured fluid at the generator outlet to run the motor; a primary pump driven by the fluid powered motor; and an auxiliary pump, the pumps being plumbed in parallel to one another, the output of the pumps being connected to the input of the primary generator.

  12. Cost Price of Products in the System of Heat, Refrigeration and Electric Energy Production Combined at Thermal Power Plant

    OpenAIRE

    Tubolev, Aleksandr Anatolievich; Romashova, Olga Yurievich; Belyaev, Leonid Aleksandrovich

    2016-01-01

    Nowadays combination of electric, heat and refrigerating energy production (trigeneration) is one of the modern technological solutions for energy efficiency increase and ecological problem solution [1]. Two types of refrigerating machines can be used for both energy and heat production combined: compression aggregates consuming electric energy and absorption aggregates using hot water heat, vapor or other heat conductors.

  13. Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration

    International Nuclear Information System (INIS)

    Akbari Kordlar, M.; Mahmoudi, S.M.S.

    2017-01-01

    Highlights: • A novel combined cooling and power cogeneration system is proposed. • Thermodynamic and exergoeconomic analyses are performed. • Optimizations are performed considering thermodynamics and economics. • An increase in turbine inlet pressure is in favor of the system performance. • Five parameters influence the total product unit cost. - Abstract: A novel combined cooling and power cogeneration system driven by geothermal hot water is proposed. The system, which is a combination of an organic Rankine cycle and an absorption refrigeration cycle, is analyzed and optimized from the viewpoints of thermodynamics and economics. The working fluid in organic Rankine cycle is ammonia and in the refrigeration cycle is an ammonia-water solution. Parametric studies are performed to identify decision parameters prior to optimization. In optimizing the system performance three design cases i.e. designs for maximum first law efficiency (case1), maximum second law efficiency (case2) and minimum total product unit cost (case3) are considered. The results show that the total products unit cost in case3 is around 20.4% and 24.3% lower than the corresponding value in case1 and 2, respectively. The lower product unit cost in case3 is accompanied with an expense of 10.21% and 4.5% reduction in the first and second law efficiencies, compared to case1 and 2, respectively. The results also indicate that concerning the costs associated with capital and exergy destruction costs of components, the priority of components for modifications are the turbine, condenser and absorber. The last component in this order are the two pumps in the system.

  14. Thermodynamic analysis of a Kalina-based combined cooling and power cycle driven by low-grade heat source

    International Nuclear Information System (INIS)

    Cao, Liyan; Wang, Jiangfeng; Wang, Hongyang; Zhao, Pan; Dai, Yiping

    2017-01-01

    Highlights: • A Kalina-based combined cooling and power cycle is proposed to recover low-grade heat source. • The effects of several parameters on cycle performance are examined. • An optimization is conducted by GA to obtain optimum performance. - Abstract: This paper investigates a Kalina-based combined cooling and power (CCP) cycle driven by low-grade heat source. The proposed cycle consists of a Kalina cycle and an absorption refrigeration cycle. By establishing the mathematical model, numerical simulation is conducted and parametric analysis is performed to examine the effects of five key parameters on the thermodynamic performances of Kalina-based CCP cycle. A performance optimization is conducted by genetic algorithm to obtain the optimum exergy efficiency. According to parametric analysis, an optimum expander inlet pressure can be achieved; exergy efficiency increases with expander inlet pressure and concentration of ammonia-water basic solution, but exergy efficiency decreases when terminal temperature difference of high-temperature recuperator and low-temperature recuperator increases. Refrigeration exergy increases with expander inlet pressure and decreases as expander inlet temperature and concentration of ammonia-water basic solution rise. However, the refrigeration exergy keeps constant as the terminal temperature difference of high-temperature recuperator and low-temperature recuperator vary. Furthermore, the optimized Kalina-based CCP cycle is compared with a separate generation system which is also optimized. The optimization results show that the exergy efficiency and net power output of Kalina-based CCP are higher than those of separate generation system.

  15. Recent development of cryocooler technology focused on pulse-tube refrigerator

    International Nuclear Information System (INIS)

    Matsubara, Yoichi

    1994-01-01

    The low-temperature refrigerator (cryocooler) is one of the key technologies to support the development of superconductivity technology from the view point of its application. The recent cryocooler technology has taken a new approach based on the new concept of thermodynamic analysis. The pulse-tube refrigerator, particular, has shown a great improvement in performance in comparison with the refrigerators generally used in the application fields, such as Stirling or Gifford-McMahon cycle refrigerators. This paper includes the energy flow concept based on the Stirling cycle to elucidate the phase-shift mechanism of the pulse tube. Recent developments of single and multiple-staged pulse-tube refrigerators are also described. (author)

  16. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... the Danfoss refrigeration test centre. The complexities of modelling demand response are demonstrated through simulation. Simulations are conducted by placing the identified model in a direct-control demand response architecture, with power reference tracking using model predictive control. The energylimited...... nature of demand response from refrigeration is identified as the key consideration when considering participation in the regulating power market. It is demonstrated that by restricting the operating regions of the supermarket refrigeration system, a simple relationship can be found between the available...

  17. Experimental results on a low-temperature magnetic refrigerator

    International Nuclear Information System (INIS)

    Barclay, J.A.; Stewart, W.F.; Overton, W.C.; Candler, R.J.; Harkleroad, O.D.

    1985-01-01

    A Carnot-cycle magnetic refrigerator has been designed, built, and tested in the temperature range of approx.4 K to approx.15 K. Gadolinium gallium garnet in the rim of a wheel is the refrigerant. The wheel rim rotates through a gap between two superconducting Helmholtz coils that produce a magnetic field of up to 6 T. Helium gas is used as the heat-transfer fluid in the hot and cold regions of the wheel. The refrigerator performance has been measured in an open-cycle flow system because no suitable low-temperature helium gas pumps were available for closed loop circulation of helium gas. Over one watt of cooling power with a temperature span of several degrees was achieved. At low frequencies the cooling power and temperature changes of the refrigerator match the entropy-temperature data used in the design. Problems associated with friction and gas mixing limit the performance at frequencies above about 0.1 Hz. Separate friction measurements suggest that gas flow control is the dominant problem that needs to be solved before significant improvement in refrigerator operation can be expected. The present measured efficiency is about 20% of Carnot if the drive motor efficiency is ignored. With friction and other losses in the drive motor mechanism, the overall efficiency is approx.1% of Carnot

  18. Helium dilution refrigeration system

    Science.gov (United States)

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  19. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  20. Stability of IRA-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling

    Science.gov (United States)

    Wood, Peter C.; Wydeven, Theodore

    1987-01-01

    The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.

  1. Quantum refrigerators and the third law of thermodynamics.

    Science.gov (United States)

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  2. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  3. Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants

    International Nuclear Information System (INIS)

    Li, You-Rong; Wang, Xiao-Qiong; Li, Xiao-Ping; Wang, Jian-Ning

    2014-01-01

    In this paper, a novel power/refrigerating combined-system driven by the low-grade waste heat of the flue gas was introduced. It coupled a transcritical organic Rankine cycle with a vapor compression refrigeration cycle. In order to understand basic characteristics of this novel combined-system, a detailed performance analysis was performed. Results show that the turbine inlet pressure, flue gas inlet temperature and condensation temperature are three important parameters influencing system performance. During the increase of the turbine inlet pressure, the refrigeration capacity and the exergy efficiency exhibit the maximum values. However, with the increase of the flue gas inlet temperature and the decrease of the condensation temperature, both the refrigeration capacity and the exergy efficiency corresponding to the optimal turbine inlet pressure increase. The use of regenerator can improve the system performance and reduce the optimal turbine inlet pressure. Under partial refrigeration load, there is a linear relationship between the electricity output and the refrigeration capacity at a fixed work output from the turbine. The total irreversible loss decreases and the exergy efficiency increases with the decrease of the power ratio. Finally, after screening and comparing various potential working fluids, R134a is recommended as the working fluid of this novel combined-system. - Highlights: • A novel power/refrigerating combined-system using three refrigerants is proposed. • Performance analysis on this combined-system is performed based on thermodynamics. • Variations of refrigeration capacity and efficiency with main parameters are given. • After screening different refrigerants, R134a is recommended as the working fluid

  4. Minimizing quality deteriorations of refrigerated foodstuffs as a side effect of defrosting

    DEFF Research Database (Denmark)

    Cai, Junping; Stoustrup, Jakob

    2008-01-01

    This paper proposes an optimization scheme for traditional refrigeration systems with hysteresis controllers and scheduled defrosts. It aims at minimizing the side effect of defrost cycles on the storage quality of refrigerated foodstuffs in supermarkets. By utilizing the thermal mass of air...... and products inside a display cabinet, this optimization scheme forces the compressor to work harder and cool down more prior to the scheduled defrosts, thus guaranteeing the product temperature after defrost cycles still to be within a controlled safe level....

  5. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    Science.gov (United States)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  6. Review on Applications of NanoFluids used in Vapour Compression Refrigeration System for Cop Enhancement

    Science.gov (United States)

    Veera Raghavalu, K.; Govindha Rasu, N.

    2018-03-01

    The present research paper focuses on the use of Nano additive refrigerants in vapor compression refrigeration system (VCRS) because of their amazing development during Thermo Physical along with heat transfer potential to improve the coefficient of performance (COP) and reliability of refrigeration system. Furthermore, challenges and future instructions of performance enhancement of VCRS using Nano additive refrigerants were presented. Lubricant oil is essential in the entire vapour compression refrigeration systems, mostly for the efficient function of the compressor. But, some assign of the oil is entire the cycle oil circulates with the refrigerant. Presently, an assortment of investigation is going on in the field of the Nano-particles like metals, oxides, carbon Nano-tubes or carbides. Nano-lubricants are unique type of Nano-fluids which are varieties of Nano-particles, lubricants and have a wide variety in the fields of refrigeration systems. This paper, has been done on the application of Nano-particles balanced in lubricating oils of refrigerating systems are reviewed. The aim of this investigation is to study and find which type of lubricant oil works better with Nano-particles in the area of refrigeration. From the review of literature, it has been observed that Nano-particles mixed with mineral oil gives enhanced results than polyolester (POE) oil.

  7. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen-hydrocarbon and argon-hydrocarbon refrigerants

    Science.gov (United States)

    Gurudath Nayak, H.; Venkatarathnam, G.

    2009-07-01

    There is a worldwide interest in the development of auto refrigerant cascade (ARC) refrigerators operating with refrigerant mixtures. Both flammable and non-flammable refrigerant mixtures can be used in these systems. The performance of an ARC system with optimum nitrogen-hydrocarbon and argon-hydrocarbon mixtures between 90 and 160 K is presented in this paper.

  8. 46 CFR 154.1720 - Indirect refrigeration.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  9. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  10. Frost sensor for use in defrost controls for refrigeration

    Science.gov (United States)

    French, Patrick D.; Butz, James R.; Veatch, Bradley D.; O'Connor, Michael W.

    2002-01-01

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  11. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R. [CIAT, 01 - Culoz (France)

    1997-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  12. Refrigeration plants for the SSCL

    International Nuclear Information System (INIS)

    McAshan, M.; Ganni, V.; Than, R.; Niehaus, T.

    1991-03-01

    The basic requirements and operating features of the collider cryogenic system have already been described in other publications. The general arrangement of the refrigeration plant and its subsystems is presented, and the issue of how to provide redundancy in the cryogenic system is addressed, and some of the basic features of the refrigeration plants are described. The collider cryogenic system design is not final yet, and this report only reflects the direction and current status of the cryogenic system design

  13. Coherent hole burning and Mollow absorption effects in the cycling transition Fe=0↔Fg=1 subject to a magnetic field

    International Nuclear Information System (INIS)

    Gu Ying; Sun Qingqing; Gong Qihuang

    2004-01-01

    With saturation and probing by circularly polarized fields, quantum coherence effects are investigated for the cycling transition F e =0↔F g =1, which is subject to a linearly polarized field and a magnetic field. The saturation field is applied to the case of maximum coherence between the drive Rabi frequency and magnetic field, corresponding to the electromagnetically induced absorption (EIA) with negative dispersion found by Gu et al. For a small saturation Rabi frequency, holes are burned in two Autler-Towns peaks outside two symmetric electromagnetically induced transparency windows due to the two-photon resonance. However, when the saturation Rabi frequency is comparable with the drive Rabi frequency, holes caused by the coherent population oscillation appear in the EIA spectrum. Finally, when the saturation Rabi frequency is large enough, several emission peaks are observed due to the Mollow absorption effects. Furthermore, the dispersion at the pump-probe detuning center is kept negative with an increase in saturation field, which is a precursor of superluminal light propagation

  14. Carbon dioxide as the replacement for synthetic refrigerants in mobile air conditioning

    Directory of Open Access Journals (Sweden)

    Antonijević Dragi Lj.

    2008-01-01

    Full Text Available Based on Kyoto Protocol and the decisions of European Commission R134a refrigerant, currently dominantly used in mobile air conditioning systems, needs to be phased-out. At present automotive industry looks at carbon dioxide (CO2; R744 as the refrigerant of the future. Apart from the environmental benefits discussed are the technical characteristics of carbon dioxide refrigeration cycle and mobile air-conditioning systems in comparison to R134a refrigerant. Analyzed are challenges emerged from the use of CO2 as refrigerant and improvement opportunities in regards to increase of the system performance and efficiency. Particular attention is dedicated to the advantages of CO2 utilization in prospective automotive heat pump systems.

  15. The climate change implications of manufacturing refrigerants. A calculation of 'production' energy contents of some common refrigerants

    International Nuclear Information System (INIS)

    Campbell, N.J.; McCulloch, A.

    1998-01-01

    Total Equivalent Warming Impact (TEWI) analysis has been shown to be a useful aid to quantifying the climate change effect of potential emissions from the operation of systems that involve the use of greenhouse gases and consume energy, so generating CO 2 emissions. It enables these systems to be optimized for minimum global warming impact. In previous studies, the energies required to manufacture the greenhouse gases themselves were not included; by analogy with other chemical manufacturing processes they were assumed to be small in the context of climate change. In the work described here, climate change impacts from the energy used to produce a number of common refrigerant fluids are evaluated. These impacts are compared with the potential impact on global warming from the other components of TEWI: use and disposal of the refrigerants, including direct release into the environment. It is shown that the implications for climate change of the production of traditional refrigerants like ammonia, hydrocarbons or CFC-12 and new refrigerating fluids, such as HFC-134a, are truly insignificant in comparison with other stages of the life cycle of a refrigerator and have no role in TEWI. (author)

  16. The effect of firing temperature on the irreversible expansion, water absorption and pore structure of a brick body during freeze-thaw cycles

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2013-12-01

    Full Text Available The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large pores increases. The knowledge gained can be used not only in the production of new but also in predicting the remaining durability of older clay roofing tiles. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2741

  17. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  18. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  19. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  20. Comparison and Analysis of Lithium Bromide-water Absorption Chillers Using Plastic Heat Transfer Tubes and Traditional Lithium Bromide-water Absorption Chillers

    OpenAIRE

    Xue-dong Zhang

    2010-01-01

    There are extensive applications of lithium bromide-water absorption chillers in industry, but the heat exchangers corrosion and refrigerating capacity loss are very difficult to be solved. In this paper, an experiment was conducted by using plastic heat transfer tubes instead of copper tubes. As an example, for a lithium bromide-water absorption chiller of refrigerating capacity of 35kW, the correlative performance of the lithium bromide-water absorption chiller using pl...

  1. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Directory of Open Access Journals (Sweden)

    Mishra Shubham

    2016-12-01

    Full Text Available Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%, which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle. Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  2. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  3. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  4. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  5. Refrigeration system having dual suction port compressor

    Science.gov (United States)

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  6. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...... the hourly load for refrigeration for the following 42 hours is forecasted. The forecast models are adaptive linear time-series models which are fitted with a computationally efficient recursive least squares scheme. The dynamic relations between the inputs and the load is modeled by simple transfer...

  7. Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 1. Theoretical analysis

    KAUST Repository

    Shestopalov, K.O.

    2015-07-01

    © 2015 Elsevier Ltd and IIR.All rights reserved. The ejector refrigeration machine (ERM) offers several advantages over other heat-driven refrigeration machine, including simplicity in design and operation, high reliability and low installation cost, which enable its wide application in the production of cooling. In this paper the theoretical analysis of ejector design and ejector refrigeration cycle performance is presented. It is shown that ERM performance characteristics depend strongly on the operating conditions, the efficiency of the ejector used, and the thermodynamic properties of the refrigerant used. A 1-D model for the prediction of the entrainment ratio ω, and an optimal design for ejectors with cylindrical and conical-cylindrical mixing chambers are presented in this paper. In order to increase ERM performance values, it is necessary first of all to improve the performance of the ejector.

  8. Towards Less Refrigeration-dependent Home Practices

    OpenAIRE

    Qian, Min

    2011-01-01

    The thesis focuses on the energy intensity in the household food refrigeration, and it seeks to analyze the way refrigeration is perceived by Norwegians in a historical perspective. The practice theory is applied in the study to interpret how individuals, cultural contexts and people’s routinized practices have contributed to the changing household reliance on food refrigeration. The findings show that it is the household demands for energy services rather than the refrigerating technology it...

  9. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  10. 49 CFR 173.174 - Refrigerating machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or less...

  11. Solar Refrigerators Store Life-Saving Vaccines

    Science.gov (United States)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  12. 46 CFR 154.702 - Refrigerated carriage.

    Science.gov (United States)

    2010-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  13. Validation of a PC based program for single stage absorption heat pump

    Science.gov (United States)

    Zaltash, A.; Ally, M. R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO3 water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3 percent. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design.

  14. Energy-optimised mini-refrigerators; Energieoptimierter Minikuehlschrank. Massnahmen zur Optimierung der Energieeffizienz von Minikuehlschraenken

    Energy Technology Data Exchange (ETDEWEB)

    Burri, A.

    2007-10-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at measures to be taken to optimise the energy-efficiency of small refrigerators. Such devices are typically to be found in hotel rooms and on boats as well as in caravans and motor homes. The majority of these mini-refrigerators use the absorption principle for cooling. Although less efficient than their compressor-driven counterparts, absorption refrigerators satisfy market requirements and customer wishes with regard to noiseless and maintenance-free operation. The report discusses how optimisation of the absorption principle could lead to energy savings in the long term. The operating principles and energy balances of such refrigerators are discussed and a market overview is presented. Energy consumption of the refrigerators, possible savings and energy costs are discussed. The advantages and disadvantages of various cooling systems are examined as are further possibilities for making savings such as the optimisation of sizing, installation methods, airflow factors and operating temperatures.

  15. IMPACT OF REFRIGERANTS ON ENVIRONMENT AND STUDY OF SOME ALTERNATIVE SUBSTANCES AS REFRIGERANTS

    OpenAIRE

    Vaibhav khurana; Arpan Taneja

    2014-01-01

    In this paper we study that most refrigerants affect the environment and study how to calculate ODP and GWP of the refrigerants. After study the effect of these refrigerants on environment here some new substance which we can use a refrigerants are suggested, which are less harmful to the environment as compared to the other refrigerants. Thereafter study of thermodynamic, chemical and physical properties of the new substance was conducted and compared with the ideal properties of the refr...

  16. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  17. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  18. Product declaration for small refrigerators; Produktdeklaration fuer Kleinkuehlschraenke. Ausschreibungsformular - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burri, A.

    2008-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on a project that looked at the optimisation of cooling technology used in small refrigerators. This optimisation alone is considered as being not sufficient to increase the market perspectives for efficient refrigeration units. In contrast to household units, no energy declaration standards exist for the type of mini-bar used in hotel rooms. An 'Energy Declaration - Small Refrigerator' form created as a part of this project is discussed which makes it easier to compare the energy costs of various units. The form is based on uniform criteria, and increases the market perspectives for the most efficient units, even if they are somewhat more expensive. The Swiss Federal Office of Energy is now supplying this form (in German, French and Italian) to all manufacturers and vendors of small refrigerators. The vendor can fill out this form and include it in his offer. Likewise, the customer can request the form from the vendor. In this form the total energy costs for ten years of operation are added to the purchase price, so that the customer can obtain a clear indication of total life cycle costs.

  19. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  20. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  1. Application of the Life-Cycle Cost Analysis (LCCA) for established of energy efficiency standards: refrigerators sold in Brazil; Aplicacao da metodologia de analise do custo do ciclo de vida (ACCV) para o estabelicimento de padroes de eficiencia energetica: refrigeradores comercializados no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Herculano Xavier da; Jannuzzi, Gilberto de Martino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Queiroz, Guilherme de Castilho [Centro de Tecnologia de Embalagens (CETEA), Campinas, SP (Brazil)

    2006-07-01

    The goal of this paper is to present the work in the thesis developed by Silva Jr. (2005) who discusses the application of the methodologies of Life Cycle Cost Analysis (LCCA) as a tool to propose energy efficiency standards, additional to the voluntary labels already existing in the one-door Brazilian refrigerators. Another objective is to study the role of these instruments (energy efficiency labels and standards and environmental labels) as means to supply technical subsidies for the establishment of maximum level of electric energy consumption and environmental quality impact for electrical equipment in Brazil. The LCCA methodology allows to evaluate the impacts of the energy efficiency increasing in electrical equipment, resulting in important saving (energy, financial, carbon dioxide emissions avoided etc.) for the country and its citizens. The results reached in this studies offer important data to subsidize deep discussions with manufacturers and the government to stipulate minimum energy efficiency standards for the Brazilian refrigerators. Thus, with increase of 28,1% on the energy efficiency of the one-door Brazilian refrigerators in 2008 to reach a values of savings that can be in order of 54,63 TWh (with respective reduction of demand power of 208 MW), of US$ 6,23 Billions of Dollar (R$ 17,2 Billions of Reais) of reduction in the account of electric energy for the population and of approximately 22 billions of tons of CO{sub 2} not emitted on the environment after 30 years of the implantation of standard. These values, that can not be despised by government, manufacturers and consumers. One other interest of this work is to start the discussion, the possibility of the creation of environmental labelling (e.g., Green Seal - USA, Eco-label - EU etc.) that is an additional program/methodology, which, it may be utilized as support for development of technologies and for the increase of energy and environmental efficiency of the electric equipment. These

  2. Application of magnetic refrigeration and its assessment

    International Nuclear Information System (INIS)

    Kitanovski, Andrej; Egolf, Peter W.

    2009-01-01

    Magnetic refrigeration has the potential to replace conventional refrigeration-with often problematic refrigerants-in several niche markets or even some main markets of the refrigeration domain. Based on this insight, for the Swiss Federal Office of Energy a list of almost all existing refrigeration technologies was worked out. Then an evaluation how good magnetic refrigeration applies to each of these technologies was performed. For this purpose a calculation tool to determine the coefficient of performance (COP) and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary-type magnetic refrigerator was developed. The evaluation clearly shows that some application domains are more ideal for a replacement of conventional refrigerators by their magnetic counterparts than others. In the pre-study, four good examples were chosen for a more comprehensive investigation and working out of more detailed results. In this article, the calculation method is briefly described. COP values and exergy efficiencies of one very suitable technology, namely the magnetic household refrigerator, are presented for different operation conditions. Summarizing, it is stated that magnetic refrigeration is a serious environmentally benign alternative to some conventional cooling, refrigeration and air-conditioning technologies

  3. Environment-friendly refrigeration - Switzerland moves forward

    International Nuclear Information System (INIS)

    Stohler, F.

    2003-01-01

    This article presents an interview with Silvan Schaller, president of the Swiss Refrigeration Society SVK and head of a leading Swiss industrial refrigeration company, on the subject of the implementation of new Swiss materials legislation that regulates the use of various refrigerants. In particular, the co-operation between the Society and the regulatory authorities is stressed. The reasons behind the regulations - the protection of the environment and, in particular, the ozone layer - are discussed as are the efforts required by industry to meet them. Future refrigeration technologies and the choice of refrigerants are examined. Measures that will have to be taken by the companies in the refrigeration sector, such as the additional training of personnel and the monitoring of the disposal of wastes, are examined. For the future, the goal of reducing the energy consumption of refrigeration installations is noted

  4. Magnon-driven quantum dot refrigerators

    International Nuclear Information System (INIS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-01-01

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  5. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  6. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    Science.gov (United States)

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  7. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  8. improvement to the design of a solid absorption solar refrigerator

    African Journals Online (AJOL)

    user

    condenser was a stagnant evaporative rectangular tank with 0.6753 m free volume, and 60 mm thick walls and 4m of tubing. ... evaporator tubing were of 18 mm i.d x 21mm o.d. All constructions were of steel. Figure .1 shows a cross .... the inner core. The resistance of the heater and the heating time were measured. Q" was.

  9. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    Science.gov (United States)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  10. Feasibility study of a refrigeration system powered by natural gas; Estudo de viabilidade de um sistema de refrigeracao acionado a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Costa Filho, Manoel Antonio da Fonseca [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Engenharia; Biruel Filho, Jose [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    This paper presents a technical, financial and environmental feasibility study, and market analysis, of a 50-TR chiller with vapor compression (mechanical) cycle powered by internal combustion engine. This type of equipment allows natural gas usage for medium-and-low-capacity refrigeration applications, for which there are not competitive commercial equipment based on absorption refrigeration cycle. The technical feasibility is not questionable because it is the association of two remarkably mature technologies and also because such equipment are common in Europe and USA. The natural gas powered equipment operation costs are lower than electricity powered ones, due to lower energy cost, while acquisition, installation and maintenance costs show the opposite. The Net Present Value is positive. The financial feasibility depends directly on the combination of prices of natural gas and electricity, as well as equipment energy efficiencies. The environmental analysis points to the use of electric-driven equipment, which avoids urban area emissions, reinforced by the hydroelectric generation, renewable, used in Brazil. This study had financial support from PETROBRAS/RedeGasEnergia. (author)

  11. Rotational type of a gravitational ejector refrigerator - A system balance of the refrigerant analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kasperski, Jacek [Wroclaw University of Technology, Institute of Power Engineering and Fluid Mechanics, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland)

    2010-01-15

    The existing ejector systems were analyzed depending on the way in which the refrigerant returns from the condenser to the generator and evaporator. The research focused on gravitational ejector refrigerator in which hydrostatic pressure of the refrigerant allows to equalize pressure differences between heat exchangers located on different levels. Using centrifugal acceleration instead of gravitational allows to decrease significantly the size of a refrigerator. The name roto-gravitational refrigerator was proposed for that kind of refrigerator. One of the problems of small, compact refrigerators is a little amount of refrigerant. Surrounding temperatures when different from typical may cause drying up of the refrigerant in the exchangers and lead to destabilizing the refrigerator's work. A mathematical analysis of thermal and flow processes occurring in the refrigerant has been conducted. A mathematical model of the refrigerant balance and its numerical solution has been proposed. The analysis of the refrigerator accelerating temperature influence on its work parameters has been conducted for exemplary calculations. (author)

  12. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  13. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...... methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable...

  14. Stability of split Stirling refrigerators

    International Nuclear Information System (INIS)

    Waele, A T A M de; Liang, W

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  15. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  16. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  17. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States)

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  18. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  19. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  20. Compatibility of refrigerants and lubricants with elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.

    1992-07-01

    Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  1. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  2. Evaluation of Virtual Refrigerant Mass Flow Sensors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor ma...

  3. Ecological optimization for generalized irreversible Carnot refrigerators

    Science.gov (United States)

    Chen, Lingen; Xiaoqin, Zhu; Sun, Fengrui; Wu, Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators.

  4. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  5. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

    Science.gov (United States)

    Beladjine, Boumedienne M.; Ouadha, Ahmed; Addad, Yacine

    2016-09-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  6. United States: refrigeration industry blows hot

    International Nuclear Information System (INIS)

    Crawford, J.

    1997-01-01

    In the framework of the Kyoto convention on global warming, the american refrigeration industries have undertaken several organizations and contacts with governments and agencies in order to explain the real issues concerning the effects of refrigerant utilization in refrigerating machines on the greenhouse effect, taking into consideration the commercial impact that a ban on certain refrigerants could have on the industry's business. They argue that HFC utilization in this industry is fundamentally non-emissive and that important improvements have been realized concerning tightness and energy consumption

  7. Continuously operating dilution refrigerator with adsorption pumps

    International Nuclear Information System (INIS)

    Majdanov, V.A.; Mikhin, N.P.; Omelaenko, N.F.; Rudavskij, Eh.Ya.; Rybalko, A.S.; Chagovets, V.K.; Mikheev, V.A.

    1994-01-01

    The main parts and performance of two versions of the continuously operating dilution refrigerator with an adsorption pumping system dedicated to physical investigations at ultralow temperatures are described. Compared to conventional dilution refrigerators these versions are more compact, economic and more vibration proof. This type of dilution refrigerator allows a single shot operation to be realized. The minimum temperature reached in a single continuous heat exchanger refrigerator is 18 mK for a continuous operation and 5 - 8 mK for a single shot are. On addition of four discrete heat exchangers, the minimum temperature for continuous operation reduces down to 8 mK

  8. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Science.gov (United States)

    2010-01-01

    ... ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Refrigerators...-freezer means refrigeration equipment that— (1) Is not a consumer product (as defined in § 430.2 of part... in cross-section. Holding temperature application means a use of commercial refrigeration equipment...

  9. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    Science.gov (United States)

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  10. Thermoeconomic model of a commercial transcritical booster refrigeration system

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2011-01-01

    For cooling applications in supermarkets, booster refrigeration systems operating in both transcritical and subcritical conditions are increasingly used. A thermodynamic model of a transcritical booster refrigeration plant is tailored to match the new generation of commercial refrigeration plants...

  11. Design and fabrication of a 3-D printable counter-low/precipitation heat exchanger for use with a novel off-grid solid state refrigeration system

    Science.gov (United States)

    Ryan, Sean Thomas

    Off-grid refrigeration technologies are currently limited to either vapor-compression cycles driven by photovoltaics or solar thermal absorption cycles. Rebound Technologies has recently developed a novel off-grid refrigeration system called Sunchill(TM) for agricultural applications in humid environments in the developing world. The Sunchill(TM) refrigeration system utilizes the daily high and low temperatures to drive a 24 hour refrigeration cycle. Cooling is provided by the dissolution of an endothermic salt, sodium carbonate decahydrate. Once the salt is solvated and cooling is delivered to freshly harvest crops, the system is "recharged" in a multi-step process that relies on a solar collector, an air-gap membrane unit and a heat exchanger. The heat exchanger, which is the focus of this thesis, is required to remove 36.6 MJ of heat over a twelve hour period in order to "recharge" the system. The heat exchanger is also required to transfer heat from a fresh water stream to a cold brine solution to generate the cold water necessary to submerse and cool harvested crops. To provide a sustainable technology to the target community, the feasibility of fabricating the heat exchanger via the low cost 3-D printing method of fused filament fabrication (FFF) was examined. This thesis presents the design, development, and manufacturing considerations that were performed in support of developing a waterproof, counter-flow, 3-D printable heat exchanger. Initial geometries and performance were modeled by constructing a linear thermal resistance network with truncating temperatures of 30°C (saturated brine temperature) and 18°C (average daily low temperature). The required surface area of the heat exchanger was found to be 20.46 m2 to remove the required 36.6 MJ of heat. Iterative print tests were conducted to arrive at the wall thickness, hexagon shape, and double wall structure of the heat exchanger. A laboratory-scale heat exchanger was fabricated using a Lulzbot Taz 4

  12. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation

    International Nuclear Information System (INIS)

    She, Xiaohui; Yin, Yonggao; Zhang, Xiaosong

    2014-01-01

    Highlights: • An energy-efficient refrigeration system with a novel subcooling method is proposed. • Thermodynamic analysis is conducted to discuss the effects of operation parameters. • Two different utilization ways of condensation heat are compared. • The system achieves much higher COP, even higher than reverse Carnot cycle. • Suggested mass concentration for LiCl–H 2 O is around 32% at a typical case. - Abstract: A new energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation was proposed in this paper. In the system, liquid desiccant system could produce very dry air for an indirect evaporative cooler, which would subcool the vapor compression refrigeration system to get higher COP than conventional refrigeration system. The desiccant cooling system can use the condensation heat for the desiccant regeneration. Thermodynamic analysis is made to discuss the effects of operation parameters (condensing temperature, liquid desiccant concentration, ambient air temperature and relative humidity) on the system performance. Results show that the proposed hybrid vapor compression refrigeration system achieves significantly higher COP than conventional vapor compression refrigeration system, and even higher than the reverse Carnot cycle at the same operation conditions. The maximum COPs of the hybrid systems using hot air and ambient air are 18.8% and 16.3% higher than that of the conventional vapor compression refrigeration system under varied conditions, respectively

  13. Review of photovoltaic: powered refrigeration for vaccines for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.L. (Texas A and M Univ., College Station); Carrasco, P.; de Quadros, C.A.

    1982-01-01

    The application of photovoltaic systems in immunization programs throughout the world is currently being evaluated, with the promise that photovoltaic systems may permit the extension of vaccine delivery systems by using alternative technologies in those areas where conventional forms of energy have yet to be introduced or are too costly. The cold chain is a system whose elements of logistics, equipment, and methodology are linked together to deliver vaccines in an efficient manner at temperatures between +4/sup 0/C to +8/sup 0/C. Vaccines are delicate substances and to keep them potent they must be kept cold from the time they are manufactured to the time of their administration. The cooling system of the vaccine refrigerator may be either of the conventional compression type or absorption type. The use of a direct current thermoelectric cooling system is also being considered. Either the compression or thermoelectric types may be PV powered, and there are incidental electricity needs with the kerosene powered absorption type. A small 10l size refrigerator should be capable of producing 1l of ice in the (8 hours of) night (in +32/sup 0/C design ambient) and must maintain temperature of +4 to +8/sup 0/C during the day (in +43/sup 0/C ambient). It is desirable that a 40l size produce 4l of ice per 24 h in a night-time ambient of +32/sup 0/C. with a COP (coefficient of performance) of 1.0, photocell net area of 1.3m/sup 2/ is needed for the designed compression of absorption type, and an area of 14.6m/sup 2/ is needed for the thermoelectric refrigerator of this size. An 80l size must be capable of producing 1-2l of ice per day (8l desirable). Costs are estimated at $800 for the 10l size, $1675 for 40l size and $3410 for 80l size, including photocells, batteries and refrigerator.

  14. Open cycle thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Robert Stowers [Georgia Inst. of Technology, Atlanta, GA (United States)

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  15. Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair

    International Nuclear Information System (INIS)

    Frazzica, A.; Palomba, V.; Dawoud, B.; Gullì, G.; Brancato, V.; Sapienza, A.; Vasta, S.; Freni, A.; Costa, F.; Restuccia, G.

    2016-01-01

    Highlights: • Development of a lab-scale adsorption refrigerator. • Optimization of working pair and adsorber configuration through experimental activity. • Experimental testing of the prototype under real working boundary conditions. - Abstract: In the present paper design, realization and testing of a novel small scale adsorption refrigerator prototype based on activated carbon/ethanol working pair is described. Firstly, experimental activity has been carried out for identification of the best performing activated carbon available on the market, through the evaluation of the achievable thermodynamic performance both under air conditioning and refrigeration conditions. Once identified the best performing activated carbon, the design of the adsorber was developed by experimental dynamic performance analysis, carried out by means of the Gravimetric-Large Temperature Jump (G-LTJ) apparatus available at CNR ITAE lab. Finally, the whole 0.5 kW refrigerator prototype was designed and built. First experimental results both under reference air conditioning and refrigeration cycles have been reported, to check the achievable performance. High Specific Cooling Powers (SCPs), 95 W/kg and 50 W/kg, for air conditioning and refrigeration respectively, were obtained, while the COP ranged between 0.09 and 0.11, thus showing an improvement of the current state of the art.

  16. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  17. Prediction of Dangerous Time in Case Hydrocarbon Refrigerant Leaks into Household Refrigerator Cabinet

    Science.gov (United States)

    Meguro, Takatoshi; Kaji, Nobufuji; Miyake, Kunihiro

    Hydrocarbon refrigerators are now on sale in European countries. However, hydrocarbons are flammable. A common claim is that concentration of hydrocarbon in the refrigerator could exceed the lower explosive limit by a sudden leak and then a spark ignites a flame causing overpressure. There is the need of the studies on potential risks originated from the use of flammable refrigerants. Thus, the flow rate of the fresh air into the refrigerator cabinet has been defined experimentally, and the spatial average concentration in the refrigerator cabinet has been analyzed theoretically to predict the dangerous time in excess of the lower explosive limit.

  18. Thermal links for the implementation of an optical refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epsteiin, Richard I [Los Alamos National Laboratory; Greenfield, Scott R [Los Alamos National Laboratory; Parker, John [HARVEY MUDD COLLEGE; Mar, David [HARVEY MUDD GOLLEGE; Von Der Porten, Steven [HARVEY MUDD COLLEGE; Hankinson, John [HARVEY MUDD COLLEGE; Byram, Kevin [HARVEY MUDD COLLEGE; Lee, Chris [HARVEY MUDD COLLEGE; Mayeda, Kai [HARVEY MUDD COLLEGE; Haskell, Richard [HARVEY MUDD COLLEGE; Yang, Qimin [HARVEY MUDD COLLEGE

    2008-01-01

    Optical refrigeration has been demonstrated by several groups of researchers, but the cooling elements have not been thermally linked to realistic heat loads in ways that achieve the desired temperatures. The ideal thermal link will have minimal surface area, provide complete optical isolation for the load, and possess high thermal conductivity. We have designed thermal links that minimize the absorption of fluoresced photons by the heat load using multiple mirrors and geometric shapes including a hemisphere, a kinked waveguide, and a tapered waveguide. While total link performance is dependent on additional factors, we have observed net transmission of photons with the tapered link as low as 0.04%. Our optical tests have been performed with a surrogate source that operates at 625 nm and mimics the angular distribution of light emitted from the cooling element of the Los Alamos solid state optical refrigerator. We have confirmed the optical performance of our various link geometries with computer simulations using CODE V optical modeling software. In addition we have used the thermal modeling tool in COMSOL MULTIPHYSICS to investigate other heating factors that affect the thermal performance of the optical refrigerator. Assuming an ideal cooling element and a nonabsorptive dielectric trapping mirror, the three dominant heating factors are (1) absorption of fluoresced photons transmitted through the thermal link, (2) blackbody radiation from the surrounding environment, and (3) conductive heat transfer through mechanical supports. Modeling results show that a 1 cm{sup 3} load can be chilled to 107 K with a 100 W pump laser. We have used the simulated steady-state cooling temperatures of the heat load to compare link designs and system configurations.

  19. 15. information note on refrigerants. The use of CO{sub 2} as refrigerant; 15. note d'information sur les frigorigenes. L'utilisation du CO{sub 2} comme frigorigene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The CO{sub 2} technology can answer the present day environmental and safety challenge of replacement of the chlorofluorocarbons (CFCs) and hydro-chlorofluorocarbons (HCFCs) in the refrigerating, air conditioning and heat pump systems. This possibility concerns only precise applications where the advantages of CO{sub 2} can counterbalance its drawbacks. This technical document presents: the refrigerating cycle of carbon dioxide, the CO{sub 2} applications, advantages and drawbacks. (J.S.)

  20. Development of a Battery-Free Solar Refrigerator

    Science.gov (United States)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  1. Thermodynamic performance optimization of a combined power/cooling cycle

    International Nuclear Information System (INIS)

    Pouraghaie, M.; Atashkari, K.; Besarati, S.M.; Nariman-zadeh, N.

    2010-01-01

    A combined thermal power and cooling cycle has already been proposed in which thermal energy is used to produce work and to generate a sub-ambient temperature stream that is suitable for cooling applications. The cycle uses ammonia-water mixture as working fluid and is a combination of a Rankine cycle and absorption cycle. The very high ammonia vapor concentration, exiting turbine under certain operating conditions, can provide power output as well as refrigeration. In this paper, the goal is to employ multi-objective algorithms for Pareto approach optimization of thermodynamic performance of the cycle. It has been carried out by varying the selected design variables, namely, turbine inlet pressure (P h ), superheater temperature (T superheat ) and condenser temperature (T condensor ). The important conflicting thermodynamic objective functions that have been considered in this study are turbine work (w T ), cooling capacity (q cool ) and thermal efficiency (η th ) of the cycle. It is shown that some interesting and important relationships among optimal objective functions and decision variables involved in the combined cycle can be discovered consequently. Such important relationships as useful optimal design principles would have not been obtained without the use of a multi-objective optimization approach.

  2. Refrigeration and air-conditioning

    CERN Document Server

    Hundy, G H; Welch, T C

    2008-01-01

    Now in its fourth edition, this respected text delivers a comprehensive introduction to the principles and practice of refrigeration. Clear and straightforward, it is designed for students (NVQ/vocational level) and professional HVAC engineers, including those on short or CPD courses. Inexperienced readers are provided with a comprehensive introduction to the fundamentals of the technology. With its concise style yet broad sweep the book covers most of the applications professionals will encounter, enabling them to understand, specify, commission, use and maintain these systems. Many readers w

  3. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  4. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  5. Numerical model to optimize the refrigerant charge for maximum refrigeration capacity

    Directory of Open Access Journals (Sweden)

    Wainaina Patrick M.

    2013-01-01

    Full Text Available Refrigeration systems require optimal amount of refrigerant for maximum system performance. Undercharged or overcharged systems experience reduced efficiency and accessories deterioration. Optimal amount of refrigerant to be charged in a refrigeration system depends on the physical and thermal dynamic properties of the evaporator and the refrigerant. This paper presents formulation of a numerical model that can be used in determination of optimal amount of refrigerant charged in a system for maximum cooling rate as hence maximum system performance. Rayleigh’s method of dimensional analysis was used obtain the relationship between the maximum cooling rates of direct expansion evaporators as a function of thermodynamic properties of refrigerant R-134a, Different sizes of evaporator were fitted in the refrigeration system and charged with systematically varying amount of refrigerant until a maximum cooling rate was determined. The variation of pressures and temperatures both at the inlet and exit of the evaporator were observed and analyzed. The cooling rate of the numerical model formulated was compared with the cooling rate the actual physical refrigeration system. A t-test of 95% confidence interval indicated no significance difference between the numerical model, and the physical refrigeration system.

  6. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  7. Eco-Friendly Alternative Refrigeration Systems

    Indian Academy of Sciences (India)

    with the aid of an external energy source is called a refrigerator and use of natural refrigeration in day to day life is as ... investigations have shown that human- made chemicals are responsible for the observed depletion of ozone layer. Increase of Earth's surface temperature by a few degrees is expected to produce many.

  8. 21 CFR 1250.34 - Refrigeration equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  9. Refrigeration and thermometry below one Kelvin

    International Nuclear Information System (INIS)

    Betts, D.S.

    1976-01-01

    The subject is dealt with in chapters, entitled; fundamental principles of refrigeration; pumped helium evaporation cryostats; helium-3 dilution refrigeration; Pomeranchuk cooling by adiabatic solidification of helium-3; magnetic cooling with electron paramagnetic salts; nuclear demagnetisation; thermometry using helium; magnetic thermometry; thermometry using electrical properties; noise thermometry; Moessbauer effect thermometry; nuclear orientation thermometry. (U.K.)

  10. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  11. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... and the methods are evaluated with respect to energy efficiency....

  12. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  13. Refrigeration plants using carbon dioxide as refrigerant: measuring and modelling the solubility and diffusion of carbon dioxide in polymers used as sealing materials

    Energy Technology Data Exchange (ETDEWEB)

    von Solms, Nicolas; Kristensen, Jakob [Centre for Phase Equilibria and Separation Processes (IVC-SEP), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2010-01-15

    Because of increased environmental pressure, there is currently a movement away from more traditional refrigerants such as HCFC's toward refrigerants with lower global warming potential such as carbon dioxide (CO{sub 2}). However, the use of CO{sub 2} as a refrigerant requires a refrigeration cycle with greater extremes of pressure, placing greater demands on the polymer materials used for seals and packing. In this work we have measured the solubility and diffusivity of gaseous CO{sub 2} in two polymers used as sealing materials in CO{sub 2} refrigeration plants. These are Hydrogenated Nitrile Butadiene Rubber (HNBR) and Ethylene Propylene Diene Monomer (EPDM) which are used in seals such as O-rings. The experiments were performed on a high-pressure microbalance. Solubility results were modelled using an equation of state for polymers (simplified PC-SAFT). The necessary polymer parameters were obtained using a previously published method. The measured results can be successfully correlated using simplified PC-SAFT. (author)

  14. Compatibility of refrigerants and lubricants with elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.

    1992-10-01

    Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  15. Compatibility of refrigerants and lubricants with elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  16. Sorption compressor/mechanical expander hybrid refrigeration

    Science.gov (United States)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  17. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  18. Parametric optimization of an irreversible magnetic Ericsson refrigerator with finite heat reservoirs

    International Nuclear Information System (INIS)

    Ye, X.M.; Lin, G.X.; Chen, J.C.; Brueck, E.

    2007-01-01

    An irreversible cycle model of magnetic Ericsson refrigerators is established, in which the finite heat capacities of external heat reservoirs, heat-transfer irreversibility, inherent regenerative losses, additional regenerative losses due to thermal resistances and irreversibility inside the magnetic working substances are taken into account. On the basis of the thermodynamic equations of paramagnetic materials, the performance characteristics of the magnetic Ericsson refrigeration cycle are investigated. By using the method of the optimal control theory, the optimal equations between the cooling load and the coefficient of performance and between the cooling load and the power input are derived. Furthermore, the maximum cooling load and the corresponding coefficient of performance, the minimum power input and the optimally operating temperatures of the cyclic working substance are obtained. The optimal operating region of the magnetic Ericsson refrigerator is determined. The results obtained here are closer to the performance characteristics of practical magnetic refrigerators with finite heat reservoirs than those in literature and are helpful to the optimal design and performance improvement of magnetic Ericsson refrigerators

  19. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  20. Evolution of absorption machines; Evolution des machines a absorption

    Energy Technology Data Exchange (ETDEWEB)

    Soide, I.; Klemsdal, E. [Gaz de France (GDF), 75 - Paris (France); Le Goff, P.; Hornut, J.M. [LSGC-ENSIC, 54 - Nancy (France)

    1997-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  1. Analysis of a solar powered absorption system

    International Nuclear Information System (INIS)

    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.

    2015-01-01

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement

  2. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2012-01-01

    The current trends in commercial refrigeration aim at reducing the synthetic refrigerant charge, either by minimising the internal volume of the circuit or by utilising natural refrigerants, and at energy saving. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study aims at investigating the performance of different lay-out and technological solutions where only natural refrigerants are used and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis, chillers and heat pumps working with ammonia or propane, medium temperature systems working with ammonia or propane and carbon dioxide as heat transfer fluid or with carbon dioxide as the refrigerant and low temperature systems working with carbon dioxide are considered and benchmarked with a state-of-the-art HFCs based plant. The most efficient investigated solution enables an annual energy saving higher than 15% with respect to the baseline solution for all the considered climates. - Highlights: ► Different natural refrigerants supermarket HVAC and R integrated systems are analysed. ► Some of the proposed solutions offer a significant benefit over the baseline one. ► Up to 18.7% energy saving is achieved in the considered climates. ► The refrigeration unit condensation by the AC chiller offers the poorest results.

  3. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Tian, Hua; Liang, Xingyu; Wei, Haiqiao; Liu, Lina

    2013-01-01

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  4. Enhancement of isobutane refrigerator performance by using far-infrared coating

    International Nuclear Information System (INIS)

    Hsu, Yu-Chun; Teng, Tun-Ping

    2016-01-01

    Highlights: • Two-step synthesis method was employed to produce FIRCs. • Emissivity of FIRCs was determined using a FT-IR. • The highest emissivity of FIRMs was MWCNT. • No-load pull-down and 24-h on-load cycling test were performed. • The COP and EF of S2 were greater than those of S1 by 5.92% and 7.89%. - Abstract: This study evaluated the effect on refrigeration performance and feasibility of a far-infrared coating (FIRC) on the condenser of a small isobutane (R-600a) refrigerator. The evaluation was based on the no-load pull-down and 24-h on-load cycling tests. Far-infrared materials and a water-based coating material were mixed using a two-step synthesis method to obtain the FIRC material. Fourier transform infrared spectrometry established that the optimal far-infrared material was a multiwalled carbon nanotube (MWCNT). The results of the no-load pull-down test revealed that the electricity consumption, freezer temperature, and coefficient of performance (COP) of the R-600a refrigerator with MWCNT-FIRC (S2) were lower than those of the refrigerator without MWCNT-FIRC (S1) by 3.39%, 3.61%, and 2.92%, respectively. The results of the 24-h on-load cycling test showed that S2 had a lower electricity consumption, higher slope of pull-down (SPD), higher compression ratio (CR), higher COP, lower duty ratio (DR), and higher energy factor (EF), changing upon those of S1 by −7.05%, 5.66%, 3.24%, 5.92%, −5.63, and 7.89%, respectively. A MWCNT-FIRC on the condenser of an R-600a refrigerator can enhance refrigeration performance and reduce electricity consumption, resulting in energy saving and carbon reduction.

  5. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  6. Instability of refrigeration system - A review

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Xu Hongbo; Tian Changqing

    2010-01-01

    It is essential to ensure the stability for the normal operation of refrigeration systems. This paper reviews the researches on the theory and solutions of the instability of refrigeration systems. The instability of refrigeration systems includes two aspects: the two-phase flow instability in refrigeration system, the instability on refrigeration system control characteristics. As an inherent characteristic of two-phase evaporating flow, several separate explanations for the formation of oscillation of mixture-vapor transition point in the evaporation process by different scholars had been given but there is no general explanation till now. The investigation of instability on refrigeration system control characteristics focused on both static and dynamic researches. The minimum stable signal line theory, as a very important finding for the static instability of the evaporator and thermal expansion valve control loop, presented the different result to other researches. Dynamic researches on simulation and frequency-domain analysis provided various means for forecast and validation with considerable precision while their application range was still confined. With the development of variable capacity compressor and electronic expansion valve, further researches should be carried out to analyze the instability of the variable capacity refrigeration system with considering the influence of parameter coupling and control algorithm.

  7. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Receptacles for refrigerated containers. 111.79-15... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers. Receptacles for refrigerated containers must meet one of the following: (a) Each receptacle for refrigerated...

  8. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Installation of refrigerating machinery. 58.20-15 Section 58.20-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of refrigerating machinery. (a) Where refrigerating...

  9. Oil formula for refrigeration equipment

    Energy Technology Data Exchange (ETDEWEB)

    Warasina, N.; Minakawa, K.; Tanizaki, Y.

    1982-03-26

    Oil used in refrigeration equipment (OFE) contains polyether type synthetic oil with 0.1-3 percent of aromatic antioxidant as an additive; the antioxidant has 1-2 atoms of N or 1 atom N and 1 atom S in the molecule, and 0.1-5% organic Sn compounds. It is preferable to use phenyl-alpha-naphtylamin as the additive, and for the Sn, dibutylcarboxilate Sn or dibutyldilaurinate Sn. It is recommended that a synthetic oil with the following formula: X(O(AO)mY)n, where X=H or the rest of alcohol; A- alkylene C/sub 2/-C/sub 4/; Y=H, alkyl, alkenyl, acyl, benzyl or arile; m=2-100; n=1-6. This OFE has a high chemical stability when in contact with freon or metals at high temperatures for long time periods, and has good lubricating features.

  10. Bearing construction for refrigeration compresssor

    Science.gov (United States)

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  11. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  12. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  13. Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat

    International Nuclear Information System (INIS)

    Yamanaka, H; Nakagawa, M

    2013-01-01

    Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.

  14. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  15. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  16. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the 3 He solute in a superfluid 3 He-- 4 He solution. At low temperatures, the superfluid 4 He is in its quantum ground state, and therefore is thermodynamically inert, while the 3 He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the 3 He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the 3 He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs

  17. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part......Today refrigeration control systems consist of a number of self-contained distributed control loops that during the past years has been optimized obtaining a high performance of the individual subsystems, thus disregarding cross-couplings as well dynamically as statically. The supervisory control...... of the supermarket refrigeration systems therefore greatly relies on a human operator to detect and accommodate failures, and to optimize system performance under varying operational condition. Today these functions are maintained by monitoring centres located all over the world. Initiated by the growing need...

  18. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  19. ESO2 Optimization of Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Madsen, Henrik; Heerup, Christian

    Supermarket refrigeration systems consists of a number of display cases, cooling cabinets and cold rooms connected to a central compressor pack. This configuration saves energy compared to placing a compressor at each cooling site. The classical control setup of a supermarket refrigeration system...... in the supermarket. The first approach to solve this problem is to design an overall control system which coordinates the compressor capacity and the current refrigeration load. The drawback of this approach is the complexity of the single controller. The solution is investigated in the first part of the report....... A second solution is investigated where only the compressor control is considered. This controller try to feed-forward the measured disturbances, i.e. opening and closing of the cooling site AKV’s. Last a performance analysis of the refrigeration system is performed....

  20. Freezing and refrigerated storage in fisheries

    National Research Council Canada - National Science Library

    Johnston, W. A

    1994-01-01

    ...; the factors affecting cold storage conditions, etc. In addition, the publication describes the methods used to calculate cold storage refrigeration loads as well as the costs of freezing and cold storage...

  1. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  2. Vaccine refrigeration: thinking outside of the box.

    Science.gov (United States)

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator with a battery back-up power supply and microprocessor control system is also described.

  3. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR...

  4. Experimental installation of refrigeration solar-first results; Instalacion experimental de refrigeracion solar-primeros resultados

    Energy Technology Data Exchange (ETDEWEB)

    Moone, C.; Guallar, J.; Alonso, S.; Palacin, F.

    2008-07-01

    In this article they are and the first results of an installation of solar refrigeration composed by a field of flat solar collector are analysed and absorption chillers of simple effect (BrLi-H{sub 2}O), used to give cold to a gymnasium of the university sport pavilion. The data correspond to the registered experimental values during the summer of 2007 (months of June, Julio and August). (Author)

  5. State-space modelling for the ejector-based refrigeration system driven by low grade energy

    International Nuclear Information System (INIS)

    Xue, Binqiang; Cai, Wenjian; Wang, Xinli

    2015-01-01

    This paper presents a novel global state-space model to describe the ejector-based refrigeration system, which includes the dynamics of the two heat exchangers and the static properties of ejector, compressor and expansion valve. Different from the existing methods, the proposed method introduces some intermediate variables into the dynamic modelling in developing reduced order models of the heat exchangers (evaporator and condenser) based on the Number of Transfer Units (NTU) method. This global model with fewer dimensions is much simpler and can be more convenient for the real-time control system design, compared with other dynamic models. Finally, the proposed state-space model has been validated by dynamic response experiments on the ejector-based refrigeration cycle with refrigerant R134a.The experimental results indicate that the proposed model can predict well the dynamics of the ejector-based refrigeration system. - Highlights: • A low-order state-space model of ejector-based refrigeration system is presented. • Reduced-order models of heat exchangers are developed based on NTU method. • The variations of mass flow rates are introduced in multiple fluid phase regions. • Experimental results show the proposed model has a good performance

  6. General-purpose germanium gamma-ray detector cooled by two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Taguchi, Yoshito; Uchida, Toshio.

    1995-01-01

    In the conventional Ge γ-ray detector, it takes much time to keep liquid nitrogen in a cryostat of the detector. Recently, high-purity Ge-spectrometers cooled by a closed-cycle cryogenic refrigerator were developed. However, a noise reduction system to repress the vibration generated by such refrigerator became necessary, resulting to make it difficult to miniaturize the detector system equipped with the refrigerator. Thus, the authors attempted to develop a small, electrically cooled Ge γ-ray detector with a stirling refrigerator. Since the cooling capacity of the stirling type is low, a general-purpose electrically cooled Ge detector, of which relative efficiency of detection is 14% was developed. The energy resolution of this detector was just the same as that of a commercially obtainable detector cooled by liquid nitrogen. Since two stirling refrigerators were used for cooling down the detector element, the detector was small, light and portable. This Ge detector was found applicable to various γ-ray spectroscopy. (M.N.)

  7. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  8. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2009-02-01

    Full Text Available The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigeration plants, because of the source of the electricity pollute the nature indirectly. However, for compression an ejector refrigeration system requires one of the important renewable energy sources with negligible pollution impact on the environment, namely solar energy from a thermal source. Thermodynamical, environmental and economical aspects of the ejector refrigeration system working with solar energy was investigated in this study. As a pilot case, apple cold storage plants widely used in ISPARTA city, which 1/5 th of apple production of TURKEY has been provided from, was chosen. Enviromental and economical advantages of solar ejector refrigeration system application for cold storage dictated by thermodynamic, economic and enviromental analyses in this research.

  9. A comparison of three types of pulse tube refrigerators: new methods for reaching 60K

    International Nuclear Information System (INIS)

    Radebaugh, R; Louie, B.; Smith, D.R.; Zimmermann, J.

    1986-01-01

    Pulse tube or thermoacoustic refrigerators require only one moving part--an oscillating piston or diaphragm at room temperature. Refrigeration occurs within a tube connected to the pressure wave generator when the thermal relaxation time between gas and tube is comparable to a half period. Three types have been discussed in the literature recently by Gifford, by Mikulin, and by Wheatley. A record low temperature of 60 K was achieved in our work using a single stage pulse tube similar to that of Mikulin. Previously 105 K was the lowest temperature achieved. Because of only one moving part, all three types have the potential for long life, but their efficiency and intrinsic limitations have never been investigated. This paper compares the three types with each other and with common refrigerators such as Joule-Thomson and Stirling refrigerators. An apparatus is described which can measure the intrinsic behavior of the different types from temperatures of about 30 K to 300 K. Overall cycle efficiency as well as sources of loss such as conduction and regenerator ineffectiveness are discussed and the advantages of various phase shifting techniques to increase refrigeration capacity are compared

  10. A review of linear compressors for refrigeration

    OpenAIRE

    Liang, Kun

    2017-01-01

    Linear compressor has no crank mechanism compared with conventional reciprocating compressor. This allows higher efficiency, oil-free operation, lower cost and smaller size when linear compressors are used for vapour compression refrigeration (VCR) system. Typically, a linear compressor consists of a linear motor (connected to a piston) and suspension springs, operated at resonant frequency. This paper presents a review of linear compressors for refrigeration system. Different designs and mod...

  11. Commercial refrigeration - An overview of current status

    OpenAIRE

    Mota Babiloni, Adrián; Navarro Esbri, Joaquin; BARRAGÁN CERVERA, ÁNGEL; Moles, Francisco; Peris, Bernardo; Verdú Martín, Gumersindo Jesús

    2015-01-01

    Commercial Refrigeration comprises food freezing and conservation in retail stores and supermarkets, so, it is one of the most relevant energy consumption sectors, and its relevance is increasing. This paper reviews the most recent developments in commercial refrigeration available in literature and presents a good amount of results provided these systems, covering some advantages and disadvantages in systems and working fluids. Latest researches are focused on energy savings to reduce CO2 in...

  12. The refrigeration of large superconducting machines

    International Nuclear Information System (INIS)

    Gistau, G.

    1991-01-01

    The large scale superconducting devices which are now in operation for deviation of heavy particles, acceleration of light particles or plasma confinement need very large powers of refrigeration. After a short survewing of the different functions of refrigerators and the special requirements for large units, the paper describes some existing or envisaged cooling systems which have an equivalent cooling power in the range of 5kW at 4.5 K [fr

  13. Acute lung injury following refrigeration coil deicing.

    Science.gov (United States)

    McKeown, Nathanael J; Burton, Brent T

    2012-03-01

    We report a case of a worker who developed ALI requiring mechanical ventilatory support after attempting to melt ice condensate by applying the flame of an oxy-acetylene torch to refrigeration coils charged with a halocarbon refrigerant in a closed environment. A discussion of possible etiologies are discussed, including phosgene, carbonyl fluoride, and nitrogen oxides. Primary prevention with adequate respiratory protection is recommended whenever deicing is performed in a closed space environment.

  14. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... identify the sensor configuration. The method as such is generic and is shown in the paper to work convincingly on refrigeration systems with significant nonlinear behaviors...

  15. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  16. Development and Ecological-Energy Comparative Analysis оf Vapor Compression and Solar Absorption Schemes of Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2017-12-01

    Full Text Available The mission of the research included the following objectives: the development of new circuit decisions for the alternate refrigerating systems based on the use of an open absorptive circuit and on the use of solar energy for absorbent solution regeneration; an assessment of the energy and envi-ronmental characteristics of the developed systems; obtaining of the experimental data for an assess-ment of the principal capabilities of the proposed new solar air-conditioning systems. New principles for design of heat and mass transfer equipment in the version with a movable packing of heat exchange elements (fluidized bed packing "gas - liquid - solid body" placed in the packed bed were developed, which allows self-cleaning of the working surfaces and walls of the heat and mass transfer equipment HMT. This new solution, when working with outdoor air and solutions of absorbents, seems to be a fundamentally important condition for maintaining the working capacity of solar absorption systems. The new schemes of absorber with internal steam cooling allowing the improve-ment of the new scheme of the alternate refrigerating system were developed. Comparative analysis based on the methodology of the "Life Cycle Assessment" (LCA showed that new, developed solar systems provide the considerable decrease in energy consumption, their use leads to the decrease of exhaustion of natural resources, influences less global climate change.

  17. A miniature adsorption3HE refrigerator

    International Nuclear Information System (INIS)

    Duband, L.; Ravex, A.; Lange, A.

    1991-01-01

    A self-contained, recyclable laboratory 3 He refrigerator has been developed. The refrigerator is very compact, portable and is designed to be safe and reliable. The unit can easily be installed on the cold plate of a superfluid 4 He cryostat. Once bolted on the cold plate, operation of the refrigerator is controlled by a single heater. In this new design the refrigerator has a cylindrical geometry. The adsorption pump is placed above the condensation point to prevent convection during the condensation phase and to improve the pumping speed. The inhibition of convection reduces the load on the 4 He bath and increases the condensation efficiency. This refrigeration technique has great potential for space applications. The absence of moving parts makes the system reliable and vibration free. Its simplicity and the absence of external components facilitate its integration on a cryostat. In fact, a rocket-borne 3 He refrigerator has already been successfully flown and has demonstrated the feasibility of this method

  18. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  19. Performance characteristics of a methanol ejector refrigeration unit

    International Nuclear Information System (INIS)

    Alexis, G.K.; Katsanis, J.S.

    2004-01-01

    This paper discusses the behavior of methanol through an ejector operating in a refrigeration system with a medium temperature thermal source. For detailed calculation of the proposed system, a method has been developed, which employs analytical functions describing the thermodynamic properties of methanol. The proposed cycle has been compared with a Carnot cycle working at the same temperature levels. The influences of three major parameters, generator, condenser and evaporator temperatures, on ejector efficiency and coefficient of performance are discussed. Also, the maximum value of COP was estimated by correlation of the above three temperatures for constant superheated temperature 150 deg. C, and it was 0.139-0.467. The design conditions were generator temperature 117.7-132.5 deg. C, condenser temperature 42-50 deg. C and evaporator temperature -10-5 deg. C

  20. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    Science.gov (United States)

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  1. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material

    International Nuclear Information System (INIS)

    Liu, Ming; Saman, Wasim; Bruno, Frank

    2012-01-01

    Highlights: ► A refrigeration system having low energy cost and producing no local greenhouse gas emission. ► A PCM is experimentally developed which is able to maintain the refrigerated truck at −18 °C. ► A TRNSYS model is developed to simulate the proposed refrigeration system. -- Abstract: An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg −1 . A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.

  2. SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER

    Science.gov (United States)

    The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...

  3. HFC perspectives in air-conditioning and refrigeration; Perspectives HFC en A/C et refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, P. [ELF Atochem, Centre d`Application de Lavallois, 92 (France)

    1997-12-31

    This paper is a series of transparencies dealing with the development of substitutes for the replacement of the R-22 refrigerant in air-conditioning systems (R-134a, R-407C, R-410A), and in industrial refrigeration systems of agriculture and food industry (R-134a and R-404A). (J.S.)

  4. Laser refrigeration of hydrothermal nanocrystals in physiological media.

    Science.gov (United States)

    Roder, Paden B; Smith, Bennett E; Zhou, Xuezhe; Crane, Matthew J; Pauzauskie, Peter J

    2015-12-08

    Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from 1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb(3+) electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices.

  5. Visualization and measurement of refrigerant flow in compression-type refrigerator by neutron radiography

    International Nuclear Information System (INIS)

    Asano, H.; Takenaka, N.; Fujii, T.; Shibata, Y.; Ebisu, T.; Matsubayashi, M.

    1999-01-01

    The refrigerant two-phase flows in a capillary tube and a distributor used in a compression-type refrigerator were visualized by real-time neutron radiography. The thermal neutron radiography system of JRR-3M at the Japan Atomic Energy Research Institute was used. In the visualization experiments of the two-phase flow in the capillary tube of 2 mm I.D., a cooled CCD camera was used, and the axial one-dimensional distributions of void fraction were measured. For the distributor, a high sensitivity video camera with a silicone intensified target tube was used. From the visualized images, the refrigerant behaviors in the distributor were clearly shown, and the liquid fraction in each tube was measured. As a result, it was shown that the refrigerant behaviors in the distributor effected the distributing performance of the refrigerant flow

  6. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  7. A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator

    Science.gov (United States)

    Miller, Franklin K.

    2012-01-01

    A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.

  8. Refrigerated Warehouse Demand Response Strategy Guide

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Doug [VaCom Technologies, San Luis Obispo, CA (United States); Castillo, Rafael [VaCom Technologies, San Luis Obispo, CA (United States); Larson, Kyle [VaCom Technologies, San Luis Obispo, CA (United States); Dobbs, Brian [VaCom Technologies, San Luis Obispo, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  9. Alternative solutions for the CFC fluids in the refrigerating systems

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    1997-01-01

    This paper deals with: -Characteristics that the alternative refrigerants should satisfy: chemical, thermal, health, safety, environmental, etc. -A survey of the newest refrigerants on the world market from the biggest well known companies. -Dilemmas about the choice of new refrigerants depending to the appliance in refrigerating systems. -Specific requirements that have to be known concerning the introduction of new refrigerants in exploitation. -Alternative refrigerants with natural origin, their positive and negative characteristics from the aspect of application. -Different viewpoints of the actual situation and perspective developing ways in this field, expecting new, more restrictive regulations to environment qualities. -The role of the national strategy now and in the future. (author)

  10. Thermodynamic and economic optimization of LNG mixed refrigerant processes

    International Nuclear Information System (INIS)

    Wang, Mengyu; Khalilpour, Rajab; Abbas, Ali

    2014-01-01

    Highlights: • We study performance and cost optimization of C3MR and DMR processes. • A new economic objective function is proposed to reduce both compression work and equipment size. • The comparison of C3MR and DMR processes is based on process configuration, performance, and cost. - Abstract: Natural gas liquefaction processes are energy and cost intensive. This paper performs thermodynamic and economic optimization of the mid-scale mixed refrigerant cycles including propane precooled mixed refrigerant (C3MR) and dual mixed refrigerant (DMR) processes. Four different objective functions in this study are selected: total shaft work consumption, total cost investment (TCI), total annualized cost (TAC), and total capital cost of compressors and main cryogenic exchangers (MCHEs). Total cost investment (TCI) is a function of two key variables: shaft work (W) and overall heat transfer coefficient and area (UA) of MCHEs. It is proposed for reducing energy consumption and simultaneously minimizing total capital expenditure (CAPEX) and operating expenditure (OPEX). Total shaft work objective function can result in a 44.5% reduction of shaft work for C3MR and a 48.6% reduction for DMR compared to their baseline values, but infinitely high UA of MCHEs. Optimal results show that total capital cost of compressors and MCHEs is more suitable than other objective functions for the objective of reducing both shaft work and UA. It reduces 14.5% of specific power for C3MR and 26.7% for DMR when achieving the relatively lower UA values than their baseline values. In addition, TCI and TAC can also reduce a certain amount of total shaft work at a finite increased UA

  11. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    Science.gov (United States)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  12. Experimental results and thermodynamic analysis of a natural gas small scale cogeneration plant for power and refrigeration purposes

    International Nuclear Information System (INIS)

    Bazzo, Edson; Nacif de Carvalho, Alvaro; Matelli, José Alexandre

    2013-01-01

    In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24 °C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at −5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. -- Highlights: • A small scale cogeneration plant for power and refrigeration is proposed and analyzed. • The plant is based on a microturbine and a modified absorption chiller. • The plant is analysed based on 1st and 2nd laws of thermodynamics. • Experimental results are found for different power and refrigeration conditions. • The plant proved to be technically feasible

  13. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  14. closed cycle solar refrigeration with the calcium chloride system

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... generation and condensation. The instantaneous available overall COP rose to a peak which depended on the solar fluxes and starting pressure, as well as on the condenser and ambient temperatures. The peak varied from 0.07 to 0.08. It fell as solar flux decreased towards late afternoon, but rose again.

  15. Performance of the Oxford miniature Stirling cycle refrigerator

    International Nuclear Information System (INIS)

    Bradshaw, T.W.; Davey, G.; Delderfield, J.; Werrett, S.T.

    1986-01-01

    The performance of the Oxford Cryocooler is summarized. This cooler has been developed for space use by the Rutherford Appleton Laboratory and the Departments of Atmospheric Physics and Engineering Science at Oxford University. The design goal of 1/2 watt of cooling power at 80 K for 30 W electrical input power has been exceeded by a substantial amount. The power budget for the compressor and the losses in the displacer are discussed. Graphs of the cold end temperature vs. compressor input power and cooling power are presented

  16. The multiple meanings of the Stefan-number (and relatives) in refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, F. [Technische Universitaet Berlin, Institut fuer Energietechnik, KT 2, Marchstrasse 18, D-10587 Berlin (Germany)

    2010-11-15

    The Stefan-number is one out of the multitude of dimensionless numbers which predominantly are used in chemical engineering or heat and mass transfer problems. It relates sensible heat to latent heat and is a key number in solving the problem of heat transfer during solidification or melting. However, numbers similar to this show up also when several thermodynamic problems or relationships in refrigeration engineering are analyzed. Using the Stefan-number it can be distinguished if a refrigerant superheats or condenses during compression, it gives the size of the throttling loss, and it helps to decide if a suction line heat exchanger is beneficial or not. For absorption heat pumping, it allows to quantify the most important loss mechanism, the solution heat exchanger loss. Of course, all this information can be acquired in different ways - and maybe in more precise ways - also, but at least for teaching the basics of refrigeration the Stefan-number is simple to use and very easy to understand. In this paper, the different ways of how to use the Stefan-number in teaching and understanding thermodynamics of refrigerants are presented. (author)

  17. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  18. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... of data-driven control strategies with a higher plug and play potential. One of the main control challenges in refrigeration systems is proper control of superheat for efficient and safe operation of the system. This task can be performed by an electronic expansion valve and requires two sensors, which...... in this thesis. As a result, learning-based precool strategies are proposed, which utilize the thermal storage capability in foodstuff to shift some of the peak load to less loaded hours. The precool time and period can continuously be updated based on data from previous days and the data-driven solutions...

  19. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  20. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.