WorldWideScience

Sample records for absorption cross sections

  1. Temperature-dependent high resolution absorption cross sections of propane

    Science.gov (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  2. Estimation of the Human Absorption Cross Section Via Reverberation Models

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri;

    2016-01-01

    Since the presence of persons affects the reverberation time observed for in-room channels, the absorption cross section of a person can be estimated from measurements via Sabine's and Eyring's models for the reverberation time. We propose an estimator relying on the more accurate model by Eyring...... and compare the obtained results to those of Sabine's model. We find that the absorption by persons is large enough to be measured with a wideband channel sounder and that estimates of the human absorption cross section differ for the two models. The obtained values are comparable to values reported...... in the literature. We also suggest the use of controlled environments with low average absorption coefficients to obtain more reliable estimates. The obtained values can be used to predict the change of reverberation time with persons in the propagation environment. This allows prediction of channel characteristics...

  3. Carbonyl Sulfide Isotopologues: Ultraviolet Absorption Cross Sections and Stratospheric Photolysis

    DEFF Research Database (Denmark)

    Danielache, Sebastian Oscar; Nanbu, Shinkoh; Eskebjerg, Carsten;

    2009-01-01

    Ultraviolet absorption cross sections of the main and substituted carbonyl sulfide isotopologues were calculated using wavepacket dynamics. The calculated absorption cross section of 16O12C32S is in very good agreement with the accepted experimental spectrum between 190 and 250 nm. Relative to 16...... can be explained in terms of the change in the norm of the initial wavepacket. Implications for our understanding of the stratospheric sulfur cycle are discussed.......12C32S, isotopic substitution shows a significant enhancement of the cross section for 16O13C32S, a significant reduction for 18O12C32S and 17O12C32S and almost no change for the sulfur isotopologues 16O12C33S, 16O12C34S, and 16O12C36S. The analysis of the initial wavepackets shows that these changes...

  4. Mid-infrared absorption cross sections for acetone (propanone)

    International Nuclear Information System (INIS)

    Infrared absorption cross sections for acetone (propanone) have been determined in the 830-1950 cm-1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures between 194 and 251 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new absorption cross sections have been combined with previous high spectral resolution results to create a more complete set of acetone absorption cross sections appropriate for atmospheric remote sensing. These cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetone in the mid-infrared spectral region from ACE and MIPAS satellite data.

  5. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  6. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    Science.gov (United States)

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727

  7. Determination of Pb total photonuclear absorption cross section in the Δ resonance range by measurement of photoneutrons cross sections

    International Nuclear Information System (INIS)

    The photonuclear absorption cross section of Pb, σ(TOT:Esub(γ), is studied in the 145-440 MeV Δ resonance range using a quasi-monochromatic photon beam obtained by monoenergetic positon in-flight annihilation. This study is deduced of the cross section measurement for at least j neutron emission σsup(j))Esub(γ). The cross sections of reactions with 1 or 0 neutron are evaluated as the same values as the experimental errors. The variation of the photonuclear absorption cross section for a nuclear σ(TOT:Esub(γ)/A is mass independent for A<=4-6. It seems that the damping between σ(TOT:Esub(γ)/A and the cross section of the free nucleon is caused by the Fermi movement of the nucleons. In conclusion: it seems that the excitation of the nucleus in the Δ resonance region is produced on free nucleons and there are no collective states

  8. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  9. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  10. Analytical Absorption Cross-Section for Photon by a Hydrogen 2s Atom

    Institute of Scientific and Technical Information of China (English)

    Boniface Otieno Ndinya; Stephen Onyango Okeyo

    2011-01-01

    We calculate the absorption cross-section for photon by a hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron atoms.With the application of the first-order term of the Baker-Hausdorf expansion, the absorption cross-section for the hydrogen 2s atom decreases to a minimum, the Cooper pair minimum, at low photon energy.Such a minimum is absent in the exact absorption cross-section for photon by a hydrogen 2s atom.We have extended the calculation for the absorption cross-section of the hydrogen 2s atom using the quantum-classical approximation for the total photo cross-section of many electron to include the second-order term of the Baker-Hausdorf expansion and observed a great reduction in the dip associated with the Cooper pair minimum at the zero crossing.

  11. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    Science.gov (United States)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  12. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    Science.gov (United States)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  13. Rapid and accurate broadband absorption cross-section measurement of human bodies in a reverberation chamber

    International Nuclear Information System (INIS)

    A measurement methodology for polarization and angle of incidence averaged electromagnetic absorption cross-section using a reverberation chamber is presented. The method is optimized for simultaneous rapid and accurate determination of average absorption cross-section over the frequency range 1–15 GHz, making it suitable for use in human absorption and exposure studies. The typical measurement time of the subject is about 8 min with a corresponding statistical uncertainty of about 3% in the measured absorption cross-section. The method is validated by comparing measurements on a spherical phantom with Mie series calculations. The efficacy of the method is demonstrated with measurements of the posture dependence of the absorption cross-section of a human subject and an investigation of the effects of clothing on the measured absorption which are important considerations for the practical design of experiments for studies on human subjects. (paper)

  14. Absorption Cross Section of Static Einstein-Maxwell Dilation Axion Black Hole for Scalar Particles

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Qing; JING Ji-Liang

    2007-01-01

    The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated.It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases,and it becomes zero as the dilaton tends to its extremal value.It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase,and it decreases as the mass of the particle decreases.

  15. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2012-12-15

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  16. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    Science.gov (United States)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  17. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    Science.gov (United States)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  18. Computer-aided determinatio of absorption cross section of multicomponent alloys

    International Nuclear Information System (INIS)

    For U alloys with Cu, Mo and Hf, the results are given of computer calculations of changes in the effective absorption cross section for thermal neutrons with composition of the alloys. The program was written in Algol 68 for the TESLA 200 computer. The program may be used for calculating the effective absorption cross section of any alloy consisting of a maximum of 6 components. (E.S.)

  19. Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"

    OpenAIRE

    Felber, J.; Gaehler, R.; Golub, R.

    2000-01-01

    Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.

  20. Emission and absorption cross section of thulium doped silica fibers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe; Povlsen, Jørn Hedegaard

    2006-01-01

    A thorough investigation of the emission and absorption spectra of the (F-3(4),H-3(6)) band in thulium doped silica fibers has been performed. All the basic parameters of thulium in silica have been extracted with the purpose of further analysis in laser and amplifier simulations. The experimental...

  1. Effect of Pressure Broadening on Molecular Absorption Cross Sections in Exoplanetary Atmospheres

    CERN Document Server

    Hedges, Christina

    2016-01-01

    Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution, and completeness of broadening parameters - on molecular absorption cross sections. We use H$_2$O as a case study as it has the most complete absorption line data. For low resolution spectra (R$\\lesssim$100) for re...

  2. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  3. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  4. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    Science.gov (United States)

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.

  5. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 degrees C

    DEFF Research Database (Denmark)

    Grosch, Helge; Sárossy, Zsuzsa; Egsgaard, Helge;

    2015-01-01

    Absorption cross-sections and their temperature dependency, especially in the UV spectral range, of organic compounds such as phenol and naphthalene are of great interest in atmospheric research and high temperature processes. Due to the challenges of producing premixed gases of known concentration......, it is difficult to determine absorption cross-sections in experiments, especially at higher temperatures. In this paper, a gas flow of nitrogen with a stable but unknown concentration of phenol or naphthalene is produced, and their UV absorption spectra between 195 and 350 nm have been measured at higher....... Consequently, the absorption cross-sections for phenol and naphthalene at room temperature, 423 K, 573 K and 773 K in the range of 195-360 nm are presented in this study....

  6. Instantaneous Shape Sampling - a model for the $\\gamma$-absorption cross section of transitional nuclei

    CERN Document Server

    Bentley, I; Doenau, F; Frauendorf, S; Kampfer, B; Schwengner, R; Zhang, S

    2010-01-01

    The influence of the quadrupole shape fluctuations on the dipole vibrations in transitional nuclei is investigated in the framework of the Instantaneous Shape Sampling Model, which combines the Interacting Boson Model for the slow collective quadrupole motion with the Random Phase Approximation for the rapid dipole vibrations. Coupling to the complex background configurations is taken into account by folding the results with a Lorentzian with an energy dependent width. The low-energy energy portion of the $\\gamma$- absorption cross section, which is important for photo-nuclear processes, is studied for the isotopic series of Kr, Xe, Ba, and Sm. The experimental cross sections are well reproduced. The low-energy cross section is determined by the Landau fragmentation of the dipole strength and its redistribution caused by the shape fluctuations. Collisional damping only wipes out fluctuations of the absorption cross section, generating the smooth energy dependence observed in experiment. In the case of semi-ma...

  7. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    OpenAIRE

    Venot Olivia; Fray Nicolas; Bénilan Yves; Gazeau Marie-Claire; Hébrard Eric; Larcher Gwenaelle; Schwell Martin; Dobrijevic Michel; Selsis Franck

    2014-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are se...

  8. High-resolution absorption cross sections of C$_{2}$H$_{6}$ at elevated temperatures

    CERN Document Server

    Hargreaves, Robert J; Dulick, Michael; Bernath, Peter F

    2015-01-01

    Infrared absorption cross sections near 3.3 $\\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevated temperatures.

  9. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO

    Science.gov (United States)

    Chang, Yuan-Pin; Chang, Chun-Hung; Takahashi, Kaito; Lin, Jim-Min, Jr.

    2016-06-01

    The absolute absorption cross sections of (CH3)2COO under a jet-cooled condition were measured via laser depletion to be (1.32 ± 0.10) × 10-17 cm2 molecule-1 at 308 nm and (9.6 ± 0.8) × 10-18 cm2 molecule-1 at 352 nm. The peak UV cross section is estimated to be (1.75 ± 0.14) × 10-17 cm2 molecule-1 at 330 nm, according to the UV spectrum of (CH3)2COO (Huang et al., 2015) scaled to the absolute cross section at 308 nm.

  10. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.

    Science.gov (United States)

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  11. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    Science.gov (United States)

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  12. Absolute absorption cross sections from photon recoil in a matter-wave interferometer

    CERN Document Server

    Eibenberger, Sandra; Cotter, J P; Arndt, Markus

    2014-01-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates all problems related to photon-cycling, state-mixing, photo-bleaching, photo-induced heating, fragmentation and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters and nanoparticles.

  13. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  14. Energy-dependent parameterization of heavy-ion absorption cross sections

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.

    1986-01-01

    An energy-dependent parameterization of the total absorption (reaction) cross sections for heavy ion (Z equal to or greater than 2) collisions at energies above 25 MeV per nucleon is presented. The formula will be especially useful in heavy-ion transport applications.

  15. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    Science.gov (United States)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  16. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    Science.gov (United States)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  17. High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence

    Directory of Open Access Journals (Sweden)

    A. Serdyuchenko

    2013-07-01

    Full Text Available We report on the temperature dependence of ozone absorption cross-sections measured in our laboratory in the spectral range 213–1100 nm with a spectral resolution of 0.02–0.24 nm (Full Width Half Maximum, FWHM in the atmospherically relevant temperature range from 193 to 293 K. The temperature dependence of ozone absorption cross-sections was established using measurements at eleven temperatures. The methodology of the absolute broadband measurements, experimental procedures and spectra processing were described in our companion paper together with the associated error budget. In this paper, we report in detail on our data below room temperature and compare them with literature data using direct comparisons as well as the standard approach using a quadratic polynomial in temperature fitted to the cross-section data.

  18. Medium effects on the double-Δ production and absorption cross section

    International Nuclear Information System (INIS)

    The explicit expressions for calculating the in-medium N+N→Δ+Δ and Δ+Δ→N+N cross section have been derived within the framework of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck approach in which the deltas and nucleons are treated on an equal footing. The obtained cross sections are consistent with the other integrands of the transport model. The theoretical prediction of the free double-Δ production cross section is in good agreement with the experimental data. All the medium effects on the double-Δ production and absorption cross section are studied systematically, and strong medium corrections are found. Our numerical results show that it would be important to take the N+N→Δ+Δ and Δ+Δ→N+N channel into account in the study of relativistic heavy-ion collisions at intermediate and high energies. copyright 1997 The American Physical Society

  19. Nucleon and heavy-ion total and absorption cross section for selected nuclei

    Science.gov (United States)

    Wilson, J. W.; Costner, C. M.

    1975-01-01

    Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.

  20. Scattering and absorption differential cross sections for double photon Compton scattering

    Indian Academy of Sciences (India)

    B S Sandhu; M B Saddi; B Singh; B S Ghumman

    2001-10-01

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.

  1. Mid- and long-wave infrared absorption cross sections for acetonitrile

    International Nuclear Information System (INIS)

    Infrared absorption cross sections for acetonitrile (methyl cyanide; CH3CN) have been determined in the 880-1700 cm-1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical pathlength of 19.3 m. Spectra of acetonitrile/dry synthetic air mixtures were recorded at 0.015 cm-1 resolution (calculated as the Bruker instrument resolution of 0.9/MOPD) at a number of temperatures between 203 and 297 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three composite acetonitrile spectra recorded at the Pacific Northwest National Laboratory. These absorption cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetonitrile in the mid-infrared spectral region from ACE satellite data.

  2. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500°C

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    The temperature dependence of the ultraviolet absorption cross-sections of three different sulfur containing compounds, hydrogen sulfide (H2S), carbon disulfide (CS2) and carbonyl sulfide (OCS), are presented between 200nm and 360nm at a resolution of 0.018nm. The absorption cross-sections for each...

  3. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-05-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295 K, 760 Torr was therefore measured between 182 and 750 nm using a Fourier Transform spectrometer at a resolution of 4 cm−1 (0.1 nm at λ=500 nm. The maximum absorption cross-section in the visible region was observed at λ=533.0 nm to be σ=(4.84±0.60×10−18cm2 molecule−1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03 s−1 for the lower troposphere. This agrees well with the value of 0.15±0.03 s−1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  4. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2004-01-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  5. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    Science.gov (United States)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  6. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    International Nuclear Information System (INIS)

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data. - Highlights: • Compute the values of mass attenuation coefficients (μ/ρ) of some carbohydrates. • The values of (μen/ρ) i.e. mass energy-absorption coefficient are calculated. • Effective atomic energy-absorption cross sections (σa,en). • Comparison of all (μ/ρ), (μen/ρ), (σa,en) values with XCOM program. • The measured data for carbohydrates are useful in radiation dosimetry and other fields

  7. Measuring the absorption mean cross section in 6Li relative to 235U fission

    International Nuclear Information System (INIS)

    Due to the fact that the neutron absorption cross section in 6Li is used as one of standards for determinaton of neutron-physical characteristics of fast reactors the ratio of mean cross sections for absorption by 6Li (A6) and 235U fission F25 are experimentalli investigated. The measurements have been performed in the KBR-8, KBR-10,BFS/39/1 bfs-44, BFS/45a-1 and BFS-46 critical assemblies which are characterized by various neutron spectra by means of a lithium counter with semiconductor detectors. Ratios A6/F25 for investigated assemblies constituted respectively 0.605+-0.009; 0.604+-0.004; 0.581+-0.009; 0.590+-0.574+-0.005. The values of 235U diffusion mean cross sections obtained on the base of these fata and calculated using the CRAB-1 program (given in brackets) are equal respectively 1.53+-0.005 (1.51) 2.38+-0.08 (2.42); 1.935+-0.060 (1.95); 1.89+-0.08 (1.95); 1.780+-0.11 (1.69); 1.90+-0.06 (1.89)

  8. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    Science.gov (United States)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  9. Acetonitrile (CH3CN) infrared absorption cross sections in the 3 μm region

    International Nuclear Information System (INIS)

    High resolution infrared absorption cross sections of acetonitrile have been determined from spectra recorded in the 3 μm spectral region using a Bruker IFS 125 HR Fourier transform spectrometer (FTS) and a multipass White cell. The eleven synthetic air-broadened acetonitrile spectra were recorded at a resolution of 0.015 cm-1 (calculated as 0.9/MOPD (Maximum Optical Path Difference), the Bruker definition of resolution) over a range of different temperatures and pressures that are representative of conditions in the Earth's atmosphere (50-760 Torr and 207-296 K). Intensities were calibrated using infrared spectra recorded at the Pacific Northwest National Laboratory (PNNL). These new cross sections will enable satellite retrievals of acetonitrile in the 3 μm region from atmospheric spectra recorded by satellite instruments, such as the ACE (Atmospheric Chemistry Experiment)-FTS.

  10. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  11. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    Science.gov (United States)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  12. Heavy-ion total and absorption cross sections above 25 MeV/nucleon

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1983-01-01

    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of heavy ion total and absorption cross sections at incident kinetic energies above 25 MeV/nucleon for use in cosmic ray high-energy heavy ion transport and shielding studies. Comparisons of predictions with nucleus-nucleus experimental data show excellent agreement except at the lowest energies, where the eikonal approximation may not be completely valid. Even at the lowest energies, however, agreement is typically within 20 percent.

  13. Absorption cross-sections of small quasi-spherical black holes: the massless scalar case

    CERN Document Server

    Moskalets, Tatiana

    2016-01-01

    We consider effects of non-uniformity of quasi-spherical small black hole horizons on scattering massless spineless particles in the long-wave approximation. Focusing on 4D flat and AdS neutral black hole backgrounds with conformally spherical geometry of the horizon, we observe the notable differences in compare to the scattering process on the spherically-symmetric black holes. In particular, the absorption cross-section becomes dependent on both, polar and azimuthal, spherical angles, projections of the angular momentum do not keep anymore and the angular momentum operator by itself, though remains quantised, is not quantised in integers. However, within the long-wave approximation, the main conclusion of previously obtained results on scattering on the spherically-symmetric black holes remains the same: the total absorption cross-section is proportional to the area of the black hole. The proportionality coefficient does not depend on the scalar wave frequency in the flat space black hole background, and i...

  14. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    Science.gov (United States)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  15. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M. [Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Remeš, Z. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, Prague 6 (Czech Republic); Gutsch, S.; Hiller, D.; Zacharias, M. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2016-01-11

    Absorption cross-section (ACS) of silicon nanocrystals (SiNCs) is determined via two completely independent approaches: (i) Excitation-intensity-dependent photoluminescence (PL) kinetics under modulated (long square pulses) pumping and (ii) absorbance measured by the photothermal deflection spectroscopy combined with morphology information obtained by the high-resolution transmission electron microscopy. This unique comparison reveals consistent ACS values around 10{sup −15} cm{sup 2} for violet excitation of SiNCs of about 3–5 nm in diameter and this value is comparable to most of direct band-gap semiconductor nanocrystals; however, it decreases steeply towards longer wavelengths. Moreover, we analyze the PL-modulation technique in detail and propose an improved experimental procedure which enables simpler implementation of this method to determine ACS of various (nano)materials in both solid and liquid states.

  16. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence

    International Nuclear Information System (INIS)

    Absorption cross-section (ACS) of silicon nanocrystals (SiNCs) is determined via two completely independent approaches: (i) Excitation-intensity-dependent photoluminescence (PL) kinetics under modulated (long square pulses) pumping and (ii) absorbance measured by the photothermal deflection spectroscopy combined with morphology information obtained by the high-resolution transmission electron microscopy. This unique comparison reveals consistent ACS values around 10−15 cm2 for violet excitation of SiNCs of about 3–5 nm in diameter and this value is comparable to most of direct band-gap semiconductor nanocrystals; however, it decreases steeply towards longer wavelengths. Moreover, we analyze the PL-modulation technique in detail and propose an improved experimental procedure which enables simpler implementation of this method to determine ACS of various (nano)materials in both solid and liquid states

  17. Absorption and scattering cross-section extinction values of silver nanoparticles

    Science.gov (United States)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671 nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  18. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    Science.gov (United States)

    Cheung, A. S.-C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E.; Guberman, S. L.

    1986-01-01

    The continuous absorption cross section of oxygen in the region 205-241 nm is studied as a function of path length and oxygen pressure. The technique used to study the continuous absorption cross section is described. Cross section measurements of oxygen in the wavelength region 193-205 nm obtained by Cheung et al. (1984) are applied in this experiment. The measured cross section is analyzed in terms of a Herzberg continuum and a pressure-dependent continuum. The total measured continuum cross section, the cross section involving two molecules of O2, and the Herzberg continuum absorption cross section values are calculated. It is observed that the Herzberg continuum cross section of oxygen values measured at 1 nm intervals in the region 195-241 nm, increase from 6.3 x 10 to the -24th sq cm at 195 nm to a maximum of 6.6 x 10 to the -24th sq cm at 201 nm and then decrease to 0.85 x 10 to the -24th sq cm at 241 nm. The Herzberg values are compared with data from previous investigations and the values correlate well.

  19. Infrared absorption cross sections for acetone (propanone) in the 3 μm region

    International Nuclear Information System (INIS)

    Infrared absorption cross sections for acetone (propanone), CH3C(O)CH3, have been determined in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures and pressures (50-760 Torr and 195-296 K) appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.

  20. ZZ SIGMNA-A, Photon Interaction and Absorption Cross-Section Library

    International Nuclear Information System (INIS)

    1 - Description of program or function: - Format: special format; - Number of groups: Photon interaction and absorption coefficients covering the energy range 1 KeV to 100 MeV. - Nuclides: Materials: A150TE PLAST (H, C, N, O, F, Ca); Ac; Air (N, O, Ar); Sb; Ar; As; At; Bakelite (C, H, O); Ba; BARSO4; Be; Bk; Bi; Bone (H, C, N, O, Mg, P, S, Ca); B; Br; C552SHONKA P (H, C, O, F, Si); Cd; Ca; Cf; CAPINTEC (H, C, O, F, Si); C; Ce; Cs; Cl; Cr; Co; Concrete (H, O, Na, Mg, Al, Si, S, K, Ca, Fe); Cu; Cm; Delrin (C, H, O); Dy; Er; Eu; Fat (H, C, N, O, S); F; Fr; FRICK8 (H, O, Na, S, Cl, Fe); Gd; Ga; Ge; Au; Hf; He; Ho; H; ICRP Cortical bone (H, C, N, O, Mg, P, S, Ca, Zn); ICRP Tissue (H, C, N, O, S, Mg, P, S, Cl, K, Ca, Fe, Zn); ICRU Tissue (H, C, N, O); In; I; Ir; Fe; Kr; Pb; LIFTLD (Li, F); Li; Lucite (C, H, O); Lu; Mg; Mn; Hg; Mo; Muscle (H, C, N, O, S, Mg, P, S, K, Ca); Nd; Ne; Np; Ni; Nb; N; Nylon (H, C, N, O); O; Pd; P; Pt; Pu; Po; Polyethylene (C, H); Polystyrene (C, H); K; Pr; Pm; Pa; Ra; Re; Rh; Rb; Ru; Sm; Sc; Se; Si; Ag; Sodium-iodide; Na; SOLWA1; SOLWA2; Sr; S; Ta; Te; Tb; Tl; Th; Tm; Sn; Ti; W; U; V; Water (H, O); Xe; Yb; Y; Zn; Zr. - Origin: Howerton, JRC. An extensive library of photon interaction coefficients has been developed by the Ontario Cancer Institute, Toronto, Ontario, Canada, based on the compilation of Plechaty, Cullen, and Howerton. In addition to partial cross section data, the following are given: mass attenuation coefficients, mass energy transfer coefficients, mass energy absorption coefficients, average energy transferred to electrons, average energy absorbed per interaction, and average stopping power of electrons. Partial interaction coefficients and absorption coefficients are useful in any radiation transport or other radiation analysis application. The data from the Ontario Cancer Institute are given for 94 elements and 25 composite materials covering the energy range 1 KeV to 100 MeV. The reactions considered are coherent and

  1. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    OpenAIRE

    Venot, O.; Fray, N.; Bénilan, Y.; Gazeau, M.-C.; Hébrard, E.; Larcher, G.; Schwell, M.; Dobrijevic, M.; Selsis, F.

    2013-01-01

    Context. Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section da...

  2. The thermal neutron absorption cross-sections, resonance integrals and resonance parameters of silicon and its stable isotopes

    International Nuclear Information System (INIS)

    The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si28, at En = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si30 has not yet been located. The thermal neutron absorption cross-section of Si28 appears to result mainly from a negative energy resonance, possibly the resonance at En = - 59 ± 5 keV detected by the Si28 (d,p) reaction. (author)

  3. Halo Gas Cross Sections And Covering Fractions of MgII Absorption Selected Galaxies

    CERN Document Server

    Kacprzak, G G; Steidel, C C; Murphy, M T

    2007-01-01

    We examine halo gas cross sections and covering fractions, f_c, of intermediate redshift MgII absorption selected galaxies. We computed statistical absorber halo radii, R_x, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths W_r(2796) > 0.3 Ang, we find 43 R_x and several non-absorbing galaxies lie at D ~ 0.6 for our sample. Moreover, the data suggest halo radii of MgII absorbing galaxies do not follow a luminosity scaling with beta in the range of 0.2-0.28, if f_c= 1 as previously reported. However, provided f_c~0.6, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with beta > 0.2 and R* = R_x/sqrt(f_c)= 110 kpc. No luminosity scaling (beta=0) is also consistent with the observed distribution of impact parameters if f_c < 0.37. The data support a scenario in which gaseous halos are patchy and likely hav...

  4. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section

    NARCIS (Netherlands)

    Xu, Bin; Zhang, Jibo; Fang, Honghua; Ma, Suqian; Chen, Qidai; Sun, Hongbo; Im, Chan; Tian, Wenjing

    2014-01-01

    Organic nonlinear optical materials combining high luminescence quantum yields and large two-photon absorption cross-sections are attractive for both fundamental research and practical applications, such as up-converted lasers and two-photon fluorescence microscopy. Herein, we reported a series of c

  5. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck; 10.1051/0004-6361/201220945

    2013-01-01

    UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Aims. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We also investigate the influence of these new data on the photochemistry of some exoplanets. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We implemented the mea...

  6. First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation

    Science.gov (United States)

    Yu, Dong; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng

    2016-05-01

    Time-dependent density functional theory-based first-principles calculations have been used to study the ionization process and electron excitation. The results show that the number of excited electrons follows the power law σ k I k at peak intensities of I employing the calculated cross section value in the plasma model, the damage threshold fluences are theoretically estimated, being consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. The preliminary multiscale model shows great potential in the simulation of laser processing.

  7. Nuclear transmission coefficients for calculation of the absorption cross section in the adiabatic coupled-channel approximation method

    International Nuclear Information System (INIS)

    Formulas which are needed to calculate transmission coefficients for the adiabatic coupled-channel approximation method are described. In terms of these coefficients, nuclear absorption cross sections may be obtained. First, derivations are given of various cross sections for a system of coupled inelastic channels in terms of the S matrix. The adiabatic approximation method is discussed for a rotational band, and the dynamical nuclear S matrix is obtained from the S matrix for scattering from a static rotor. The formulas are valid for a spheroidal rotor, with or without an extra-core particle, which does not interact with the projectile but does provide angular momentum to the target

  8. Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg continuum

    Science.gov (United States)

    Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.

    1988-01-01

    The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.

  9. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    OpenAIRE

    Kaya, Sarp; Sellberg, Jonas A.; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders

    2014-01-01

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in ...

  10. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J; Yih, T -S

    2014-01-01

    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cros...

  11. Enhancement of two-photon absorption cross section and singlet-oxygen generation in porphyrin-cored star polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We report a newly synthesized polymer of a star-shaped porphyrin compound(TPA-FxP) with four oligofluorene arms at its meso positions with the pronounced enhancement of the two-photon properties and the generation of singlet oxygen by utilizing the two-photon excited fluorescence resonance energy transfer.The steady-state spectra and transient triplet-triplet absorption spectra give evidence that the enhanced two-photon absorption cross section results from not only the through-space energy transfer(Frster) but also the through-bond energy transfer between conjugated peripheral oligofluorene arms and the porphyrin core.The two-photon absorption cross section at 780 nm up to 3360 GM(1 GM = 10-50 cm4·s/photon) of TPA-FxP was obtained,which is comparable to the highest values reported from other similar chemically modified porphyrin core compounds.Furthermore,the enhanced production of singlet oxygen under two-photon absorption conditions is also reported.

  12. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  13. Reengineering the optical absorption cross-section of photosynthetic reaction centers.

    Science.gov (United States)

    Dutta, Palash K; Lin, Su; Loskutov, Andrey; Levenberg, Symon; Jun, Daniel; Saer, Rafael; Beatty, J Thomas; Liu, Yan; Yan, Hao; Woodbury, Neal W

    2014-03-26

    Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers. PMID:24568563

  14. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    International Nuclear Information System (INIS)

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed

  15. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sellberg, Jonas A.; Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Kaya, Sarp [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Segtnan, Vegard H. [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nofima AS, N-1430 Ås (Norway); Chen, Chen [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ogasawara, Hirohito; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Pettersson, Lars G. M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  16. Measurements of the absorption cross section of (13)CHO(13)CHO at visible wavelengths and application to DOAS retrievals.

    Science.gov (United States)

    Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer

    2015-05-14

    The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information. PMID:25551419

  17. Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber

    CERN Document Server

    Badhrees, I; Kreslo, I; Messina, M; Moser, U; Rossi, B; Weber, M S; Zeller, M; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R

    2010-01-01

    This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-generation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: $\\sigma_ex$=(1.24$\\pm$0.10stat $\\pm$0.30syst)$\\times$10^{-56} cm$^4$s{-1}.

  18. Evaluation of the use of five laboratory determined ozone absorption cross sections in brewer and dobson retrieval algorithms

    Directory of Open Access Journals (Sweden)

    A. Redondas

    2013-09-01

    Full Text Available The primary ground-based instruments used to report total column ozone (TOC are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB and a new Institute of Environmental Physics (IUP, University of Bremen, set. The three Bass and Paur (1985 sets are: quadratic temperature coefficients from IGACO web page (IGQ4, the Brewer network operational calibration set (BOp, and the set used by Bernhard et al. (2005, in the reanalysis of the Dobson absorption coefficient values (B05. The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by −0.5%, the DBM data set changes the calculate TOC by −3.2%, and the IGQ4 data set at −45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2

  19. Empirical line lists and absorption cross sections for methane at high temperature

    CERN Document Server

    Hargreaves, Robert J; Bailey, Jeremy; Dulick, Michael

    2015-01-01

    Hot methane is found in many "cool" sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  20. The UV-visible absorption cross-sections of IONO2

    Directory of Open Access Journals (Sweden)

    R. A. Cox

    2002-06-01

    Full Text Available The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post-flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value for IONO2 is 4.6 x 10-2 s-1.

  1. The UV-visible absorption cross-sections of IONO2

    Directory of Open Access Journals (Sweden)

    J. C. Mössinger

    2002-01-01

    Full Text Available The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value for IONO2 is 4.0 x 10-2 s-1.

  2. The application of reduced absorption cross section on the identification of the compounds with similar function-groups

    Science.gov (United States)

    Yu, Fei; Zuo, Jian; Mu, Kai-jun; Zhang, Zhen-wei; Zhang, Liang-liang; Zhang, Lei-wei; Zhang, Cun-lin

    2013-08-01

    Terahertz spectroscopy is a powerful tool for materials investigation. The low frequency vibrations were usually investigated by means of absorption coefficient regardless of the refractive index. It leads to the disregard of some inherent low-frequency vibrational information of the chemical compounds. Moreover, due to the scattering inside the sample, there are some distortions of the absorption features, so that the absorption dependent material identification is not valid enough. Here, a statistical parameter named reduced absorption cross section (RACS) is introduced. This can not only help us investigate the molecular dynamics but also distinguish one chemical compound with another which has similar function-groups. Experiments are carried out on L-Tyrosine and L-Phenylalanine and the different mass ratios of their mixtures as an example of the application of RACS. The results come out that the RACS spectrum of L-Tyrosine and L-Phenylalanine reserve the spectral fingerprint information of absorption spectrum. The log plot of RACSs of the two amino acids show power-law behavior σR(~ν) ~ (ν~α), and there is a linear relation between the wavenumber and the RACS in the double logarithmic plot. The exponents α, at the same time, are the slopes of the RACS curves in the double logarithmic plot. The big differences of the exponents α between the two amino acids and their mixtures can be seen visually from the slopes of the RACS curves. So we can use RACS analytical method to distinguish some complex compounds with similar function-groups and mixtures from another which has similar absorption peaks in THz region.

  3. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    Science.gov (United States)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  4. Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs)

    International Nuclear Information System (INIS)

    Integrated infrared cross-sections and wavenumber positions for the vibrational modes of a range of hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs) have been calculated. Spectra were determined using a density functional method with an empirically derived correction for the wavenumbers of band positions. Radiative efficiencies (REs) were determined using the Pinnock et al. method and were used with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). For the HFEs and the majority of the molecules in the HG series HFPEs, theoretically determined absorption cross-sections and REs lie within ca. 10% of those determined using measured spectra. For the larger molecules in the HG series and the HG' series of HFPEs, agreement is less good, with theoretical values for the integrated cross-sections being up to 35% higher than the experimental values; REs are up to 45% higher. Our method gives better results than previous theoretical approaches, because of the level of theory chosen and, for REs, because an empirical wavenumber correction derived for perfluorocarbons is effective in predicting the positions of C-F stretching frequencies at around 1250 cm-1 for the molecules considered here.

  5. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    Science.gov (United States)

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) iodine oxides, but the formation and subsequent photolysis of IONO(2) is very inefficient as an ozone-depleting cycle.

  6. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR

    Science.gov (United States)

    Brauers, T.; Bossmeyer, J.; Dorn, H.-P.; Schlosser, E.; Tillmann, R.; Wegener, R.; Wahner, A.

    2007-07-01

    The results from a simulation chamber study on the formaldehyde (HCHO) absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS), the other at 2.7 pm (high-resolution, HR-DOAS). Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of para-formaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000) and the temperature coefficient of Cantrell (1990) were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a high-resolution cross section for HCHO which was not measured directly so far.

  7. Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application

    International Nuclear Information System (INIS)

    Highlights: ► Present glasses have high thermal stability. ► The glass sample C has the effective emission cross section bandwidth (64 nm). It has large stimulated emission cross-section (0.89 × 10−20 cm2). ► The optical gain coefficient to the population inversion of the 4I13/2 level is 8.87 cm−1. -- Abstract: Three samples of tellurite glasses within system 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3 doped with xEr2O3 ions (where x = 4000, 8000 and 10,000 ppm) have been prepared by using the conventional melt-quenching method. These glasses have high thermal stability proved by using differential thermal analysis (DTA) measurements. Elastic properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap technique at 5 MHz. Elastic moduli such as: longitudinal (λ), shear (μ), Bulk (B) and Young’s (Y) increased with the Er3+ concentration in the prepared glasses matrix. The optical properties of the glasses were estimated by measuring UV–vis-NIR spectroscopy. The Judd–Ofelt parameters, Ωt (t = 2, 4, 6) of Er3+ were evaluated from optical absorption spectra. The oscillator strength type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er3+ have been predicted using intensity Judd–Ofelt parameters. Gain cross-section for the Er3+ laser transition 4I13/2 → 4I15/2 was obtained. The results show 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3⋅10,000 ppm Er2O3 glass has the effective emission cross section bandwidth (64 nm) and large stimulated emission cross-section (0.89 × 10−20 cm2). The thermal stability, elastic and spectroscopic properties indicate that this glass doped with Er3+ is a promising candidate for optical applications and may be suitable for optical fiber lasers and amplifiers

  8. Radiation and chemistry in the stratosphere - Sensitivity to O2 absorption cross sections in the Herzberg continuum

    Science.gov (United States)

    Froidevaux, L.; Yung, Y. L.

    1982-01-01

    It is suggested that the discrepancies between observed and modeled vertical profiles of such halocarbons as CFCl3, as well as the problem of simultaneously fitting N2O, CH4, CF2Cl2 and CFCl3 profiles with a single eddy diffusion model, are due to an overestimation of the molecular oxygen absorption cross sections in the 200-220 nm spectral region. The replacement of current O2 cross sections in this range with values that are in better agreement with results for the compounds cited leads to N2O, CF2Cl2 and CFCl3 concentration reductions of factors 0.70, 0.62 and 0.19, respectively. Profiles of CH4, H2 and CO remain unchanged, and the predicted concentration of HNO3 above 30 km is reduced by about 50% for yet another improved fit with observations. It is noted that the correction proposed produces a 30% ozone increase near the 20-25 km peak.

  9. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    Directory of Open Access Journals (Sweden)

    C. S. Brauer

    2014-04-01

    Full Text Available Isoprene (C5H8, 2-methyl-1,3-butadiene is a volatile organic compound (VOC that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2 spectra were recorded at 278, 298 and 323 K in a 19.94 cm path length cell at 0.112 cm−1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.

  10. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z energies from 1 keV to 100 GeV.

  11. Technological study of measurement of absorption cross section of NO%测量NO气体吸收截面的方法

    Institute of Scientific and Technical Information of China (English)

    张颖超; 苗丰

    2011-01-01

    差分吸收光谱技术(DOAS)已经被广泛用于各种污染气体浓度的测量,其中影响其测量精度的主要因素就是气体吸收截面的测量.利用Lambert-Beer吸收定律以及自主设计的测量装置对大气的主要污染气体N0的吸收截面进行了测量,并采用多项式拟合的方法提高了测量的精度,根据所测得的吸收截面反演了N0气体的浓度值,取得了良好的效果.%Differential optical absorption spectrometry( DOAS) has been widely used for various polluting gas concentration measurement, which influence the measurement precision of the main factor is gas absorption section measurement. This paper using Lambert-Beer absorption law and the design of my own measuring device measuring the Absorption Cross Section of NO , and used polynomial fitting method to remove the Rayleigh scattering , Mie scattering and molecular absorption ,including broadband slowly varying spectrum in the Differential absorption spectrum of NO ,improves the accuracy of measurement. Then using least-square method inversion gas concentrations. The author inverted gas chroma value of different concentrations NO according to the measured absorption section , and achieved good effect. But this method have not obtained very ideal effect in the low concentrations,therefore , the author next work is to improve the measuring precision of the absorption cross section and inversion precision of the gas absorption cross section.

  12. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  13. Classical Calculations of Scattering Signatures from a Gravitational Singularity or the Scattering and Absorption Cross-Sections of a Black Hole

    Indian Academy of Sciences (India)

    Felix C. Difilippo

    2012-09-01

    Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.

  14. Measurement of the absorption cross sections of SiCl_4, SiCl_3, SiCl_2 and Cl at H Lyman-α wavelength

    OpenAIRE

    Mével, R.; Catoire, L.; M. Fikri; Roth, P.

    2013-01-01

    Atomic resonance absorption spectroscopy coupled with a shock tube is a powerful technique for studying high temperature dynamics of reactive systems. Presently, high temperature pyrolysis of SiCl_4–Ar mixtures has been studied behind reflected shock waves. Using time-resolved absorption profiles at 121.6 nm and a detailed reaction model, the absorption cross sections of SiCl_4, SiCl_3, SiCl_2 and Cl have been measured. Results agree well with available data for SiCl_4 and constitute, to our ...

  15. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    Science.gov (United States)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  16. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    Science.gov (United States)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  17. UV absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 between 210 and 350 K and the atmospheric implications

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2010-07-01

    Full Text Available Absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K. The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.

  18. UV absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 between 210 and 350 K and the atmospheric implications

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2010-04-01

    Full Text Available Absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K. The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.

  19. Temperature dependent ozone absorption cross section spectra measured with the GOME-2 FM3 spectrometer and first application in satellite retrievals

    Directory of Open Access Journals (Sweden)

    W. Chehade

    2012-10-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.

  20. High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K

    Directory of Open Access Journals (Sweden)

    V. Gorshelev

    2013-07-01

    Full Text Available In this paper we discuss the methodology of taking broadband relative and absolute measurements of ozone cross-sections including uncertainty budget, experimental set-ups, and methods for data analysis. We report on new ozone absorption cross-section measurements in the solar spectral region using a combination of Fourier transform and echelle spectrometers. The new cross-sections cover the spectral range 213–1100 nm at a spectral resolution of 0.02–0.06 nm in the UV-vis and 0.12–0.24 nm in the IR at eleven temperatures from 193 to 293 K in steps of 10 K. The absolute accuracy is better than three percent for most parts of the spectral region and wavelength calibration accuracy is better than 0.005 nm. The new room temperature cross-sections data are compared in detail with previously available literature data. The temperature dependence of our cross-sections is described in a companion paper.

  1. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  2. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    Science.gov (United States)

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

  3. Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier.

    Science.gov (United States)

    Banerjee, Saumyabrata; Koerner, Joerg; Siebold, Mathias; Yang, Qiuhong; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Loeser, Markus; Zhang, Haojia; Lu, Shenzhou; Hein, Joachim; Schramm, Ulrich; Kaluza, Malte C; Collier, John L

    2013-07-01

    Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

  4. Transmission measurement of photo-absorption cross section of aluminum in soft X-ray region of 50 to 250 eV

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; CUI Ming-Qi; ZHENG Lei

    2008-01-01

    The photo-absorption cross section of aluminum was obtained from the ratio of transmission of aluminum thin-films with different area densities from 50 to 250 eV with synchrotron radiation monochromatic beam.Two samples with different area densities were used to minimize the uncertainty caused by the sample surface oxidation and systematic factors of the X-ray source,beamline,and detector.The experimental results are in good agreement with the published data and FEFF program calculations in general.

  5. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

    International Nuclear Information System (INIS)

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S1 → Sn due to resonant absorption of a third pump photon. Subsequent Sn → S1 internal conversion (with τ1 = 1 ps) prepares a very hot S1 state which cools down with τ2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ(2) = 32 ⋅ 10−50 cm4 s at 752 nm are evaluated from the bleach signal

  6. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Sanjiv [Department of Basic & Applied Sciences, Punjabi University, Patiala-147002, Punjab, India. E-mail address: sanjivpurichd@yahoo.com (India)

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  7. Accuracy of the thermal neutron absorption cross section measurements (based on examples of selected pulsed beam methods); Dokladnosc pomiarow przekroju czynnego absorpcji neutronow termicznych (na przykladzie wybranych metod impulsowych)

    Energy Technology Data Exchange (ETDEWEB)

    Krynicka, E. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-12-31

    The problem of accuracy of the thermal neutron macroscopic absorption cross section determination is discussed on examples of selected measurement methods which use non-stationary neutron fields. The computer simulation method elaborated by the author is presented as a procedure for estimating the standard deviation of the measured absorption cross section. The computer simulation method presented can be easily utilized to estimate the accuracy of measurement of various physical magnitudes. (author) 46 refs, 3 figs, 1 tab

  8. Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures

    International Nuclear Information System (INIS)

    Amyloid diseases such as Alzheimer's and spongiform encephalopathies evolve from aggregation of proteins due to misfolding of the protein structure. Early disease handling require sophisticated but yet simple techniques to follow the complex properties of the aggregation process. Conjugated polyelectrolytes (CPEs) have shown promising capabilities acting as optical biological sensors, since they can specifically bind to polypeptides both in solution and in solid phase. The structural changes in biomolecules can be monitored by changes of the optical spectra of the CPEs, both in absorption and emission modes. Notably, the studied CPEs possess multi-photon excitation capability, making them potential for in vivo imaging using laser scanning microscopy. Aggregation of proteins depends on concentration, temperature and pH. The optical effect on the molecular probe in various environments must also be investigated if applied in these environments. Here we present the results of quantum efficiency and two-photon absorption cross-section of three CPEs: POMT, POWT and PTAA in three different pH buffer systems. The extinction coefficient and quantum efficiency were measured. POMT was found to have the highest quantum efficiency being approximately 0.10 at pH 2.0. The two-photon absorption cross-section was measured for POMT and POWT and was found to be more than 18-25 times and 7-11 times that of Fluorescein, respectively. We also show how POMT fluorescence can be used to distinguish conformational differences between amyloid fibrils formed from reduced and non-reduced insulin in spectrally resolved images recorded with a laser scanning microscope using both one- and two-photon excitation

  9. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA

    Directory of Open Access Journals (Sweden)

    J. C. Barnard

    2008-05-01

    Full Text Available Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR and an actinic flux spectroradiometer (SR, we derive aerosol single scattering albedo, π0,λ, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm π0,λ is much lower compared to π0,λ at 500 nm indicating enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving the organic part of the aerosol as the only possible absorber. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS along with the inferred π0,λ to estimate the Mass Absorption Cross section (MAC for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as "radiatively correct" because when used in radiative transfer calculations the calculated irradiances/actinic fluxes match those measured at the wavelengths considered here. For an illustrative case study described here, we estimate that the light absorption by the "brown" (organic carbonaceous aerosol can add about 40% to the light absorption of black carbon in Mexico City. This contribution will vary depending on the relative abundance of organic carbon relative to black carbon. Furthermore, our analysis indicates that organic aerosol would slow down photochemistry by selectively scavenging the light reaching the ground at those wavelengths that drive photochemical reactions. Finally, satellite retrievals of trace gases that are used to infer emissions currently assume that the MAC of organic carbon is zero. For trace gases that are

  10. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    Science.gov (United States)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  11. A Novel Algorithm Applied to Common Thermal-Optical Transmission Data for Determining Mass Absorption Cross Sections of Atmospheric Black Carbon: Applications to the Indian Outflow

    Science.gov (United States)

    Andersson, A.; Sheesley, R. J.; Kirillova, E.; Gustafsson, O.

    2010-12-01

    High wintertime concentrations of black carbon aerosols (BCA) over South Asia and the Northern Indian Ocean are thought to have a large impact on the regional climate. Direct absorption of sunlight by BCAs causes heating of the atmosphere and cooling at the surface. To quantify such effects it is important to characterize a number of different properties of the aerosols. Here we present a novel application of the thermal-optical (OCEC) instrument in which the laser beam is used to obtain optical information about the aerosols. In particular, the novel algorithm accounts for non-carbon contributions to the light extinction. Combining these light extinction coefficients with the simultaneously constrained Elemental Carbon (EC) concentrations, the Mass Absorption Cross Section (MAC) is computed. Samples were collected during a continuous 14-month campaign Dec 2008 - Mar 2009 at Sinaghad in Western India and on Hanimaadhoo, the Northernmost Island in the Maldives. This data set suggests that the MAC of the BCAs are variable, sometimes by a factor of 3 compared to the mean. This observation adds to the complexity of calculating the radiative forcing for BCAs, reinforcing previous observations that parameters such as aerosol mixing state and sources need to be taken into account.

  12. Group cross sections calculations

    International Nuclear Information System (INIS)

    Just a few methods have been developped to compute multigroup cross-sections from ENDF data. We have developped an original method in order to get accuracy and to reduce the number of discretization points in the same time; this is why we have tried to use polynomial integration. In this paper, we describe this method: in the first part, we recall some physical hypothesis generally used to solve the linear Boltzmann equation: that is the frame in which the numerical method has been developped. Polynomial methods are really powerfull only if discretization points are suitably chosen. This choice is explained in the next part of this paper. In conclusion, some numerical results are given to illustrate our method

  13. Neutrino Cross section Future

    CERN Document Server

    Gollapinni, Sowjanya

    2016-01-01

    The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...

  14. Diffractive and rising cross sections

    International Nuclear Information System (INIS)

    The energy dependence of the diffractive component of the proton-proton cross section is discussed and its contribution to the rise of the total cross section at high energies is examined. 17 refs., 9 figs

  15. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    This paper discusses the following topics: 14 MeV pulsed neutron facility; detection and measurement system; 238U capture cross sections at 23 and 964 keV using photon neutron sources; capture cross sections of Au-197 at 23 and 964 keV; and yttrium nuclear cross section measurement

  16. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    Science.gov (United States)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  17. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  18. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements

    OpenAIRE

    E. Spinei; A. Cede; Swartz, W. H.; Herman, J.; G. H. Mount

    2014-01-01

    This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model ...

  19. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    OpenAIRE

    E. Spinei; A. Cede; Swartz, W. H.; Herman, J.; G. H. Mount

    2014-01-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (...

  20. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    Science.gov (United States)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T requires prior knowledge of the tropospheric-stratospheric NO2 columns partitioning in the measurement. In addition, it assumes that this partitioning is constant throughout the measurement period (sometimes months). Fitting of two σ (NO2) at fixed temperatures, typically 220 and 298 K, assumes constant stratospheric and tropospheric NO2 T as a function of time. Neither assumption is correct, except as a convenient approximation. TESEM does not require prior knowledge of NO2 effective temperatures during the DOAS fitting stage and retrieves T from the DOAS fitting results themselves. TESEM was applied to the

  1. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  2. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  3. The total charm cross section

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  4. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    Science.gov (United States)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T requires prior knowledge of the tropospheric-stratospheric NO2 columns partitioning in the measurement. In addition, it assumes that this partitioning is constant throughout the measurement period (sometimes months). Fitting of two σ (NO2) at fixed temperatures, typically 220 and 298 K

  5. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    Directory of Open Access Journals (Sweden)

    E. Spinei

    2014-06-01

    Full Text Available This paper presents a TEmperature SEnsitivity Method (TESEM to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T, and to separate stratospheric and tropospheric columns from direct-sun (DS ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS fitting of the linear temperature-dependent NO2 absorption cross section, σ (T, regression model (Vandaele et al., 2003. The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE. Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles 2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI chemistry–transport model (CTM simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November–March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3–5 K according to GMI simulations. Traditionally, either σ (NO2 is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric temperatures. Use of a single T requires prior knowledge of the tropospheric–stratospheric NO2

  6. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  7. The total charm cross section

    OpenAIRE

    R. Vogt

    2007-01-01

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.

  8. Neutron capture cross section measurement techniques

    International Nuclear Information System (INIS)

    A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)

  9. Proton-nucleus cross section at high energies

    OpenAIRE

    Wibig, Tadeusz; Sobczynska, Dorota

    1998-01-01

    Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sect...

  10. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  11. Revolutionizing Cross-sectional Imaging

    CERN Document Server

    Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou

    2014-01-01

    Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...

  12. Probe into Design of Novel Variable Cross-section Double Cavity Noise Absorption Structure%新型变截面双空腔吸声结构设计探讨

    Institute of Scientific and Technical Information of China (English)

    吕忠达; 陈涛; 邱贤锋

    2012-01-01

    In order to change current situations of serious pollution of traffic noise, this paper deigns a novel variable cross-section double cavity noise absorption structure, which is composed of five parts, i. e. metal acoustic panel, front variable cross-section cavity, middle absorption insulating layer, rear cavity and back sound insulating board. Based on measurement test for acoustic absorption factors in reverberation room, all acoustic absorption factors of this noise absorption structure at medium and low frequency range of 250 ~ 1 000 Hz are over 0. 65, and overall noise reduction coefficients are more than 0.60 with remarkable improvement in comparison with conventional noise absorption structure.%为改变高速公路交通噪声的严重污染现状,设计一种新型变截面双空腔吸声结构,其是由金属吸声板、前部变截面空腔、中间吸声隔层、后部空腔、背部隔声板5大部分构成.由混响室吸声系数的测定试验可知,该吸声结构在250~1 000 Hz中低频段的吸声系数均在0.65以上,总体降噪系数均大于0.60,较传统吸声结构,其吸声降噪效果有显著提升.

  13. CdSe/ZnS量子点光谱吸收截面和辐射截面的确定%Determination of spectrum absorption and emission cross-sections of CdSe/ZnS quantum dot

    Institute of Scientific and Technical Information of China (English)

    程成; 涂王平

    2013-01-01

    提出了一种确定量子点吸收和辐射截面的简单和准确的方法.该方法根据Lambert-Beer定律,通过测量量子点的吸收谱确定吸收截面.然后,通过测量发射光谱,并与吸收谱作归一化处理,根据Mc Cumber理论来确定辐射截面.实际计算了辐射峰分别位于530 nm和615 nm的两种尺寸CdSe/ZnS量子点的吸收和辐射截面随波长的变化.这些光谱截面数据对CdSe/ZnS掺杂的光纤放大器和光纤激光器有重要的意义.%A simple and accurate method to determine spectrum absorption and emission crosssections of quantum dots (QDs) is presented in this paper.In this method,the absorption crosssections are determined according to Lambert-Beer's law and the measured first absorption spectra of the QD.Then,the emission cross-sections are determined by using the Mc Cumber theory and normalizing both the measured absorption and emission peaks.As an example,the cross-sections of CdSe/ZnS QDs in two sizes are obtained,one of which the emission peak locates at 530 nm,and another at 615 nm.The obtained cross-sections are available for investigating gain and excited radiation of quantum dots and configuring QD optoelectronic devices in the future.

  14. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Kaushik D.; Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  15. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    International Nuclear Information System (INIS)

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins

  16. Measurement of the Neutron Capture Cross Section of the Fissile Isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a Fission Tagging Based on Micromegas Detectors

    CERN Document Server

    Balibrea, J; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lampoudis, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.

  17. Measurement of the neutron capture cross section of the fissile isotope $^{235}$U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors

    CERN Document Server

    Mendoza, E; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Lampoudis, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P

    2014-01-01

    Actual and future nuclear technologies require more accurate nuclear data on the (n, $\\gamma$) cross sections and $\\alpha$-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission $\\gamma$-ray background competing with the weaker $\\gamma$-ray cascades used as the experimental signature of the (n, $\\gamma$) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,$\\gamma$ ) cross section and $\\alpha$- ratios of fissile isotopes and used for the case of the $^{235}$U isotope. The setup consists in a set of micromegas fission detectors surrounding $^{235}$U samples and placed inside the segmented BaF$_2$ Total Absorption Calorimeter.

  18. Metonymy and Cross Section Demand

    OpenAIRE

    Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael

    1996-01-01

    Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...

  19. Wind Turbine Radar Cross Section

    OpenAIRE

    David Jenn; Cuong Ton

    2012-01-01

    The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...

  20. Cross-sectional Tobin's Q

    OpenAIRE

    Frederico Belo; Chen Xue; Lu Zhang

    2010-01-01

    The neoclassical investment model matches cross-sectional asset prices both in first differences and in levels. With ten book-to-market deciles as the testing portfolios, the investment model largely matches the Tobin's Q spread and the average return spread across the extreme deciles. The parameter estimates imply low adjustment costs around 1.7% of sales. The model's fit results from three aspects of our econometric strategy: (i) We test the model at the portfolio level to alleviate the imp...

  1. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  2. A measuring method of photo-electric cross section. Application to high-Z elements between 40 keV and 220 keV. Measurement of K absorption edge energy of Au, Th, U, Pu

    International Nuclear Information System (INIS)

    This study first describes a bent crystal monochromator developed for the production of monochromatic beams in a continuous energy range from 30 to 250 keV; it is completed by a metrological application of the device (determination of K absorption edge energy of Au, Th, U, Pu). A method and the associated experimental procedure were developed to measure the photo-electric cross section for high-Z elements; the results are presented with a relative uncertainty ranging between 3 and 6%. Finally, the experimental values are compared with values calculated from theories using self-consistent potential models

  3. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  4. Parametric equations for calculation of macroscopic cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  5. Electron-Impact Ionization Cross Section Database

    Science.gov (United States)

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  6. Kinetics of the gas phase reaction OH+NO(+M)->HONO(+M) and the determination of the UV absorption cross sections of HONO

    DEFF Research Database (Denmark)

    Pagsberg, P.; Bjergbakke, E.; Ratajczak, E.;

    1997-01-01

    The reaction OH + NO(+ M) --> HONO(+ M) with M = SF6 as a third body has been employed as a clean source for recording the near-ultraviolet absorption spectrum of HONO without interference from other absorbing species. The reaction was initiated by the pulse radiolysis of SF6/H2O/NO mixtures with...... total pressures in the range 10-1000 mbar at 298 K. The pressure dependence of the rate coefficient was studied by time-resolved UV and IR spectroscopy. By analysis of the fall-off curve we have derived a value for the limiting low pressure rate constant k(0)/[SF6] = (1.5 +/- 0.1) X 10(-30) cm(6...

  7. [Fast neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  8. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  9. Analytical approximations for x-ray cross sections III

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, F; Lighthill, R

    1988-08-01

    This report updates our previous work that provided analytical approximations to cross sections for both photoelectric absorption of photons by atoms and incoherent scattering of photons by atoms. This representation is convenient for use in programmable calculators and in computer programs to evaluate these cross sections numerically. The results apply to atoms of atomic numbers between 1 and 100 and for photon energiesgreater than or equal to10 eV. The photoelectric cross sections are again approximated by four-term polynomials in reciprocal powers of the photon energy. There are now more fitting intervals, however, than were used previously. The incoherent-scattering cross sections are based on the Klein-Nishina relation, but use simpler approximate equations for efficient computer evaluation. We describe the averaging scheme for applying these atomic results to any composite material. The fitting coefficients are included in tables, and the cross sections are shown graphically. 100 graphs, 1 tab.

  10. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  11. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  12. Cross Sections for Electron Collisions with Methane

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  13. Ion and electron impact ionization cross sections

    International Nuclear Information System (INIS)

    Several current projects are described in which cross sections of interest to radiation physics are being measured. These include total and multiple ionization cross sections for protons on several gases covering a wide energy range, the measurement of cross sections differential in the angle and energy of ejected electrons for several gases including water vapor, and a review of proton ionization data. The work on water vapor has also been extended to electron and neutral hydrogen impact. A brief discussion is also given of some systematics of ionization cross sections. 13 references

  14. Damage cross section library (DAMSIG77)

    International Nuclear Information System (INIS)

    The damage cross sections of various materials are converted to a data format, which can be used as library for the program SAND-II. The materials available in this library are graphite, stainless steel, aluminium, silicium, chromium, iron, nickel, copper, zirconium, molybdenum, tungsten, vanadium and niobium. A number of these materials have more than one cross section set, originating from different evaluations. Cross sections for some activation reactions, commonly used to determine thermal and fast neutron fluences have been included too. Moreover, also some artificial cross sections are introduced in this library which can be used to derive values for some physical quantities which may characterize neutron spectra

  15. Nucleon-XcJ Dissociation Cross Sections

    Institute of Scientific and Technical Information of China (English)

    冯又层; 许晓明; 周代翠

    2002-01-01

    Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.

  16. The neutron cross-sections of Xe135

    International Nuclear Information System (INIS)

    Measurements of the total and absorption cross-sections of Xe135 reviewed briefly. The low-energy cross-section is very large and dominated by a single resonance at 0.084 eV; the spin state for this level is not known, this being one of the major uncertainties in the data. The resonance parameters given in the literature were found to give a good fit to the total cross-section but failed to reproduce the preferred 2200 m/sec. value of σγ. A new set of parameters was therefore deduced, by a least-squares analysis, which gave this preferred value of σγ and fitted the shape of the total cross section curve. To obtain this fit it was necessary to re-normalise the curve of σT by 4%. The new parameters are listed, and a discussion of the probable accuracy of the data is included. (author)

  17. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements

    Science.gov (United States)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-12-01

    This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.

  18. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements

    Directory of Open Access Journals (Sweden)

    E. Spinei

    2014-12-01

    Full Text Available This paper presents a temperature sensitivity method (TESEM to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T, and to separate stratospheric and tropospheric columns from direct-sun (DS, ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS fitting of the linear temperature-dependent NO2 absorption cross section, σ (T, regression model (Vandaele et al., 2003. Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3–5 K. These assumptions were derived from the Global Modeling Initiative (GMI chemistry-transport model (CTM simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1 the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF, CA, USA (34.38° N/117.68° W; (2 Pullman, WA, USA (46.73° N/117.17° W; (3 Greenbelt, MD, USA (38.99° N/76.84° W; and (4 Cabauw, the Netherlands (51.97° N/4.93° E during July 2007, June–July 2009, July–August and October 2011, November 2012–May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.

  19. Differential cross sections of positron hydrogen collisions

    Institute of Scientific and Technical Information of China (English)

    于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君

    2016-01-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.

  20. A nuclear cross section data handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  1. Systematics of (n,2n) Cross Sections

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the

  2. Average Cross Section Evaluation - Room for Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Frohner, G.H. [Forschungszentrum Karlsruhe Institut fur Kern- und Energietechnik, Karlsruhe (Germany)

    2006-07-01

    Full text of publication follows: Techniques for evaluation of average nuclear cross sections are well established. Nevertheless there seems room for improvement. Heuristic expressions for average partial cross sections of the Hauser-Feshbach type with width fluctuation corrections could be replaced by the correct GOE triple integral. Transmission coefficients derived from macroscopic models (optical, single and double hump fission barrier, etc) lead to better descriptions of cross section behaviour over wide energy ranges. At higher energies (n,{gamma}n') reactions compete with radiative capture (Moldauer effect). In all cross section modeling one must distinguish properly between average S- and R-matrix parameters. The exact relationship between them is given, as well as the connection to Endf format rules. Fitting codes (e.g. FITACS) should be able to digest observed data directly, instead of only reduced data corrected already for self shielding and multiple scattering (e.g. with SESH). (author)

  3. Status of pseudo-fission-product cross-sections for fast reactors

    International Nuclear Information System (INIS)

    Within the framework of the Subgroup 17 (SG17) benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (FR), a comparison of lumped or pseudo-fission-product cross-sections for fast reactors has been made. Several parameters have been compared: the one- group cross-sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross-sections, and the one-group cross sections of individual fission products. Graphs of the multi-group cross-sections and those of capture cross-sections for 27 nuclides have also been compared. (R.P.)

  4. Neutron capture cross sections from Surrogate measurements

    OpenAIRE

    Scielzo N.D.; Dietrich F.S.; Escher J.E.

    2010-01-01

    The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  5. Neutron capture cross sections from Surrogate measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2010-03-01

    Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  6. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  7. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  8. Photoionization cross section of 1s orthoexcitons in cuprous oxide

    OpenAIRE

    Frazer, Laszlo; Chang, Kelvin B.; Poeppelmeier, Kenneth R.; Ketterson, John B.

    2014-01-01

    We report measurements of the attenuation of a beam of orthoexciton-polaritons by a photoionizing optical probe. Excitons were prepared in a narrow resonance by two photon absorption of a 1.016 eV, 54 ps pulsed light source in cuprous oxide (Cu2O) at 1.4 K. A collinear, 1.165 eV, 54 ps probe delayed by 119 ps was used to measure the photoionization cross section of the excitons. Two photon absorption is quadratic with respect to the intensity of the pump and leads to polariton formation. Ioni...

  9. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  10. Photodisintegration Cross Section of 241Am

    Science.gov (United States)

    Tonchev, A. P.; Hammond, S.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2009-03-01

    The photodisintegration cross section of radioactive 241Am has been obtained for the first time using monoenergetic γ-ray beams from the HIγS facility. The induced activity of 240Am produced via the 241Am(γ,n) reaction in the γ-ray energy range from 9.5 to 16 MeV was measured by the activation technique utilizing high resolution HPGe detectors. The 241Am(γ,n) cross section was determined both by measuring the absolute γ-ray flux and by comparison to the 197Au(γ,n) and 58Ni(γ,n) cross section standards. The experimental data for the 241Am(γ,n) reaction in the giant dipole resonance energy region is compared with statistical nuclear-model calculations.

  11. Neutron cross section of methane hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)

    2004-03-01

    To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)

  12. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  13. Charged particle reaction cross sections and nucleosynthesis

    International Nuclear Information System (INIS)

    The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated

  14. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...

  15. The hadronic cross section measurement at KLOE

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, A.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe Postfach 3640, D-76021 Karlsruhe (Germany); Lu, F.; Martemianov, M.; Martini, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Petrolo, E.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Versaci, R.; Villella, I.; Xu, G

    2005-07-15

    KLOE uses the radiative return to measure cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) at the electron-positron collider DA{phi}NE. Divinding by a theoretical radiator function, we obtain the cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) for the mass range 0.35

  16. Atlas of neutron capture cross sections

    International Nuclear Information System (INIS)

    This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs

  17. Top quark cross sections and differential distributions

    OpenAIRE

    Kidonakis, Nikolaos

    2011-01-01

    I present results for the top quark pair total cross section and the top quark transverse momentum distribution at Tevatron and LHC energies. I also present results for single top quark production. All calculations include NNLO corrections from NNLL threshold resummation.

  18. Fusion cross sections and the new dynamics

    International Nuclear Information System (INIS)

    The prediction of the need for an extra push over the interaction barrier in order to make the heavier nuclei fuse is made the basis of a simple algebraic theory for the energy-dependence of the fusion cross-section. A comparison with recent experiments promises to provide a quantitative test of the New Dynamics

  19. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  20. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d3/2 electron in the U atom transfers into the d-electron site of U+(4I9/2) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10-15 cm2) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U+ ion. Charge transfer cross section between U+ in the first excited state (289 cm-1) and U in the ground state was also obtained. (author)

  1. Neutron cross sections of importance to astrophysics

    International Nuclear Information System (INIS)

    Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references

  2. HF field absorption by turbulent plasma in crossed fields

    International Nuclear Information System (INIS)

    The paper studies the absorption of HF electromagnetic radiation by plasma with ion-sound turbulence excited by electrons which drift in constant crossed electric and magnetic fields. A strong absorption anisotropy is revealed in the last case for linearly polarized radiation, which anisotropy depends on field strength vector orientation relative to the electron to the electron drift direction

  3. A New Neutrino Cross Section Data Ressource

    CERN Document Server

    Whalley, M R

    2005-01-01

    We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.

  4. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  5. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  6. Jet cross sections and PDF constraints

    CERN Document Server

    CMS Collaboration

    2012-01-01

    A measurement of inclusive jet and dijet production cross sections is presented. Data from LHC proton-proton collisions at $\\sqrt{s}=7\\TeV$, corresponding to $4.67\\fbinv$ of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm of size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $\\pt=2\\TeV$, and dijet invariant mass $M_{JJ}=5\\TeV$. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using various sets of parton distribution functions.

  7. The photoneutron cross section of 20Ne

    International Nuclear Information System (INIS)

    The photoneutron cross section of 20Ne has been measured over a photon energy range 16 to 29 MeV in steps of 100 keV. The giant dipole resonance is resolved into three strong peaks below 21 MeV and at least two broader resonances at higher excitations. This structure is consistent with earlier measurements of poorer resolution and shows a correlation with the recent calculations of Schmid and Do Dang. Comparisons with high resolution neutron time-of-flight and electron scattering data indicate that there appear to exist in the giant resonance of 20Ne, regions of structure roughly 2-3 MeV wide which exhibit localised characteristics related to the excitation mechanisms. The role of deformation and configuration splitting effects in the cross section are discussed and possible directions of further study are noted which might clarify the situation more fully

  8. Electron capture cross sections for stellar nucleosynthesis

    CERN Document Server

    Giannaka, P G

    2015-01-01

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  9. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  10. Reinforced concrete columns of variable cross section

    OpenAIRE

    Brant, N.F.A.

    1984-01-01

    The results of a series of 19 full scale tests carried out on pin-ended reinforced concrete columns are reported. The columns tested had either tapered rectangular sections along the length or octagonal cross sections. All columns, except the last 6, were subjected to uniaxial eccentricities at one of the ends (the stronger end), and a nominally concentric load at the other end. For the case of the last six columns the loading applied at the stronger end was biaxially eccentric. For each of t...

  11. Inclusive jet cross section at D0

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1996-09-01

    Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.

  12. How to Calculate Colourful Cross Sections Efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank

    2008-09-03

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  13. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  14. Fusion cross sections at deep subbarrier energies

    OpenAIRE

    Hagino, K.; Rowley, N.; Dasgupta, M

    2003-01-01

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisi...

  15. Fully double-logarithm-resummed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-04-15

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order. (orig.)

  16. Jet cross sections in leptoproduction from QCD

    International Nuclear Information System (INIS)

    We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic ep, νp and anti νp scattering up to order αsub(s) of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust, p2sub(Tin) and p2sub(Tout) are predicted for all three reactions and various values of W and Q. (orig.)

  17. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  18. Fusion cross sections measurements with MUSIC

    Science.gov (United States)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  19. Electron collision cross sections and radiation chemistry

    International Nuclear Information System (INIS)

    A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures

  20. Neutron cross section standards and instrumentation

    Science.gov (United States)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  1. Inelastic cross section measurements at LHC

    CERN Document Server

    Bindi, M; The ATLAS collaboration

    2012-01-01

    The dependence of the rate of proton–proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurements of the inelastic proton–proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS and CMS detectors at the Large Hadron Collider. For ATLAS the events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3 ± 2.1 mb is measured for ξ > 5×10−6, where ξ is calculated from the invariant mass, MX, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. For CMS a new method to measure the inelastic pp cross section ha...

  2. Cross-section reconstruction during uniaxial loading

    International Nuclear Information System (INIS)

    The inelastic response of materials to applied uniaxial loading is typically measured using tensile or compressive specimens of an initially circular cross-section. Under deformation, this cross-section may become elliptical due to anisotropic material behaviour. An optical technique for measuring the elliptical deformation of anisotropic, homogeneous cylindrical specimens undergoing uniaxial deformation is presented. It enables the quantification of anisotropic deformation in situ and provides data for material characterization. Three or more silhouette views of a specimen are obtained using multiple cameras or mirrored views. The positions of the edges are computed using a sub-pixel edge detection method, and 3D tangent rays from the camera through these positions are calculated. These bounding tangents are used as the basis for an elliptical fit by least squares at cross-sections along the length of the specimen. Stochastic error estimates are performed by simulation of the experiment. Error estimates, for the experimental set-up used, are also calculated by reconstructing elliptical prisms of precisely measured dimensions. Example reconstructions from specimens of rolled titanium deformed plastically in tension at quasi-static (7 × 10−4 s−1) and high strain rates (3 × 103 s−1) are presented

  3. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.;

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  4. SU-E-I-43: Photoelectric Cross Section Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Haga, A; Nakagawa, K [The University of Tokyo Hospital, Tokyo (Japan); Kotoku, J [Teikyo University, Tokyo (Japan); Horikawa, Y [Juntendo University, Tokyo, Tokyo (Japan)

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  5. The 237U(n,f) Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Britt, H C; Wilhelmy, J B

    2003-03-03

    The purpose of this note is to combine existing information on the {sup 237}U(n,f) cross section to determine if some consistency can be obtained for the neutron induced fission excitation of {sup 237}U. The neutron induced fission cross section of the 6.8 day {sup 237}U was measured directly by McNally et al. in 1968 using the Pommard nuclear device test. At the same time critical assembly measurements were done at Los Alamos using the Flattop assembly. A previous measurement was also made at LASL in 1954 with two different neutron sources, each peaked near 200 keV. The results were 0.66 {+-} 0.10 b and 0.70 {+-} 0.07 b for the (n,f) cross section. More recently Younes and Britt have reanalyzed direct reaction charged particle data of Cramer and Britt that had determined the fission probability of the {sup 238}U compound nucleus as a function of nuclear excitation energy. They have combined fission probabilities with calculated neutron absorption cross sections, including corrections for the differences in angular momentum between the direct and neutron induced reactions. From this analysis they have extracted equivalent {sup 237}U(n,f) cross sections. The technique for extracting surrogate (n,f) cross sections from (t,pf) data has been demonstrated in a recent publication for the test case {sup 235}U(n,f). In addition to this experimental information, Lynn and Hayes have recently done a new theoretical study of the fission cross sections for a series of isotopes in this region. A summary plot of the data is shown in Fig. 1. Below 0.5 MeV the McNally, Cowan, and Younes-Britt results are in reasonable agreement. The average cross section in the Younes-Britt results, for En = 0.1 to 0.4 MeV, is 0.80 times the McNally values which is well within the errors of the McNally experiment. Above 0.5 MeV the McNally results diverge toward higher values. It should be noted that this divergence begins approximately at the {sup 237}Np threshold and that {sup 237}Np is the

  6. Simulation of cross sections for practical ALCHEMI

    International Nuclear Information System (INIS)

    Full text: Precisely known atomic scattering factors are essential for accurate atom location by channeling enhanced microanalysis (ALCHEMI) based on inner-shell ionization. For ALCHEMI using energy dispersive x-ray analysis (EDX), first principles calculations of ionization cross sections, realistically modelling the 'delocalization' of the ionization interaction, give excellent agreement with experiment. Such calculations are complex and computationally intensive. Hence, simple analytic forms are often assumed to describe the ionization potential. Such an approach assumes that the precise shape of the ionization potential is not important but that at least the half width at half maximum (HWHM) should be accurately estimated, for example using estimates of the HWHM from root-mean-square impact parameters for ionization. However this is generally not a good approximation and we have provided more realistic estimates. These are based on accurate atomic scattering form factors for ionization that have been calculated from first principles using relativistic Hartree-Fock wave functions for bound states and Hartree-Slater wave functions for the continuum states. The effective ionization interaction may be approximated by an equivalent local potential. The scattering factors have been calculated for K-shell ionization for elements in the range Z= 6 (carbon) to Z = 50 (tin) and for Z-shell ionization in the range Z = 20 (calcium) to Z = 60 (neodymium). Accurate values of the scattering factors can be obtained by interpolation for incident electron energies between 50 and 400 keV. The utility of these form factors is illustrated, using some data obtained by Matsumura and coworkers during their project to investigate radiation-induced disordering in magnesium aluminate spinel. High angular resolution electron channeling x-ray spectroscopy was employed to investigate ion displacements in MgOnAl2O3 (n = 1.0 and 2.4) irradiated with 1 MeV Ne+ ions or 900 keV electrons at 873

  7. Neutron cross-section determination in geological samples (U)

    International Nuclear Information System (INIS)

    The Prompt Gamma Neutron Activation Analysis (PGAA) technique yields elemental composition data which can be used to calculate the macroscopic cross section for any sample. The Small Sample Reactivity Measurements (SSRM) technique yields the macroscopic thermal absorption directly. Experimentally, PGAA is somewhat more difficult because of the calibration and data handling than is SSRM. However, SSRM requires a mathematical model of the reactor which means a rather complicated analysis. Once the model and calibration are completed, data analysis is routine. The SSRM technique is production oriented. 9 figures

  8. 非相干光宽带腔增强吸收光谱技术应用于SO2弱吸收的测量%An Incoherent Broadband Optical Cavity Spectroscopy for Measuring Weak Absorption Cross Section of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    段俊; 秦敏; 方武; 胡仁志; 卢雪; 沈兰兰; 王丹; 谢品华; 刘建国

    2016-01-01

    As a highly sensitive detection technology ,incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) have successfully measured a variety of trace gases .According to the principle of cavity enhanced absorption spectroscopy ,if the accurate concentration of the target gas ,the curve of the mirror reflectance ,effective absorption path length ,the light intensity of the absorbing gas and non-absorbing gas are known ,the absorption cross section of the absorption gas can be measured .The accurate measurements of absorption cross section are necessary for satellite retrievals of atmospheric trace gases and the atmos-pheric research .This paper describes an incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) instrument with 365 nm LED as the light source for measuring absorption cross section of SO2 from 357 to 385 nm which is arising from the spin-forbidden a3 B1 — X1 A1 transition .In comparison to the literature absorption cross section of SO 2 ,and correlation coeffi-cient r is 0.997 3 .The result shows the potential of the IBBCEAS system for measuring weak absorption cross section .%非相干光宽带腔增强吸收光谱作为高灵敏检测技术 ,已成功应用于多种大气痕量气体浓度的测量.根据腔增强吸收光谱技术测量原理可知 ,若已知测量气体准确浓度 ,镜片反射率随波长的变化曲线、有效吸收长度、光学腔内有无测量气体吸收前后的光辐射变化 ,可测量出待测气体的吸收截面.SO2 由于 a 3 B1 —X1 A1 自旋禁阻跃迁 ,在345~420 nm波段吸收截面较低(~10-22 cm2/molecule) ,其测量有一定难度 ,而准确的弱吸收截面对于卫星反演大气痕量气体浓度以及大气研究等方面均有重要意义.采用365 nm L ED光源的宽带腔增强吸收光谱实验装置测量357~385 nm波段范围SO2 的弱吸收 ,获得该波段SO2 弱吸收截面 ,并与已公开发表的SO2 吸收截面进行对比 ,相关系数 r为0. 997 3 ,验证

  9. Averaging cross section data so we can fit it

    International Nuclear Information System (INIS)

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  10. Averaging cross section data so we can fit it

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  11. 30 CFR 779.25 - Cross sections, maps, and plans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 779.25 Section... RESOURCES § 779.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps..., maps and plans included in a permit application as required by this section shall be prepared by,...

  12. Multicollinearity in cross-sectional regressions

    Science.gov (United States)

    Lauridsen, Jørgen; Mur, Jesùs

    2006-10-01

    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  13. Automatic Computation of Cross Sections in HEP

    CERN Document Server

    Yuasa, F; Ishikawa, T; Jimbo, M; Kaneko, T; Kato, K; Kawabata, S; Kon, T; Kurihara, Y; Kuroda, M; Nakazawa, N; Shimizu, Y; Tanaka, H

    2000-01-01

    For the study of reactions in High Energy Physics (HEP) automatic computation systems have been developed and are widely used nowadays. GRACE is one of such systems and it has achieved much success in analyzing experimental data. Since we deal with the cross section whose value can be given by calculating hundreds of Feynman diagrams, we manage the large scale calculation, so that effective symbolic manipulation, the treat of singularity in the numerical integration are required. The talk will describe the software design of GRACE system and computational techniques in the GRACE.

  14. Charge changing cross sections of relativistic uranium

    International Nuclear Information System (INIS)

    We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U92+ reversible U91+ and U91+ reversible U90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U92+ at 200 MeV/nucleon and 85% U92+ at 962 MeV/nucleon. 7 references, 5 figures

  15. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  16. LEP vacuum chamber, cross-section

    CERN Multimedia

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  17. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  18. Nuclear interaction cross sections for proton radiotherapy

    CERN Document Server

    Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A

    1999-01-01

    Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.

  19. The Elusive p-air Cross Section

    CERN Document Server

    Block, Martin M

    2006-01-01

    For the $\\pbar p$ and $pp$ systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a $\\chi^2$ fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high $\\delchi$, the individual i$^{\\rm th}$ point's contribution to the total $\\chi^2$. The $\\chi^2$ fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic $\\ln s$ and $\\ln^2s$ behavior of total hadronic cross sections when we require that these amplitudes {\\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of $\\bar p p$ and $pp$ total cross sections and $\\rho$-values for $\\...

  20. Cross-section measurements for radioactive samples

    International Nuclear Information System (INIS)

    The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs

  1. Calculation of cross sections for heavy isotopes

    International Nuclear Information System (INIS)

    In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240Pu, 241Pu, 242Pu and 238Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238U secondary neutron energy distribution calculations. (B.G.)

  2. Top quark cross section measurements with ATLAS

    CERN Document Server

    Skubic, P; The ATLAS collaboration

    2014-01-01

    Measurements of the inclusive top quark pair production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented. The measurements are performed requiring one or two electrons or muons in the final state. Various experimental techniques are compared. The most precise result requires events with an electron and a muon of opposite sign and uses the full data-set at a centre-of-mass energy of 8 TeV. The data are in good agreement with a recent NNLO+NNLL QCD calculation. Measurements of the differential top quark pair production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are also presented. The measurements are performed requiring one electron or muon in the final state and are carried out differentially in the reconstructed top transverse momentum, and the invariant mass, rapidity and transverse momentum of the top pair system. These measurements probe our understanding of top pair production in the TeV regi...

  3. Cross sections for meson-meson nonresonant reactions

    CERN Document Server

    Li, Yu-Qi

    2007-01-01

    Meson-meson nonresonant reactions governed by the quark-interchange mechanism are studied in a potential that is derived from QCD. S-wave elastic phase shifts for I=2 \\pi\\pi and I=3/2 K \\pi scattering are obtained with wave functions determined by the central spin-independent term of the potential. The reactions include inelastic scatterings of two mesons in the ground-state pseudoscalar octet and the ground-state vector nonet. Cross sections for reactions involving pion, rho, K and K^* indicate that mesonic interactions in matter consisting of only K and K^* can be stronger than mesonic interactions in matter consisting of only pions and rhos and the reaction of I=3/2 \\pi K^* \\to \\rho K is most important among the endothermic nonresonant reactions. By the quark-interchange mechanism we can offer \\sqrt s-dependences of phi absorption cross sections in collisions with pion and rho and relevant average cross sections what are very small for the reaction of I=1 \\pi \\phi \\to K^* K^* and remarkably large for the r...

  4. 30 CFR 783.25 - Cross sections, maps, and plans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 783.25 Section... ENVIRONMENTAL RESOURCES § 783.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps, and plans showing— (1) Elevations and locations of test borings and core samplings;...

  5. Lunar Radar Cross Section at Low Frequency

    Science.gov (United States)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  6. Absolute photoneutron cross sections of Sm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Nyhus, H.-T.; Renstrom, T. [Department of Physics, University of Oslo, N-0316 Oslo (Norway); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  7. ISSUES IN NEUTRON CROSS SECTION COVARIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M.; Oblozinsky,P.

    2010-04-30

    We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.

  8. Elastic cross sections in an RSIIp scenario

    International Nuclear Information System (INIS)

    The elastic differential cross section is calculated at low energies (below 100 MeV) for the elements 3He, 20Ne, 40Ar, 14N, 12C, and for the 208Pb using a finite electromagnetic potential, which is obtained by considering a Randall–Sundrum II scenario modified by the inclusion of p compact extra-dimensions. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model. The effective four-dimensional (4D) electromagnetic potential is produced by a point charge, as seen from the three-brane that contains it, in uniform motion in an RSIIp scenario. (paper)

  9. Chronic malnutrition: a cross-section analysis

    Directory of Open Access Journals (Sweden)

    Emely Beatriz García González

    2014-01-01

    Full Text Available Introduction: The objective of the study was to determine the main causes of chronic malnutrition worldwide. Materials and Methods: A cross-sectional study was employed to analyze the main determinants of chronic malnutrition in a sample of 86 countries. The variables used are based on the UNICEF conceptual framework of malnutrition. This framework classifies the determinants of malnutrition in three main causes: basic, immediate, and underlying. Findings: Droughts, floods, and extreme temperatures, and GDP per capita are the main basic determinants of malnutrition in the sample of countries. In addition one underlying determinant had a major impact in the prevalence of malnutrition: improved sanitation facilities. Conclusions: The findings of this study demonstrated that the variables within the basic and underlying cause classification are the ones with a greater impact on chronic malnutrition.

  10. Radar Cross Section of Moving Objects

    CERN Document Server

    Gholizade, H

    2013-01-01

    I investigate the effects of movement on radar cross section calculations. The results show that relativistic effects (the constant velocity case) can change the RCS of moving targets by changing the incident plane wave field vectors. As in the Doppler effect, the changes in the fields are proportional to $\\frac{v}{c}$. For accelerated objects, using the Newtonian equations of motion yields an effective electric field (or effective current density) on the object due to the finite mass of the conducting electrons. The results indicate that the magnetic moment of an accelerated object is different from that of an un-accelerated object, and this difference can change the RCS of the object. Results for moving sphere and non-uniformly rotating sphere are given and compared with static (\\textbf{v}=0) case.

  11. Electroweak Boson Cross-Section Measurements

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    This report summarises the ATLAS prospects for the measurement of W and Z pro- duction cross-section at the LHC. The electron and muon decay channels are considered. Focusing on the early data taking phase, strategies are presented that allow a fast and robust extraction of the signals. An overall uncertainty of about 5% can be achieved with 50 pb−1 in the W channels, where the background uncertainty dominates (the luminosity measurement uncertainty is not discussed here). In the Z channels, the expected preci- sion is 3%, the main contribution coming from the lepton selection efficiency uncertainty. Extrapolating to 1 fb−1 , the uncertainties shrink to incompressible values of 1-2%, de- pending on the final state. This irreducible uncertainty is essentially driven by strong interaction effects, notably parton distribution uncertainties and non-perturbative effects, affecting the W and Z rapidity and transverse momentum distributions. These effects can be constrained by measuring these distributions. Al...

  12. Measurement of thermal neutron capture cross section

    CERN Document Server

    Huang Xiao Long; LuHanLin; Yu Wei Xiang; Zhao Wen Rong

    2001-01-01

    The thermal neutron capture cross sections of sup 7 sup 1 Ga(n, gamma) sup 7 sup 2 Ga, sup 9 sup 4 Zr(n, gamma) sup 9 sup 5 Zr and sup 1 sup 9 sup 1 Ir(n, gamma) sup 1 sup 9 sup 2 Ir sup m sup 1 sup + sup g sup , sup m sup 2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of sup 7 sup 2 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  13. Calculated medium energy fission cross sections

    International Nuclear Information System (INIS)

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  14. Photoneutron cross sections measured by Saclay and Livermore

    International Nuclear Information System (INIS)

    The differences between the Saclay and Livermore photoneutron cross sections are discussed. It is shown that the differences between Saclay and Livermore (γ,n) and (γ,2n) cross sections arise from the neutron multiplicity sorting. (Author)

  15. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  16. Residual diagnostics for cross-section time series regression models

    OpenAIRE

    Baum, Christopher F

    2001-01-01

    These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.

  17. Total cross sections for neutron-nucleus scattering

    OpenAIRE

    Suryanarayana, S. V.; H. Naik; Ganesan, S; Kailas, S; Choudhury, R. K.; Kim, Guinyum

    2010-01-01

    Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r$_0$) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross section...

  18. Electron Elastic-Scattering Cross-Section Database

    Science.gov (United States)

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  19. Employee Engagement within the NHS: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Yadava Bapurao Jeve

    2015-02-01

    Full Text Available Background Employee engagement is the emotional commitment of the employee towards the organisation. We aimed to analyse baseline work engagement using Utrecht Work Engagement Scale (UWES at a teaching hospital. Methods We have conducted a cross-sectional study within the National Health Service (NHS Teaching Hospital in the UK. All participants were working age population from both genders directly employed by the hospital. UWES has three constituting dimensions of work engagement as vigor, dedication, and absorption. We conducted the study using UWES-9 tool. Outcome measures were mean score for each dimension of work engagement (vigor, dedication, absorption and total score compared with control score from test manual. Results We found that the score for vigor and dedication is significantly lower than comparison group (P< 0.0001 for both. The score for absorption was significantly higher than comparison group (P< 0.0001. However, total score is not significantly different. Conclusion The study shows that work engagement level is below average within the NHS employees. Vigor and dedication are significantly lower, these are characterised by energy, mental resilience, the willingness to invest one’s effort, and persistence as well as a sense of significance, enthusiasm, inspiration, pride, and challenge. The NHS employees are immersed in work. Urgent need to explore strategies to improve work engagement as it is vital for improving productivity, safety and patient experience.

  20. Finite sum expressions for elastic and reaction cross sections

    International Nuclear Information System (INIS)

    Nuclear cross section calculations are often performed by using the partial wave method or the Eikonal method through Glauber theory. The expressions for the total cross section, total elastic cross section, and total reaction cross section in the partial wave method involve infinite sums and do not utilize simplifying approximations. Conversely, the Eikonal method gives these expressions in terms of integrals but utilizes the high energy and small angle approximations. In this paper, by using the fact that the lth partial wave component of the T-matrix can be very accurately approximated by its Born term, the infinite sums in each of the expressions for the differential cross section, total elastic cross section, total cross section, and total reaction cross section are re-written in terms of finite sums plus closed form expressions. The differential cross sections are compared to the Eikonal results for 16O+16O,12C+12C, and p+12C elastic scattering. Total cross sections, total reaction cross sections, and total elastic cross sections are compared to the Eikonal results for 12C+12C scattering

  1. Cross sections for electron impact excitation of molecules

    International Nuclear Information System (INIS)

    The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures

  2. Radar Cross-section Measurement Techniques

    Directory of Open Access Journals (Sweden)

    V.G. Borkar

    2010-03-01

    Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341

  3. [Fast neutron cross section measurements]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  4. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andrzejewski, J; Andriamonje, Samuel A; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Cano-Ott, D; Capote, R; Carrapico, C; Chepel, V; Cennini, P; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente6, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  5. KAERI charged particle cross section library for radioisotope production

    CERN Document Server

    Chang, J H; Kim, D H; Lee, Y O; Zhuang, Y X

    2001-01-01

    This report summarized information and figures describing the 'KAERI Charged Particle Cross Section Library for Radioisotope production' The library contains proton-, deutron-, He-3-, and alpha-induced monitor cross sections, and gamma- and positron-emitter production cross sections. Experimental data and evaluation methods are described, and the evaluated cross sections are compared with those of the IAEA, MENDL, and LA150. The library has cross sections and emission spectra suitable for the transport analysis in the design of radioisotope production system, and are available at http://atom.kaeri.re.kr/ in ENDF-6 format.

  6. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  7. First Regge parameterisation of polarized DIS cross section

    International Nuclear Information System (INIS)

    The first Regge description of the virtual photon absorption cross section difference Δσ(γ*, N) = [σ1/2(γ*,N) - σ((3)/(2))(γ*, N)] was obtained from a global fit of all the data collected by the experiments measuring spin asymmetries in polarized lepton - polarized nucleon deep inelastic scattering. This work present a phenomenological and a numerical description of all the polarized deep inelastic data (Δσ(γ*, N), gl spin structure function) on the whole measured kinematical range (0.3 GeV2 2 2, 4 GeV2 2 2). The fit also provide reliable predictions for the photo-production limit through a smooth Q2-transition

  8. First measurement of unpolarized SIDIS cross section and cross section ratios from a $^3$He target

    CERN Document Server

    Yan, X; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, C; Dutta, D; Fassi, L El; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liu, T; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Camacho, C Munoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J R; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, W A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Wang, Y; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zhao, Y X; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2016-01-01

    The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\\prime}\\pi^{\\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 < x_{bj} < 0.45$, $1 < Q^2 < 4 \\, \\textrm{(GeV/c)}^2$, $0.45 < z_{h} < 0.65$, and $0.05 < P_t < 0.55 \\, \\textrm{GeV/c}$. The extracted SIDIS differential cross sections of $\\pi^{\\pm}$ production are compared with existing phenomenological models while the $^3$He nucleus approximated as two protons and one neutron in a plane wave picture, in multi-dimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.

  9. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    Science.gov (United States)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  10. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  11. Flow in Tubes of Non-Circular Cross-Sections

    Science.gov (United States)

    Quadir, Raushan Ara

    In this thesis steady, laminar, viscous, incompressible flow in tubes of non-circular cross sections is investigated. The specific aims of the investigation are (a) to look at the problems of both developing flow and fully developed flow, (b) to consider non-circular cross sections in a more systematic manner than has been done in the past, and (c) to develop a relatively simple finite element technique for producing accurate numerical solutions of flow in tubes of fairly arbitrary cross sections. Fully developed flow in tubes is governed by a Poisson type equation for the mainstream velocity. Both analytical and numerical solutions are considered. The cross sections studied include elliptic and rectangular cross sections of different aspect ratios, some triangular cross sections, and a series of crescent-shaped cross sections. The physical characteristics of the flow are examined in a systematic manner in order to determine how these characteristics are affected by certain geometrical features of the cross section. Solutions fall into three basic categories depending on the shape of the cross section. In the first category, which includes circular and elliptic cross sections, solutions are possible in closed form. In the second, including rectangular and some triangular cross sections, solutions are in the form of infinite series. In the third, including cross sections of more complicated or irregular shapes, only numerical solutions are possible. Results of calculations of velocity profiles, flow rate, pumping power, and friction factor are presented in a way which can be useful for engineering applications. In numerical studies of both developing and fully developed flow finite element techniques are used. Results are obtained for tubes of rectangular and elliptic cross sections of different aspect ratios, for tubes of crescent -shaped cross sections and a tube whose cross section is an oval of Cassini. For fully developed flow, results are compared with the

  12. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  13. Fano interference and cross-section fluctuations in molecular photodissociation

    International Nuclear Information System (INIS)

    We derive an expression for the total photodissociation cross section of a molecule incorporating both direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we derive the statistical properties of the photodissociation cross section and find that they are significantly affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section distribution

  14. Study on evaluation of a linear cross section model in 3-dimensional core analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Goo; Yang, Chae Yong; Jang, Chang Sun; Jung, Hoon Young; Kim, Hho Jung

    2005-02-15

    The previous studies provided that the ejection rod worth and enthalpy rise have a significant error due to a linear approximation of the cross sections in the analysis of rod ejection accident using a 3-dimensional core kinetics method. This study undertakes the validations of a linear approximation model for the cross sections used in the 3-dimensional core kinetics method. The linear approximation model for the cross sections consists of several parameters related with boron concentration, fuel temperature, coolant temperature and density, etc., but this study examines for the parameter related with boron concentration. At first, a reference boron concentration set are selected, and the corresponding linear parameter are calculated by CASMO-3 code. Another two sets are selected, and their parameters are also calculated. The relative errors are calculated form the cross sections for these 3 cases. For their study, 3 types of fuel are chosen, which are representative of fresh fuel, medium burnup and high burnup. Also, 9 cross sections of 2 energy groups are evaluated. The results shows that the relative error of the cross sections for high burnup fuel are more than low burnup, and the error are large in absorption cross section and fission cross section, the maximum of which is more than 3%. It is concluded that in the analysis of accident using 3-dimensional core kinetics model the cross section model has a significant influence on their result, and the results are largely dependent on how to select parameters in a cross section model. Hence, regulatory reviewer needs to evaluate the validation of cross section model proposed by designer.

  15. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    Science.gov (United States)

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  16. Neutron Fission of 235,237,239U and 241,243Pu: Cross Sections, Integral Cross Sections and Cross Sections on Excited States

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Britt, H C

    2003-07-10

    In a recent paper submitted to Phys. Rev. C they have presented estimates for (n,f) cross sections on a series of Thorium, Uranium and Plutonium isotopes over the range E{sub n} = 0.1-2.5 MeV. The (n,f) cross sections for many of these isotopes are difficult or impossible to measure in the laboratory. The cross sections were obtained from previous (t,pf) reaction data invoking a model which takes into account the differences between (t,pf) and (n,f) reaction processes, and which includes improved estimates for the neutron compound formation process. The purpose of this note is: (1) to compare the estimated cross sections to current data files in both ENDF and ENDL databases; (2) to estimate ratios of cross sections relatively to {sup 235}U integrated over the ''tamped flattop'' critical assembly spectrum that was used in the earlier {sup 237}U report; and (3) to show the effect on the integral cross sections when the neutron capturing state is an excited rotational state or an isomer. The isomer and excited state results are shown for {sup 235}U and {sup 237}U.

  17. Cross Sections for Inner-Shell Ionization by Electron Impact

    International Nuclear Information System (INIS)

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements

  18. Optical properties and cross-sections of biological aerosols

    Science.gov (United States)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  19. Modeling and analysis of ground target radiation cross section

    Institute of Scientific and Technical Information of China (English)

    SHI Xiang; LOU GuoWei; LI XingGuo

    2008-01-01

    Based on the analysis of the passive millimeter wave (MMW) radiometer detection, the ground target radiation cross section is modeled as the new token for the target MMW radiant characteristics. Its ap-plication and actual testing are discussed and analyzed. The essence of passive MMW stealth is target radiation cross section reduction.

  20. Nuclear characteristics of Pu fueled LWR and cross section sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering

    1998-03-01

    The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)

  1. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...

  2. Electron induced inelastic and ionization cross section for plasma modeling

    Science.gov (United States)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  3. Minijets, soft gluon resummation and photon cross-sections

    OpenAIRE

    Godbole, R. M.; Grau, A.; Pancheri, G.; Srivastava, Y. N.

    2008-01-01

    We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).

  4. Analysis of cross sections using various nuclear potential

    International Nuclear Information System (INIS)

    The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions

  5. Total Cross Sections at High Energies - An Update

    Institute of Scientific and Technical Information of China (English)

    Fazal-e-Aleem; Sohail Afzal Tahir; M. Alam Saeed; M. Qadeer Afzal

    2002-01-01

    Current and future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX, and TOTEMhave been analyzed using various models. In the light of this study an attempt has been made to focus on the behaviorof total cross section at very high energies.

  6. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  7. Cross section data for electron collisions in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Pejcev, V [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Filipovic, D M [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Sevic, D [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Milosavljevic, A R [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Milisavljevic, S [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Rabasovic, M S [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Pavlovic, D [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia); Maljkovic, J B [Institute of Physics, Belgrade, P. O. Box 68, Pregrevica 118, 11080 Belgrade (Serbia)

    2007-10-15

    We present a survey of cross section data for electron collisions used in plasma physics. Needs for cross section data have been identified in different fields of plasma physics and a brief review of existing data on electron/radical data has been presented. Experimental capabilities and recent results obtained in the Belgrade Laboratory for Atomic Collision Processes have been discussed.

  8. Cross sections for electron collisions with nitric oxide

    Science.gov (United States)

    Itikawa, Yukikazu

    2016-09-01

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  9. Cross-section measurements in the NOMAD experiment

    CERN Document Server

    Petti, R

    2006-01-01

    The NOMAD experiment collected valuable neutrino data samples, matching both the large statistics of massive calorimeters and the reconstruction quality of bubble chambers. This paper describes the recent measurements of neutrino cross-sections on carbon target. The approach followed for cross-section modeling is also explained.

  10. CADE, Multiple Particle Emission Cross-Sections by Weisskopf-Ewing Theory

    International Nuclear Information System (INIS)

    1 - Description of program or function: CADE calculates reaction cross sections for multi-particle emission. The total cross section for the emission of a particle at any particular stage is calculated together with the cross section as a function of energy. The probability of leaving the final nucleus in a state of any particular energy is also obtained. 2 - Method of solution: The program performs compound nucleus calculations using the Weisskopf-Ewing formalism. Multi-particle emissions are treated as a series of stages in a cascade. The relevant compound nucleus absorption cross sections for particle channels are calculated with built-in optical model routines. The gamma-ray emission is described by the giant dipole resonance formalism

  11. Low temperature mid-infrared cross-sections for peroxyacetyl nitrate (PAN vapour

    Directory of Open Access Journals (Sweden)

    G. Allen

    2005-01-01

    Full Text Available Laboratory absorption spectra of peroxyacetyl nitrate (PAN, CH3C(OOONO2 vapour have been measured in the mid-infrared range 550 cm-1 to 1400 cm-1 (18.2 to 7.14 µm at both 250 K and 273 K, using a Fourier transform infrared spectrometer at a nominal spectral resolution of 0.25 cm-1 (unapodised. In addition, the 1600 cm-1 to 2200 cm-1 (6.25 to 4.54 µm spectral region has been measured at 250 K. Cross-sectional data at each temperature, as well as integrated band intensities and peak infrared absorptivities for nine absorption bands of PAN in this spectral range, have been derived from a total of twelve separately measured PAN transmission spectra. A general increase in the peak absorption cross-section for all bands is noted with decreasing temperature, with cross-sectional increases in the range 6% (for the 1842 cm-1 band and 30% (for the 991 cm-1 band at 250K, relative to those previously reported at 295K. Differences in integrated band intensities range from -22% to +16% for the 1741 cm-1 and 991 cm-1 bands respectively over the same temperature range. These new absorption cross-sections for PAN are the first to be reported at temperatures below 295 K, allowing the possibility of improved retrievals of the atmospherically important PAN species from remotely sensed infrared spectra of the cold upper troposphere. These new cross-sectional data accompany this paper as an electronic supplement.

  12. Crushing characteristics of composite tubes with 'near-elliptical' cross sections

    Science.gov (United States)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.

  13. Resonance analysis and evaluation of the 235U neutron induced cross sections

    International Nuclear Information System (INIS)

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ3-statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs

  14. Meeting cross section requirements for nuclear energy design

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize and explain current requirements in cross section data that are essential to nuclear energy programs and to provide some insight into how these data might be obtained. The report is divided into six sections that describe: design parameters and target accuracies; data collection, evaluation, and analysis; determination of high accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; and identification of important cross sections and inferred needs

  15. Narrowing the uncertainty on the total charm cross section and its effect on the J/\\psi\\ cross section

    OpenAIRE

    Nelson, R; R. Vogt; Frawley, A. D.

    2012-01-01

    We explore the available parameter space that gives reasonable fits to the total charm cross section to make a better estimate of its true uncertainty. We study the effect of the parameter choices on the energy dependence of the J/\\psi\\ cross section.

  16. Reaction cross-section predictions for nucleon induced reactions

    CERN Document Server

    Nobre, G P A; Escher, J E; Dietrich, F S

    2010-01-01

    A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets $^{40,48}$Ca, $^{58}$Ni, $^{90}$Zr and $^{144}$Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitatio...

  17. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  18. Electron impact ionization cross sections of beryllium-tungsten clusters*

    Science.gov (United States)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  19. Photodetachment cross-section of the negatively charged hydrogen ion

    OpenAIRE

    Frolov, Alexei M.

    2015-01-01

    Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section and its location have been evaluated to high accuracy. In particular, we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.862...

  20. Neutron inelastic cross section measurements for 24Mg

    OpenAIRE

    OLACEL A.; Borcea, C.; DESSAGNE Philippe; Kerveno, M.; NEGRET A.; PLOMPEN Arjan

    2014-01-01

    The gamma production cross sections from the neutron inelastic scattering on 24Mg were measured for neutron energies up to 18 MeV at GELINA (Geel Linear Accelerator), the neutron source operated by EC-JRC-IRMM, Belgium. The level cross section and the total inelastic cross section were determined. We used the GAINS (Gamma Array for Inelastic Neutron Scattering) spectrometer with 7 large volume HPGe detectors placed at 110◦ and 150◦ with respect to the beam direction. The neutron flux was dete...

  1. Cross Section to Multiplicity Ratios at Very High Energy

    CERN Document Server

    Block, M M

    2014-01-01

    Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio sigma^{el}/N at 7 TeV, however, is not far from its asymptotic value.

  2. Sensitivity analysis of U238 cross section in thermal nuclear systems

    International Nuclear Information System (INIS)

    A sensitivity analysis system is developed for assessing the implication of uncertainties in nuclear data and related computational methods for light water power reactor. Sensitivies, at equilibrium cycle condition, are carried out for the few group macroscopic cross section of the U238 with respect to their 35 group microscopic absorption cross section using the batch depletion code SENTEAV similar to those calculation methods used in the industry. This investigation indicates that improvements are requested on specific range of energy. These results point out the direction for worth while experimental measurements based on an analysis of costs and economic benefits. (Author)

  3. Expected anomalies of the neutron cross section near the liquid-glass transition

    International Nuclear Information System (INIS)

    In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section Si(q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given

  4. A genetic algorithm to reduce stream channel cross section data

    Science.gov (United States)

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  5. Cross polarization caused by perturbed circular cross sections of waveguides and horn antennas

    Science.gov (United States)

    Lier, Erik

    1987-03-01

    The cross polarization caused by a perturbed cross section of the conical hybrid-mode horn is analyzed. The perturbed cross section is assumed to be slightly elliptical. The theory of Lier and Bergh (1986) for cross polarization in a smooth-walled waveguide supporting the TE11-mode is referred and applied to the HE11 mode as well. Simple analytical formulas which are sufficiently accurate for small ellipticites of the cross-section ellipse are presented. These show that the tolerances on the waveguide diameter are extremely strong, typically on the order of 0.02-0.04 mm in the horn throat for typical horn geometries at 12 GHz.

  6. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    Science.gov (United States)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  7. Trilogy of LHC Higgs Cross Section Working Group

    CERN Document Server

    Tanaka, R; The ATLAS collaboration

    2013-01-01

    Slide shown at Aspen 2013 - Higgs Quo Vadis, March 10-15, 2013, Aspen, CO, USA. The activity of LHC Higgs Cross Section Woking Group was reported putting emphasis on current theoretical issues in Higgs physics towards precision Higgs measurements.

  8. Radiative neutron capture cross sections on 176Lu at DANCE

    Science.gov (United States)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  9. Hadronic Cross Sections, Elastic Slope and Physical Bounds

    CERN Document Server

    Fagundes, D A

    2012-01-01

    An almost model-independent parametrization for the ratio of the total hadronic cross section to elastic slope is discussed. Its applicability in studies of asymptotia and analyses of extensive air shower in cosmic-ray physics is also outlined.

  10. Models for Photon-photon Total Cross-sections

    OpenAIRE

    Godbole, RM; Grau, A.; Pancheri, G.

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  11. Fission cross section for 242Am.met

    International Nuclear Information System (INIS)

    The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements

  12. Differential cross sections of positron–hydrogen collisions

    Science.gov (United States)

    Rong-Mei, Yu; Chun-Ying, Pu; Xiao-Yu, Huang; Fu-Rong, Yin; Xu-Yan, Liu; Li-Guang, Jiao; Ya-Jun, Zhou

    2016-07-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed. Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

  13. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending*

    Directory of Open Access Journals (Sweden)

    Baltov Anguel

    2015-12-01

    Full Text Available Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model’s plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB.

  14. Fully differential cross sections for heavy particle impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-15

    We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.

  15. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  16. Scaling of Cross Sections for Ion-atom Impact Ionization

    CERN Document Server

    Kaganovich, I D; Startsev, E

    2003-01-01

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  17. Electronic stopping cross sections for use in ion range calculation

    International Nuclear Information System (INIS)

    Theoretical and empirical methods of determining the electronic stopping cross sections are discussed. The values used by various authors in ion range calculations are outlined. Recommendations are made for future range calculations. (author)

  18. Scaling Cross Sections for Ion-atom Impact Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  19. Top quark pair cross section prospects in ATLAS

    CERN Document Server

    Gaponenko, Andrei

    2009-01-01

    The observation of the top quark will be an important milestone in ATLAS. This talk reviews methods that ATLAS plans to use to observe the top quark pair production process and measure its cross section.

  20. Inclusive and pion production neutrino-nucleus cross sections

    CERN Document Server

    Martini, M

    2014-01-01

    We analyze the experimental data on the inclusive double differential cross section by neutrinos charged current, measured by T2K, with the same model which was successful for the MiniBooNE quasielastic cross sections. As in our previous analysis the multinucleon component is needed in order to reproduce the data. For the total cross section our evaluation is smaller than the SciBooNE data above 1 GeV. This indicates the opening of a new channel not included in our evaluation, presumably the two pion emission channel. We also check that our description holds for the exclusive single pion production channel by confronting our evaluation with the MiniBooNE double differential cross section for a single charged pion and the Q^2 distribution. Both are compatible with data.

  1. Charm meson scattering cross sections by pion and rho meson

    CERN Document Server

    Lin Zi Wei; Ko, C M

    2001-01-01

    Using the local flavor SU(4) gauge invariance in the limit of vanishing vector-meson masses, we extend our previous study of charm-meson scattering cross sections by pion and rho meson, which is based only on the pseudoscalar-pseudoscalar-vector meson couplings, to include also contributions from the couplings among three vector mesons and among four particles. We find that diagrams with light-meson exchanges usually dominate the cross sections. For the processes considered previously, the additional interactions lead only to diagrams involving charm-meson exchanges and contact interactions, and the cross sections for these processes are thus not much affected. Nevertheless, these additional interactions introduce new processes with light-meson exchanges and increase significantly the total scattering cross sections of charm mesons by pion and rho meson.

  2. Scaling of Cross Sections for Ion-atom Impact Ionization

    International Nuclear Information System (INIS)

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions

  3. Longitudinal Vibrations of Rheological Rod With Variable Cross Section

    Institute of Scientific and Technical Information of China (English)

    Katica(Stevanovic)HEDRIH; AleksandarFILIPOVSKI

    1999-01-01

    Longitudinal vibrations of rheological rod with variable cross section are examined.Particular solutions and eigenfunction are accomplished for natural vibrations of the rod with hereditary material of standard hereditary body.Some examples are given.

  4. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  5. Top Quark Pair Production Cross Section at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [Manchester U.

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  6. Photoproduction models for total cross section and shower development

    Directory of Open Access Journals (Sweden)

    Cornet Fernando

    2015-01-01

    Full Text Available A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.

  7. Elastic cross sections for electron-carbon scattering

    Institute of Scientific and Technical Information of China (English)

    Liu Jun-Bo; Wang Yang; Zhou Ya-Jun

    2007-01-01

    We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.

  8. Modelling of reaction cross sections and prompt neutron emission

    Science.gov (United States)

    Hambsch, F.-J.; Tudora, A.; Oberstedt, S.

    2010-10-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  9. Modelling of reaction cross sections and prompt neutron emission

    OpenAIRE

    Oberstedt S.; Tudora A.; Hambsch F.-J.

    2010-01-01

    Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  10. Majorana Dark Matter Cross Sections with Nucleons at High Energies

    OpenAIRE

    Jeong, Yu Seon; Kim, C. S.; Reno, Mary Hall

    2012-01-01

    Non-relativistic dark matter scattering with nucleons is constrained by direct detection experiments. We use the XENON constraints on the spin-independent and spin-dependent cross section for dark matter scattering with nucleons to constrain a hypothetical Majorana fermionic dark matter particle's couplings to the Higgs boson and Z boson. In the procedure we illustrate the change in the dark matter nucleon cross section as one goes from non-relativistic, coherent scattering to relativistic, i...

  11. On the scattering cross section of passive linear arrays

    DEFF Research Database (Denmark)

    Solymar, L.

    1973-01-01

    A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal...... to the square of the maximum gain the array can produce. As a consequence, for forward scattering in the limiting case of zero spacing between the elements,A_{sr} = n^{4}....

  12. Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect

    Science.gov (United States)

    Han, Min Cheol; Kim, Han Sung; Pia, Maria Grazia; Basaglia, Tullio; Batic, Matej; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2016-04-01

    Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literature to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofield's 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library(EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofield's non-relativistic calculations are not surpassed regarding the compatibility with experiment of K and L shell photoionization cross sections either, although in a few test cases Ebel's parameterization produces more accurate results close to absorption edges. Modifications to Biggs and Lighthill's parameterization implemented in Geant4 significantly reduce the accuracy of total cross sections at low energies with respect to its original formulation. The scarcity of suitable experimental data hinders a similar extensive analysis for the simulation of the photoelectron angular distribution, which is limited to a qualitative appraisal.

  13. Studies of 54,56Fe Neutron Scattering Cross Sections

    Directory of Open Access Journals (Sweden)

    Hicks S. F.

    2015-01-01

    Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  14. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log2 s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π+π−, π±π0 and π0π0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours Nc and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-Nc QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-Nc counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σπ±π0total(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-Nc Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  15. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  16. High resolution mid-infrared cross-sections for peroxyacetyl nitrate (PAN vapour

    Directory of Open Access Journals (Sweden)

    G. Allen

    2004-09-01

    Full Text Available Absorption spectra of peroxyacetyl nitrate (PAN, CH3C(OOONO2 vapour at room temperature (295 K have been measured in the mid-infrared range, 550–2200 cm−1 (18.2–3.33 µm, using a Fourier transform infrared spectrometer at instrument resolutions of 0.25 and 0.03 cm−1 (unapodised. Both cross-section data and integrated absorption intensities for the five principal bands in the PAN spectra in this spectral range have been derived from fourteen separate PAN transmission spectra measurements. Band intensities and band centre absorptivities are also reported for four weaker PAN absorption bands in the mid infrared for the first time. These observations are the highest spectral resolution measurements of PAN bands recorded in the infrared to date. For three of the five strongest bands, the absolute integrated absorption intensities are in excellent agreement with previous studies. A 4.8% lower integrated intensity was found for the 1741 cm−1 νas (NO2 PAN absorption band, possibly as a result of the removal in this work of spectra affected by subtle acetone contamination, while a 10.6% higher intensity was determined for the 1163 cm−1 ν (C-O absorption band. No direct effects of spectral resolution were observed. The improved accuracy of these absorption cross-sections will allow more accurate investigations of PAN using infrared spectroscopy, particularly for remote sensing of PAN in the atmosphere.

  17. 41K(n, γ)42K thermal and resonance integral cross section measurements

    International Nuclear Information System (INIS)

    We measured the 41K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO3 samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the 42K decay β- emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.

  18. Measurement of the 242Pu neutron capture cross section

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  19. 242Am/sup m/ fission cross section

    International Nuclear Information System (INIS)

    The neutron-induced fission cross section of 242Am/sup m/ has been measured over the energy region from 10-3 eV to approx.20 MeV in a series of experiments utilizing a linac-produced ''white'' neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to approx.3 eV) and high energy (1 keV to approx.20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of approx.0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of approx.5%. We confirmed that 242Am/sup m/ has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results

  20. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  1. Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section

    Institute of Scientific and Technical Information of China (English)

    YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng

    2009-01-01

    The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.

  2. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group

    OpenAIRE

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross...

  3. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  4. Cross-section fluctuations in chaotic scattering systems

    Science.gov (United States)

    Ericson, Torleif E. O.; Dietz, Barbara; Richter, Achim

    2016-10-01

    Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S )-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S -matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S -matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.

  5. Experience With the SCALE Criticality Safety Cross Section Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    2000-08-21

    This report provides detailed information on the SCALE criticality safety cross-section libraries. Areas covered include the origins of the libraries, the data on which they are based, how they were generated, past experience and validations, and performance comparisons with measured critical experiments and numerical benchmarks. The performance of the SCALE criticality safety cross-section libraries on various types of fissile systems are examined in detail. Most of the performance areas are demonstrated by examining the performance of the libraries vs critical experiments to show general trends and weaknesses. In areas where directly applicable critical experiments do not exist, performance is examined based on the general knowledge of the strengths and weaknesses of the cross sections. In this case, the experience in the use of the cross sections and comparisons with the results of other libraries on the same systems are relied on for establishing acceptability of application of a particular SCALE library to a particular fissile system. This report should aid in establishing when a SCALE cross-section library would be expected to perform acceptably and where there are known or suspected deficiencies that would cause the calculations to be less reliable. To determine the acceptability of a library for a particular application, the calculational bias of the library should be established by directly applicable critical experiments.

  6. Progress on FP13 Total Cross Section Measurements Capability

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    An accurate knowledge of the neutron capture cross section is important for many applications, both within the weapons program and in other fields. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since the detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γγ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. It was pointed out by Koehler, et al. (LA-UR-14-21656) that these measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, but more work remains to be done.

  7. Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory

    Science.gov (United States)

    Adamczyk, Anne M.; Norbury, John W.

    2011-01-01

    It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.

  8. Theoretical Formalism To Estimate the Positron Scattering Cross Section.

    Science.gov (United States)

    Singh, Suvam; Dutta, Sangita; Naghma, Rahla; Antony, Bobby

    2016-07-21

    A theoretical formalism is introduced in this article to calculate the total cross sections for positron scattering. This method incorporates positron-target interaction in the spherical complex optical potential formalism. The study of positron collision has been quite subtle until now. However, recently, it has emerged as an interesting area due to its role in atomic and molecular structure physics, astrophysics, and medicine. With the present method, the total cross sections for simple atoms C, N, and O and their diatomic molecules C2, N2, and O2 are obtained and compared with existing data. The total cross section obtained in the present work gives a more consistent shape and magnitude than existing theories. The characteristic dip below 10 eV is identified due to the positronium formation. The deviation of the present cross section with measurements at energies below 10 eV is attributed to the neglect of forward angle-discrimination effects in experiments, the inefficiency of additivity rule for molecules, empirical treatment of positronium formation, and the neglect of annihilation reactions. In spite of these deficiencies, the present results show consistent behavior and reasonable agreement with previous data, wherever available. Besides, this is the first computational model to report positron scattering cross sections over the energy range from 1 to 5000 eV. PMID:27333337

  9. Differences between stellar and laboratory reaction cross sections

    CERN Document Server

    Rauscher, T

    2010-01-01

    Nuclear reactions proceed differently in stellar plasmas than in the laboratory due to the thermal effects in the plasma. On one hand, a target nucleus is bombarded by projectiles distributed in energy with a distribution defined by the plasma temperature. The most relevant energies are low by nuclear physics standards and thus require an improved description of low-energy properties, such as optical potentials, required for the calculation of reaction cross sections. Recent studies of low-energy cross sections suggest the necessity of a modification of the proton optical potential. On the other hand, target nuclei are in thermal equilibrium with the plasma and this modifies their reaction cross sections. It is generally expected that this modification is larger for endothermic reactions. We show that there are many exceptions to this rule.

  10. Near threshold photodetachment cross section of negative atomic oxygen ions

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Hua(吴建华); Yuan Jian-Min(袁建民); Vo Ky Lan

    2003-01-01

    A 40-target state close-coupling calculation for the photodetachment cross section of negative atomic oxygen near threshold is carried out with core-valence electron correlation by using the R-matrix method. It was shown that after considering the excitations of two electrons from the 2s shell, the electron affinity of O- (2s22p5 2po) agrees with the experimental result much better than that just considering the excitations of electrons only from the 2p shell as well as only one electron from the 2s shell. Total cross section as well as the main contribution of the ionization channels to the partial cross section are illustrated to show the structure near threshold clearly.

  11. Inelastic cross sections for positron scattering from atomic hydrogen

    International Nuclear Information System (INIS)

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 ± 0.18) x 10-16 cm2 for ∼ 15eV positrons. By 75eV it drops below the detection limit of 0.17 x 10-16 cm2 which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections

  12. Inelastic cross sections for positron scattering from atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.; Hofmann, A.; Raith, W.; Sperber, W. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Jacobsen, F.; Lynn, K.G. [Brookhaven National Lab., Upton, NY (United States)

    1994-12-31

    Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.

  13. Measurement of the ZZ production cross section with ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Ellinghaus, Frank; Schmitz, Simon; Tapprogge, Stefan [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    The study of the ZZ production has an excellent potential to test the electroweak sector of the Standard Model, where Z boson pairs can be produced via non-resonant processes or via Higgs decays. A deviation from the Standard Model expectation for the ZZ production cross section would be an indication for new physics. This could manifest itself in so called triple gauge couplings via ZZZ or ZZγ, which the Standard Model forbids at tree level. The measurement of the ZZ production cross section is based on an integrated luminosity of 20.3 fb{sup -1} of proton-proton collision data at √(s) = 8 TeV recorded with the ATLAS detector in 2012. Measurements of differential cross sections as well as searches for triple gauge couplings have been performed. This talk presents the measurement and analysis details of the ZZ production in the ZZ → 4l channel.

  14. 63Ni (n ,γ ) cross sections measured with DANCE

    Science.gov (United States)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  15. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Elaine Schulte

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  16. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  17. Photodetachment cross-section of the negatively charged hydrogen ion

    CERN Document Server

    Frolov, Alexei M

    2015-01-01

    Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section has been evaluated to very high accuracy and we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.8627035742 $\\cdot 10^{-17}$ $cm^2$ at $p_e \\approx$ 0.113206(1) $a.u.$ Photodetachment of the H$^{-}$ ion at very small and very large $p_e$ values is also considered. Our method is based upon the Rayleigh's formula for spherical Bessel functions.

  18. The photon scattering cross-sections of atomic hydrogen

    CERN Document Server

    Grunefeld, Swaantje J; Cheng, Yongjun

    2016-01-01

    We present a unified view of the frequency dependence of the various scattering processes involved when a neutral hydrogen atom interacts with a monochromatic, linearly-polarized photon. A computational approach is employed of the atom trapped by a finite-sized-box due to a finite basis-set expansion, which generates a set of transition matrix elements between $E0$ pseudostates. We introduce a general computational methodology that enables the computation of the frequency-dependent dipole transition polarizability with one real and two different imaginary contributions. These dipole transition polarizabilities are related to the cross-sections of one-photon photoionization, Rayleigh, Raman, and Compton scattering. Our numerical calculations reveal individual Raman scattering cross-sections above threshold that can rapidly vanish and revive. Furthermore, our numerical Compton cross-sections do not overtly suffer from the infra-red divergence problem, and are three orders-of-magnitude higher than previous analy...

  19. Cross section versus time delay and trapping probability

    Science.gov (United States)

    Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles

    2016-07-01

    We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.

  20. Inversion of rotationally inelastic differential cross sections under sudden conditions

    Science.gov (United States)

    Schinke, Reinhard

    1980-12-01

    An inversion method for rotationally inelastic atom-diatom differential cross sections based on the infinite-order-sudden (IOS) approximation is presented. It consists of two separate steps: (1) The scattering phase shift, which is a function of the partial wave parameter l and the orientation angle γ, is determined by least-squares fitting of the reference cross sections. (2) For fixed orientation γ the R dependence of the interaction potential in obtained from the l dependence of the phase shift using the Firsov technique. This method is applicable in the so-called strong coupling case when rotational rainbow features are dominant and yields information about the anisotropy of the potential surface in the repulsive region. Because of the centrifugal sudden condition, scattering systems with deep potential wells cannot be treated by the present method. Test calculations are performed using theoretical IOS cross sections obtained from a realistic He-Na2 surface as reference data.

  1. Ionization cross sections for low energy electron transport

    CERN Document Server

    Seo, Hee; Saracco, Paolo; Kim, Chan Hyeong

    2011-01-01

    Two models for the calculation of ionization cross sections by electron impact on atoms, the Binary-Encouter-Bethe and the Deutsch-Maerk models, have been implemented; they are intended to extend and improve Geant4 simulation capabilities in the energy range below 1 keV. The physics features of the implementation of the models are described, and their differences with respect to the original formulations are discussed. Results of the verification with respect to the original theoretical sources and of extensive validation with respect to experimental data are reported. The validation process also concerns the ionization cross sections included in the Evaluated Electron Data Library used by Geant4 for low energy electron transport. Among the three cross section options, the Deutsch-Maerk model is identified as the most accurate at reproducing experimental data over the energy range subject to test.

  2. Lactiferous vessel detection from microscopic cross-sectional images

    Science.gov (United States)

    Jariyawatthananon, Jirapath; Cooharojananone, Nagul; Lipikorn, Rajalida

    2014-04-01

    This paper presents the methods to detect and segment lactiferous vessels or rubber latex vessels from gray scale microscopic cross-sectional images using polynomial curve-fitting with maximum and minimum stationary points. Polynomial curve-fitting is used to detect the location of lactiferous vessels from an image of a non-dyed cross-sectional slice which was taken by a digital camera through microscope lens. The lactiferous vessels are then segmented from an image using maximum and minimum stationary points with morphological closing operation. Two species of rubber trees of age between one to two years old are sampled namely, RRIM600 and RRIT251. Two data sets contain 30 microscopic cross-sectional images of one-year old rubber tree's stems from each species are used in the experiments and the results reveal that most of the lactiferous vessel areas can be segmented correctly.

  3. Light stops emerging in WW cross section measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2{sigma}, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m{sub t{sub 1}}{proportional_to}200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  4. Total Cross Section in $\\gamma\\gamma$ Collisions at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Todorova-Nová, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ewers, A; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M

    2001-01-01

    The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV < Wgammagamma < 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

  5. The 233Pa fission cross-section measurement and evaluation

    International Nuclear Information System (INIS)

    233Pa is a conspicuous example of strongly discrepant data in the accepted nuclear data evaluations. The precise knowledge of the neutron-induced reaction cross-section of this highly β-active nuclide (T1/2 = 27.0 d) is essential for the successful implementation of the thorium-based fuel cycle in advanced nuclear applications. The reactions involving 233Pa are responsible for the balance of nuclei as well as the average number of prompt fission neutrons in a contemplated reactor scenario. In an IAEA report, it is stated that there is a need to know the 233Pa(n, f) cross-section with an accuracy of 20%. The different evaluated neutron data libraries show, however, a difference of a factor of two for this cross-section. It has previously been deemed not feasible to measure this reaction directly due to its short half-life, high radioactivity and the in-growth of the daughter product 233U. Hence, the entries in the neutron libraries are based on theoretical predictions, which explains the large discrepancies. As reported recently the neutron-induced fission cross-section of 233Pa has been measured for the first time directly with mono-energetic neutrons from 1.0 to 3.0 MeV at the Van-de-Graaff facility of the IRMM. In the meantime, during two further measurement campaigns, the energy range has been extended up to 8.5 MeV. The experimental results will be presented together with recent model calculations of the fission cross-section applying the statistical model code STATIS, which improve the cross-section evaluation up to the second chance fission threshold. (authors)

  6. Inactivation cross section of yeast cells irradiated by heavy ions

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain211a have been calculated as 1-hit detector based on the tracktheory in an extended target mode and a numerical calculation ofradial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and "radius"of hypothetical target a0 is chosen to be 0.5μm which is about the sizeof nucleus of yeast cells for obtaining an overall agreement withexperimental cross sections. The results of the calculations are inagreement with the experimental data in high LET (linear energy transfer) including the thindown region.

  7. Charged particle cross-section data and their systematization

    International Nuclear Information System (INIS)

    The reaction cross-sections and the thick target yields of (α,αxn) and (α,xn), induced by the alpha particles from the Buenos Aires 60 inch synchrocyclotron for Cu, Y, Zr, Rh, Te, Ta, Au and Pb were obtained. The ''stocked foil'' method was applied. The ''nuclear spin density'' parameter was determined using a phenomenological approximation from the cross section data for 181Ta(α,n) reaction producing isomeric pairs of sup(184m)Re and sup(184g)Re. The systematic behaviour of the present result and the results of other authors were demonstrated

  8. Electron transport in silicon nanowires having different cross-sections

    Directory of Open Access Journals (Sweden)

    Muscato Orazio

    2016-06-01

    Full Text Available Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

  9. Differential Cross Sections for Proton-Proton Elastic Scattering

    Science.gov (United States)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  10. Photon gluon fusion cross sections at HERA energy

    Science.gov (United States)

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  11. Theoretical results for top-quark cross sections and distributions

    CERN Document Server

    Kidonakis, Nikolaos

    2016-01-01

    I present new results and updates for total cross sections and differential distributions in top-antitop pair and single-top production. Soft-gluon corrections are added to exact fixed-order results to provide the best predictions at approximate N$^3$LO for $t{\\bar t}$ production and approximate NNLO for single-top production. Total cross sections and top-quark transverse-momentum and rapidity distributions are presented and compared with data at LHC and Tevatron energies. The cusp anomalous dimension at three and higher loops is also discussed.

  12. Modelling of reaction cross sections and prompt neutron emission

    Directory of Open Access Journals (Sweden)

    Oberstedt S.

    2010-10-01

    Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.

  13. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  14. High-mass dijet cross sections in photoproduction at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Ahn, S H; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chapin, D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coldewey, C; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, J; Cross, R; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; García, G; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Graciani, R; Grijpink, S; Grzelak, G; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jeoung, H Y; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S B; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Ma, K J; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Markun, P; Martens, J; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Park, S K; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Peroni, C; Pesci, A; Petrucci, M C; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sar, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shche, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Solomin, A N; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wing, M; Wolf, G; Wölfle, S; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Za, L; Zakrzewski, J A; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2002-01-01

    Dijet differential cross sections for the reaction e+p -> e+ + jet + jet + X in the photoproduction regime have been measured with the ZEUS detector at HERA using an integrated luminosity of 42.7 pb**{-1}. The cross sections are given for photon-proton centre-of-mass energies in the range 134 e+ Z0 X} < 5.9 pb. Upper limits on the photoproduction of new heavy resonances decaying into two jets are also presented for masses in the range between 60 GeV and 155 GeV.

  15. Approximate formulas for total cross section for moderately small eikonal

    CERN Document Server

    Kisselev, A V

    2016-01-01

    The eikonal representation for the total cross section is considered. The approximate formulas for a moderately small eikonal are derived. In contrast to the standard eikonal integrals, they contain no Bessel functions, and, hence, no rapidly oscillating integrands. The formulas obtained are applied to numerical evaluations of the total cross section for a number of particular expressions for the eikonal. It is shown that for pure imaginary eikonals the relative error of O(10^(-5)) can be achieved. Also two improper triple integrals are analytically calculated.

  16. Electromagnetic Cylindrical Transparent Devices with Irregular Cross Section

    Directory of Open Access Journals (Sweden)

    C. Yang

    2010-04-01

    Full Text Available Electromagnetic transparent device is very important for antenna protection. In this paper, the material parameters for the cylindrical transparent devices with arbitrary cross section are developed based on the coordinate transformation. The equivalent two-dimensional (2D transparent devices under TE plane and cylindrical wave irradiation is designed and studied by full-wave simulation, respectively. It shows that although the incident waves are distorted in the transformation region apparently, they return to the original wavefronts when passing through the device. All theoretical and numerical results validate the material parameters for the cylindrical transparent devices with arbitrary cross section we developed.

  17. Reaction cross sections of hypernuclei and the shrinkage effect

    CERN Document Server

    Akaishi, T

    2013-01-01

    We calculate the reaction cross sections for $^6{\\rm Li}$ and $^7_{\\Lambda}{\\rm Li}$ on a $^{12}{\\rm C}$ target at $100\\,{\\rm MeV/nucleon}$ using the Glauber theory. To this end, we assume a two-body cluster structure for $^6$Li and $^7_{\\Lambda}{\\rm Li}$, and employ the few-body treatment of the Glauber theory, that is beyond the well known optical limit approximation. We show that the reaction cross section for $^7_{\\Lambda}{\\rm Li}$ is smaller than that for $^6$Li by about 4\\%, reflecting the shrinkage effect of the $\\Lambda$ particle.

  18. Top quark pair cross section measurements in CMS

    CERN Document Server

    Brochero Cifuentes, Javier Andres

    2016-01-01

    This document presents the latest results in the measurement of the top-quark pair production cross section obtained with data collected by the CMS detector at LHC accelerator. The analyses are performed in the dilepton, single lepton and full hadronic decay modes. Additionally to the inclusive measurements of $\\mathrm{\\sigma_{\\mathrm{t\\bar{t}}}}$ at 7, 8 and 13$\\mathrm{\\;TeV}$, the CMS collaboration provides for the first time the cross section at 5.02$\\mathrm{\\;TeV}$. Results are confronted with the latest and most precise theoretical calculations.

  19. Total photoproduction cross section at very high energy

    International Nuclear Information System (INIS)

    In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference. (orig.)

  20. The absolute threshold photodetachment cross-section of Al-

    International Nuclear Information System (INIS)

    The total absolute photodetachment cross-section of the aluminum anion, Al-, is calculated in the threshold spectral region for photons of wave numbers 3400 - 3650cm-1 using the zero-core contribution (ZCC) model. A computer least-squares curve fit is used to test the validity of the Wigner threshold law and the deviation from recent experimental measurements of the relative photodetachment cross-section. It is found that the best agreements is achieved with a smaller core radius rο=1.60 Angstrom rather than the value of 1.82 Angstrom used earlier. (authors). 22 refs., 5 figs., 1 tab

  1. Differential, elastic integral and moment transfer cross sections for electron scattering from N2 at intermediate- and high-energies

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lue; Yang Xiang-Dong

    2005-01-01

    A complex optical model potential modified by incorporating the concept of bonded atom, with the overlapping effect of electron clouds between two atoms in a molecule taken into consideration, is firstly employed to calculate the differential cross sections, elastic integral cross sections, and moment transfer cross sections for electron scattering from molecular nitrogen over the energy range 300-1000eV by using additivity rule model at Hartree-Fock level. The bondedatom concept is used in the study of the complex optical model potential composed of static, exchange, correlation polarization and absorption contributions. The calculated quantitative molecular differential cross sections, elastic integral cross sections, and moment transfer cross sections are compared with the experimental and theoretical ones wherever available, and they are found to be in good agreement with each other. It is shown that the additivity rule model together with the complex optical model potential modified by incorporating the concept of bonded atom is completely suitable for the calculations of differential cross section, elastic integral cross section and moment transfer cross section over the intermediate- and high-energy ranges.

  2. Accurate momentum transfer cross section for the attractive Yukawa potential

    OpenAIRE

    Khrapak, Sergey

    2014-01-01

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within 2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  3. Accurate momentum transfer cross section for the attractive Yukawa potential

    OpenAIRE

    Khrapak, S. A.

    2014-01-01

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within $\\pm 2\\%$ in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  4. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  5. Long Memory, Fractional Integration, and Cross-Sectional Aggregation

    DEFF Research Database (Denmark)

    Haldrup, Niels; Vera-Valdés, Eduardo

    It is commonly argued that observed long memory in time series variables can result from cross-sectional aggregation of dynamic heterogeneous micro units. For instance, Granger (1980) demonstrated that aggregation of AR(1) processes with a Beta distributed AR coefficient can exhibit long memory...

  6. Recent integral cross section validation measurements at the ASP facility

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L.W., E-mail: lee.packer@ccfe.ac.uk [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Hughes, S. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Gilbert, M.; Lilley, S.; Pampin, R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: • Recent results of integral cross section measurements at ASP obtained using high purity elemental are detailed. • Details of the data processing tools and method are included which allows to preserve reaction product decay information. • C/E plots for measurements taken for number of reactions and the European Activation File 2010 cross section evaluation. • New integral data included for Ti-46(n,p)Sc-46m. -- Abstract: This work presents new integral data measured at the ASP 14 MeV neutron irradiation facility at Aldermaston in the UK, which has recently become available for fusion-related work through the CCFE materials programme. Measurements of reaction products from activation experiments using elemental foils were carried out using gamma spectrometry in a high efficiency, high-purity germanium (HPGe) detector and associated digital signal processing hardware. Following irradiation and rapid extraction to the measurement cell, gamma emissions were acquired with both energy and time bins. Integral cross section and half-life data have been derived from these measurements. Selected integral cross section values are presented from the measurement campaigns. Details of the data processing approach and outputs generated are highlighted for measurement of the {sup 186}W(n,2n){sup 185m}W reaction—a selected short-lived reaction resulting from W foil irradiations; C/E results are reported along with the associated uncertainties and compared using the SAFEPAQ-II tool against existing available data.

  7. (, 3) Differential cross section of He (21) and He (23)

    Indian Academy of Sciences (India)

    Kshamata Muktavat; M K Srivastava

    2002-01-01

    The angular distribution of the five-fold differential cross section for the electron impact double ionization of He (21 ) and He (23 ) has been studied. The kinematical conditions for maxima/minima in the angular distribution for the two cases have been compared. The two-step process for the double ionization is found to contribute very little in the triplet case.

  8. Elemental composition of paint cross sections by nuclear microprobe analysis

    International Nuclear Information System (INIS)

    Physico-chemical characterization of pigments used in artistic painting give precious indications on age of paintings and sometimes on geographical origin of ores. After recalling the principle of protons microprobe, first results obtained by microanalysis of painting cross sections for non destructive microanalysis of impurities in white lead are given

  9. Electron scattering cross sections pertinent to electron microscopy

    International Nuclear Information System (INIS)

    Some elements of the physics that determine cross sections are discussed, and various sources of data are indicated that should be useful for analytical microscopy. Atoms, molecules, and to some extent, solids are considered. Inelastic and elastic scattering of electrons and some solid-state effects are treated. 30 references

  10. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions.

  11. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  12. Absolute cross-section of turbojet aviation engine calculation

    OpenAIRE

    Ryabokon, Evgen

    2012-01-01

    The calculation method of three-dimensional model of turbojet aviation engine is offered, thus the form of turbine vanes with spiralling is described like parametric surface. The method allows make the calculation of absolute cross-section (ACS) of turbojet aviation engines with different geometrical parameters. The calculation results of ACS of aviation engine are presented.

  13. Photon-Photon total inelastic cross-section

    OpenAIRE

    Corsetti, A; Godbole, RM; Pancheri, G.

    1997-01-01

    We discuss predictions for the total inelastic gamma-gamma cross-section and their model dependence on the input parameters. We compare results from a simple extension of the Regge Pomeron exchange model as well as predictions from the eikonalized mini-jet model with recent LEP data.

  14. Measurement, calculation and evaluation of photon production cross-sections

    International Nuclear Information System (INIS)

    The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. Cross-sectional imaging patterns of desmoplastic fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mahnken, A.H.; Nolte-Ernsting, C.C.; Wildberger, J.E.; Guenther, R.W. [Dept. of Diagnostic Radiology, University Hospital, University of Technology, Aachen (Germany); Wirtz, D.C. [Dept. of Orthopaedics, University Hospital, University of Technology, Aachen (Germany)

    2001-07-01

    The aim of this study was to work out the cross-sectional imaging characteristics of desmoplastic fibroma (DF). In 3 patients with histologically proven DF, the imaging characteristics obtained with cross-sectional techniques were reviewed retrospectively. Radiographs and CT scans were available in all patients, and plain and contrast-enhanced MR examinations in 2 patients. Compared with conventional radiographs, CT allowed more accurate assessment of the extent of bone destruction including cortical breakthrough and articular invasion. Intramedullary tumor growth and soft tissue extension was best detected with MRI. Apart from heterogeneity on MR images, DF displayed nonspecific low signal intensity on unenhanced T1-weighted images and an intermediate to high signal intensity including areas of low intensity on T2-weighted images. Desmoplastic fibroma showed a distinct, inhomogeneous gadolinium enhancement. Although cross-sectional imaging features of DF are nonspecific, some MR characteristics, such as inhomogeneous contrast enhancement and the presence of low-intensity regions on T2-weighted images, are helpful in determining the differential diagnosis. Cross-sectional imaging of DF is useful for local staging of the tumor because it provides valuable information about the extent of bone destruction as well as medullary and extraosseous spread. (orig.)

  16. Estimating Dynamic Models from Repeated Cross-Sections

    NARCIS (Netherlands)

    Verbeek, M.J.C.M.; Vella, F.

    2000-01-01

    A major attraction of panel data is the ability to estimate dynamic models on an individual level. Moffitt (1993) and Collado (1998) have argued that such models can also be identified from repeated cross-section data. In this paper we reconsider this issue. We review the identification conditions u

  17. Longitudinal cross section and asymmetries for jets in leptoproduction

    International Nuclear Information System (INIS)

    We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic electron-proton scattering up to order αs of the quark-gluon coupling constant and compared them with estimates of the non-perturbative contributions. (orig.)

  18. State-selective radiative recombination cross sections of argon ions

    International Nuclear Information System (INIS)

    The n-, (n,l)- and fine-structure level state-selective radiative recombinations (RR) cross sections of argon ions Ar18+,Ar13+,Ar7+ and Ar+ are obtained with the semi-classical Kramer formula, the relativistic self-consistent field (RSCF) method and the relativistic configuration interaction (RCI) method. It is found that for the highly charged ions with few electrons, the cross sections calculated with these three methods are in good agreement with each other. But as the number of electrons increases, the Kramer formula deviates from the RSCF and RCI results. For instance, when the energy of the incident electron is larger than 100 eV, the n-state selective cross sections of Ar7+ calculated from the Kramer formula are underestimated for more than 50%. The RSCF results are in general agreement with the RCI results. However, for the low charged ions, a clear distinction appears due to the strong configuration interaction, especially near the Cooper minimum. The n-resolved (n≤10) and total Maxwellian averaged rate coefficients are calculated, and the analytic fitting parameters are also provided. -- Highlights: ► The RR cross sections of Ar18+, Ar13+, Ar7+ and Ar+ are obtained. ► The Kramer formula, the relativistic self-consistent field and RCI methods are used. ► Results from three methods are compared with each other.

  19. Annual Cross-Sectional Study of Nurse-Sensitive Problems

    DEFF Research Database (Denmark)

    Færch, Jane; Tewes, Marianne; Overgaard, Dorthe;

    2015-01-01

    A cross-sectional evaluation of nurse-sensitive problems in hospitalized patients is conducted once per year to monitor patient problems identified by nurses, whether nurses implement interventions to overcome the problems, and if the problems are solved. This article describes a systematic metho...

  20. Accurate momentum transfer cross section for the attractive Yukawa potential

    Energy Technology Data Exchange (ETDEWEB)

    Khrapak, S. A., E-mail: Sergey.Khrapak@dlr.de [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  1. Neutron capture cross sections of 151,153Eu

    International Nuclear Information System (INIS)

    The neutron capture cross section of 151,153Eu nuclei was measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). Neutrons were produced at the Lujan Neutron Scattering Center and their energies were determined by the time-of-flight technique. The relative yield versus neutron incident energy from 0.1 eV to 2.0 keV for both 151Eu(n,) and 153Eu(n,) reactions was derived from events gated on the total energy and multiplicity measured by the DANCE array. The absolute cross section was determined by scaling the relative yield to the measured cross sections of well-known resonances. The shape of the yield curve agrees well with previous measurements in the resonance region for both 151Eu and 153Eu capture cross sections. New data are reported for neutron incident energies between 100 eV and 2.0 keV. The trend of data in the 0.3 keV to 2.0 keV region of neutron incident energy is consistent with the ENDF/BVI and the measurements of Macklin and Young. Crucial skills, acquired from these measurements in the early implementation of DANCE, are important to plan future experiments, which will yield results up to a few hundred keV neutron incident energy

  2. Coulomb and nuclear effects in breakup and reaction cross sections

    CERN Document Server

    Descouvemont, Pierre; Hussein, Mahir S

    2016-01-01

    We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...

  3. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Science.gov (United States)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  4. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    OpenAIRE

    Almaraz-Calderon S.; Carnelli P. F. F.; Rehm K. E.; Albers M.; Alcorta M.; Bertone P.F.; Digiovine B.; Esbensen H.; Fernandez Niello J. O.; Henderson D.; Jiang C.L.; Lai J; Marley S. T.; Nusair O.; Palchan-Hazan T.

    2015-01-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  5. Measurement of proton inelastic scattering cross sections on fluorine

    Science.gov (United States)

    Chiari, M.; Caciolli, A.; Calzolai, G.; Climent-Font, A.; Lucarelli, F.; Nava, S.

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, 19F(p,p')19F, from the first five excited levels of 19F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm2) evaporated on a self-supporting C thin film (30 μg/cm2). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF2) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  6. Single top cross section and properties measurements in CMS

    CERN Document Server

    Komm, Matthias

    2016-01-01

    Single top quarks can be produced via the t, tW, and s channel. Studying these processes provides a test of the theory of electroweak interactions involving heavy quarks. Recent results on cross section and property measurements in pp collisions by the CMS collaboration at center-of-mass energies of 7, 8, and 13 TeV are reviewed.

  7. Ratio of the hydrogen and manganese cross sections

    International Nuclear Information System (INIS)

    A summary of the results of measurements of hydrogen to manganese cross section ratios are tabulated using weighted fits to the experimental data. Comparison of results using volumetric, gravimetric, and densimetric concentration measurements with and without contaminant corrections indicates that the methods are capable of equal accuracy

  8. Electron-metastable-helium differential and integral cross sections

    International Nuclear Information System (INIS)

    The differential and integral cross sections for the excitation of the 23P and the 33L (L≡ S, P and D) states of He from the metastable 23S state are calculated using the semiclassical multichannel eikonal theory with a nine-channel basis set. Comparison is made with recent experimental results. (Author)

  9. Commentary: Mediation Analysis, Causal Process, and Cross-Sectional Data

    Science.gov (United States)

    Shrout, Patrick E.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…

  10. Event history analysis and the cross-section

    DEFF Research Database (Denmark)

    Keiding, Niels

    2006-01-01

    Examples are given of problems in event history analysis, where several time origins (generating calendar time, age, disease duration, time on study, etc.) are considered simultaneously. The focus is on complex sampling patterns generated around a cross-section. A basic tool is the Lexis diagram....

  11. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  12. Truncated cross-sectional average length of life

    DEFF Research Database (Denmark)

    Canudas-Romo, Vladimir; Guillot, Michel

    2015-01-01

    of developed countries. The truncated cross-sectional average length of life (TCAL) is a new measure that captures historical information about all cohorts present at a given moment and is not limited to countries with complete cohort mortality data. The value of TCAL depends on the rates used to complete...

  13. Alternating series fit to the total cross sections

    International Nuclear Information System (INIS)

    It is show by a simple Regge-type fit suggested recently by Donnachie and Landshoff that the universal pomeron contribution to various total cross sections may be represented by an alternating series a - b log s + c (log s)2 corresponding to a series of Regge multipoles. (author). 9 refs., 5 tabs., 5 figs

  14. Measurement of inclusive jet cross sections in photoproduction at HERA

    CERN Document Server

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, Terence; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Chechelnitskii, S; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zácek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \\eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \\eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.

  15. Evaluation of the neutron cross sections for Pu-240

    International Nuclear Information System (INIS)

    The present evaluation is proposed to supersede the ENDF/B-V, Revision 2 file for 240Pu. In this work, resonance parameters, cross sections, energy distributions, and angular distributions have been modified. These changes are outlined in detail and appropriate references included. 37 refs., 21 figs., 2 tabs

  16. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  17. Displacement cross section and DPA calculations using NMTC/JAERI

    International Nuclear Information System (INIS)

    A new function calculating displacement cross sections using the Lindhard-Robinson model is implemented in the nucleon-meson transport code NMTC/JAERI. The nucleon-nucleus cross sections in the energy region above 950 MeV and the angular distribution data of elastic scattering are also modified to evaluate the displacement cross sections as accurate as possible. The displacement cross sections of Cr, Fe Ni, and type 316 stainless steel are calculated with the updated version of NMTC/JAERI. It is confirmed that the calculated displacement cross sections caused by the elastic scattering connect smoothly with the value of the JENDL PKA File at 20 MeV. With these calculation values, the displacement per atoms (DPA) in the beam window and target vessel of a mercury target are estimated in a framework of the neutronics design study of the spallation target bombarded with 1.5 GeV protons with a power of 5 MW. The following three beam conditions are selected in this calculation; (a) uniform distribution with average current density of 48 μA/cm2, (b) parabolic distribution with average current density of 48 μA/cm2, and (c) that with average current density of 24 μA/cm2. The DPAs are estimated as (a) 68, (b) 114, and (c) 70 DPA/yr at the beam windows, and (a) 41, (b) 52, and (c) 37 DPA/yr at the target vessel for the three cases, respectively. It is found that the DPAs obtained in this study are almost the same as the results of other design studies for spallation neutron source facilities. (author)

  18. Recent progress in fast neutron activation cross section data

    International Nuclear Information System (INIS)

    A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (orig.)

  19. Combined crustal-geological cross-section of Ellesmere Island

    DEFF Research Database (Denmark)

    Stephenson, Randell Alexander; Schiffer, Christian; Oakey, Gordon

    resulted in a regional geological cross-section spanning Ellesmere Island from Hansen Point (NW) to the Bache Peninsula (SE). This cross-section, based on the excellent surface exposure afforded in this region, provides a model of the structure of the upper crust to a depth of about 10 km. Although......-sections have been integrated to produce a single, combined crustal-geological 2-D model of Ellesmere Island with the aim of illuminating the relationships between crustal architecture and geology as expressed at the surface of and in the topography of Ellesmere Island.......Ellesmere Island, in Canada’s Arctic, consists of a series of ~SW-NE trending tectonic provinces, the crustal structure and geological expression of which represent a combination of interplate, accretionary orogenesis in the Palaeozoic and, most recently, intraplate deformation in the Cenozoic...

  20. 252Cf-based thermal-neutron cross-section gauge for interpretation of neutron logs for oil exploration

    International Nuclear Information System (INIS)

    A newly developed neutron absorption cell measures the thermal-neutron absorption cross sections (Σ/sub w/) of formation brines encountered in logging operations. Thermal-neutron decay time logs with pulsed neutron logging systems are important tools of modern oil exploration technology. These logs yield information about oil saturation characteristics of the formation and oil-water contact location, provided the thermal-neutron cross-section behavior of the host formation is known. This cross section is determined to an important degree by that of the formation brine (Σ/sub w/). Presently, Σ/sub w/ is in most cases estimated from the chemically determined salinity of the brine, since actual measurements with a pulsed neutron logging tool are impractical, requiring several hundred gallons of the brine in a large tank. The chemical analyses are typically performed in a laboratory which is remote from the exploration site. With the portable neutron absorption cell, this measurement is made on site on a sample as small as four liters, with a precision of 0.1% in less than 5 minutes. The results of cell analyses on seventeen brine samples from oil fields in the United States and Canada are discussed. The cross sections measured have been compared with cross sections calculated from chemical and atomic absorption analyses. The agreement is within the experimental errors of the chemical analyses in all cases. Importantly, in all cases boron contributed a noticeable amount to the total absorption cross section. This boron contribution is ignored by conventional brine analyses precluding an accurate estimate of oil saturation, especially in the case of expensive log-inject-log measurements of residual oil preceding secondary or tertiary recovery

  1. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    Science.gov (United States)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  2. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was

  3. Fully hadronic tt cross section with the ATLAS detector

    OpenAIRE

    Coccaro, Andrea; collaboration, on behalf of the ATLAS

    2013-01-01

    A measurement of the tt production cross section in the all-hadronic decay mode is presented using 4.7 fb-1 of proton-proton collisions at a centre of mass energy of 7 TeV collected by the ATLAS experiment in 2011. Events are selected using a multi-jet trigger. Kinematic and b-tagging requirements are then applied to identify tt event candidates. A kinematic fit reconstructs the event topology of the final state extracting the top-quark mass which is then used to measure the production cross ...

  4. Developing Scientific Reasoning Through Drawing Cross-Sections

    Science.gov (United States)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the

  5. Ultra-Broad Band Radar Cross Section Reduction of Waveguide Slot Antenna with Metamaterials

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-06-01

    Full Text Available To reduce the radar cross section of a waveguide slot antenna, a three-layer metamaterial is presented based on orthogonal double split-ring resonators. The absorption characteristics of three-layer metamaterial are demonstrated by simulation. Moreover, the metamaterials have been loaded on common waveguide slot antenna according to the surface current distribution. The ultra-broad band radar cross section reduction of the antenna with metamaterials had been theoretically and experimentally investigated by radiating and scattering performances. Experimental and simulated results showed that the proposed antenna with metamaterials performed broadband radar cross section reduction from 3.9 GHz to 18 GHz and the gain had been improved due to the coupling effect between slot and the period structure. The maximal radar cross section reduction achieved 17.81 dB at 8.68 GHz for x-polarized incidence and 21.79 dB at 6.25 GHz for y-polarized waves.

  6. Precision predictions of exclusive jet cross sections at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gangal, Shireen

    2015-10-15

    With the discovery of the Higgs boson, a central objective of the LHC Higgs program is to study its properties in detail by exploring different production and decay channels. This requires precise theoretical predictions of inclusive cross sections as well as differential and exclusive cross sections. In this thesis, we study perturbative uncertainties in the fixed-order (FO) predictions of exclusive jet cross sections and obtain resummed predictions for a new class of rapidity-dependent jet veto observables, focusing on Higgs production via gluon gluon fusion (ggF) at the LHC. Experimental analyses at the LHC often use jet binning and jet selection cuts to distinguish between different Higgs production mechanisms and to separate signal from backgrounds. Such jet vetoes and jet selection cuts induce Sudakov logarithms of the ratio of the veto scale and the hard scale in the process. In the limit of very tight jet vetoes, these logarithms can become large and introduce large uncertainties in the FO predictions of cross sections. By resumming these large logarithms to all orders, the perturbative uncertainties can be considerably reduced. Whether in FO or resummed predictions, a consistent treatment of uncertainties in different jet bins is required. In the first part of the thesis, we studied in detail the perturbative uncertainties in the NLO predictions for pp→H+2-jets via ggF for the vector boson fusion (VBF) selection cuts used by ATLAS and CMS in their H→γγ analyses. Our study shows that, while applying strong restrictions on additional emissions is expected to increase the sensitivity to the VBF signal and reduce the ggF contribution, it is not necessarily beneficial for distinguishing the VBF and ggF production modes because of the quickly increasing ggF uncertainties. In the second part of the thesis, we introduce rapidity-dependent jet veto observables for which the transverse momentum of a jet is weighted by a smooth function of the jet rapidity

  7. Barrier Distributions and Systematics of Fusion- and Capture Cross Sections

    CERN Document Server

    Siwek-Wilczynska, K; Wilczynski, J

    2003-01-01

    Methods of predicting ''capture'' cross sections, i.e. , cross sections for sticking of two colliding nuclei after overcoming the interaction barrier, are presented. Close links between the capture excitation functions and smearing of the interaction barrier are discussed. By using a new ''polynomial fit'' method of determining d sup 2 (E sigma)/dE sup 2 values, the barrier distributions have been directly deduced for several precisely measured fusion excitation functions found in the literature, and compared with results of standard ''point difference'' method. Existing data on near-barrier fusion- and capture excitation functions for about 50 medium and heavy nucleus-nucleus systems have been analyzed using a simple formula obtained assuming Gaussian shape of the barrier distribution. Systematics of the barrier distribution parameters, the mean barrier and width of the distribution, are presented and proposed to be used together with the closed-form ''error function formula'' for predicting unknown capture ...

  8. Titanium-I: fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Energy averaged total neutron cross sections are measured from approximately 1.0 to 4.5 MeV with few percent statistical accuracies. Differential elastic neutron scattering angular distributions are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of less than or equal to 0.2 MeV. Differential cross sections for the inelastic neutron excitation of ''states'' at 158 +- 26, 891 +- 8, 984 +- 15, 1428 +- 39, 1541 +- 30, 1670 +- 80, 2007 +- 8, 2304 +- 22, 2424 +- 16, and 2615 +- 10 keV are measured for incident neutron energies from 1.5 to 4.0 MeV. Additional ''states'' are observed at approximately 2845 and 3009 keV. An energy-averaged optical-statistical model is deduced from the measured values and the implications of its use in the context of the strong fluctuating structure is discussed

  9. Improved estimate of the cross section for inverse beta decay

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    The hypothesis of the conserved vector current, relating the vector weak and isovector electromagnetic currents, plays a fundamental role in quantitative description of neutrino interactions. Despite being experimentally confirmed with great precision, it is not fully implemented in existing calculations of the cross section for inverse beta decay, the dominant mechanism of antineutrino scattering at energies below a few tens of MeV. In this article, I estimate the corresponding cross section and its uncertainty, ensuring conservation of the vector current. While converging to previous calculations at energies of several MeV, the obtained result is appreciably lower and predicts more directional positron production near the reaction threshold. These findings suggest that in the current estimate of the flux of geologically produced antineutrinos the 232Th and 238U components may be underestimated by 6.1 and 3.7%, respectively. The proposed search for light sterile neutrinos using a 144Ce--144Pr source is predi...

  10. Near-Field Cross Section Imaging of Wideband Millimeter Wave

    Directory of Open Access Journals (Sweden)

    Kan Yingzhi

    2016-01-01

    Full Text Available Near-field millimeter wave imaging has been a hot topic recent years for its importance applications in the area of anti-terrorism. The penetrating characteristic of millimeter wave is of significant importance to security, such as the concealed weapons detection, ground-penetrating radar imaging, through-barrier imaging and so on. Cross section imaging is a basic aspect for near-field millimeter wave imaging, which includes antenna array distribution and wideband signal processing. This paper utilizes back projection method in space area to realize ultra-band nearfield cross section imaging. We induce two dimensional direction integral formulas to obtain the reconstruction image of the near-field imaging area, and the simulation results validate the effectiveness of this imaging algorithm.

  11. Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes

    Directory of Open Access Journals (Sweden)

    Lee Y.-O.

    2010-03-01

    Full Text Available Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC design and applications as well as the design of new generation of nuclear reactors (GEN-IV. This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.

  12. Isotope Dependence of Superheavy Nucleus Formation Cross Section

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAG Jing-Dong

    2006-01-01

    The dynamical process in the superheavy nucleus synthesis is studied on the basis of the two-dimensional Smolu-chowski equation. Special attention is paid to the isotope dependence of the cross section for the superheavy nucleus formation by means of making a comparison among the reaction systems of 54Fe + 204Pb, 56Fe + 206Pb, and 58Fe + 208Pb. It is found by this comparison that the formation cross section is very sensitive to the conditional saddle-point height and the neutron separation energy of the compound nucleus. Reaction systems with lower height of conditional saddle-point and smaller neutron separation energy are more favourable for the synthesis of the superheavy nucleus.

  13. Isotope effect in dissociative electron attachment cross sections in acetylene

    Energy Technology Data Exchange (ETDEWEB)

    May, Olivier; Fedor, Juraj; Allan, Michael, E-mail: olivier.may@unifr.c [Department of Chemistry, University of Fribourg, Chemin du Muse 9, 1700 Fribourg (Switzerland)

    2009-11-01

    We present absolute cross section measurement of dissociative electron attachment to C{sub 2}H{sub 2} and C{sub 2}D{sub 2}. The C{sub 2}H{sup -}/ C{sub 2}D{sup -} band at 3 eV shows pronounced isotope effect with the cross section for C{sub 2}H{sub 2} being 14.7 times larger than that for C{sub 2}D{sub 2}. The light fragments H{sup -} and D{sup -} dominate the second dissociative electron attachment band around 8 eV. These bands exhibit much weaker isotope effects which is in agreement with their assignment to Feshbach resonances.

  14. Neutron Capture Cross Sections of 236U and 234U

    Science.gov (United States)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  15. Deuterium target data and precision neutrino-nucleus cross sections

    CERN Document Server

    Meyer, Aaron S; Gran, Richard; Hill, Richard J

    2016-01-01

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, $F_A(q^2)$, which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of $F_A$ from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of $F_A$. A complete error budget for the nucleon isovector axial radius leads to $r_A^2=0.46(22) \\,{\\rm fm}^2$, with a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as $\\sigma(\

  16. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    Science.gov (United States)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  17. Evolving roles of cross-sectional imaging in Crohn's disease.

    Science.gov (United States)

    Magarotto, Andrea; Orlando, Stefania; Coletta, Marina; Conte, Dario; Fraquelli, Mirella; Caprioli, Flavio

    2016-09-01

    The implementation of cross-sectional imaging techniques for the clinical management of Crohn's disease patients has steadily grown over the recent years, thanks to a series of technological advances, including the evolution of contrast media for magnetic resonance, computed tomography and bowel ultrasound. This has resulted in a continuous improvement of diagnostic accuracy and capability to detect Crohn's disease-related complications. Additionally, a progressive widening of indications for cross-sectional imaging in Crohn's disease has been put forward, thus leading to hypothesize that in the near future imaging techniques can increasingly complement endoscopy in most clinical settings, including the grading of disease activity and the assessment of mucosal healing or Crohn's disease post-surgical recurrence.

  18. Vortex breakdown in closed containers with polygonal cross sections

    International Nuclear Information System (INIS)

    The vortex breakdown bubble in the confined flow generated by a rotating lid in closed containers with polygonal cross sections was analysed both experimentally and numerically for the height/radius aspect ratio equal to 2. The stagnation point locations of the breakdown bubble emergence and the corresponding Reynolds number were determined experimentally and in addition computed numerically by STAR-CCM+ CFD software for square, pentagonal, hexagonal, and octagonal cross section configurations. The flow pattern and the velocity were observed and measured by combining the seeding particle visualization and the temporal accuracy of laser Doppler anemometry. The vortex breakdown size and position on the container axis were determined for Reynolds numbers, ranging from 1450 to 2400. The obtained results were compared with the flow structure in the closed container of cubical and cylindrical configurations. It is shown that the measured evolution of steady vortex breakdown is in close agreement with the numerical results

  19. Cross section generation for LWR pin lattices simulations

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E.; Macedo, Anderson A.P.; Cardoso, Fabiano S.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Instituto Nacional de Ciencia e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brasilia, DF (Brazil); Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The majority of the neutron data library provided with the MCNP code is set at room temperature. Therefore, it is important to generate continuous energy cross section library for MCNP code for different temperatures. To evaluate the methodology used, the criticality calculations obtained using MCNP with the cross section generated at DEN/UFMG, are compared with the criticality data from the International Handbook of Evaluated Reactor Physics Benchmarks Experiments about the PIN lattices for light water reactors. It was used nuclear data from the ENDF-VII.1, JEFF-3.1 and TENDL-2014, which were processed using the NJOY99 code for different energies and temperatures. This code provides the nuclear data in ACE libraries, which then are added to MCNP libraries to perform the simulations. The results indicate the methodology efficiency developed by DEN/UFMG. (author)

  20. On the Wong cross section and fusion oscillations

    CERN Document Server

    Rowley, N

    2015-01-01

    We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as $^{16}$O+$^{144}$Sm, it tends to overestimate the cross section for light systems such as $^{12}$C+$^{12}$C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.

  1. Cross sections for bremsstrahlung production and electron-impact ionization

    International Nuclear Information System (INIS)

    Electron transport codes require extensive information on the cross sections that govern electron interactions with the atoms that make up the medium. These processes include bremsstrahlung production in the atomic field, excitation and ionization of atomic electrons, and elastic scattering by screened atomic nuclei. These fundamental processes are of basic interest in many fields, but their inclusion in general purpose Monte Carlo transport codes imposes the requirement that reasonably accurate cross-section data be available over a very wide range of energies and for virtually any material. In this chapter, the author discusses two of these processes: bremsstrahlung production and electron-impact ionization. Both of these interactions result in the production of secondary radiations that can be important in radiation transport calculations

  2. Higgs Boson Cross Section from CTEQ-TEA Global Analysis

    CERN Document Server

    Dulat, Sayipjamal; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C -P

    2013-01-01

    We study the uncertainties of the Higgs boson production cross section through the gluon fusion subprocess at the LHC (with $\\sqrt s=7, 8$ and $14$ TeV) arising from the uncertainties of the parton distribution functions (PDFs) and of the value of the strong coupling constant $\\alpha_s(M_Z)$. These uncertainties are computed by two complementary approaches, based on the Hessian and the Lagrange Multiplier methods within the CTEQ-TEA global analysis framework. We find that their predictions for the Higgs boson cross section are in good agreement. Furthermore, the result of the Lagrange Multiplier method supports the prescriptions we have previously provided for using the Hessian method to calculate the combined PDF and $\\alpha_s$ uncertainties, and to estimate the uncertainties at the $68%$ confidence level by scaling them from the 90% confidence level.

  3. Experimental Investigation Of Polymeric Compound Cross Section Springs

    Directory of Open Access Journals (Sweden)

    Mayas Al-Mahasne

    2007-01-01

    Full Text Available This paper presents an experimental investigation of the characteristic of the compound cross section springs on models made from polymeric materials (organic glass. Two constructive variants of the compound spring sections were specified with the help of criteria of similarity. The criterion of similarity of natural and model springs was determined by the simulation method at particular spring deflection. The problem of simulation was brought to accurate determination of the magnitudes that characterize the physical and mechanical properties of materials for natural and model springs. It was experimentally proved that the use of the proposed new type of springs significantly increases the spring stiffness.

  4. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study

    OpenAIRE

    Souza, JP; Betran, AP; Dumont, A; de Mucio, B.; Gibbs Pickens, CM; Deneux-Tharaux, C.; Ortiz-Panozo, E; Sullivan, E; Ota, E.; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J.; Cecatti, JG; Vogel, JP

    2015-01-01

    ObjectiveTo generate a global reference for caesarean section (CS) rates at health facilities. DesignCross-sectional study. SettingHealth facilities from 43 countries. Population/SampleThirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10045875 women giving birth from 43 countries for model testing. MethodsWe hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. The...

  5. Cross Section Fluctuations and Chaoticity in Heavy-Ion Dynamics

    OpenAIRE

    Rapisarda, A.

    1992-01-01

    Cross section fluctuations in nuclear scattering are briefly reviewed in order to show the main important features. Then chaotic scattering is introduced by means of a very simple model. It is shown that chaoticity produces the same kind of irregular fluctuations observed in light heavy--ion collisions. The transition from order to chaos allows a new general framework for a deeper understanding of reaction mechanisms.

  6. Reaction Cross Section in Heavy-Ion Collisions

    OpenAIRE

    Wong, Cheuk-Yin

    2012-01-01

    Previously a compact formula for total reaction cross section for heavy-ion collisions as a function of energy was obtained by treating the angular momentum $l$ as a continuous variable. The accuracy of the continuum approximation is assessed and corrections are evaluated. The accuracy of the compact equation can be improved by a simple modification, if a higher accuracy is required. Simple rules to determine the barrier heights and the penetration probability for the $l$ partial wave from ex...

  7. Grit and Work Engagement: A Cross-Sectional Study

    OpenAIRE

    Yuhei Suzuki; Dai Tamesue; Kentaro Asahi; Yoshiki Ishikawa

    2015-01-01

    Grit, defined as perseverance of effort and consistency of interest, has attracted attention as a predictor of success in various fields beyond IQ and the Big Five personality dimension of Conscientiousness. The purpose of the current study was to examine previously uninvestigated questions regarding grit using a cross-sectional design among a large number of working adults in Japan. First, we tested geographical generalizability of associations between grit and orientations towards happiness...

  8. The total top-pair production cross section at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Beneke, M. [Physik Department T31, James-Franck-Straße, Technische Universität München, D-85748 Garching (Germany); Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany); Falgari, P., E-mail: p.falgari@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Klein, S. [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany); Piclum, J. [Physik Department T31, James-Franck-Straße, Technische Universität München, D-85748 Garching (Germany); Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany); Schwinn, C. [Albert-Ludwigs Universität Freiburg, Physikalisches Institut, D-79104 Freiburg (Germany); Ubiali, M.; Yan, F. [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen (Germany)

    2013-01-15

    We present results for the total top-pair production cross section at the Tevatron and the LHC. Our predictions supplement fixed-order results with resummation of soft logarithms and Coulomb singularities to next-to-next-to-leading (NNLL) logarithmic accuracy and include top-antitop bound-state effects. The effects of resummation, the dependence on the PDF set used, the residual sources of theoretical uncertainty and their implication for measurements of the top-quark mass are discussed.

  9. Neutron removal cross section as a measure of neutron skin

    OpenAIRE

    D. Q. Fang; Y. G. Ma; Cai, X. Z.(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China); Tian, W.D.; Wang, H. W.

    2010-01-01

    We study the relation between neutron removal cross section ($\\sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $\\sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increa...

  10. Proton-air and proton-proton cross sections

    OpenAIRE

    Ulrich Ralf

    2013-01-01

    Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-...

  11. Cross sections and kinematics of proton induced fragmentation of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Streibel, T.; Roecher, H.; Huentrup, G.; Heinrich, W. [Siegen Univ. (Germany). Dept. of Physics

    1997-09-01

    Charge changing fragmentation cross sections for C at a proton energy of about 70 MeV were measured. The discrepancies between measurement and model predictions indicate the necessity of further investigations. We have also measured distributions of fragment emission angles which can be described using a model with a momentum transfer to the fragmenting nucleus. The developed model leads to predictions for momentum distributions of proton induced target fragments of C at small energies. (orig.)

  12. Inclusive parton cross sections in photoproduction and photon structure

    CERN Document Server

    Ahmed, T; Andrieu, B; Appuhn, R D; Arpagaus, M; Aïd, S; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bergstein, H; Bernardi, G; Bernet, R; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Brasse, F W; Braunschweig, W; Brisson, V; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Buschhorn, G W; Bán, J; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Campbell, A J; Carli, T; Charles, F; Charlet, M; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Colombo, M G; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Coutures, C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; De Wolf, E A; Del Buono, L; Delcourt, B; Di Nezza, P; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duboc, J; Duhm, H; Düllmann, D; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichenberger, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Erlichmann, H; Evrard, E; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Forbush, M; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gamerdinger, K; Garvey, J; Gayler, J; Gebauer, M; Gellrich, A; Genzel, H; Gerhards, R; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; González-Pineiro, B; Gorelov, I V; Goritchev, P A; Grab, C; Greenshaw, T J; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Haidt, Dieter; Hajduk, L; Hamon, O; Hampel, M; Hanlon, E M; Hapke, M; Haynes, W J; Heatherington, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hildesheim, W; Hill, P; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Horisberger, R P; Hudgson, V L; Huet, Patrick; Hufnagel, H; Höppner, M; Hütte, M; Ibbotson, M; Itterbeck, H; Jabiol, M A; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Johnson, L; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kant, D; Kaschowitz, R; Kasselmann, P; Kathage, U; Katzy, J M; Kaufmann, H H; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Ko, W; Kolanoski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Krüger, U P; Krüner-Marquis, U; Kubenka, J P; Kuhlen, M; Kurca, T; Kurzhöfer, J; Kuznik, B; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Lamarche, F; Lander, R; Landon, M P J; Lange, W; Lanius, P; Laporte, J F; Lebedev, A; Leverenz, C; Levonian, S; Ley, C; Lindner, A; Lindström, G; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lohmander, H; Lomas, J W; Lubimov, V; López, G C; Lüke, D; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, R D; Martyn, H U; Martyniak, J; Masson, S; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Mercer, D; Merz, T; Meyer, C A; Meyer, H; Meyer, J; Migliori, A; Mikocki, S; Milstead, D; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Obrock, U; Olsson, J E; Ozerov, D; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Peppel, E; Phillips, J P; Pichler, C; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Prosi, R; Pérez, E; Rabbertz, K; Raupach, F; Reimer, P; Reinshagen, S; Ribarics, P; Rick, Hartmut; Riech, V; Riedlberger, J; Riess, S; Rietz, M; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rylko, R; Rädel, G; Rüter, K; Sahlmann, N; Salesch, S G; Sankey, D P C; Schacht, P; Schiek, S; Schleper, P; Schmidt, C; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schwind, A; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shooshtari, H; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Spiekermann, J; Spielman, S; Spitzer, H; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Stella, B; Stephens, K; Stier, J; Stiewe, J; Stolze, K; Strachota, J; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Sánchez, E; Tapprogge, Stefan; Thiebaux, C; Thompson, G; Truöl, P; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Vartapetian, A H; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walker, I W; Walther, A; Weber, G; Weber, M; Wegener, D; Wegner, A; Wellisch, H P; West, L R; Willard, S; Winde, M; Winter, G G; Wittek, C; Wright, A E; Wulff, N; Wünsch, E; Yiou, T P; Zarbock, D; Zhang, Z; Zhokin, A S; Zimmer, M; Zimmermann, W; Zomer, F; Zuber, K; Zácek, J; de Roeck, A; von Schlippe, W

    1995-01-01

    Photoproduction of 2-jet events is studied with the H1 detector at HERA. Parton cross sections are extracted from the data by an unfolding method using leading order parton-jet correlations of a QCD generator. The gluon distribution in the photon is derived in the fractional momentum range 0.04\\le x_\\gamma \\le 1 at the average factorization scale 75 GeV^2.

  13. Radar cross section (RCS) simulation for wind turbines

    OpenAIRE

    Ton, Cuong

    2013-01-01

    Wind-turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built near military and commercial radar and communication installations, they can cause degradation in the systems performance. The purpose of this research is to study the radar cross section (RCS) of a wind turbine and assess its effect on the performance of radar and communication systems. In this research, some basic scattering characteristics of wind turbines are discussed. Se...

  14. Cross-Sectional Serological Survey of Human Fascioliasis in Haiti

    OpenAIRE

    Agnamey, P.; Fortes-Lopes, E.; Raccurt, C. P.; Boncy, J.; Totet, A.

    2012-01-01

    Fasciola hepatica, the aetiological agent of fascioliasis in the Caribbean region, occurs throughout the major islands of the Greater Antilles and in localised zones on two islands (Martinique and Saint Lucia) of the Lesser Antilles. However, apart from Puerto Rico, information regarding human fascioliasis in islands of the Caribbean is out of date or unavailable, or even nonexistent as in Haiti. The authors conducted a retrospective, cross-sectional serological survey in Port-au-Prince using...

  15. Theory of neutron resonance cross sections for safety applications

    International Nuclear Information System (INIS)

    Neutron resonances exert a strong influence on the behaviour of nuclear reactors, especially on their response to the temperature changes accompanying power excursions, and also on the efficiency of shielding materials. The relevant theory of neutron resonance cross sections including the practically important approximations is reviewed, both for the resolved and the unresolved resonance region. Numerical techniques for Doppler broadening of resonances are presented, and the construction of group constants and especially of self-shielding factors for neutronics calculations is outlined. (orig.)

  16. Fusion cross sections from Los Alamos R-matrix analyses

    International Nuclear Information System (INIS)

    We have been using R-matrix theory many years at Los Alamos to describe reactions in light systems, especially those containing fusion reactions. The theory is ideally suited for describing the resonances that are usually seen in light-element reactions, and at the same time it builds in the correct energy dependence of the transition matrix elements at low energies by making explicit use of the solutions for the external parts of the interaction. Thus, the method gives reliable extrapolations to low energies for both neutron- and charged-particle-induced reactions. We will present here the results of analysis that have been done, or are in progress, for reactions in the four- and five-nucleon systems, containing the fusion reactions of major interest: T(d,n)4He, 3He,D(d, p)T, and D(d,n)3He. These analyses contain all possible types of data that have been measured for the two-body reactions of these systems, a method that we have found crucial for determining their true resonant structures, and for ensuring reliable R-matrix interpolations and extrapolations of even the cross-section data. Integrated cross sections will be presented in the form of astrophysical S-functions, as functions of center-of-mass energy, in order that their low energy behavior might be better displayed. In addition to the R-matrix results, we will also show earlier cross-section parametrizations by Duane and Peres that still are used widely within the function reactor community. Some severe shortcomings of these earlier data sets are revealed by comparison with modern measurements and with the R-matrix calculations. More details about these comparisons and useful representations of the R-matrix cross sections and their associated reactivities () recommended for use in fusion reactor design are given in a paper by Bosch and Hale has been submitted for publication

  17. Top quark pair production cross section at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Cortiana, Giorgio; /INFN, Padua /Padua U.

    2008-04-01

    Top quark pair production cross section has been measured at the Tevatron by CDF and D0 collaborations using different channels and methods, in order to test standard model predictions, and to search for new physics hints affecting the t{bar t} production mechanism or decay. Measurements are carried out with an integrated luminosity of 1.0 to 2.0 fb{sup -1}, and are found to be consistent with standard model expectations.

  18. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    International Nuclear Information System (INIS)

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + 88Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model

  19. Resonance averaged channel radiative neutron capture cross sections

    International Nuclear Information System (INIS)

    In order to apply Lane amd Lynn's channel capture model in calculations with a realistic optical model potential, we have derived an approximate wave function for the entrance channel in the neutron-nucleus reaction, based on the intermediate interaction model. It is valid in the exterior region as well as the region near the nuclear surface, ans is expressed in terms of the wave function and reactance matrix of the optical model and of the near-resonance parameters. With this formalism the averaged channel radiative neutron capture cross section in the resonance region is written as the sum of three terms. The first two terms correspond to contribution of the optical model real and imaginary parts respectively, and together can be regarded as the radiative capture of the shape elastic wave. The third term is a fluctuation term, corresponding to the radiative capture of the compound elastic wave in the exterior region. On applying this theory in the resonance region, we obtain an expression for the average valence radiative width similar to that of Lane and Mughabghab. We have investigated the magnitude and energy dependence of the three terms as a function of the neutron incident energy. Calculated results for 98Mo and 55Mn show that the averaged channel radiative capture cross section in the giant resonance region of the neutron strength function may account for a considerable fraction of the total (n, γ) cross section; at lower neutron energies a large part of this channel capture arises from the fluctuation term. We have also calculated the partial capture cross section in 98Mo and 55Mn at 2.4 keV and 24 keV, respectively, and compared the 98Mo results with the experimental data. (orig.)

  20. NURSE STAFFING AND MEDICATION ERRORS: CROSS SECTIONAL OR LONGITUDINAL RELATIONSHIPS?

    OpenAIRE

    Mark, Barbara A.; Belyea, Michael

    2009-01-01

    We used autoregressive latent trajectory (ALT) modeling to examine the relationship between change in nurse staffing and change in medication errors over 6 months in 284 general medical-surgical nursing units. We also investigated the impact of select hospital and nursing unit characteristics on the baseline level and rate of change in medication errors. We found essentially no support for a nurse staffing – medication error relationship either cross-sectionally or longitudinally. Few hospita...

  1. Employee engagement within the NHS: a cross-sectional study

    OpenAIRE

    Yadava Bapurao Jeve; Christna Oppenhemier; Justin Konje

    2015-01-01

    Background Employee engagement is the emotional commitment of the employee towards the organisation. We aimed to analyse baseline work engagement using Utrecht Work Engagement Scale (UWES) at a teaching hospital. Methods We have conducted a cross-sectional study within the National Health Service (NHS) Teaching Hospital in the UK. All participants were working age population from both genders directly employed by the hospital. UWES has three constituting dimensions of work e...

  2. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Directory of Open Access Journals (Sweden)

    Almaraz-Calderon S.

    2015-01-01

    Full Text Available Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  3. Optical Conductivity of Metal Nanowires with Elliptical Cross Section

    Directory of Open Access Journals (Sweden)

    A.V. Korotun

    2015-12-01

    Full Text Available In this paper, the conductivity tensor diagonal components of elliptical wire have been calculated in the model of free-electron with the use the boundary shape perturbation method with due regard for the size dependence of the Fermi energy. The effect of the cross-sectional geometry and matter of the wires on the frequency dependence of the real and imaginary parts of the optical conductivity has been investigated.

  4. Fusion cross sections from Los Alamos R-matrix analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hale, G.M.

    1991-01-01

    We have been using R-matrix theory many years at Los Alamos to describe reactions in light systems, especially those containing fusion reactions. The theory is ideally suited for describing the resonances that are usually seen in light-element reactions, and at the same time it builds in the correct energy dependence of the transition matrix elements at low energies by making explicit use of the solutions for the external parts of the interaction. Thus, the method gives reliable extrapolations to low energies for both neutron- and charged-particle-induced reactions. We will present here the results of analysis that have been done, or are in progress, for reactions in the four- and five-nucleon systems, containing the fusion reactions of major interest: T(d,n){sup 4}He, {sup 3}He,D(d, p)T, and D(d,n){sup 3}He. These analyses contain all possible types of data that have been measured for the two-body reactions of these systems, a method that we have found crucial for determining their true resonant structures, and for ensuring reliable R-matrix interpolations and extrapolations of even the cross-section data. Integrated cross sections will be presented in the form of astrophysical S-functions, as functions of center-of-mass energy, in order that their low energy behavior might be better displayed. In addition to the R-matrix results, we will also show earlier cross-section parametrizations by Duane and Peres that still are used widely within the function reactor community. Some severe shortcomings of these earlier data sets are revealed by comparison with modern measurements and with the R-matrix calculations. More details about these comparisons and useful representations of the R-matrix cross sections and their associated reactivities (<{sigma}v>) recommended for use in fusion reactor design are given in a paper by Bosch and Hale has been submitted for publication.

  5. Cross-sectional study of malocclusion in Spanish children

    OpenAIRE

    Almerich Silla, José Manuel; Montiel Company, José María; Bellot Arcís, Carlos; Puertes Fernández, Neus

    2014-01-01

    Objectives: This study was conducted to determine the orthodontic treatment need of the child population of the Valencia region of Spain, employing the DAI and the IOTN, to examine the relations between treatment need, socio-economic data and gender and to assess the diagnostic agreement between the two indices. Study Design: A cross-sectional descriptive study was conducted in a random representative sample of the schoolchild population of the Valencia region of Spain. The sample size was a ...

  6. The Hadronic Cross-Section in the Resonance Energy Region

    OpenAIRE

    Portoles, J.; Ruiz-Femenia, P. D.

    2003-01-01

    We study the hadronic vacuum polarization in the resonance energy region, using the framework given by the Resonance Effective Theory of QCD. We consider the incorporation of vector-pseudoscalar meson loops that give, inclusively, three and four pseudoscalar meson cuts. After resummation we achieve a QCD-based inclusive parameterization of the correlator, hence of the hadronic cross-section in the energy region populated by resonances.

  7. Inclusive jet cross-section measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Norniella, Olga; /Barcelona, IFAE

    2007-05-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  8. Slow Wave Characteristics of Helix Structure with Elliptical Cross Section

    Institute of Scientific and Technical Information of China (English)

    XIE Jian-Xiang; WEI Yan-Yu; GONG Yu-Bin; Fu Cheng-Fang; YUE Ling-Na; WANG Wen-Xiang

    2007-01-01

    We present a novel helix slow wave structure with an elliptical cross section shielded by an elliptical waveguide.The rf characteristics including dispersion properties,interaction impedance of zero mode in this structure have been studied in detail.The theoretical results reveal that weaker dispersion even abnormal dispersion characteristics is obtained with the increasing eccentricity of the elliptical waveguide,while the interaction impedance is enhanced by enlarging the eccentricity of elliptical helix.

  9. Stress in medical students: A cross sectional study

    OpenAIRE

    Chauhan, Hiteshkumar Muktilal; Shah, Hirendra R; Chauhan, Sumitraben Hiteshkumar; Chaudhary, Sucheta M

    2014-01-01

    Background & Objectives: Stress occurs when pressure is greater than resources available. Medical education has many factors causing stress among the medical students. This study was conducted to find out the prevalence of stress among medical students and to know the factors causing stress in them.Methods: This is a cross sectional study, conducted on the Ist MBBS to III/IInd MBBS students of B. J. Medical College, Ahmedabad, using a semistructured self administered questionnaire, in Oct...

  10. Cross sections for low-energy $\\pi^-\\gamma$ reactions

    OpenAIRE

    Kaiser, N.(Physik Department T39, Technische Universität München, Garching, D-85747, Germany); Friedrich, J. M.

    2008-01-01

    We review the cross sections for low-energy $\\pi^- \\gamma$ reactions in the framework of chiral perturbation theory. Charged pion Compton scattering, $\\pi^- \\gamma\\to \\pi^-\\gamma$, is considered up to one-loop order where the pion's internal structure enters through the difference of the electric and magnetic pion polarizability, $\\alpha_\\pi - \\beta_\\pi$. The ongoing COMPASS experiment aims at measuring this important structure constant with high statistics using the Primakoff effect. In the ...

  11. Measurement of Charmonium Production Cross Section at LHCb

    CERN Multimedia

    Frosini, M

    2010-01-01

    The great abundance of charmonium states, collected from the start up of LHC, allows to study its production mechanism. In particular the total and differential $J/\\psi$ production cross section are measured in the transverse momentum range [0;10] GeV/$c$ and in the pseudorapidity range $y \\in$ [2.5;4]. The measurements are performed disentagling the prompt (direct production in $pp$ collisions and feed down from excited charmonium states) and delayed ($b$-hadron decays products) component.

  12. The physics of neutrino cross sections: theoretical studies

    CERN Document Server

    Alvarez-Ruso, Luis

    2016-01-01

    The present status of neutrino cross section physics is reviewed focusing on the recent theoretical developments in quasielastic scattering, multi-nucleon contributions to the inclusive scattering and pion production on nucleons and nuclei. A good understanding of these processes is crucial to meet the precision needs of neutrino oscillation experiments. Some of the challenges that arise in the consistent description of MiniBooNE and MINERvA recent data are discussed.

  13. (n,α reactions cross section research at IPPE

    Directory of Open Access Journals (Sweden)

    Giorginis G.

    2012-02-01

    Full Text Available An experimental set-up based on an ionization chamber with a Frisch grid and wave form digitizer was used for (n,α cross section measurements. Use of digital signal processing allowed us to select a gaseous cell inside the sensitive area of the ionization chamber and determine the target atoms in it with high accuracy. This kind of approach provided us with a powerful method to suppress background arising from the detector structure and parasitic reactions on the working gas components. This method is especially interesting to study neutron reactions with elements for which solid target preparation is difficult (noble gases for example. In the present experiments we used a set of working gases which contained admixtures of nitrogen, oxygen, neon, argon and boron. Fission of 238U was used as neutron flux monitor. The cross section of the (n,α reaction for 16O, 14N, 20Ne, 36Ar, 40Ar and the yield ratio α0/α1 of 10B(n,α0 to 10B(n,α1 reactions was measured for neutron energies between 1.5 and 7 MeV. Additionally a measurement of the 50Cr(n,α cross section using a solid chromium target is also reported.

  14. Neutron Capture Cross Sections for the Weak s Process

    CERN Document Server

    Heil, M; Kaeppeler, F; Gallino, R; Pignatari, M; Uberseder, E

    2009-01-01

    In past decades a lot of progress has been made towards understanding the main s-process component that takes place in thermally pulsing Asymptotic Giant Branch (AGB) stars. During this process about half of the heavy elements, mainly between 90=8Msolar) and is much less understood. A better characterization of the weak s component would help disentangle the various contributions to element production in this region. For this purpose, a series of measurements of neutron-capture cross sections have been performed on medium-mass nuclei at the 3.7-MV Van de Graaff accelerator at FZK using the activation method. Also, neutron captures on abundant light elements with A<56 play an important role for s-process nucleosynthesis, since they act as neutron poisons and affect the stellar neutron balance. New results are presented for the (n,g) cross sections of 41K and 45Sc, and revisions are reported for a number of cross sections based on improved spectroscopic information.

  15. Fission cross section uncertainties with the NIFFTE TPC

    Science.gov (United States)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Electron impact cross sections of vibrationally and electronically excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-Sik, E-mail: jsyoon@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Song, Mi-Young; Kwon, Deuk-Chul; Choi, Heechol [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Kim, Chang-Geun [National Center for Standard Reference Data, Korea Research Institute of Standards and Science, Doryong-Dong, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kumar, Vijay [B-82, Aarohi Twin Bungalows, Near Govt. Tubewell, Bopal, Ahmedabad-380058 (India)

    2014-10-30

    It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT, N{sub 2}, O{sub 2}, and CO{sub 2}. This review includes the discussion on the methods to produce and detect vibrationally and electronically excited molecules. We will take up the cross section data available in the literature for such molecules on electron scattering, dissociation, ionization and attachment processes and will discuss, evaluate and well-validate the same wherever and whenever possible.

  17. Peripheral nerve imaging: Not only cross-sectional area.

    Science.gov (United States)

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves. PMID:27648165

  18. Reconciling cross-sectional with longitudinal observations on annual decline.

    Science.gov (United States)

    Vollmer, W M

    1993-01-01

    In summary, numerous factors may contribute to observed differences between longitudinally and cross-sectionally derived measures of annual decline in lung function. The direction and magnitude of these differences appear hard to predict. Furthermore, although these differences can be minimized by careful modeling of the data, they cannot, in general, be completely avoided. It seems plausible, however, that both types of studies should give similar qualitative comparisons of risk factor effects if appropriately modeled. Longitudinal studies are likely to provide the most accurate and reliable estimates of lung function decline for both individuals and populations. Such data may be especially useful in identifying individuals with accelerated declines in lung function but who still have "normal" lung function as measured cross-sectionally. However, such studies require careful attention to quality control and typically require at least 4 years of follow-up before the noise in the data settles down. Multiple measurements, preferably four or more, are also necessary to reliably detect and adjust for survey effects. Cross-sectional studies, on the other hand, are simpler, cheaper, and quicker to conduct than are longitudinal studies. They may be particularly useful as a screening tool for identifying potentially affected or high-risk subjects (e.g., those with low levels of lung function) who may require further medical follow-up and/or ongoing monitoring. Both types of studies have a role in population-based occupational health hazard assessments.

  19. Coherent set of electron cross sections for argon

    Science.gov (United States)

    Alves, L. L.; Ferreira, C. M.

    2011-10-01

    This paper presents a coherent set of electron impact cross sections for argon (elastic momentum-transfer, inelastic for the excitation of 37 levels Ar(4s,4p,3d,5p,4d,6s) and ionization), which was recently uploaded onto the LXcat IST-Lisbon database. The cross section set was validated by comparing calculated swarm parameters (electron mobility and characteristic energy) and rate coefficients (Townsend ionization coefficient and direct + cascade excitation coefficients to the 4s and 4p states) with available experimental data, for E / N = 10-4 - 100 Td and Tg = 300, 77 K. The validation procedure involves the solution to the homogeneous two-term electron Boltzmann equation, resorting to three different solvers: (i) IST-Lisbon's (ii) BOLSIG+ (v1.2) with LXcat; (iii) BOLSIG+ (v1.23). The results obtained with these solvers are compared to evidence the importance of certain numerical features related with both the energy-grid (number of points, grid-type and maximum energy value) and the interpolation scheme adopted for the cross sections. In particular, the latter can cause a 6% variation on the values of swarm parameters at intermediate E/Ns.

  20. An update of argon inelastic cross sections for plasma discharges

    International Nuclear Information System (INIS)

    This paper proposes a coherent set of electron impact inelastic cross sections for argon, based on recent experimental measurements. The updated set is validated by comparing calculated swarm parameters and rate coefficients (obtained by solving the two-term approximation electron Boltzmann equation) with available experimental data. This validation procedure is usually adopted when the cross section set is to be later used in plasma discharge modelling. Simulation results for the electron drift velocity and characteristic energy are in very good agreement with experimental values of these quantities. Calculations, using cross section sets proposed by different authors, of the total (direct + cascade) excitation coefficients to the 4s and 4p states, and of the Townsend ionization coefficient, show that the present set ensures the best overall agreement with measured values. The agreement is particularly good for the excitation coefficient to metastable 4s'[1/2]0 and the Townsend ionization coefficient, which are probably the most relevant electron macroscopic coefficients in the modelling of discharge plasmas

  1. Hydraulic geometry of river cross sections; theory of minimum variance

    Science.gov (United States)

    Williams, Garnett P.

    1978-01-01

    This study deals with the rates at which mean velocity, mean depth, and water-surface width increase with water discharge at a cross section on an alluvial stream. Such relations often follow power laws, the exponents in which are called hydraulic exponents. The Langbein (1964) minimum-variance theory is examined in regard to its validity and its ability to predict observed hydraulic exponents. The variables used with the theory were velocity, depth, width, bed shear stress, friction factor, slope (energy gradient), and stream power. Slope is often constant, in which case only velocity, depth, width, shear and friction factor need be considered. The theory was tested against a wide range of field data from various geographic areas of the United States. The original theory was intended to produce only the average hydraulic exponents for a group of cross sections in a similar type of geologic or hydraulic environment. The theory does predict these average exponents with a reasonable degree of accuracy. An attempt to forecast the exponents at any selected cross section was moderately successful. Empirical equations are more accurate than the minimum variance, Gauckler-Manning, or Chezy methods. Predictions of the exponent of width are most reliable, the exponent of depth fair, and the exponent of mean velocity poor. (Woodard-USGS)

  2. Energy Dependent DVCS Cross Sections from JLab Hall A

    Science.gov (United States)

    Hyde, Charles; JLab Hall A Collaboration

    2013-10-01

    In 2010, in experiments E07-007 (hydrogen target) and E08-025 (deuterium target), the Jefferson Lab Hall A collaboration measured the helicity-dependent and helicity-independent cross sections at fixed xB = 0 . 36 , at Q2 = 1 . 5 , 1 . 75 , and 2 . 0 GeV2, and at two beam energies, 4.45 and 5.55 GeV. We detected the scattered electron in the Hall A High Resolution Spectrometer (HRS-L), and the coincidence photon in an upgraded 208 element PbF2 calorimeter. Exclusivity is inferred by missing mass in the (e ,e' γ) X reaction. In the unpolarized cross sections, the | DVCS | 2 and ℜe [DVCS† BH ] terms have different kinematic dependencies on the incident beam energy. I present preliminary results on the energy-dependence of the cross sections, and discuss their sensitivity to the Generalized Parton Distributions (GPDs). US DOE, NSF, and French IN2P3 and ANR.

  3. Asymptotic Behaviour of Pion--Pion Total Cross--Sections

    CERN Document Server

    Greynat, David; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows an inconsistency between the Lukaszuk-Martin coefficient of the Froissart-Martin bound and well known properties of $\\pi\\pi$ amplitudes in QCD. We next compute the total cross sections for $\\pi^+ \\pi^-$, $\\pi^{\\pm} \\pi^0$ and $\\pi^0 \\pi^0$ scattering within the framework of the constituent chiral quark model (C$\\chi$QM) in the limit of a large number of colours $\\mathrm{N_c}$ and discuss their asymptotic behaviours. The same $\\pi\\pi$ cross sections are also discussed within the general framework of Large-$\\mathrm{N_c}$ QCD and we show that it is possible to make an Ansatz for the isospin $I=1$ and $I=0$ spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-$\\mathrm{N_c}$ counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the $\\sigma_{\\pi^{\\pm}\\pi^0}^{\\rm total}(s)$ cross section predicted by the C...

  4. Neutron cross section calculations for fission-product nuclei

    International Nuclear Information System (INIS)

    To satisfy nuclear data requirements for fission-product nuclei, Hauser-Feshbach statistical calculations with preequilibrium corrections for neutron-induced reactions on isotopes of Se, Kr, Sr, Zr, Mo, Sn, Xe, and Ba between 0.001 and 20 MeV. Spherical neutron optical parameters were determined by simultaneous fits to resonance data and total cross sections. Isospin coefficients appearing in the optical potentials were determined through analysis of the behavior of s- and p-wave strengths as a function of mass for a given Z. Gamma-ray strength functions, determined through fits to stable-isotope capture data, were used in the calculation of capture cross sections and gamma-ray competition to particle emission. The resulting (n,γ), (n,n'), (n,2n), and (n,3n) cross sections, the secondary neutron emission spectra, and angular distributions calculated for 19 fission products will be averaged to provide a resulting ENDF-type fission-product neutronics file. 11 references

  5. Activation Cross Sections Improvements needed for IFE Power Reactors Designs

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A; Cabellos, O; Sanz, J; FalQuina, R; Latkowski, J; Reyes, S

    2003-10-02

    Uncertainties in the prediction of the neutron induced long-lived activity in the natural elements from H to Bi due to activation cross section uncertainties are estimated assuming as neutron environment those of the HYLIFE-II and Sombrero vessel structures. The latest available activation cross section data are employed. The random variables used in the uncertainty analysis have been the concentration limits (CL's) corresponding to hands-on recycling, remote recycling and shallow land burial, quantities typically considered in ranking elements under waste management considerations. The CL standard value (CL{sub nom}), i.e. without uncertainties, is compared with the 95th percentile CL value (CL95). The results of the analysis are very helpful in assessing the quality of the current activation data for IFE applications, providing a rational basis for programmatic priority assignments for new cross sections measurements or evaluations. The HYLIFE-II results shown that a significant error is estimated in predicting the activation of several elements. The estimated errors in the Sombrero case are much less important.

  6. CMB Constraints On The Thermal WIMP Annihilation Cross Section

    CERN Document Server

    Steigman, Gary

    2015-01-01

    A thermal relic, often referred to as a weakly interacting massive particle (WIMP),is a particle produced during the early evolution of the Universe whose relic abundance (e.g., at present) depends only on its mass and its thermally averaged annihilation cross section (annihilation rate factor) sigma*v_ann. Late time WIMP annihilation has the potential to affect the cosmic microwave background (CMB) power spectrum. Current observational constraints on the absence of such effects provide bounds on the mass and the annihilation cross section of relic particles that may, but need not be dark matter candidates. For a WIMP that is a dark matter candidate, the CMB constraint sets an upper bound to the annihilation cross section, leading to a lower bound to their mass that depends on whether or not the WIMP is its own antiparticle. For a self-conjugate WIMP, m_min = 50f GeV, where f is an electromagnetic energy efficiency factor. For a non self-conjugate WIMP, the minimum mass is a factor of two larger. For a WIMP t...

  7. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, Claudia

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic f...

  8. Neutron capture cross section on Lu isotopes at DANCE

    International Nuclear Information System (INIS)

    The DANCE (Detector for Advanced Neutron Capture Experiments) array at the LANSCE spallation neutron source in Los Alamos has been used to measure neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the s-process nucleosynthesis. 175Lu is an important waiting-point in the s-process and 176Lu is a sensitive s-process thermometer. Three targets were used to perform these measurements. One was a natural Lu foil of 31 mg/cm2 and the other two were isotopically enriched targets of 175Lu (99.8%, ∼1 mg/cm2 electro-deposited on Ti) and 176Lu (99.9%, ∼1 mg/cm2 mass separator deposited on aluminized mylar). The data analysis is in progress. Preliminary cross sections have been obtained by normalizing the data to the known thermal cross section. A comparison of these data with recent experimental data of K. Wisshak et al. and the evaluated data of ENDF B-VII will be presented.

  9. Measuring the FSR-inclusive $\\pi^{+}\\pi^{-}$ cross section

    CERN Document Server

    Gluza, J; Jadach, Stanislaw; Jegerlehner, F

    2003-01-01

    Final state radiation (FSR) in pion--pair production cannot be calculated reliably because of the composite structure of the pions. However, FSR corrections have to be taken into account for a precise evaluation of the hadronic contribution to g-2 of the muon. The role of FSR in both energy scan and radiative return experiments is discussed. It is shown how FSR influences the pion form factor extraction from experimental data and, as a consequence, the evaluation of a_mu^had. In fact the O(alpha) FSR corrections should be included to reach the precision we are aiming at. We argue that for an extraction of the desired FSR--inclusive cross section sigma^(gamma)_had a photon--inclusive scan measurement of the ``e+e- to pi+pi- + photons'' cross section is needed. For exclusive scan and radiative return measurements in contrast we have to rely on ad hoc FSR models if we want to obtain either sigma^(gamma)_had or the FSR--exclusive cross section sigma^(0)_had. We thus advocate to consider seriously precise photon--...

  10. Detecting Neutrinos from AGN New Fluxes and Cross Sections

    CERN Document Server

    Hill, G C

    1996-01-01

    New information on the structure of the nucleon from the HERA ep collider leads to higher neutrino cross sections for the processes nu_mu + N --> mu + X needed to calculate the expected rates of astrophysical neutrino induced muons in large detectors either under construction, or in the design stage. These higher cross sections lead to higher muon rates for arrival angles where neutrino attenuation in the earth is less important. On the other hand, new estimates of AGN neutrino fluxes suggest that the expected muon rates in these detectors may be much lower than previously calculated. I use the new cross sections to calculate the expected muon rates and angular distributions in large detectors for a variety of AGN models and compare these rates with the atmospheric neutrino backrounds (from both conventional decay channels and the "prompt" charmed meson decay channels). If the lowest flux estimates are correct, there may be diffculties in determining the origin of a small excess of muons, due to the large unc...

  11. Peripheral nerve imaging: Not only cross-sectional area.

    Science.gov (United States)

    Tagliafico, Alberto Stefano

    2016-08-28

    Peripheral nerve imaging is recognized as a complement to clinical and neurophysiological assessment in the evaluation of peripheral nerves with the ability to impact patient management, even for small and difficult nerves. The European Society of Musculoskeletal Radiology, suggest to use ultrasound (US) for nerve evaluation due to the fact that, in sever anatomical area, magnetic resonance imaging is not able to give additional informations. US could be considered the first-choice approach for the assessment of peripheral nerves. The relative drawback of peripheral nerve US is the long learning curve and the deep anatomic competence to evaluate even small nerves. In the recent years, the role of US in peripheral nerve evaluation has been widened. In the past, nerve US was mainly used to assess nerve-cross sectional area, but now more advanced measurements and considerations are desirable and can boost the role of peripheral nerve US. Nerve echotexture evaluation was defined in 2010: The ratio between the hypoechoic and hyperechoic areas of peripheral nerves on US was called "nerve density". For evaluation of patients who have peripheral neuropathies, the role of peripheral nerve is US wider than simple cross-sectional area evaluation. Quantitative measurements describing the internal fascicular echotexture of peripheral nerves introduce the concept of considering US as a possible quantitative imaging biomarker technique. The potential of nerve US has started to be uncovered. It seems clear that only cross-sectional area measurement is no more sufficient for a comprehensive US evaluation of peripheral nerves.

  12. Final combined deep inelastic scattering cross sections at HERA

    CERN Document Server

    Wing, M

    2016-01-01

    The combination is presented of all inclusive deep inelastic scattering cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $ep$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. Additionally, the inclusion of jet-production cross sections made a simultaneous and precise determination of parton distributions and the strong coupling constant possible. Brief highlights of the re...

  13. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  14. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  15. Deuterium target data for precision neutrino-nucleus cross sections

    Science.gov (United States)

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-01

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2=0.46 (22 ) fm2 , with a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ (νμn →μ-p )|Eν=1GeV=10.1 (0.9 )×10-39 cm2 . The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. These techniques can be readily extended to other amplitudes and processes.

  16. Calculation of 239Pu neutron inelastic cross sections

    International Nuclear Information System (INIS)

    We have calculated cross sections for neutron-induced reactions on 239Pu between 0.001 and 5 MeV, with particular emphasis on inelastic scattering. Coupled-channel and Hauser-Feshbach statistical models were used. Within the coupled-channel calculations we employed neutron optical parameters derived from simultaneous fits to total, elastic, inelastic, and resonance data. The resulting transmission coefficients were used in Hauser-Feshbach statistical calculations having a fission channel based on a double-humped barrier representation. Barrier parameters and transition state enhancements needed to reproduce well the (n,f) cross sections between 0.001 and 5 MeV were in general agreement with those from other published analyses. Calculated compound-nucleus and direct-reaction components for inelastic scattering were combined incoherently, and the resultant cross sections agreed well with the Bruyeres-le-Chatel measurements for scattering from levels occupying the ground state rotational band. Our results are in substantial disagreement with ENDF/B-V values for these levels. We are presently performing DWBA calculations to determine direct-reaction components for states occupying higher-lying vibrational bands

  17. Deuterium target data for precision neutrino-nucleus cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-01

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2=0.46(22)fm2, with a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn→μ-p)|Eν=1GeV=10.1(0.9)×10-39cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. These techniques can be readily extended to other amplitudes and processes.

  18. Measurement of the effective cross section of a 1/v absorber for diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    The effective velocity and temperature for the neutron beam of the SNU-KAERI PGAA facility are determined by measuring the prompt γ-ray spectra for thin and thick 10B samples. Both the neutron flux and the γ-ray detection efficiency were set at minimum due to high neutron capture rate for the thick sample. The effective absorption cross section of 10B is obtained from the ratio of 10B peak count rates in both the spectra. The effective velocity and temperature of the neutron beam determined from the effective cross section are 2117 ± 21 m/s and 269 ± 5 K, respectively. These results are consistent with the values calculated from the neutron spectrum in 4%

  19. The dependence of J/ψ-nucleon inelastic cross section on the Feynman variable

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; LIU Na; MIAO Wen-Dan

    2011-01-01

    By means of two typical sets of nuclear parton distribution functions,meanwhile taking account of the energy loss of the beam proton and the nuclear absorption of the charmonium states traversing the nuclear matter in the uniform framework of the Glauber model,a leading order phenomenological analysis is given in the color evaporation model of the E866 experimental data on J/Ψ production differential cross section ratios RFe/Be(xF).It is shown that the energy loss effect of beam proton on RFe/Be(xF)is more important than the nuclear effects on parton distribution functions in the high Feynman variable xF region.It is found that the J/Ψ-nucleon inelastic cross section depends on the Feynman variable XF and increases linearly with XF in the region xF > 0.2.

  20. Electron impact ionisation cross sections of iron hydrogen clusters

    Science.gov (United States)

    Huber, Stefan E.; Sukuba, Ivan; Urban, Jan; Limtrakul, Jumras; Probst, Michael

    2016-09-01

    We computed electron impact ionisation cross sections (EICSs) of iron hydrogen clusters, FeHn with n = 1,2,...,10, from the ionisation threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The maxima of the cross sections for the iron hydrogen clusters range from 6.13 × 10-16 cm2 at 60 eV to 8.76 × 10-16 cm2 at 76 eV for BEB-AE (BEB method based on quantum-chemical data from all-electron basis sets) calculations, from 4.15 × 10-16 cm2 at 77 eV to 7.61 × 10-16 cm2 at 80 eV for BEB-ECP (BEB method based on quantum-chemical data from effective-core potentials for inner-core electrons) calculations and from 2.49 × 10-16 cm2 at 43.5 eV to 7.04 × 10-16 cm2 at 51 eV for the DM method. Cross sections calculated via the BEB method are substantially higher than the ones obtained via the DM method, up to a factor of about two for FeH and FeH2. The formation of Fe-H bonds depopulates the iron 4s orbital, causing significantly lower cross sections for the small iron hydrides compared to atomic iron. Both the DM and BEB cross sections can be fitted perfectly against a simple expression used in modelling and simulation codes in the framework of nuclear fusion research. The energetics of the iron hydrogen clusters change substantially when exact exchange is present in the density functional, while the cluster geometries do not depend on this choice. Supplementary material in the form of one pdf file available from the Journal web page athttp://dx.doi.org/10.1140/epjd/e2016-70292-4

  1. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of {sup 187}Re (t{sub 1/2}=41.2 Gyr) into {sup 187}Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the {sup 187}Re/{sup 187}Os pair, provide the possibility to identify the radiogenic fraction of {sup 187}Os exclusively by nuclear physics considerations. Apart from its radiogenic component, {sup 187}Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, {sup 187}Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of {sup 187}Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of {sup 187}Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of {sup 186}Os, {sup 187}Os and {sup 188}Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively. Since, the first excited state in {sup 187}Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, {gamma

  2. CADE - A computer programme for the calculation of nuclear cross-sections from the Weisskopf-Ewing theory

    International Nuclear Information System (INIS)

    A computer programme which performs compound nucleus calculations using the Weisskopf-Ewing formalism is described. The programme will calculate the cross-sections for multi-particle emission by treating the process as a series of stages in the cascade. The relevant compound nucleus absorption cross-sections for particle channels are calculated with built-in optical model routines, and gamma ray emission is described by the giant dipole resonance formalism. Several choices for the final nucleus level density formula may be made using the level density routine contained in the programme. The total cross-section for the emission of a particle at any particular stage, is calculated together with the cross-section as a function of energy. The probability of leaving the final nucleus in a state of any particular energy is also obtained. (author)

  3. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Mariotti, C; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  4. From ZZ to ZH : How Low Can These Cross Sections Go or Everybody, Let's Cross Section Limbo!

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Emanuel Alexandre [Stony Brook Univ., NY (United States)

    2009-08-01

    We report on two searches performed at the D0 detector at the Fermi National Laboratory. The first is a search for Z di-boson production with a theoretical cross section of 1.4 pb. The search was performed on 2.6 fb-1 of data and contributed to the first observation of ZZ production at a hadron collider. The second is a search for a low mass Standard Model Higgs in 4.2 fb-1 of data. The Higgs boson is produced in association with a Z boson where the Higgs decays hadronically and the Z decays to two leptons. The ZZ search was performed in both the di-electron and di-muon channels. For the ZH search, we will focus on the muonic decays where we expanded the traditional coverage by considering events in which one of the two muons fails the selection requirement, and is instead reconstructed as an isolated track. We consider Higgs masses between 100 and 150 GeV, with theoretical cross sections ranging from 0.17 to 0.042 pb, and set upper limits on the ZH production cross-section at 95% confidence level.

  5. Prompt gamma-ray detectors for the measurement of neutron capture cross-sections

    International Nuclear Information System (INIS)

    A review is given of current techniques for detecting prompt gamma-radiation as a means of measuring total capture cross-sections. The discussion is generally restricted to systems with low or moderate gamma-ray energy resolution. Three classes of detector are considered: (1) the total absorption type; (2) detectors with efficiency proportional to gamma-ray energy; and (3) detectors of low efficiency and known gamma-ray response. Particular attention is given to the problems of background from reactions which compete with neutron capture, and the sensitivity of capture detectors to scattered neutrons. The extraction of capture yields from observed data is briefly considered

  6. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    Science.gov (United States)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  7. The cross section of pion-free photoabsorption by nuclei in the resonance energy region

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, V.A.; Gevorkyan, S.R. [Erevan Institute of Physics (Armenia)

    1994-08-01

    A simple model making it possible to describe interaction between photons and nuclei in the energy range 200 {le} E{sub {gamma}} {le} 500 MeV is proposed. The cross sections of pion-free photoabsorption by several nuclei are calculated. It is shown that it is important to take into account pion absorption by quasi-deuteron pairs. The dependences of the Levinger numbers on the mass number of a target nucleus and on the energy of an incident photon are analyzed. 11 refs., 3 figs.

  8. Elastic differential cross sections of electron scattering by CF4 at intermediate energies

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The elastic differential cross sections(DCS)for electron scattering from CF4 are calculated at six impact energies(in 100-700 eV)employing the independent atom model(IAM)with partial waves. The atoms are presented by a model complex optical potential which is composed of static, exchange, polarization, and absorption terms. The electron density function ρ(r) is obtained by a fitting procedue to the Dirac-Hartree-Fock-Slater sef-consistent data. Compared with available experimental data, the present approach gives good results.

  9. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage

    Directory of Open Access Journals (Sweden)

    Bidthanapally Aruna

    2008-10-01

    Full Text Available Abstract Background Fourier Transform Infrared Imaging (FTIRI is used to investigate the amide anisotropies at different surfaces of a three-dimensional cartilage or tendon block. With the change in the polarization state of the incident infrared light, the resulting anisotropic behavior of the tissue structure is described here. Methods Thin sections (6 μm thick were obtained from three different surfaces of the canine tissue blocks and imaged at 6.25 μm pixel resolution. For each section, infrared imaging experiments were repeated thirteen times with the identical parameters except a 15° increment of the analyzer's angle in the 0° – 180° angular space. The anisotropies of amide I and amide II components were studied in order to probe the orientation of the collagen fibrils at different tissue surfaces. Results For tendon, the anisotropy of amide I and amide II components in parallel sections is comparable to that of regular sections; and tendon's cross sections show distinct, but weak anisotropic behavior for both the amide components. For articular cartilage, parallel sections in the superficial zone have the expected infrared anisotropy that is consistent with that of regular sections. The parallel sections in the radial zone, however, have a nearly isotropic amide II absorption and a distinct amide I anisotropy. Conclusion From the inconsistency in amide anisotropy between superficial to radial zone in parallel section results, a schematic model is used to explain the origins of these amide anisotropies in cartilage and tendon.

  10. Solution for polarimetric radar cross section measurement and calibration

    Institute of Scientific and Technical Information of China (English)

    Peikang Huang; Chao Ning; Xiaojian Xu; Hua Yan; Zhaoguo Hou

    2014-01-01

    The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements.

  11. Curves and tables of neutron cross sections in JENDL-3.3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Shibata, Keiichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kawasaki, Hiromitsu [CRC Solutions Corp., Tokyo (Japan)

    2002-11-01

    Neutron cross sections of 337 nuclides in JENDL-3.3 are presented in figures and tables. In the tables, shown are cross sections at 0.0253 eV and 14 MeV, Maxwellian average cross sections (kT = 0.0253 eV), resonance integrals and fission spectrum average cross sections. The average cross sections calculated with typical reactor spectra are also tabulated. The numbers of delayed and total neutrons per fission are given in figures. (author)

  12. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  13. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    Science.gov (United States)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  14. Hadronic Production of psi(2S) Cross section and Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kwangzoo; /Carnegie Mellon U.

    2008-05-01

    The hadronic production cross section and the polarization of {psi}(2S) meson are measured by using the data from p{bar p} collisions at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The datasets used correspond to integrated luminosity of 1.1 fb{sup -1} and 800 pb{sup -1}, respectively. The decay {psi}(2S) {yields} {mu}{sup +}{mu}{sup -} is used to reconstruct {psi}(2S) mesons in the rapidity range |y({psi}(2S))| < 0.6. The coverage of the p{sub T} range is 2.0 GeV/c {le} p{sub T} ({psi}(2S)) < 30 GeV/c for the cross section analysis and pT {ge} 5 GeV/c for the polarization analysis. For events with p{sub T} ({psi}(2S)) > 2 GeV/c the integrated inclusive cross section multiplied by the branching ratio for dimuon decay is 3.17 {+-} 0.04 {+-} 0.28 nb . This result agrees with the CDF Run I measurement considering the increased center-of-mass energy from 1.8 TeV to 1.96 TeV. The polarization of the promptly produced {psi}(2S) mesons is found to be increasingly longitudinal as p{sub T} increases from 5 GeV/c to 30 GeV/c. The result is compared to contemporary theory models.

  15. Doubly differential cross sections for galactic heavy-ion fragmentation

    Science.gov (United States)

    Cucinotta, Francis A.; Norbury, John W.; Khandelwal, Govind S.; Townsend, Lawrence W.

    1987-01-01

    An abrasion-ablation T-matrix formulation is applied to the calculation of double differential-cross sections in projectile fragmentation of 2.1 GeV/nucleon O-16 on Be-9 and 86 MeV/nucleon C-12 on C-12 and Ag-108. An exponential parameterization of the ablation T-matrix is used and the total width of the intermediate states is taken as a parameter. Fitted values of the total width to experimental results are used to predict the lifetime of the ablation stage and indicate a decay time on the order of 10 to the -19th power sec.

  16. Differential Cross Section and Polarization of Radiative Recombination

    Institute of Scientific and Technical Information of China (English)

    WU Ze-Qing; LI Yue-Ming; DUAN Bin; ZHANG Hong; YAN Jun

    2009-01-01

    The formulae of photon angular distribution and polarization degree for radiative recombination are presented to include the contribution of multipoles and their correlations.A fully relativistic code is then developed to calculate the photon angular distribution and polarization.The calculated polarization degree and differential cross-sections agree well with that of Scofild's results within 10%.The effects of multipoles on polarization and angular distribution are investigated.The polarization and the angular distribution become asymmetric when the multipoles are accounted as the electron energy increases.

  17. Proton-deuteron radiative capture cross sections at intermediate energies

    CERN Document Server

    Mehmandoost-Khajeh-Dad, A A; Amir-Ahmadi, H R; Bacelar, J C S; Berg, A M van den; Castelijns, R; van Garderen, E D; Kalantar-Nayestanaki, N; Kiš, M; Löhner, H; Messchendorp, J G; Wörtche, H J

    2011-01-01

    Differential cross sections of the reaction $p(d,^3{\\rm He})\\gamma$ have been measured at deuteron laboratory energies of 110, 133 and 180 MeV. The data were obtained with a coincidence setup measuring both the outgoing $^3$He and the photon. The data are compared with modern calculations including all possible meson-exchange currents and two- and three- nucleon forces in the potential. The data clearly show a preference for one of the models, although the shape of the angular distribution cannot be reproduced by any of the presented models.

  18. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  19. Semi-inclusive jet cross sections within SCET

    CERN Document Server

    Kang, Zhong-Bo; Vitev, Ivan

    2016-01-01

    We review the definition of semi-inclusive jet functions within Soft Collinear Effective Theory (SCET) and their application to inclusive jet cross sections. As an example, we consider both the inclusive production of jets and the jet fragmentation function in proton-proton collisions. The semi-inclusive jet functions satisfy renormalization group (RG) equations which take the form of standard timelike DGLAP evolution equations, analogous to collinear fragmentation functions. By solving these RG equations, the resummation of potentially large single logarithms $(\\alpha_s \\ln R)^n$ can be achieved. We present numerical results at NLO+NLL$_R$ accuracy and compare to existing data from the LHC.

  20. Total cross sections for pion charge exchange on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, J.

    2006-04-28

    This work describes the measurement of total SCX cross sections employing a new 4{pi} scintillation counter to perform transmission measurements in the incident pion energy range from about 38 to 250 MeV. A small 4{pi} detector box consisting of thin plastic scintillators has been constructed. The transmission technique, which was used, relates the number of transmitted charged pions to that of incident beam pions and this way effectively counts events with neutral products. The incoming negative pions were counted by three beam defining counters before they hit a target of very well known size and chemical composition. The target was placed in the box detector which was not sensitive to the neutral particles resulting from the SCX. The total cross section for emerging neutral particles was derived from the comparison of the numbers of the incoming and transmitted charged particles. The total SCX cross section on hydrogen was derived from the transmissions of a CH{sub 2} target, a carbon target and an empty target. For a detailed offline analysis all TDC, QDC and FADC information was recorded in an event by event mode for each triggered beam event. Various corrections had to be applied to the data, such as random correction, the detection of neutrals in the detector, Dalitz decay, pion decay and the radiative pion capture. This measurement covers, as the only experiment, the whole {delta}-resonance and the sp-interference region in one single experimental setup and improves the available data base for the SCX reaction. It is shown that the description of the SCX cross sections is improved if the s-wave amplitudes, that have been fixed essentially by elastic pion-nucleon scattering data, is reduced by (4{+-}1.5)%. The exact value depends on the SCX literature data included and on the parameters of the {delta}{sup 0} Breit-Wigner resonance describing the p{sub 33}-waves. This shows that p-wave as well as s-wave effects should be considered in studies of isospin