WorldWideScience

Sample records for absorbing film assisted

  1. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Barna, N [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Vass, Cs [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Antal, Zs [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Kredics, L [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Chrisey, D [Naval Research Laboratory, Washington, DC 20375 (United States)

    2005-03-21

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser ({lambda} = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam ({lambda} = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s{sup -1} at 355 mJ cm{sup -2} applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10{sup 9} x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  2. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    International Nuclear Information System (INIS)

    Hopp, B; Smausz, T; Barna, N; Vass, Cs; Antal, Zs; Kredics, L; Chrisey, D

    2005-01-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s -1 at 355 mJ cm -2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10 9 x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications

  3. Preparation and characterization of porous carbon–titania nanocomposite films as solar selective absorbers

    International Nuclear Information System (INIS)

    Cheng, B.; Wang, K.K.; Wang, K.P.; Li, M.; Jiang, W.; Cong, B.J.; Song, C.L.; Jia, S.H.; Han, G.R.; Liu, Y.

    2015-01-01

    Highlights: • The nanocomposites porous C/TiO 2 film were fabricated via PIPS method. • The HRTEM reveals the size of carbon nanoparticles is about 1.1 nm. • The PVP advantages residual carbon content but suppresses its crystallization. • The film exhibits high α (0.928–0.959) with low ε (0.074–0.105) for single layer. - Abstract: Newly proposed selective solar absorbers of porous carbon–titania nanocomposite films with a well-defined interconnected macropores structure were prepared via a polymer-assisted photopolymerization-induced phase-separation method. The microstructure and optical properties of as-deposited nanocomposite films were characterized and discussed in detail. The results show that non-ionic water-soluble polymer polyvinylpyrrolidone works as a sol modifier advantaging the mean size of the interconnected macropores, residual carbon content, and films thickness, but suppresses the order degree of the carbon remained in the films. The high-resolution transmission electron microscopy demonstrated that a small amount of graphite particles with size of around 1.1 nm embedded in the cavity of the porous while the wall of the porous consists of amorphous carbon and titania composites. The single layer of as-prepared porous C/TiO 2 nanocomposite films exhibits high solar absorptance (α = 0.928–0.959) with low thermal emittance (ε = 0.074–0.105), yielding an optimized photothermal conversion efficiency η = α − ε of 0.864 corresponding to a film thickness of around 338 nm, indication of such film is fair enough to serve as an excellent solar absorber

  4. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  5. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  6. XPS and SIMS characterisation of TiOxNy solar absorber films

    International Nuclear Information System (INIS)

    Metson, J.B.; Prince, K.E.; Bittar, A.; Tornquist, J.

    1999-01-01

    Full text: TiO x N y thin films have useful properties as selective solar absorbers when used in tandem with a collector substrate. Such films are transparent across a reasonable window of the solar spectrum, but have low thermal emissivity. They are however limited by their thermal stability under the typical operating conditions they experience. In this study, TiO x N y films have been deposited on Si and Cu substrates using ion beam assisted deposition. The films are amorphous and x and y were controlled by altering the O 2 /N 2 ratio in the gas source. After annealing at temperatures of 200 - 400 deg C, films have been depth profiled using Secondary Ion Mass Spectrometry. Profiles reveal the degradation of the film by migration of the substrate atoms through the films, to the sample surface. In general, films with x 1 show improved stability, ultimately at the expense of a reduced transmission window. Thermal stability is also improved by the use of diffusion barriers either at the substrate film interface or at the surface of the film. However contrary to previous suggestions, the degradation mechanism involves the formation not of an oxide at the film surface but a phase which is nitrogen rich. The nature of this phase, formed by diffusion of the substrate atoms, has been investigated by X-ray photoelectron spectroscopy (XPS). These investigations reveal very complex behaviour in the early stages of film failure, with an almost intact TiO x N y layer surviving, but being progressively buried by the growth of the reaction layer at the film surface. Copyright (1999) Australian X-ray Analytical Association Inc

  7. Thermal properties of polyfurfuryl alcohol absorbed/adsorbed on arylated soy protein films

    CSIR Research Space (South Africa)

    Kumar, R

    2012-02-01

    Full Text Available In this study, polyfurfuryl alcohol was absorbed/adsorbed on soy protein isolate films by immersing the SPI films in acid-catalysed furfuryl alcohol solution for 60 h followed by complete curing at 145–150 -C for 2 h. PFA absorbed/adsorbed soy...

  8. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers

    International Nuclear Information System (INIS)

    Li, Sucheng; Anwar, Shahzad; Lu, Weixin; Hang, Zhi Hong; Hou, Bo; Shen, Mingrong; Wang, Chin-Hua

    2014-01-01

    We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations

  9. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  10. The relationship between absorbency and density of bioplastic film made from hydrolyzed starch

    Science.gov (United States)

    Singan, Grace; Chiang, Liew Kang

    2017-12-01

    Water absorption in polymer blends such as starch-based bioplastic films is important to evaluate the stability characteristics of such films in water that will affect their long-term performance in final products. In this study, the absorbency of starch-based bioplastic films made from potato, cassava, and corn starches that have went through the hydrolysis process first to alter its characteristics and properties in terms of granular swelling and hydrophilicity behaviour. The final results showed that hydrolyzed cassava bioplastic film has the ability to absorb more water compared to hydrolyzed potato and corn bioplastic films. The reading of hydrolyzed cassava bioplastic film on the seventh day of immersion for all ratios were between 87.83 % to 131.29 %, while for hydrolyzed potato bioplastic films was 69.48 % to 92.41 % and hydrolyzed corn bioplastic films was 66.28 % to 74.18 %. Meanwhile, the density analysis was evaluated to determine its physical properties towards moisture condition. The results showed that the hydrolyzed cassava bioplastic films have higher density compared to the other two, which indicated that it is a more favourable raw material to produce biodegradable planting pot due to its ability to absorb more water. Hence, still manage to retain its shape with low brittle surface.

  11. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    International Nuclear Information System (INIS)

    Lee, Youn Suk; Park, Insik; Choi, Hong Yeol

    2014-01-01

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability

  12. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  13. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    International Nuclear Information System (INIS)

    Hernandez-Romano, I; Sanchez-Mondragon, J J; Davila-Rodriguez, J; Delfyett, P J; May-Arrioja, D A

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  14. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  15. Investigation of the Emissivity and Suitability of a Carbon Thin Film for Terahertz Absorbers

    Science.gov (United States)

    2016-06-01

    however, the understanding that the introduction of a carbon thin film could reduce signal loss and will result in a change in thermal fluctuations is...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INVESTIGATION OF THE EMISSIVITY AND SUITABILITY OF A CARBON THIN FILM FOR TERAHERTZ ABSORBERS...TITLE AND SUBTITLE INVESTIGATION OF THE EMISSIVITY AND SUITABILITY OF A CARBON THIN FILM FOR TERAHERTZ ABSORBERS 5. FUNDING NUMBERS 6. AUTHOR(S) Naomi C

  16. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  17. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    International Nuclear Information System (INIS)

    Fan Yue-Nong; Cheng Yong-Zhi; Nie Yan; Wang Xian; Gong Rong-Zhou

    2013-01-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz–20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields

  18. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  19. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  20. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  1. Fabrication of Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruixin, E-mail: mrx_601@126.com [School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials, Beijing 100083 (China); Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin [School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Pure CZTS nano-crystalline have been prepared based on solid-phase synthesis. • A simple and modified doctor blade process followed by a selenization technique was utilized to fabricate CZTSSe absorber films. • Comparative studies on the properties of CZTS and CZTSSe absorber films have been investigated. • The band gap of CZTSSe absorber films was determined to be 1.26 eV. - Abstract: CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu{sub 2}ZnSnS{sub 4} (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.

  2. Optimum angle of incidence for monochromatic interference in transparent films on absorbing substrates

    International Nuclear Information System (INIS)

    Muller, R.H.; Sand, M.L.

    1980-01-01

    Angles of incidence for s- and p-polarized light have been computed and confirmed experimentally for which monochromatic interference in transparent thin films on absorbing substrates results in optimum interference fringe contrast (visibility=1). Under these angles of incidence and with polarized light, film thickness determinations which are not possible at normal incidence or with unpolarized light can be carried out by use of thin-film interference

  3. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Fundamentals of laser-assisted fabrication of inorganic and organic films

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2008-01-01

    The standard method for producing films by laser-assisted methods, Pulsed Laser Deposition (PLD) will be reviewed. The films considered are usually inorganic films, but also films of organic materials have been produced. Also the deposition of organic films by MAPLE (Matrix Assisted Pulsed Laser...

  5. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  6. Thin films of copper antimony sulfide: A photovoltaic absorber material

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas-Acosta, R.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico)

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  7. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  8. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  9. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  10. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The film thickness dependent thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiudi; Xu Gang, E-mail: xiudixiao@163.com; Xiong Bin; Chen Deming; Miao Lei [Chinese Academy of Sciences, Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion (China)

    2012-03-15

    The monolayer Al{sub 2}O{sub 3}:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 Degree-Sign C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al{sub 2}O{sub 3}:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 Degree-Sign C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers.

  12. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    Science.gov (United States)

    Wang, Wei; Liu, Jinsong; Wang, Kejia

    2016-02-01

    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  13. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  14. Photocatalytic activity of tin-doped TiO{sub 2} film deposited via aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chua, Chin Sheng, E-mail: cschua@simtech.a-star.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Tan, Ooi Kiang; Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Ding, Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore)

    2013-10-01

    Tin-doped TiO{sub 2} films are deposited via aerosol assisted chemical vapor deposition using a precursor mixture composing of titanium tetraisopropoxide and tetrabutyl tin. The amount of tin doping in the deposited films is controlled by the volume % concentration ratio of tetrabutyl tin over titanium tetraisopropoxide in the mixed precursor solution. X-ray diffraction analysis results reveal that the as-deposited films are composed of pure anatase TiO{sub 2} phase. Red-shift in the absorbance spectra is observed attributed to the introduction of Sn{sup 4+} band states below the conduction band of TiO{sub 2}. The effect of tin doping on the photocatalytic property of TiO{sub 2} films is studied through the degradation of stearic acid under UV light illumination. It is found that there is a 10% enhancement on the degradation rate of stearic acid for the film with 3.8% tin doping in comparison with pure TiO{sub 2} film. This improvement of photocatalytic performance with tin incorporation could be ascribed to the reduction of electron-hole recombination rate through charge separation and an increased amount of OH radicals which are crucial for the degradation of stearic acid. Further increase in tin doping results in the formation of recombination site and large anatase grains, which leads to a decrease in the degradation rate. - Highlights: ► Deposition of tin-doped TiO{sub 2} film via aerosol assisted chemical vapor deposition ► Deposited anatase films show red-shifted in UV–vis spectrum with tin-dopants. ► Photoactivity improves at low tin concentration but reduces at higher concentration. ► Improvement in photoactivity due to bandgap narrowing from Sn{sup 4+} band states ► Maximum photoactivity achieved occurs for films with 3.8% tin doping.

  15. Experimental assessment of an absorption cooling system utilizing a falling film absorber and generator

    International Nuclear Information System (INIS)

    Domínguez-Inzunza, L.A.; Hernández-Magallanes, J.A.; Soto, P.; Jiménez, C.; Gutiérrez-Urueta, G.; Rivera, W.

    2016-01-01

    Highlights: • A new prototype of an absorption cooling system using NH_3/LiNO_3 was developed. • Falling films shell and tubes heat exchangers were used as absorber and generator. • Evaporator temperatures as low as 4 °C were achieved. • The COP varied between 0.27 and 0.62 depending on the system temperatures. • A flow recirculation in the absorber was implemented showing an increase in COP. - Abstract: This study presents the results of the evaluation of an ammonia/lithium nitrate absorption cooling system. The generator and the absorber are shell and tubes falling film heat exchangers while the rest of the components are compact plate heat exchangers. A parametric study was carried out in order to determine the coefficients of performance and cooling capacities at different operating conditions. Also, an analysis was carried out to determine the influence of the absorber solution recirculation on the system performance. The generator temperatures varied between 80 °C and 100 °C, while the cooling water temperatures varied from 20 °C to 34 °C. Cooling capacities up to 4.5 kW and evaporator temperatures as low as 4 °C were achieved with the system. The internal coefficients of performance varied between 0.3 and 0.62 depending on the system operating temperatures. The system also showed good stability and repeatability.

  16. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  17. Layer-by-layer assembled highly absorbing hundred-layer films containing a phthalocyanine dye: Fabrication and photosensibilization by thermal treatment

    International Nuclear Information System (INIS)

    Sergeeva, Alena S.; Volkova, Elena K.; Bratashov, Daniil N.; Shishkin, Mikhail I.; Atkin, Vsevolod S.; Markin, Aleksey V.; Skaptsov, Aleksandr A.; Volodkin, Dmitry V.; Gorin, Dmitry A.

    2015-01-01

    Highly absorbing hundred-layer films based on poly(diallyldimethylammonium chloride) (PDADMAC) of various molecular weights and on sulfonated copper phthalocyanine (CuPcTs) were prepared using layer-by-layer assembly. The multilayer films grew linearly up to 54 bilayers, indicating that the same amount of CuPcTs was adsorbed at each deposition step. This amount, however, was dependent on the molecular weight of PDADMAC in the range 100-500 kDa: the higher the molecular weight, the more CuPcTs molecules were adsorbed. This can be explained by the larger surface charge number density specific to longer polymer chains. Domains of pure PDADMAC and of the PDADMAC/CuPcTs complex were formed in the films during the assembly. Uniform distribution of CuPcTs over the films could be achieved by thermal treatment, leading to an α → β phase transition in phthalocyanine at 300 °C. Annealing caused changes in the film absorbance spectra, resulting in a 30-nm red shift of the peak maxima and in a strong (up to 62%) decrease in optical density. Thermogravimetric analysis revealed thermodegradation of PDADMAC during annealing above 270 °C, giving rise to micrometer-sized cracks within the films, as evidenced by scanning electron microscopy. - Highlights: • The films exhibit the linear dependence of the adsorption on the bilayer number varied from 2 until 54. • Polyelectrolyte of the highest MW shows the maximal adsorption of copper phthalocyanine molecules. • Annealing of the films causes a red-shift of the maxima in the absorbance spectra. • Cracks and micropores emerged in the multilayer films during the annealing

  18. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Shaji, S.; Garcia, L.V.; Loredo, S.L.; Krishnan, B.

    2017-01-01

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb_2S_3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb_2S_3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb_2S_3 thin films for optoelectronic applications.

  19. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Garcia, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Loredo, S.L. [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); and others

    2017-01-30

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb{sub 2}S{sub 3}) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb{sub 2}S{sub 3} thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb{sub 2}S{sub 3} thin films for optoelectronic applications.

  20. Water-assisted nitrogen mediated crystallisation of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Muydinov, R. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany); Steigert, A. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Schönau, S.; Ruske, F. [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany); Kraehnert, R.; Eckhardt, B. [Technical University Berlin, Institute of Technical Chemistry, Straße des 17. Juni 124, 10623 Berlin (Germany); Lauermann, I. [Helmholtz-Zentrum Berlin, Institute of Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Szyszka, B. [Technical University Berlin, Institute of Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany)

    2015-09-01

    Nitrogen mediated crystallisation (NMC) being performed in oxygen atmosphere at T ≥ 600 °C is an effective approach to obtain very well (00l)-textured ZnO films. A use of NMC-seed layers remarkably improves electrical transport properties of subsequently deposited ZnO:Al contacts. In this work, crystallisation of quasi-amorphous, nitrogen doped ZnO seed layers has been performed using water vapours at overpressure and temperatures around 100 °C. This approach allows employment of soda-lime float-glass or temperature sensitive film stacks as a substrate. We propose here possible mechanism of water-assisted NMC and grope for optimised crystallisation conditions on the basis of optical, microscopic, and textural investigation. Low temperature water-assisted crystallisation of 20 nm thick ZnO layers was compared with high temperature annealing methods in terms of composition, microstructure and crystallinity. Electrical properties such as electron Hall mobility (μ{sub e}), concentration of free electrons (N{sub e}) and sheet resistance (R{sub sh}) have been evaluated and compared for functional ZnO:Al films obtained on glass and on differently crystallised NMC-seed layers. It was found that the crystallised with water assistance at low temperature ZnO seed layers provide comparable improvement in crystallinity and electrical properties of subsequently grown functional ZnO:Al films with respect to the ones crystallised at high temperature. Use of optimised water-assisted crystallisation of seed layers has allowed decreasing R{sub sh} of thin (130–270 nm) functional ZnO:Al films twice compared to the glass substrate. Both provide this effect: increase in μ{sub e} and increase of N{sub e}. - Highlights: • Amorphous ZnO:N films can be crystallised in autoclave at temperatures around 100 °C. • Such water-assisted crystallisation provides well-crystalline ZnO seed layers. • Use of these seed layers resulted in stress-free ZnO:Al contacts with twice lower R

  1. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  2. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  3. Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks

    International Nuclear Information System (INIS)

    Álvarez, María E.; Hernández, José A.; Bourouis, Mahmoud

    2016-01-01

    An ANN (artificial neural network) model was developed to determine the efficiency parameters of a horizontal falling film absorber at operating conditions of interest for absorption cooling systems. The aqueous nitrate solution LiNO_3 + KNO_3 + NaNO_3 with salt mass percentages of 53%, 28% and 19%, respectively, was used as a working fluid. The authors created the ANN from the database they had compiled with the results of experiments that they had performed in a set-up designed and built for this purpose. The ANN structure consisted of 6 input variables: inlet solution and cooling water temperatures, cooling water and solution mass flow rates, absorber pressure and inlet solution concentration; 4 output variables which facilitated the assessment of the performance of the absorber: heat and mass transfer coefficients, absorption mass flux and the degree of subcooling of the solution leaving the absorber. The hidden layer contained 9 neurons which were determined by training and test procedures. The results showed that the deviation between the experimental data and the estimated values was well adjusted. This indicated that the ANN model was an effective tool for predicting the efficiency parameters of the absorber. The solution flow rate was also observed to be the most significant operating variable which affected the performance of the absorber. - Highlights: • An ANN was developed to predict the efficiency parameters of a falling film absorber. • The ANN was created using a database corresponding to a triple-effect absorption chiller. • The ANN predicts the efficiency parameters of falling film absorbers with r"2 > 0.95. • The solution flow rate is the variable that most affects the performance of the absorber.

  4. Preparation of Pb(Zr, Ti)O3 Thin Films by Plasma-Assisted Sputtering

    Science.gov (United States)

    Hioki, Tsuyoshi; Akiyama, Masahiko; Ueda, Tomomasa; Onozuka, Yutaka; Suzuki, Kouji

    1999-09-01

    A novel plasma-assisted RF magnetron sputtering system with an immersed coil antenna between a target and a substrate was applied for preparing Pb(Zr, Ti)O3 (PZT) thin films. The antenna enabled the generation of inductively coupled plasma (ICP) independently of the target RF source. The plasma assisted by the antenna resulted in the changes of ion fluxes and these energy distributions irradiating to the substrate. The crystalline phase of the deposited PZT thin films was occupied by the perovskite phase depending on the antenna power. In addition, a high deposition rate, modified uniformity of film thickness, and a dense film structure with large columnar grains were obtained as a result of effects of the assisted plasma. The application of the plasma-assisted sputtering method may enable the preparation of PZT thin films that haveexcellent properties.

  5. High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing

    KAUST Repository

    Yue, Weisheng

    2016-04-07

    Plasmonic metamaterial absorbers (PMAs) have attracted considerable attention for developing various sensing devices. In this work, we design, fabricate and characterize PMAs of different geometrical shapes operating in mid-infrared frequencies, and explore the applications of the PMAs as sensor for thin films. The PMAs, consisting of metal-insulator-metal stacks with patterned gold nanostructured surfaces (resonators), demonstrated high absorption efficiency (87 to 98 %) of electromagnetic waves in the infrared regime. The position and efficiency of resonance absorption are dependent on the shape of the resonators. Furthermore, the resonance wavelength of PMAs was sensitive to the thin film coated on the surface of the PMAs, which was tested using aluminum oxide (Al2O3) as the film. With increase of the Al2O3 thickness, the position of resonance absorption shifted to longer wavelengths. The dependence of the resonant wavelength on thin film thickness makes PMAs a suitable candidate as a sensor for thin films. Using this sensing strategy, PMAs have potential as a new method for thin film detection and in situ monitoring of surface reactions. © 2016 Springer Science+Business Media New York

  6. High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Yang, Yang; Han, Jiaguang; Li, Jingqi; Guo, Zaibing; Tan, Hua; Zhang, Xixiang

    2016-01-01

    Plasmonic metamaterial absorbers (PMAs) have attracted considerable attention for developing various sensing devices. In this work, we design, fabricate and characterize PMAs of different geometrical shapes operating in mid-infrared frequencies, and explore the applications of the PMAs as sensor for thin films. The PMAs, consisting of metal-insulator-metal stacks with patterned gold nanostructured surfaces (resonators), demonstrated high absorption efficiency (87 to 98 %) of electromagnetic waves in the infrared regime. The position and efficiency of resonance absorption are dependent on the shape of the resonators. Furthermore, the resonance wavelength of PMAs was sensitive to the thin film coated on the surface of the PMAs, which was tested using aluminum oxide (Al2O3) as the film. With increase of the Al2O3 thickness, the position of resonance absorption shifted to longer wavelengths. The dependence of the resonant wavelength on thin film thickness makes PMAs a suitable candidate as a sensor for thin films. Using this sensing strategy, PMAs have potential as a new method for thin film detection and in situ monitoring of surface reactions. © 2016 Springer Science+Business Media New York

  7. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    Science.gov (United States)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  8. Effect of ultraviolet radiation absorbing film on pollination work of foreign bumblebee [Bombus terrestris

    International Nuclear Information System (INIS)

    Nishiguchi, I.

    1999-01-01

    The transmitted light through the ultraviolet radiation absorbing (UVA) film has a preventing effect of disease and pest occurrence. To develop the agriculture harmonized with the ecosystem, we attempted to research a further possible utilization of the UVA film. Pollination work of foreign bumblebee (Bombus terrestris) in the greenhouses roofed with UVA film and with common film for agriculture was examined in growing fruit-vegetables. The bumblebees used were not acclimatized to environmental conditions of the greenhouses. They visited flowers and gathered pollen from flowered crops grown in both houses, irrespective of the kind of film covering over the greenhouse roof, and the pollen quantity gathered was far greater in crops which produced in large quantity of pollen. Thus, the bumblebees were capable to work under the condition lacking in ultraviolet radiation. This pollinating behavior is different from that of honeybees. Then we concluded that bumblebees functioned well as an efficient pollinator under the condition without ultraviolet radiation

  9. Liquid-film assisted formation of alumina/niobium interfaces

    OpenAIRE

    Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A.; Glaeser, Andreas M.

    2002-01-01

    Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significa...

  10. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  11. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    Science.gov (United States)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the

  12. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla, Sweden and Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Sterner, Jan [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte [Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.

  13. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  14. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  15. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    International Nuclear Information System (INIS)

    Ramanathan, Madhumati; Wang Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2010-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 μM DFP.

  16. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Madhumati [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States); Wang Lin [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Wild, James R. [Biochemistry and Biophysics Department, Texas A and M University Texas AgriLife Research Program, College Station, TX 77843-2128 (United States); Meyeroff, Mark E. [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Simonian, Aleksandr L., E-mail: simonal@auburn.edu [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States)

    2010-05-14

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 {mu}M DFP.

  17. Evaluation of Cu2ZnSnS4 Absorber Films Sputtered from a Single, Quaternary Target

    OpenAIRE

    Carlhamn Rasmussen, Liv

    2013-01-01

    Cu2ZnSnS4 (CZTS) is a promising absorber material for thin-film solar cells since it contains no rare or toxic elements, has a high absorption coefficient and a near ideal bandgap energy. It does, however, present some challenges due to the limited single-phase region of the desired kesterite phase and its instability towards decomposition. Sputtering of CZTS from quaternary, compound targets using RF magnetron sputtering is known. In this thesis work CZTS absorbers were made using pulsed DC ...

  18. Ion-assisted deposition of thin films

    International Nuclear Information System (INIS)

    Barnett, S.A.; Choi, C.H.; Kaspi, R.; Millunchick, J.M.

    1993-01-01

    Recent work on low-energy ion-assisted deposition of epitaxial films is reviewed. Much of the recent interest in this area has been centered on the use of very low ion energies (∼ 25 eV) and high fluxes (> 1 ion per deposited atom) obtained using novel ion-assisted deposition techniques. These methods have been applied in ultra-high vacuum, allowing the preparation of high-purity device-quality semiconductor materials. The following ion-surface interaction effects during epitaxy are discussed: improvements in crystalline perfection during low temperature epitaxy, ion damage, improved homogeneity and properties in III-V alloys grown within miscibility gaps, and changes in nucleation mechanism during heteroepitaxial growth

  19. Ion beam assisted deposition of nano-structured C:Ni films

    Energy Technology Data Exchange (ETDEWEB)

    Abrasonis, G.; Muecklich, A.; Heller, R.; Heinig, K.H.; Gemming, S.; Moeller, W. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krause, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Institute of Physics, TU Dresden (Germany)

    2012-07-01

    Nanostructures influence material properties dramatically due to size, shape and interface effects. Thus the control of the structure at the nanoscale is a key issue in nanomaterials science. The interaction of hyperthermal ions with solids is confined to the nanometer scale. Thus, it can be used to control the morphology evolution during multiphase film deposition. Ion-induced displacements occur in a thin surface layer of the growing film where they increase the atomic mobility for the phase separation. Here the growth-structure relationship of C:Ni (15 at.%) nanocomposite films grown by oblique incidence (45 ) ion beam assisted deposition is reported. The influences of the flux of an assisting Ar+ ion beam (0-140 eV) as well as of an elevated substrate temperature have been studied. The formation of elongated nickel nanoparticles is strongly promoted by the ion beam assistance. Moreover, the metal nanocolumns no longer align with the advancing surface, but with the incoming ions. A window of conditions is established within which the ion assistance leads to the formation of regular composition modulations with a well defined periodicity and tilt. As the dominating driving force for the pattern formation is of physical origin, this approach might be applicable to other immiscible systems.

  20. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    International Nuclear Information System (INIS)

    Helmrot, E.; Alm Carlsson, G.

    1996-01-01

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)

  1. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  2. Highly absorbing Cu-In-O thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Khemiri, N.; Chaffar Akkari, F.; Kanzari, M.; Rezig, B.

    2008-01-01

    We report in this paper on the preparation and characterization of improved quality Cu-In-O films for use as a high-efficiency solar cell absorber. Samples were prepared via sequential thermal vacuum deposition of Cu and In or In and Cu (at 10 -5 mbar) on glass substrates heated at 150 deg. C. After what, the obtained binary systems (Cu/In or In/Cu) were annealed in air at 400 deg. C for 3h. These films were characterized for their structural, electrical and optical properties by using X-ray diffraction (XRD), electrical resistivity and optical (transmittance and reflectance) measurement techniques. The X-ray diffraction (XRD) patterns revealed the presence of CuO and In 2 O 3 phases. The absorption coefficient of Cu-In-O thin films (4.10 5 cm -1 ) is larger than 10 5 cm -1 for the In/Cu case and in the range of 10 4 -10 5 cm -1 for the Cu/In case in the visible spectral range. Direct optical band gaps of 1.40 and 1.52eV were found for the In/Cu and Cu/In cases, respectively. The complex dielectric constants of the Cu-In-O films have been calculated. It was found that the refractive index dispersion data obeyed the Wemple-Di Domenico single oscillator model, from which the dispersion parameters and the high-frequency dielectric constant were determined. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan. The electrical measurements show a conversion from a metallic phase to the semiconductor phase by a switching in the electrical resistivity values at an annealing temperature of 275 deg. C. In both cases the samples were highly compensated

  3. Deposition and characterization of spray pyrolysed p-type Cu2SnS3 thin film for potential absorber layer of solar cell

    Science.gov (United States)

    Thiruvenkadam, S.; Sakthi, P.; Prabhakaran, S.; Chakravarty, Sujay; Ganesan, V.; Rajesh, A. Leo

    2018-06-01

    Thin film of ternary Cu2SnS3 (CTS), a potential absorber layer for solar cells was successfully deposited by chemical spray pyrolysis technique. The GIXRD pattern revealed that the film having tetragonal Cu2SnS3 phase with the preferential orientation along (112), (200), (220) and (312) plane and it is further confirmed using Raman spectroscopy by the existence of Raman peak at 320 cm-1. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 28.8 nm. The absorption coefficient was found to be greater than the order of 105 cm-1 and bandgap of 1.70 eV. Hall effect measurement indicates the p type nature of the film with a hole concentration of 1.03 × 1016cm-3 and a hall mobility of 404 cm2/V. The properties of CTS thin film confirmed suitable to be a potential absorber layer material for photovoltaic applications.

  4. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    Science.gov (United States)

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  6. Stress in ion-beam assisted silicon dioxide and tantalum pentoxide thin films

    International Nuclear Information System (INIS)

    Sirotkina, Natalia

    2003-01-01

    Ta 2 O 5 and SiO 2 thin films, deposited at room temperature by ion-beam sputtering (IBS) and dual ion-beam sputtering (DIBS), and SiO 2 films, deposited by reactive e-beam evaporation and ion-assisted deposition, were studied. The energy (150-600 eV) and ion-to-atom arrival ratio (0.27-2.0) of assisting argon and oxygen ions were varied. Influence of deposition conditions (deposition system geometry, nature and amount of gas in the chamber, substrate cleaning and ion-assistance parameters) on films properties (stress, composition, refractive index n 500nm and extinction coefficient k 500nm ) was investigated. A scanning method, based on substrate curvature measurements by laser reflection and stress calculation using the Stoney equation, was employed. RBS showed that stoichiometric Ta 2 O 5 films contain impurities of Ar, Fe and Mo. Stoichiometric SiO 2 films also contain Ta impurity. Argon content increases with ion bombardment and, at maximum incorporation, argon bubbles are registered by TEM. XPS studies are complicated by surface contaminations and preferential sputtering. Evaporated SiO 2 films show +100 MPa stress (+ is tensile, - compressive). With 300 eV Ar + bombardment, stress changes to -200 MPa, n 500nm decreases (1.56-1.49) and k 500nm increases (1.4x10 -4 - 1.8x10 -3 ). Of all studied IBS conditions, stress in SiO 2 (-560 MPa) and Ta 2 O 5 (-350 MPa) films depends only on sputtering gas species and oxygen entry point into the chamber. With argon and oxygen bombardment stress in IBS SiO 2 films decreases to -380 MPa and below the stress measurement system resolution, respectively. While Ar + bombardment of Ta 2 O 5 films leads to increase in stress to -490 MPa, the effect of oxygen assistance depends on ion energy. The observed behaviour was related to the total recoil density. In DIBS SiO 2 and Ta 2 O 5 films n 500nm varies in the region of 1.5-1.59 and 2.13-2.20 and k 500nm is below 5.5x10 -3 and 8.5x10 -3 , respectively. The refractive index

  7. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  8. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  9. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  10. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  11. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...

  12. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    Science.gov (United States)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  13. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...... of the method was studied using the newly developed radiochromic dye films as well as already existing ones. (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  15. Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors

    International Nuclear Information System (INIS)

    Lin, Xianzhong; Kavalakkatt, Jaison; Kornhuber, Kai; Levcenko, Sergiu; Lux-Steiner, Martha Ch.; Ennaoui, Ahmed

    2013-01-01

    Cu 2 ZnSnS 4 (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se 2 due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu 3 SnS 4 and ZnS NPs and annealing in Ar/H 2 S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy

  16. Preparation of CuGaSe2 absorber layers for thin film solar cells by annealing of efficiently electrodeposited Cu-Ga precursor layers from ionic liquids

    International Nuclear Information System (INIS)

    Steichen, M.; Larsen, J.; Guetay, L.; Siebentritt, S.; Dale, P.J.

    2011-01-01

    CuGaSe 2 absorber layers were prepared on molybdenum substrates by electrochemical codeposition of copper and gallium and subsequential annealing in selenium vapour. The electrodeposition was made from a deep eutectic based ionic liquid consisting of choline chloride/urea (Reline) with a plating efficiency of over 85%. The precursor film composition is controlled by the ratio of the copper to gallium fluxes under hydrodynamic conditions and by the applied deposition potential. X-ray diffraction reveals CuGa 2 alloying during the electrodeposition and CuGaSe 2 formation after annealing. Photoluminescence (PL) and photocurrent spectroscopy revealed the good opto-electronic properties of the CuGaSe 2 absorber films. The absorber layers have been converted to full devices with the best device achieving 4.0 % solar conversion efficiency.

  17. Ion assisted deposition of thermally evaporated Ag and Al films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Makous, J.L.; Kim, S.Y.; University of Arizona, Physics Department, Tucson, Arizona 85721; Aju University, Physics Department, Suwon, Korea)

    1989-01-01

    Optical, electrical, and microstructural effects of Ar ion bombardment and Ar incorporation on thermally evaporated Ag and Al thin films are investigated. The results show that as the momentum supplied to the growing films by the bombarding ions per arriving metal atom increases, the refractive index at 632.8 nm increases and the extinction coefficient decreases, lattice spacing expands, grain size decreases, electrical resistivity increases, and trapped Ar increases slightly. In Ag films, stress reverses from tensile to compressive and in Al films compressive stress increases. In the Al films the change in optical constants can be explained by the variation in void volume. The reversal of stress from tensile to compressive in Ag films requires a threshold level of momentum. The increase in electrical resistivity is related to the decrease in grain size and increase in trapped Ar in both types of film. Many of these properties correlate well with the momentum transferred, suggesting that the momentum is an important physical parameter in describing the influence of ion beam on growing thin films and determining the characteristics of thin metal films prepared by ion assisted deposition

  18. Novel chemical route for deposition of Cu{sub 2}ZnSnS{sub 4} photovoltaic absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, Gerardo; Becerra, Raul A.; Calderón, Clara L., E-mail: ggordillog@unal.edu.co [Universidad Nacional de Colombia, Bogota (Colombia)

    2018-05-01

    This work reports results of a study carried out to optimize the preparation conditions of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films grown by sequential deposition of Cu{sub 2}SnS{sub 3} (CTS) and ZnS layers, where the Cu{sub 2}SnS{sub 3} compound was grown using a novel procedure consisting of simultaneous precipitation of Cu{sub 2}S and SnS{sub 2} performed by diffusion membrane assisted chemical bath deposition (CBD) technique. The precipitation across the diffusion membranes allows achieving moderate control of release of metal ions into the work solution favoring the heterogeneous growth mainly through an ion-ion mechanism. Through a parameters study, conditions were found to grow Cu{sub 2}SnS{sub 3} thin films which were used as precursors for the formation of Cu{sub 2}ZnSnS{sub 4} films. The formation of CZTS thin films grown in the Cu{sub 2}ZnSnS{sub 4} phase was verified through measurements of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Solar cells with efficiencies of 4.9% were obtained using CZTS films prepared by membrane assisted CBD technique as absorber layer. (author)

  19. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  20. Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole

    2017-01-01

    signal increased by a factor of 200 after Na-inclusion. Without Na, the grains were very difficult to sinter, the film was porous, and the photoluminescence was low. A concentration of Na/(Cu+Zn+Sn)=30% was necessary for the densification of the absorber, which is significantly higher than that used...

  1. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  2. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    Science.gov (United States)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  3. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  4. Laser-assisted preparation and photoelectric properties of grating-structured Pt/FTO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nai-fei, E-mail: rnf_ujs@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing, E-mail: lij_huang@126.com [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Li, Bao-jia [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-09-30

    Highlights: • Pt layers were deposited by DC magnetron sputtering on commercial FTO glasses. • Pt/FTO films were irradiated by laser for inducing gratings and annealing. • An ideal grating-structured Pt/FTO film was obtained using a fluence of 1.05 J/cm{sup 2}. • The grating-structured Pt/FTO film exhibited excellent photoelectric properties. • Laser-assisted treatment is effective for improving performance of FTO-based films. - Abstract: In order to improve the transparency and conductivity of commercial fluorine-doped tin oxide (FTO) glass, platinum (Pt) layers were deposited on the FTO film by direct current (DC) magnetron sputtering, followed by being irradiating with a 532 nm nanosecond pulsed laser for the dual purpose of inducing grating structures and annealing. Introducing a Pt layer decreased the average transmittance (400–800 nm) and the sheet resistance of the initial FTO film from 80.2% and 8.4 Ω/sq to 68.6% and 7.9 Ω/sq, respectively. The ideal grating-structured Pt/FTO film was obtained by laser irradiation with a fluence of 1.05 J/cm{sup 2}, and X-ray diffraction (XRD) analysis confirmed that this film underwent optimal annealing. As a result, it exhibited an average transmittance (400–800 nm) of 84.1% and a sheet resistance of 6.8 Ω/sq. These results indicated that laser-assisted treatment combined with introduction of metal layer can effectively improve photoelectric properties of FTO single-layer films.

  5. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  6. Photon induced facile synthesis and growth of CuInS{sub 2} absorber thin film for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manjeet, E-mail: msitbhu@gmail.com [Department of Physics, Incheon National University, 12-1, Songdo-dong, Yeonsu-gu, Incheon 406-772 (Korea, Republic of); Jiu, Jinting; Suganuma, Katsuaki [Department of Advanced Interconnection Materials, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047 (Japan)

    2016-04-30

    Graphical abstract: The thin film containing CuS and In{sub 2}S{sub 3} can be converted into CuInS{sub 2} by irradiation of intense pulses of light. - Highlights: • Photonic sintering technique is demonstrated for CuInS{sub 2} (CIS) thin film preparation. • The binary sulfides CuS and In{sub 2}S{sub 3} are converted into CIS using intense light pulses. • The light energy of 706 mJ/cm{sup 2} is found best for phase pure CIS film formation. - Abstract: In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS{sub 2} (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In{sub 2}S{sub 3} to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm{sup 2} is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  7. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  8. Growth of Cu(In,Al)(Se,S)2 thin films by selenization and sulfurization for a wide bandgap absorber

    International Nuclear Information System (INIS)

    Fujiwara, C.; Kawasaki, Y.; Sato, T.; Sugiyama, M.; Chichibu, S.F.

    2010-01-01

    Full text : Chalcopyrite structure Cu(In 1 .xAlx)(S y Se 1 -y) 2 (CIASS) alloys are attracting attention as promising candidates for the light-absorbing medium of high conversion efficiency, low cost, and lightweight solar cells. In addition, according to the wide variation in the bandgap energy (1.0-3.5eV), multiple-junction or tandem solar cells able to be fabricated using CIASS films of different compositions, x and y. In fact, several research groups have recently fabricated Cu(In,Al)Se 2 -based solar cells, and a high μ of 16.9 percent has been demonstrated. The sulfurization following selenization of Cu(In,Ga)Se2 (CIGS) films is believed to be promising for bandgap engineering of absorber material. Furthermore, it has been reported that the controlled incorporation of sulfur into CIGS films reduces the carrier recombination in the space charge region due to the deep trap states. Therefore, the sulfurization following selenization is expected to be used as a method of growth of CIASS films. However, sulfurization condition following selenization for obtaining CIASS films has not been clarified. The crystal growth of CIASS must be studied for solar cell applications. In this study, the advantages of using sulfurization for the growth of CIASS will be presented. Cu-In-Al precursors were selenized using diethylselenide (DESe) at 515-570 degrees Celsium for 60- 90 min under atmospheric pressure. The flow rates of DESe and N 2 carrier gases were 35 imol/min and 2 L/min, respectively. The films were then sulfurized at 550 degrees Celsium using S vapor. These films were characterized by SEM, EDX, XRD, and PL measurements. Using the selenization and sulfurization technique, polycrystalline Cu(In,Al)Se 2 , CuIn(Se,S) 2 , CuInS 2 films with thickness of approximately 2.0 im were formed without additional annealing. The films adhered well to the Mo/SLG substrate, which was confirmed by the peeling test. Phase separations, i.e. distinct peaks corresponding to CuInSe 2

  9. Investigation of growth, coverage and effectiveness of plasma assisted nano-films of fluorocarbon

    International Nuclear Information System (INIS)

    Joshi, Pratik P.; Pulikollu, Rajasekhar; Higgins, Steven R.; Hu Xiaoming; Mukhopadhyay, S.M.

    2006-01-01

    Plasma-assisted functional films have significant potential in various engineering applications. They can be tailored to impart desired properties by bonding specific molecular groups to the substrate surface. The aim of this investigation was to develop a fundamental understanding of the atomic level growth, coverage and functional effectiveness of plasma nano-films on flat surfaces and to explore their application-potential for complex and uneven shaped nano-materials. In this paper, results on plasma-assisted nano-scale fluorocarbon films, which are known for imparting inertness or hydrophobicity to the surface, will be discussed. The film deposition was studied as a function of time on flat single crystal surfaces of silicon, sapphire and graphite, using microwave plasma. X-ray photoelectron spectroscopy (XPS) was used for detailed study of composition and chemistry of the substrate and coating atoms, at all stages of deposition. Atomic force microscopy (AFM) was performed in parallel to study the coverage and growth morphology of these films at each stage. Combined XPS and AFM results indicated complete coverage of all the substrates at the nanometer scale. It was also shown that these films grew in a layer-by-layer fashion. The nano-films were also applied to complex and uneven shaped nano-structured and porous materials, such as microcellular porous foam and nano fibers. It was seen that these nano-films can be a viable approach for effective surface modification of complex or uneven shaped nano-materials

  10. Measurement of protection afforded by ultraviolet-absorbing window film using an in vitro model of photodamage.

    Science.gov (United States)

    Bernstein, Eric F; Schwartz, Mark; Viehmeyer, Robert; Arocena, Marvin S; Sambuco, Christopher P; Ksenzenko, Sergey M

    2006-04-01

    The effects of chronic sun damage including telangiectasias, solar lentigos, rhytides, enlarged pores, sagging skin, and pre-cancerous and cancerous growths are among the most common presenting complaints in a dermatologist's office. These changes are often worse on the driver's side of the face, emphasizing the role of UVA exposure received while driving in producing these changes. This study was undertaken to measure the ability of car window glass alone and in combination with ultraviolet (UV)-absorbing film to reduce UV-damage as measured using an established in vitro model of photoprotection. STUDY DESIGN MATERIALS AND METHODS: Using the 3T3 neutral red uptake photoprotection assay with solar simulating radiation (SSR) administered by a xenon arc solar simulator, we measured the photoprotection ability of auto glass, window film that filters UV radiation, and the combination of window film and auto glass. As measured by the 3T3 neutral red uptake photoprotection assay, auto glass reduced cell death from SSR by 29%, while window film reduced it 90%, and the combination of auto glass and film reduced cell death by 93%, when compared to unfiltered SSR. Window film that filters UV radiation results in dramatic reductions in cytotoxicity when measured by the neutral red uptake photoprotection assay. Widespread use of window film provides an ever-present barrier to ultraviolet A (UVA) exposure and could potentially reduce the detrimental effects of UVA, including photoaging, skin cancer, and ocular damage, such as cataracts. In addition, such film is essential for patients suffering from conditions sensitive to UV radiation, such as lupus erythematosis. Copyright 2006 Wiley-Liss, Inc.

  11. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  12. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  13. Nanostructured light-absorbing crystalline CuIn{sub (1–x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Shah, Amish B. [Center for Microanalysis of Materials, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Ave, Urbana, Illinois 61801 (United States); Bettge, Martin [Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60438 (United States)

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620–740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600–670 °C) and high rf power (80–400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80–400 W rf power and 640–740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0–50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  14. Space-qualified optical thin films by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Hsiao, C.N.; Chen, H.P.; Chiu, P.K.; Lin, Y.W.; Chen, F.Z.; Tsai, D.P.

    2013-01-01

    Optical interference coatings designed for use in a space-grade multispectral assembly in a complementary metal-oxide‐semiconductor sensor were deposited on glass by ion-beam-assisted deposition for a Cassegrain-type space-based remote-sensing platform. The patterned multispectral assembly containing blue, green, red, near infrared, and panchromatic multilayer high/low alternated dielectric band-pass filter arrays in a single chip was fabricated by a mechanical mask and the photolithography process. The corresponding properties of the films were investigated by in situ optical monitoring and spectrometry. It was found that the optical properties were significantly improved by employing ion-beam-assisted deposition. The average transmittances were above 88% for the multispectral assembly, with a rejection transmittance of less than 1% in the spectral range 350–1100 nm. To estimate the optical stability of optical coatings for aerospace applications, a space environment assuming a satellite orbiting the Earth at an altitude of near 800 km was simulated by a Co 60 gamma (γ) radiation test. - Highlights: ►Parameters of optical filters were optimized by using admittance loci analysis. ►Higher index of refraction of films prepared by ion beam assisted deposition. ►The dielectric filters have acceptable resistance after γ radiation exposure

  15. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  16. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  17. Capillary assisted deposition of carbon nanotube film for strain sensing

    Science.gov (United States)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  18. Dataset demonstrating the modeling of a high performance Cu(In,GaSe2 absorber based thin film photovoltaic cell

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-04-01

    Full Text Available The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density Jsc, fill factor (FF, efficiency (η, and collection efficiency ηc have been analyzed.

  19. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  20. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  1. Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporation

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Canulescu, Stela; Schou, Jørgen

    2018-01-01

    The effect of adding LiCl, NaCl, and KCl to Cu2ZnSnS4 (CZTS) nanoparticle thin-film samples annealed in a nitrogen and sulfur atmosphere is reported. We demonstrate that the organic ligand-free nanoparticles previously developed can be used to produce an absorber layer of high quality. The films...

  2. Preparation of Ag/SiO{sub 2} near-infrared absorbers using the combination of sputtering and spin-coating depositions

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Leo Chau-Kuang, E-mail: lckliau@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Lai, Guo-Bin [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Juang, Rei-Cheng; Chang, Bing-Hung [Green Energy and Environmental Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan (China); Yang, Thomas Chun-Kuang [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-03-02

    This study presents the design and fabrication of near-infrared (NIR) absorbers constructed in multilayer structures using Ag and SiO{sub 2} materials. The absorbers, consisting of Ag and SiO{sub 2} films, were fabricated using sputtering and spin-coating approaches, respectively. The fabricated absorbing devices were evaluated using ultraviolet–visible-NIR spectra. Results revealed that the structure of the Ag/SiO{sub 2}/Ag films exhibited an NIR absorbing effect. The absorbing properties were substantially influenced by the fabrication parameters and the thickness of the multilayer films. Furthermore, the NIR absorbing performance improved significantly when the SiO{sub 2} layer was annealed at 300 °C before the deposition of the top Ag film. Additionally, the absorptance of the absorbers was affected by the thickness of the top Ag layer. The long-term stability of the multilayer absorber was tested and verified based on absorptance data analysis. The NIR absorbing performance can be further improved using the optimal device design of the film thickness and by fabricating additional Ag/SiO{sub 2} layers. - Highlights: • Ag/SiO{sub 2} near-infrared absorbers were designed and fabricated. • The absorbing performance was greatly influenced by the fabrication schemes. • The optimal fabrication process of the absorber was obtained. • The long-term stability of the absorber was verified.

  3. Comparative study of experimental and numerical behaviors of microwave absorbers based on ultrathin Al and Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.S., E-mail: daniel_eng_aero@hotmail.com [Instituto de Ciência e Tecnologia/UNIFESP, Rua Talim, 330, CEP 12.231-280, São José dos Campos, SP (Brazil); Nohara, E.L. [Universidade de Taubaté, Rua Daniel Danelli, s/n, CEP 12060-440, Taubaté, SP (Brazil); Rezende, M.C. [Instituto de Ciência e Tecnologia/UNIFESP, Rua Talim, 330, CEP 12.231-280, São José dos Campos, SP (Brazil)

    2017-06-15

    The study of radar absorbing materials increasingly thin, lightweight and flexible has gained growing importance in recent years. In military area these characteristics allow the reduction of weight and volume of platforms, and in civilian sector these materials stimulate innovative projects of electronic and microwave devices. The present work was devoted to studying ultrathin films of Al (20–80 nm) and Cu (10–100 nm) deposited on poly(ethylene terephthalate) (PET) substrate by magnetron sputtering technique. The electrical conductivity values of the films were determined by 4 probes method, the S parameters (S{sub 11} and S{sub 12}) were obtained by transmission line using a X-band waveguide and the skin depth calculated. The results show the dependence of the electrical conductivity with the thickness for both films. The experimental values of microwave attenuation were compared with calculated values based on the equivalent electric circuit theory. This comparison shows a good adjustment and confirms the use of electrical conductivity measurements to predict the microwave absorption behavior of ultrathin films. - Highlights: • This article focuses on recent progresses in ultrathin films aiming microwave absorption. • Nanometric films of Al and Cu deposited on poly(ethylene terephthalate) substrate were produced. • Electrical conductivity (4-probes) and S-parameters (S{sub 11} and S{sub 12}) of nanofilms were measured. • Calculated microwave attenuations were obtained based on the equivalent electric circuit theory. • A good fit between experimental and predictions data of microwave absorption was observed.

  4. Comparative study of experimental and numerical behaviors of microwave absorbers based on ultrathin Al and Cu films

    International Nuclear Information System (INIS)

    Costa, D.S.; Nohara, E.L.; Rezende, M.C.

    2017-01-01

    The study of radar absorbing materials increasingly thin, lightweight and flexible has gained growing importance in recent years. In military area these characteristics allow the reduction of weight and volume of platforms, and in civilian sector these materials stimulate innovative projects of electronic and microwave devices. The present work was devoted to studying ultrathin films of Al (20–80 nm) and Cu (10–100 nm) deposited on poly(ethylene terephthalate) (PET) substrate by magnetron sputtering technique. The electrical conductivity values of the films were determined by 4 probes method, the S parameters (S_1_1 and S_1_2) were obtained by transmission line using a X-band waveguide and the skin depth calculated. The results show the dependence of the electrical conductivity with the thickness for both films. The experimental values of microwave attenuation were compared with calculated values based on the equivalent electric circuit theory. This comparison shows a good adjustment and confirms the use of electrical conductivity measurements to predict the microwave absorption behavior of ultrathin films. - Highlights: • This article focuses on recent progresses in ultrathin films aiming microwave absorption. • Nanometric films of Al and Cu deposited on poly(ethylene terephthalate) substrate were produced. • Electrical conductivity (4-probes) and S-parameters (S_1_1 and S_1_2) of nanofilms were measured. • Calculated microwave attenuations were obtained based on the equivalent electric circuit theory. • A good fit between experimental and predictions data of microwave absorption was observed.

  5. Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition

    International Nuclear Information System (INIS)

    Lu Yinxiang

    2010-01-01

    Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 x 10 4 to 2.1 x 10 5 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.

  6. Spatially resolved photoluminescence and AFM measurements on Cu(In,Ga)Se{sub 2}-based thin film absorbers prepared with different throughput speeds

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Max; Neumann, Oliver; Heise, Stephan J.; Brueggemann, Rudolf; Bauer, Gottfried H. [Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2011-07-01

    We study the behavior and interdependence of quantities such as photoluminescence (PL) yield, quasi-Fermi level splitting and AFM-determined surface roughness on CIGS thin-film absorbers with different thicknesses between 0.25 and 3 {mu}m achieved by varying the throughput speed in an in-line physical vapor deposition (PVD) process. These quantities are studied on the macroscopic as well as on the microscopic scale with a resolution of approximately 1 {mu}m. It is shown that the structural sizes of the inhomogeneities of the absorber layer itself and its lateral photoluminescence properties decrease with decreasing absorber thickness. These results are compared to those on samples thinned by bromine-methanol etching. Furthermore, we show that varying the thickness of the CdS buffer layer on top of the absorber influences surface recombination and thereby PL yield and quasi-Fermi level splitting. A decrease in surface recombination at higher buffer thicknesses has to be weighed against the increase in absorption in the buffer layer, which in turn decreases carrier generation in the absorber layer.

  7. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.I., E-mail: mdibrahim.khalil@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Atici, O. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Lucotti, A. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Binetti, S.; Le Donne, A. [Department of Materials Science and Solar Energy Research Centre (MIB-SOLAR), University of Milano- Bicocca, Via Cozzi 53, 20125 Milano (Italy); Magagnin, L., E-mail: luca.magagnin@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy)

    2016-08-30

    Highlights: • CZTS absorber layer was fabricated by electrodeposition—annealing route from stacked bilayer precursor (Zn/Cu-Sn). • Different characterization techniques have ensured the well formed Kesterite CZTS along the film thickness also. • Two different excitation wavelengths of laser lines (514.5 and 785 nm) have been used for the Raman characterization of the films. • No significant Sn loss is observed in CZTS films after the sulfurization of the stacked bilayer precursors. • Photoluminescence spectroscopy reveals the PL peak of CZTS at 1.15 eV at low temperature (15 K). - Abstract: In the present work, Kesterite-Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N{sub 2} atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N{sub 2} atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose

  8. Hydrogen absorbing alloy electrode for metal-hydride alkali storage battery and hydrogen absorbing particles for metal-hydride alkali storage battery; Kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin denkyoku oyobi kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin ryushi

    Energy Technology Data Exchange (ETDEWEB)

    Niiyama, K.; Konno, Y.; Maeda, R.; Nogami, K.; Nishio, K.; Saito, T.

    1996-02-02

    For preventing degradation due to oxidation of hydrogen absorbing alloy to elongate the life of batteries, a proposal has been made to coat the surface of hydrogen absorbing alloy with electroless nickel plated film. When the surfaces of hydrogen absorbing alloy particles are coated with such electroless nickel plated films having low phosphoric acid content, however, absorption of the oxygen gas produced by overcharge delays to increase the pressure inside the battery because the plated film is unporous dense coat with high crystallinity. This invention relates to phosphoric acid containment in the ratios from 11 to 14wt% in the electroless nickel plated layer of the hydrogen absorbing alloy electrode for the metal-hydride alkali storage battery. Long time is required for the initial activation when the phosphoric acid content is less than 11wt% because the crystallinity of the plated film is too high and forms a dense unporous film. On the other hand, the plated film becomes brittle and tends to peel off from the hydrogen absorbing alloy if phosphoric acid content exceeds 14wt%. 3 figs., 2 tabs.

  9. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  10. Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material

    Science.gov (United States)

    Nandur, Abhishek; White, Bruce

    2014-03-01

    CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.

  11. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  12. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  13. Microwave-assisted synthesis of CuInSe{sub 2} nanoparticles in low-absorbing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, Richard P.; Flynn, Brendan T.; Herman, Gregory S. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR (United States); Schut, David M. [Voxtel Inc., Eugene, OR (United States)

    2014-01-15

    Copper indium diselenide (CIS) nanoparticles were synthesized using a microwave-assisted one-pot solvothermal approach. For these studies high microwave-absorbing precursors were used in combination with low microwave absorbing solvents tri-n-octylphosphine (TOP) and oleic acid (OA) to investigate the effect of selective heating of the precursors on nanoparticle synthesis. High-resolution transmission electron microscopy (TEM) results indicated that the nanoparticles were spherical, crystalline and 4-5 nm in diameter. X-ray diffraction (XRD) results indicated that the nanoparticles had a body-centered tetragonal structure with planar defects that decreased in concentration with increasing reaction temperature and reaction time. The nanoparticle compositions varied depending on the reaction conditions and the compositions were found to approach stoichiometry for increased reaction times. Fourier transform infrared (FTIR) spectroscopy indicated both solvents adsorbed to the nanoparticle surface and energy dispersive spectroscopy indicated that these ligands became chlorinated during the reaction. The uniform temperature profile offered by the microwave heating allowed for highly reproducible batch-to-batch reactions, allowing for tight control over composition and defect concentration. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  15. Controllable deposition of gadolinium doped ceria electrolyte films by magnetic-field-assisted electrostatic spray deposition

    International Nuclear Information System (INIS)

    Ksapabutr, Bussarin; Chalermkiti, Tanapol; Wongkasemjit, Sujitra; Panapoy, Manop

    2013-01-01

    This paper describes a simple and low-temperature approach to fabrication of dense and crack-free gadolinium doped ceria (GDC) thin films with controllable deposition by a magnetic-field-assisted electrostatic spray deposition technique. The influences of external permanent magnets on the deposition of GDC films were investigated. The coating area deposited using two magnets with the same pole arrangement decreased in comparison with the case of no magnets, whereas the largest deposition area was obtained in the system of the opposite poles. Analysis of as-deposited films at 450 °C indicated the formation of uniform, smooth and dense thin films with a single-phase fluorite structure. The films produced in the system using same poles were thicker, smaller in crystallite size and smoother than those fabricated under other conditions. Additionally, the GDC film deposited using the same pole arrangement showed the maximum in electrical conductivity of about 2.5 × 10 −2 S/cm at a low operating temperature of 500 °C. - Highlights: • Magnetic-field-assisted electrostatic spray allows a controllable coating. • Dense, crack-free thin films were obtained at low process temperature of 450 °C. • Control of deposition, thickness and uniformity is easy to achieve simultaneously. • Films from the same pole were thicker, smaller in crystal size and smoother. • The maximum conductivity of doped ceria film was 2.5 × 10 −2 S/cm at 500 °C

  16. Improving the performance of nickel-coated fluorine-doped tin oxide thin films by magnetic-field-assisted laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing 225400 (China)

    2015-10-01

    Highlights: • Ni/FTO films were prepared by sputtering Ni layers on commercial FTO glass. • The as-prepared Ni/FTO films underwent magnetic-field-assisted laser annealing. • Magnetic field and laser fluence were crucial for improving quality of the films. • All Ni/FTO films displayed enhanced compactness after magnetic laser annealing. • Magnetic laser annealing using a fluence of 0.9 J/cm{sup 2} led to the best film quality. - Abstract: Nickel-coated fluorine-doped tin oxide (Ni/FTO) thin films were prepared by sputtering Ni layers on commercial FTO glass. The as-prepared Ni/FTO films underwent nanosecond pulsed laser annealing in an external magnetic field (0.4 T). The effects of the presence of magnetic field and laser fluence on surface morphology, crystal structure and photoelectric properties of the films were investigated. All the films displayed enhanced compactness after magnetic-field-assisted laser annealing. It was notable that both crystallinity and grain size of the films gradually increased with increasing laser fluence from 0.6 to 0.9 J/cm{sup 2}, and then decreased slightly with an increase in laser fluence to 1.1 J/cm{sup 2}. As a result, the film obtained by magnetic-field-assisted laser annealing using a fluence of 0.9 J/cm{sup 2} had the best overall photoelectric property with an average transmittance of 81.2%, a sheet resistance of 5.5 Ω/sq and a figure of merit of 2.27 × 10{sup −2} Ω{sup −1}, outperforming that of the film obtained by pure laser annealing using the same fluence.

  17. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  18. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  19. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  20. Electron cyclotron resonance ion stream etching of tantalum for x-ray mask absorber

    International Nuclear Information System (INIS)

    Oda, Masatoshi; Ozawa, Akira; Yoshihara, Hideo

    1993-01-01

    Electron cyclotron resonance ion stream etching of Ta film was investigated for preparing x-ray mask absorber patterns. Ta is etched by the system at a high rate and with high selectivity. Using Cl 2 as etching gas, the etch rate decreases rapidly with decreasing pattern width below 0.5 μm and large undercutting is observed. The problems are reduced by adding Ar or O 2 gas to the Cl 2 . Etching with a mixture of Cl 2 and O 2 produces highly accurate Ta absorber patterns for x-ray masks. The pattern width dependence of the etch rate and the undercutting were simulated with a model that takes account of the angular distribution of active species incident on the sample. The experimental results agree well with those calculated assuming that the incidence angles are distributed between -36 degrees and 36 degrees. The addition of O 2 or Ar enhances ion assisted etching. 16 refs., 16 figs

  1. An alternative non-vacuum and low cost ESAVD method for the deposition of Cu(In,Ga)Se{sub 2} absorber layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingqing; Liu, Junpeng; Choy, KwangLeong [UCL Centre for Materials Discovery, University College London (United Kingdom); Hou, Xianghui [Faculty of Engineering, University of Nottingham (United Kingdom); Gibson, Paul [IMPT Ltd, Nottingham (United Kingdom); Salem, Elhamali; Koutsogeorgis, Demosthenes; Cranton, Wayne [School of Science and Technology, Nottingham Trent University (United Kingdom)

    2015-01-01

    In this article, an environmentally friendly and non-vacuum electrostatic spray assisted vapor deposition (ESAVD) process has been developed as an alternative and low cost method to deposit CIGS absorber layers. ESAVD is a non-vacuum chemical vapor deposition based process whereby a mixture of chemical precursors is atomized to form aerosol. The aerosol is charged and directed towards a heated substrate where it would undergo decomposition and chemical reaction to deposit a stable solid film onto the substrate. A sol containing copper, indium, and gallium salts, as well as thiourea was formulated into a homogeneous chemical precursor mixture for the deposition of CIGS films. After selenization, both XRD and Raman results show the presence of the characteristic peaks of CIGSSe in the fabricated thin films. From SEM images and XRF results, it can be seen that the deposited absorbers are promising for good performance solar cells. The fabricated solar cell with a typical structure of glass/Mo/CIGSSe/CdS/i-ZnO/ITO shows efficiency of 2.82% under 100 mW cm{sup -2} AM1.5 illumination. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Fabrication of high-performance fluorine doped-tin oxide film using flame-assisted spray deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Agus, E-mail: Aguspur@uns.ac.id [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia); Widiyandari, Hendri [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Jl. Prof. Dr. Soedarto, Tembalang, Semarang 50275 (Indonesia); Jumari, Arif [Department of Chemical Engineering, Faculty of Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta, Central Java 57126 (Indonesia)

    2012-01-01

    A high-performance fluorine-doped tin oxide (FTO) film was fabricated by flame-assisted spray deposition method. By varying the NH{sub 4}F doping concentration, the optimal concentration was established as 8 at.%. X-ray diffractograms confirmed that the as-grown FTO film was tetragonal SnO{sub 2}. In addition, the FTO film was comprised of nano-sized grains ranging from 40 to 50 nm. The heat-treated FTO film exhibited a sheet resistance of 21.8 {Omega}/{open_square} with an average transmittance of 81.9% in the visible region ({lambda} = 400-800 nm). The figures of merit shows that the prepared FTO film can be used for highly efficient dye-sensitized solar cells electrodes.

  3. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  4. Structural and optical properties of Cu{sub 2}ZnSnS{sub 4} thin film absorbers from ZnS and Cu{sub 3}SnS{sub 4} nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xianzhong, E-mail: lin.xianzhong@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Kavalakkatt, Jaison [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Kornhuber, Kai; Levcenko, Sergiu [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Berlin (Germany); Ennaoui, Ahmed, E-mail: ennaoui@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2013-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) has been considered as an alternative absorber layer to Cu(In,Ga)Se{sub 2} due to its earth abundant and environmentally friendly constituents, optimal direct band gap of 1.4–1.6 eV and high absorption coefficient in the visible range. In this work, we propose a solution-based chemical route for the preparation of CZTS thin film absorbers by spin coating of the precursor inks composed of Cu{sub 3}SnS{sub 4} and ZnS NPs and annealing in Ar/H{sub 2}S atmosphere. X-ray diffraction and Raman spectroscopy were used to characterize the structural properties. The chemical composition was determined by energy dispersive X-ray spectroscopy. Optical properties of the CZTS thin film absorbers were studied by transmission, reflection and photoluminescence spectroscopy.

  5. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  6. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Alexandra; Lewis, David F.; Varma, Sangya; Vitkin, I. Alex; Jaffray, David A. [Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Advanced Materials Group, International Specialty Products, Inc., Wayne, New Jersey 07470 (United States); Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2008-10-15

    The effects of temperature on real time changes in optical density ({Delta}OD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance ({lambda}{sub max}) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degree sign C. The {Delta}OD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in {lambda}{sub max}. A compensation scheme using {lambda}{sub max} and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.

  7. Effects of composition and microstructure of Pd-Cu-Si metallic glassy alloy thin films on hydrogen absorbing properties

    International Nuclear Information System (INIS)

    Kajita, Susumu; Kohara, Shinji; Onodera, Yohei; Fukunaga, Toshiharu; Matsubara, Eiichiro

    2011-01-01

    Thin films of Pd-Cu-Si metallic glassy alloys for a hydrogen sensor were fabricated by a sputtering method. In order to find out the effect of the composition and the microstructure of them on the hydrogen absorbing property (the H 2 response), the structural parameters based on the short-range order (SRO) were measured. Additionally, the change of the structural parameters with hydrogen absorption was measured, and the correlations of the change with the H 2 response and the hydrogen induced linear expansion coefficient (LEC) were examined. The H 2 response decreased with increases in Si content and the structural parameters. These results can be explained by the positive effects of Si content and the structural parameters on the formation of a trigonal prism which is a structural unit of Pd-based amorphous alloys, and by the negative effect of the trigonal prism on absorbing hydrogen. From the observation of the elongation of the Pd-Pd atomic distance with absorbing hydrogen, H atoms are supposed to occupy the space between Pd atoms. The amount of the change in the Pd-Pd atomic distance showed the positive correlations with the H 2 response and the LEC. (author)

  8. Three-dimensional reciprocal space profile of an individual nanocrystallite inside a thin-film solar cell absorber layer

    International Nuclear Information System (INIS)

    Slobodskyy, Taras; Schroth, Philip; Minkevich, Andrey; Grigoriev, Daniil; Fohtung, Edwin; Riotte, Markus; Baumbach, Tilo; Powalla, Michael; Lemmer, Uli; Slobodskyy, Anatoliy

    2013-01-01

    The strain profile of an individual Cu(In,Ga)Se 2 nanocrystallite in a solar cell absorber layer is accessed using synchrotron radiation. We find that the investigated crystallite is inhomogeneously strained. The strain is most likely produced by a combination of intergranular strain and composition variations in nanocrystals inside the polycrystalline semiconductor film and carries information about the intercrystalline interaction. The measurements are made nondestructively and without additional sample preparation or x-ray beam nanofocusing. This is the first step towards measurements of strain profiles of individual crystallites inside a working solar cell. (paper)

  9. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  10. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO_2 films

    International Nuclear Information System (INIS)

    Chen, Xian; Zhang, Jing; Zhao, Yu-Qing

    2017-01-01

    Highlights: • The surface roughness of a-TiO_2 films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO_2 films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO_2 thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  11. Investigation of the physical properties of ion assisted ZrN thin films deposited by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Signore, M A; Valerini, D; Rizzo, A; Tapfer, L; Capodieci, L; Cappello, A

    2010-01-01

    Ion bombardment during thin film growth is known to cause structural and morphological changes in the deposited films, thus affecting their physical properties. In this work zirconium nitride films have been deposited by the ion assisted magnetron sputtering technique. The ion energy is controlled by varying the voltage applied to the substrate in the range 0-25 V. The deposited ZrN films are characterized for their structure, surface roughness, oxygen contamination, optical reflectance and electrical resistivity. With increasing substrate voltage crystallinity of the films is enhanced with a preferential orientation of the ZrN grains having the (1 1 1) axis perpendicular to the substrate surface. At the same time, a decrease in electrical resistivity and oxygen contamination content is observed up to 20 V. A higher substrate voltage (25 V) causes an inversion in the observed experimental trends. The role of oxygen contamination decrease and generation of nitrogen vacancies due to ionic assistance have been considered as a possible explanation for the experimental results.

  12. Investigation of the physical properties of ion assisted ZrN thin films deposited by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Signore, M A; Valerini, D; Rizzo, A; Tapfer, L; Capodieci, L; Cappello, A [ENEA, Department of Physical Technologies and New Materials, SS7, Appia, km 706, 72100 Brindisi (Italy)

    2010-06-09

    Ion bombardment during thin film growth is known to cause structural and morphological changes in the deposited films, thus affecting their physical properties. In this work zirconium nitride films have been deposited by the ion assisted magnetron sputtering technique. The ion energy is controlled by varying the voltage applied to the substrate in the range 0-25 V. The deposited ZrN films are characterized for their structure, surface roughness, oxygen contamination, optical reflectance and electrical resistivity. With increasing substrate voltage crystallinity of the films is enhanced with a preferential orientation of the ZrN grains having the (1 1 1) axis perpendicular to the substrate surface. At the same time, a decrease in electrical resistivity and oxygen contamination content is observed up to 20 V. A higher substrate voltage (25 V) causes an inversion in the observed experimental trends. The role of oxygen contamination decrease and generation of nitrogen vacancies due to ionic assistance have been considered as a possible explanation for the experimental results.

  13. Effects of diethanolamine on sol–gel–processed Cu{sub 2}ZnSnS{sub 4} photovoltaic absorber thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, S., E-mail: suleymanmku@gmail.com; Çetinkaya, S.; Çetinkara, H.A.; Güder, H.S.

    2014-02-01

    Highlights: • DEA content significantly affected the crystal structure and the phase purity. • The films’ crystallite sizes increased with increasing DEA content. • Two different impurity levels were found for each film via R-T characteristics. • Under different illuminations, the n-Si/CZTS exhibited good photo-response. • The light on/off current ratios confirmed the photo-sensitivity of the junction. - Abstract: As a promising solar absorber, the Cu{sub 2}ZnSnS{sub 4} compound has been popular recently for the production of green and economical thin-film solar cells owing to the abundancy and non-toxicity of all the constituents. In this study, we have produced Cu{sub 2}ZnSnS{sub 4} films via the sol–gel technique. As a stabilizer, the effects of the diethanolamine on the properties of the films were investigated. The amount of diethanolamine significantly affected the crystal structure, crystallite sizes and phase purity of the films. X-ray diffraction and Raman spectroscopy analyses confirmed the formation of phase-pure CZTS films. It was found that the film produced by using 2 ml of diethanolamine in sol exhibited pure CZTS phase, compact and dense morphology and enhanced photo-sensitivity. Light on/off current ratio of the n-Si/Cu{sub 2}ZnSnS{sub 4} junction was found to be 47 under 100 mW/cm{sup 2} of illumination. Electrical activation energies of the films were investigated and the variations were attributed to delocalized phonon states generating from the presence of other phases and lattice defects.

  14. Kinetic study on UV-absorber photodegradation under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bubev, Emil, E-mail: ebubev@my.uctm.edu [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria); Georgiev, Anton [University of Chemical Technology and Metallurgy, Department of Organic Chemistry (Bulgaria); Machkova, Maria [University of Chemical Technology and Metallurgy, Department of Physical Chemistry (Bulgaria)

    2016-09-12

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV–vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  15. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D

    2013-01-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  16. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  17. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    Science.gov (United States)

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  18. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  19. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian, E-mail: mus_c@qq.com [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhang, Jing [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhao, Yu-Qing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’AN, 710049 (China)

    2017-05-15

    Highlights: • The surface roughness of a-TiO{sub 2} films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO{sub 2} films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO{sub 2} thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  20. Effect of cesium assistance on the electrical and structural properties of indium tin oxide films grown by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaewon; Hwang, Cheol Seong; Park, Sung Jin; Yoon, Neung Ku [Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Sorona Inc., Pyeongtaek, Gyeonggi 451-841 (Korea, Republic of)

    2009-07-15

    Indium tin oxide (ITO) thin films were deposited by cesium (Cs)-assisted dc magnetron sputtering in an attempt to achieve a high performance at low temperatures. The films were deposited on SiO{sub 2}/Si wafer and glass (Eagle 2000) substrates at a substrate temperature of 100 degree sign C with a Cs vapor flow during the deposition process. The ITO thin films deposited in the presence of Cs vapor showed better crystallinity than the control films grown under normal Ar/O{sub 2} plasma conditions. The resistivity of the films with the Cs assistance was lower than that of the control films. The lowest resistivity of 6.2x10{sup -4} {Omega} cm, which is {approx}20% lower than that of the control sample, was obtained without any postdeposition thermal annealing. The surface roughness increased slightly when Cs vapor was added. The optical transmittance was >80% at wavelengths ranging from 380 to 700 nm.

  1. Forcing culture of 'Black beauty'-type eggplant [Solanum melongena] 'Kurowashi' under near-ultraviolet radiation absorbing vinyl film

    International Nuclear Information System (INIS)

    Hshimoto, I.

    2006-01-01

    In a forcing culture of the 'Black Beauty'- type eggplant 'Kurowashi' (Solanum melongena var. esculentum (L.) Nees), comparisons were made in respect to growth and yield under near-ultraviolet radiation-100% absorbing vinyl film (UV100 film), and those under standard greenhouse vinyl film (standard film). Investigations were also made on the influence of the number of shoots and planting density. 1. Under UV100 film, shoot growth was the same as under standard film. The total number of flowers was somewhat increased, but the rate of harvested fruit decreased, and the yield of marketable fruit was less. On the other hand, there was little difference in the color of leaves or fruit skins; however, the green color of the shoots was lighter. 2. Under the UV100 film, when the planting system used a 180cm ridge width and a single row, the yield of marketable fruit with 2 shoots training (1,389 stocks/10a) was more than 4 shoots training (694 stocks/10a), when the numbers of shoots per unit area were the same. Moreover, with the 2 shoots training, the yield of marketable fruit for the 35cm intra-row spacing (1,587 stocks/10a) was more than the 40cm intra-row spacing (1,389 stocks/10a)

  2. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  3. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    International Nuclear Information System (INIS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO x N y ) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized

  4. Development of CIGS2 solar cells with lower absorber thickness

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Rd., Cocoa, FL 32922 (United States); Moutinho, Helio [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2009-09-15

    The availability and cost of materials, especially of indium can be a limiting factor as chalcopyrite based thin-film solar cells advance in their commercialization. The required amounts of metals can be lowered by using thinner films. When the thickness of the film decreases, there is possibility of remaining only in the small grain region because the coalescence of grains does not have an opportunity to enhance the grain size to the maximum. Solar cell performance in smaller grain chalcopyrite absorber deteriorates due to larger fraction of grain boundaries. Efforts are being made to reduce the thickness while maintaining the comparable performance. This work presents a study of preparation, morphology and other material properties of CIGS2 absorber layers with decreasing thicknesses up to 1.2 {mu}m and its correlation with the device performance. Encouraging results were obtained demonstrating that reasonable solar cell efficiencies (>10%) can be achieved even for thinner CIGS2 thin-film solar cells. (author)

  5. Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes.

    Science.gov (United States)

    Ko, Youngsang; Kim, Dabum; Kim, Ung-Jin; You, Jungmok

    2017-10-01

    Sustainable cellulose nanofiber (CNF)-based composites as functional conductive materials have garnered considerable attention recently for their use in soft electronic devices. In this work, self-standing, highly flexible, and conductive PEDOT:PSS-CNF composite films were developed using a simple vacuum-assisted filtration method. Two different composite films were successfully fabricated and then tested: 1) a single-layer composite composed of a mixture of PEDOT:PSS and CNF phases and 2) a bilayer composite composed of an upper PEDOT:PSS membrane layer and a CNF matrix sub-layer. The latter composite was constructed by electrostatic/hydrogen bonding interactions between PEDOT:PSS and CNFs coupled with sequential vacuum-assisted filtration. Our results demonstrated that the resultant bilayer composite film exhibited a competitive electrical conductivity (ca. 22.6Scm -1 ) compared to those of previously reported cellulose-based composites. Furthermore, decreases in the electrical properties were not observed in the composite films when they were bent up to 100 times at an angle of 180° and bent multiple times at an angle of 90°, clearly demonstrating their excellent mechanical flexibility. This study provides a straightforward method of fabricating highly flexible, lightweight, and conductive films, which have the potential to be used in high-performance soft electronic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polymer/surfactant assisted self-assembly of nanoparticles into Langmuir–Blodgett films

    International Nuclear Information System (INIS)

    Alejo, T.; Merchán, M.D.; Velázquez, M.M.; Pérez-Hernández, J.A.

    2013-01-01

    We studied the ability of poly(octadecene-co-maleic anhydride) (PMAO) and a Gemini surfactant [C 18 H 37 (CH 3 ) 2 N + Br − –(CH 2 ) 2 –N + Br − (CH 3 ) 2 C 18 H 37 ] (18-2-18) to assist in the self-assembly process of CdSe quantum dots (QDs) at the air–water interface. Results show that, while QD agglomeration is generally inhibited by the addition of these components to the Langmuir monolayer of QDs, structure of the film transferred onto mica by the Langmuir–Blodgett method is strongly affected by the dewetting process. Nucleation-and-growth of holes and spinodal-like dewetting were respectively observed in the presence of either PMAO or 18-2-18. When PMAO/18-2-18 mixtures were used, both mechanisms were allowed; nevertheless, even in films prepared with mixtures of low polymer contents, characteristic morphology from the polymer dewetting route prevailed. Highlights: ► Effect of the composition on the LB films of QDs/polymer. ► Effect of the composition on the LB films of QDs/Gemini surfactant. ► Dewetting mechanisms

  7. Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shangzhi; Liu Liang [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Hu Jiming [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China)], E-mail: kejmhu@zju.edu.cn; Zhang Jianqing; Cao Chunan [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)

    2008-08-15

    Nitrate was used as a promoter to prepare dodecyltrimethoxysilane thin films on aluminum substrates. With the addition of nitrate into silane sol-gel precursors, the electro-assisted formation of silane films was facilitated, as indicated by electrochemical impedance spectroscopy, scanning electron microscopy and secondary-ion mass spectroscopy, due to the promotion in cathodic alkalization. However, an extra-high concentration of nitrate would be harmful because of the salting-out effect in precursors and the soluble nitrate remaining in silane films.

  8. Template assisted synthesis and optical properties of gold nanoparticles.

    Science.gov (United States)

    Fodor, Petru; Lasalvia, Vincenzo

    2009-03-01

    A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.

  9. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  10. SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Víctor, E-mail: victor.robles@ciemat.es; Trigo, Juan Francisco; Guillén, Cecilia; Herrero, José

    2015-05-01

    Tin sulfide thin films were prepared by co-evaporation on soda-lime glass substrates, for use as absorber layers. The synthesis was carried out at 350 °C substrate temperature and varying the growth rate in the 2-6 Å/s range, adjusting the deposition time in order to obtain thicknesses in the 700-1500 nm range. After evaporation, the samples were heated at 400 °C and 500 °C under various atmospheres. The evolution of the morphological, structural and optical properties has been analyzed as a function of the thickness and deposition rate, before and after annealing. For the samples grown at the lowest rate, SnS and Sn{sub 2}S{sub 3} phase mixing has been observed by X-ray diffraction. Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers become richer in the Sn{sub 2}S{sub 3} phase. The sulfur treatment of samples prepared at the lowest rate results in the formation of SnS{sub 2} phase. Otherwise, the samples obtained at the highest rates show single-phase SnS after heating at 400 °C in sulfur atmosphere, with gap energy values around 1.24 eV. - Highlights: • Tin sulfide thin films were deposited by co-evaporation at different growth rates. • The influence of the growth rate and post-annealing at different conditions was studied. • The SnS phase was obtained by optimizing the growth rate and the annealing process. • The SnS phase presented properties for use as absorber layer.

  11. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  12. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    Science.gov (United States)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  13. Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition.

    Science.gov (United States)

    Liu, Y; Tan, T; Wang, B; Zhai, R; Song, X; Li, E; Wang, H; Yan, H

    2008-04-15

    A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.

  14. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  15. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  16. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Javid, Amjed [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Textile Processing, National Textile University, Faisalabad 37610 (Pakistan); Kumar, Manish, E-mail: manishk@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-01-15

    Highlights: • Pure and N-doped nanocrystallie carbon films are synthesized by ICP assisted pulsed DC plasma process. • ICP power induces the increase in average graphitic crystallite size from 4.86 nm to 6.42 nm. • Beneficial role of ICP source assistance to achieve high sputtering throughput (deposition rate ∼55 nm/min). • Post-sterilization electron-transport study shows N-doped carbon films having promising stability. - Abstract: Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31–55 nm/min), electrical resistivity (4–72 Ωcm) and water contact angle (45.12°–54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  17. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    International Nuclear Information System (INIS)

    Dewald, Wilma; Sittinger, Volker; Szyszka, Bernd; Säuberlich, Frank; Stannowski, Bernd; Köhl, Dominik; Ries, Patrick; Wuttig, Matthias

    2013-01-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al 2 O 3 target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm 2 /Vs and electron density of 4.3 · 10 20 cm −3 from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm 2 /Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current

  18. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, Wilma, E-mail: wilma.dewald@ist.fraunhofer.de [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Sittinger, Volker; Szyszka, Bernd [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig (Germany); Säuberlich, Frank; Stannowski, Bernd [Sontor GmbH, OT Thalheim, Sonnenallee 7-11, 06766 Bitterfeld-Wolfen (Germany); Köhl, Dominik; Ries, Patrick; Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen, Sommerfeldstraße 14, 52074 Aachen (Germany)

    2013-05-01

    Currently sputtered Al-doped ZnO films are transferred to industry for the application in thin film silicon solar modules. These films are known to easily form light trapping structures upon etching which are necessary for absorbers with low absorbance such as μc-Si. Up to now the best structures for high efficiency thin film silicon solar cells were obtained by low rate radio frequency (r.f.) sputtering of ceramic targets. However, for industrial application a high rate process is essential. Therefore a seed layer approach was developed to increase the deposition rate while keeping the desired etch morphology and electrical properties. Aluminum doped ZnO films were deposited dynamically by direct current (d.c.) magnetron sputtering from a ceramic ZnO:Al{sub 2}O{sub 3} target (1 wt.%) onto an additional seed layer prepared by r.f. sputtering. ZnO:Al films were investigated with respect to their optical and electrical properties as well as the morphology created after etching for a-Si/μc-Si solar cells. Additionally atomic force microscopy, scanning electron microscopy, X-ray diffraction and Hall measurements were performed, comparing purely r.f. or d.c. sputtered films with d.c. sputtered films on seed layers. With the seed layer approach it was possible to deposit ZnO:Al films with a visual transmittance of 83.5%, resistivity of 295 μΩ cm, electron mobility of 48.9 cm{sup 2}/Vs and electron density of 4.3 · 10{sup 20} cm{sup −3} from a ceramic target at 330 °C. Etch morphologies with 1 μm lateral structure size were achieved. - Highlights: ► Seed layer approach for dynamic sputter deposition of enhanced quality ZnO:Al. ► A thin radio frequency sputtered ZnO:Al layer assists film nucleation on glass. ► Electron mobility was increased up to 49 cm{sup 2}/Vs due to quasi-epitaxial film growth. ► Etch morphology exhibits 1 μm wide craters for light trapping in solar cells. ► The concept was transferred to a seed layer sputtered with direct current.

  19. Energy Gap, Microwave-Assisted Tunneling, and Josephson Steps in Thin-Film Weak Links at 63 and 302 GHz

    DEFF Research Database (Denmark)

    Kofoed, Bent; Særmark, Knud

    1973-01-01

    We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak is observ......We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak...

  20. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Antony, Rajini P.; Mathews, Tom; Ajikumar, P.K.; Krishna, D. Nandagopala; Dash, S.; Tyagi, A.K.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO 2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH 4 F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O 2− ions by N 3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO 1.83 N 0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  1. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Caricato, A.P.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Tunno, T.; Valerini, D.

    2007-01-01

    We report morphological and optical properties of a colloidal TiO 2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO 2 nanoparticle thin films

  2. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  3. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  5. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  6. Room temperature deposition of crystalline indium tin oxide films by cesium-assisted magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Deuk Yeon; Baik, Hong-Koo

    2008-01-01

    Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 x 10 -4 Ω cm at 80 deg. C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density

  7. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  8. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  9. Polymer/surfactant assisted self-assembly of nanoparticles into Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Pérez-Hernández, J.A. [Centro de Láseres Pulsados Ultraintensos (CLPU), E-37008 Salamanca (Spain)

    2013-02-15

    We studied the ability of poly(octadecene-co-maleic anhydride) (PMAO) and a Gemini surfactant [C{sub 18}H{sub 37} (CH{sub 3}){sub 2}N{sup +}Br{sup −}–(CH{sub 2}){sub 2}–N{sup +}Br{sup −}(CH{sub 3}){sub 2} C{sub 18}H{sub 37}] (18-2-18) to assist in the self-assembly process of CdSe quantum dots (QDs) at the air–water interface. Results show that, while QD agglomeration is generally inhibited by the addition of these components to the Langmuir monolayer of QDs, structure of the film transferred onto mica by the Langmuir–Blodgett method is strongly affected by the dewetting process. Nucleation-and-growth of holes and spinodal-like dewetting were respectively observed in the presence of either PMAO or 18-2-18. When PMAO/18-2-18 mixtures were used, both mechanisms were allowed; nevertheless, even in films prepared with mixtures of low polymer contents, characteristic morphology from the polymer dewetting route prevailed. Highlights: ► Effect of the composition on the LB films of QDs/polymer. ► Effect of the composition on the LB films of QDs/Gemini surfactant. ► Dewetting mechanisms.

  10. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  12. Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films

    Science.gov (United States)

    Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.

    1994-04-01

    A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.

  13. Metal–insulator–metal light absorber: a continuous structure

    International Nuclear Information System (INIS)

    Yan, M

    2013-01-01

    A type of light absorber made of continuous layers of metal and dielectric films is studied. The metal films can have thicknesses close to their skin depths in the wavelength range concerned, which allows for both light transmission and reflection. Resonances induced by multiple reflections in the structure, when combined with the inherent lossy nature of metals, result in strong absorption spectral features. An eigen-mode analysis is carried out for the plasmonic multilayer nanostructures which provides a generic understanding of the absorption features. Experimentally, the calculation is verified by a reflection measurement with a representative structure. Such an absorber is simple to fabricate. The highly efficient absorption characteristics can be potentially deployed for optical filter designs, sensors, accurate photothermal temperature control in a micro-environment and even for backscattering reduction of small particles, etc. (paper)

  14. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  15. Into films

    DEFF Research Database (Denmark)

    Tan, Ed S.; Doicaru, Miruna M.; Hakemulder, Frank

    2017-01-01

    Most film viewers know the experience of being deeply absorbed in the story of a popular film. It seems that at such moments they lose awareness of watching a movie. And yet it is highly unlikely that they completely ignore the fact that they watch a narrative and technological construction. Perh...

  16. The production of UV Absorber amorphous cerium sulfide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, İshak Afşin, E-mail: akariper@gmail.com [Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-10-15

    This study investigates the production of cerium sulfide (CeSx) amorphous thin films on substrates (commercial glass) by chemical bath deposition at different pH levels. The transmittance, absorption, optical band gap and refractive index of the films are measured by UV/VIS Spectrum. According to XRD analysis, the films show amorphous structure in the baths with pH: 1 to 5. It has been observed that the optical and structural properties of the films depend on pH value of the bath. The optical band gap (2.08 eV to 3.16 eV) of the films changes with the film thickness (23 nm to 1144 nm). We show that the refractive index has a positive relationship with the film thickness, where the values of 1.93, 1.45, 1.42, 2.60 and 1.39 are obtained for the former, and 34, 560, 509, 23 and 1144 nm (at 550 nm wavelength) for the latter. We compare the optical properties of amorphous and crystal form of CeSx thin films. We show that the optical band gaps of the amorphous CeS{sub x} are lower than that of crystal CeS{sub x} . (author)

  17. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  18. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  19. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE...

  20. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  1. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  2. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  3. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    International Nuclear Information System (INIS)

    Fuss, Martina; Sturtewagen, Eva; Wagter, Carlos De; Georg, Dietmar

    2007-01-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ∼1 Gy and ∼7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm 2 , d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm 2 ) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed

  4. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    Science.gov (United States)

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  5. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  6. Development and Characterization of Photoinduced Acrylamide-Grafted Polylactide Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mijanur Rahman

    2017-01-01

    Full Text Available Surface grafting of biodegradable/biocompatible polylactide (PLA films by a UV-assisted reaction has been developed by employing a hydrophilic acrylamide (Am monomer, an N,N′-methylenebisacrylamide (MBAm cross-linker, and a camphorquinone (CQ/N,N′-dimethylaminoethylmethacrylate (DMAEMA photoinitiator/coinitiator system. The accomplishment of the process is confirmed by FTIR and XPS analyses. Physicochemical changes of the grafted PLA films are evaluated in terms of chemical structures, radiation-induced degradation followed by crystallization, morphology, thermal properties, and mechanical behavior. The results reveal that a low degree of PLA degradation through chain scission is observed in both blank and grafted PLA films. This generates more polar chain ends that can further induce crystallization. Results from contact angle measurements indicate that the grafted films have higher hydrophilicity and pH-responsive behavior. The incorporation of PAm on the film’s surface and the induced crystallization lead to improvements in certain aspects of mechanical properties of the films. The materials have high potential for use in biomedical and environmental applications, such as cell culture substrates or scaffolds or pH-sensitive absorbents.

  7. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    Science.gov (United States)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  8. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.

    Science.gov (United States)

    Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang

    2014-07-16

    A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Alok Kumar [Defence Materials and Stores R and D Establishment (DRDO), GT Road, Kanpur 208013 (India); Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India); Sachan, Priyanka; Samanta, Chandan [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mukhopadhyay, Kingsuk [Defence Materials and Stores R and D Establishment (DRDO), GT Road, Kanpur 208013 (India); Sharma, Ashutosh, E-mail: ashutos@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  11. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  12. The formation of CuInSe{sub 2}-based thin-film solar cell absorbers from alternative low-cost precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jost, S.

    2008-01-18

    This work deals with real-time investigations concerning the crystallisation process of CuInSe{sub 2}-based thin-film solar cell absorbers while annealing differently produced and composed ''low-cost'' precursors. Various types of precursors have been investigated concerning their crystallisation behaviour. Three groups of experiments have been performed: (i) Investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} and Cu(In,Al)S{sub 2}, (ii) investigations concerning the formation process of the compound semiconductor CuInSe{sub 2} from electroplated precursors, and (iii) investigations concerning the crystallisation of Cu(In,Ga)Se{sub 2} using precursors with thermally evaporated indium. A specific sample surrounding has been constructed, which enables to perform time-resolved angle-dispersive X-ray powder diffraction experiments during the annealing process of precursor samples. A thorough analysis of subsequently recorded diffraction patterns using the Rietveld method provides a detailed knowledge about the semiconductor crystallisation process while annealing. Based on these fundamental investigations, conclusions have been drawn concerning an adaptation of the precursor deposition process in order to optimise the final solar cell results. The investigations have shown, that one class of electroplated precursors shows a crystallisation behaviour identical to the one known for vacuum-deposited precursors. The investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} revealed, that the chalcopyrite forms from the ternary selenide (Al,In){sub 2}Se{sub 3} and Cu{sub 2}Se at elevated process temperatures. This result is used to explain the separation of the absorber layer into an aluminum-rich and an indium-rich chalcopyrite phase, which has been observed at processed Cu(In,Al)Se{sub 2} absorbers from several research groups. In addition, differences

  13. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  14. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  15. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  16. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  17. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  18. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method

    International Nuclear Information System (INIS)

    Sakai, Tetsuya; Kuniyoshi, Yuji; Aoki, Wataru; Ezoe, Sho; Endo, Tatsuya; Hoshi, Yoichi

    2008-01-01

    High-rate deposition of titanium dioxide (TiO 2 ) film was attempted using oxygen plasma assisted reactive evaporation (OPARE) method. Photocatalytic properties of the film were investigated. During the deposition, the substrate temperature was fixed at 400 deg. C. The film deposition rate can be increased by increasing the supply of titanium atoms to the substrate, although oversupply of the titanium atoms causes oxygen deficiency in the films, which limits the deposition rate. The film structure depends strongly on the supply ratio of oxygen molecules to titanium atoms O 2 /Ti and changes from anatase to rutile structure as the O 2 /Ti supply ratio increased. Consequently, the maximum deposition rates of 77.0 nm min -1 and 145.0 nm min -1 were obtained, respectively, for the anatase and rutile film. Both films deposited at such high rates showed excellent hydrophilicity and organic decomposition performance. Even the film with rutile structure deposited at 145.0 nm min -1 had a contact angle of less than 2.5 deg. by UV irradiation for 5.0 h and an organics-decomposition performance index of 8.9 [μmol l -1 min -1 ] for methylene blue

  19. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  20. Plasma-assisted co-evaporation of {beta}-indium sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kosaraju, Sreenivas; Marino, Joseph A.; Harvey, John A.; Wolden, Colin A. [Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2006-05-05

    This paper describes the development of plasma-assisted co-evaporation (PACE) for the formation of {beta}-In{sub 2}S{sub 3} thin films. Indium was supplied by conventional thermal evaporation, while the chalcogen gas precursor (H{sub 2}S) was activated using an inductively coupled plasma (ICP) source. Using a combination of optical emission spectroscopy and mass spectrometry it was shown that the ICP effectively dissociated H{sub 2}S, producing atomic sulfur. Transport modeling was used to quantify the flux distributions of the co-evaporated metal and the plasma-generated species impinging the substrate. Model predictions were validated by measurements of deposition rate and film properties. Substantial improvements in both materials utilization and substrate temperature reduction were realized with respect to conventional co-evaporation. {beta}-In{sub 2}S{sub 3} was formed as low as 100{sup o}C and it was observed that quality was a strong function of S/In ratio. The grain size decreased and the optical band gap increased as the substrate temperature was reduced. (author)

  1. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin....... The concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)). (C) 2007 Elsevier B.V. All...

  2. Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures.

    Science.gov (United States)

    Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm

    2014-05-05

    The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

  3. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    Science.gov (United States)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  4. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  5. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  6. Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: Effects of blending ratios

    International Nuclear Information System (INIS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2011-01-01

    In this work, we show successful use of matrix-assisted pulsed laser evaporation (MAPLE) for obtaining thin films of PEG:PLGA blends, in the view of their use for controlled drug delivery. In particular, we investigate the influence of the blending ratios on the characteristics of the films. We show that the roughness of the polymeric films is affected by the ratio of each polymer within the blend. In addition, we perform Fourier transformed infrared spectroscopy (FTIR) measurements and we find that the intensities ratios of the infrared absorption bands of the two polymers are consistent with the blending ratios. Finally, we assess the optical constants of the polymeric films by spectroscopic ellipsometry (SE). We point out that the blending ratios exert an influence on the optical characteristics of the films and we validate the SE results by atomic force microscopy and UV-vis spectrophotometry. In all, we stress that the ratios in which the two polymers are blended have significant impact on the morphology, chemical structure and optical characteristics of the polymeric films deposited by MAPLE.

  7. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  8. SU-E-T-30: Absorbed Doses Determined by Texture Analysis of Gafchromic EBT3 Films Using Scanning Electron Microscopy: A Feasibility Study

    International Nuclear Information System (INIS)

    Park, S; Kim, H; Ye, S

    2014-01-01

    Purpose: The texture analysis method is useful to estimate structural features of images as color, size, and shape. The study aims to determine a dose-response curve by texture analysis of Gafchromic EBT3 film images using scanning electron microscopy (SEM). Methods: The uncoated Gafchromic EBT3 films were prepared to directly scan over the active surface layer of EBT3 film using SEM. The EBT3 films were exposed at a dose range of 0 to 10 Gy using a 6 MV photon beam. The exposed film samples were SEM-scanned at 100X, 1000X, and 3000X magnifications. The four texture features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) derived from the SEM images at each dose. To validate a correlation between delivered doses and texture features, an R-squared value in linear regression was tested. Results: The results showed that the Correlation index was more suitable as dose indices than the other three texture features due to higher linearity and sensitivity of the dose response curves. Further the Correlation index of 3000X magnified SEM images with 9 pixel offsets had an R-squared value of 0.964. The differences between the delivered doses and the doses measured by this method were 0.9, 1.2, 0.2, and 0.2 Gy at 5, 10, 15, and 20 Gy, respectively. Conclusion: It seems to be feasible to convert micro-scale structural features of χ t χχχ he EBT3 films to absorbed doses using the texture analysis method

  9. Optical properties of selectively absorbing C/NiO nanocomposite coatings

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2010-12-01

    Full Text Available Nanocomposite thin films are widely used for solar thermal applications. Using carbon nanoparticle containing metal oxide as a spectrally selective solar absorber coating has grown significantly in recent years. Recently, Katumba et al. have...

  10. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    Directory of Open Access Journals (Sweden)

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  11. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    Science.gov (United States)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  12. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  13. A new radiochromic dosimeter film

    Science.gov (United States)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  14. Intermixing at the heterointerface between ZnS /Zn(S,O) bilayer buffer and CuInS2 thin film solar cell absorber

    Science.gov (United States)

    Bär, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; Sáez-Araoz, R.; Lehmann, S.; Grimm, A.; Lauermann, I.; Loreck, Ch.; Sokoll, St.; Schock, H.-W.; Fischer, Ch.-H.; Lux-Steiner, M. C.; Jung, Ch.

    2006-09-01

    The application of Zn compounds as buffer layers was recently extended to wide-gap CuInS2 (CIS) based thin-film solar cells. Using an alternative chemical deposition route for the buffer preparation aiming at the deposition of a single-layer, nominal ZnS buffer without the need for any toxic reactants such as hydrazine has helped us to achieve a similar efficiency as respective CdS-buffered reference devices. After identifying the deposited Zn compound, as ZnS /Zn(S,O) bilayer buffer in former investigations [M. Bär et al., J. Appl. Phys. 99, 123503 (2006)], this time the focus lies on potential diffusion/intermixing processes at the buffer/absorber interface possibly, clarifying the effect of the heat treatment, which drastically enhances the device performance of respective final solar cells. The interface formation was investigated by x-ray photoelectron and x-ray excited Auger electron spectroscopy. In addition, photoelectron spectroscopy (PES) measurements were also conducted using tunable monochromatized synchrotron radiation in order to gain depth-resolved information. The buffer side of the buffer/absorber heterointerface was investigated by means of the characterization of Zn(S ,O)/ZnS/CIS structures where the ZnS /Zn(S,O) bilayer buffer was deposited successively by different deposition times. In order to make the (in terms of PES information depth) deeply buried absorber side of the buffer/absorber heterointerface accessible for characterization, in these cases the buffer layer was etched away by dilute HClaq. We found indications that while (out-leached) Cu from the absorber layer forms together with the educts in the chemical bath a [Zn(1-Z ),Cu2Z]S-like interlayer between buffer and absorber, Zn is incorporated in the uppermost region of the absorber. Both effects are strongly enhanced by postannealing the Zn(S ,O)/ZnS/CIS samples. However, it was determined that the major fraction of the Cu and Zn can be found quite close to the heterointerface in

  15. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Rusen, L.; Dinca, V.; Filipescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm{sup 2} the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  16. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Science.gov (United States)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  17. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    Science.gov (United States)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  18. Light-absorbent liquid immersion angled exposure for patterning 3D samples with vertical sidewalls

    International Nuclear Information System (INIS)

    Kumagai, Shinya; Kubo, Hironori; Sasaki, Minoru

    2017-01-01

    To make photolithography patterns on 3D samples, the angled (inclined) exposure technique has been used so far. However, technological issues have emerged in making photolithography patterns on the surface of trench structures. The surface of the trench structures can be covered with a photoresist film by spray-coating but the photoresist film deposited on the sidewalls and bottom of the trench is generally thin. The thin photoresist film deposited inside the trench has been easily overdosed. Moreover, irregular patterns have frequently been formed by the light reflected inside the trench. In this study, we have developed liquid immersion photolithography using a light-absorbent material. The light-reflection inside the trench was suppressed. Various patterns were transferred in the photoresist film deposited on the trench structures which had an aspect ratio of 0.74. Compared to immersion photolithography using pure water under p -polarization light control, the light-absorbent liquid immersion photolithography developed here patterned well the surfaces of the trench sidewalls and bottom. (paper)

  19. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    Directory of Open Access Journals (Sweden)

    Chien-Chen Diao

    2014-01-01

    Full Text Available In this study, a new thin-film deposition process, spray coating method (SPM, was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

  20. High-throughput measurement of polymer film thickness using optical dyes

    Science.gov (United States)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  1. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    Science.gov (United States)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  2. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  3. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  4. Investigation of the gafchromic film -EBT2: Features for UVR measurements

    International Nuclear Information System (INIS)

    Abukassem, A.; Bero, M.A.

    2015-01-01

    Important improvement in applied ultraviolet radiation (UVR) dosimetry is achieved using passive detector based on chemical or biological products. These kinds of UVR detectors change their optical properties in correlation with the dose. This work aims to investigate the gafchromic film EBT2 properties under high UVA radiation dose comparable with long exposure to solar radiations. Measurements showed that about 90% of UVA radiation beam is absorbed in single films sheet (285 μm thickness). The EBT2 film components show good stability under high ultraviolet radiation dose. The increase in film visible spectrum absorbance, under UVA irradiation, is due to the decrease in the film active and topcoat layers transmittance and not of the polyester layers degradation. The change in film absorbance at 633 nm, after UVA dose of 112 kJ/m 2 , is about two and half times more than the initial value of unexposed film A 0 , 633 nm (A 0 , 633 nm ≅0.6). The phenomenon of post-exposure stability for the studied EBT2 film is found reproducible and has a small impact on the measurement accuracy ( ≅1%). The studied EBT2 film absorbance changes depend on the applied UVR dose and not on the irradiance level. Relative divergence between the film responses, measured at different dose rates, is lower than 5% for a wide irradiance range. This dependency is justified by the variation of local responsivity in the film and also the irradiation source stability. The response linearity of the gafchromic film EBT2 has been confirmed over a wide dose rate range in the UVA spectrum.(author)

  5. Solution growth, characterization and applications of zinc sulphide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ndukwe, I C [School of Physical Sciences, Abia State University, Uturu, Abia State (Nigeria)

    1996-04-29

    Zinc sulphide (ZnS) thin films were successfully deposited on glass substrates under varying deposition conditions using the electroless or solution growth technique. The film properties investigated include their transmittance/reflectance/absorbance spectra, bandgap, optical constants, and thicknesses. Films grown under certain parametric conditions were found to exhibit high transmittance (64-98%), low absorbance, and low reflectance in the ultraviolet (uv)/visible/near infrared (nir) regions up to 1.00 {mu}m. Those obtained under other conditions exhibited high transmittance (78-98%) and low absorbance (0.01-0.1) in the uv/visible regions but low transmittance (30-37) and high absorbance (0.56) in the nir region. These characteristics revealed their suitability for various solar device applications. Bandgap range E{sub g}=3.7-3.8 eV and thickness range t=0.07 - 0.73 {mu}m were obtained.

  6. Characterization of beta radiation fields using radiochromic films; Caracterizacao de campos de radiacao beta utilizando filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Benavente, Jhonny A.; Silva, Teogenes A. da, E-mail: jabc@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencia e Tecnologia das Radiacoes, Minerais e Materiais; Meira-Belo, Luiz C.; Reynaldo, Sibele R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The objective of this work was to study the response of radiochromic films for beta radiation fields in terms of absorbed dose. The reliability of the EBT model Gafchromic radiochromic film was studied. A 9800 XL model Microtek, transmission scanner, a 369 model X-Rite optical densitometer and a Mini 1240 Shimadzu UV spectrophotometer were used for measurement comparisons. Calibration of the three systems was done with irradiated samples of radiochromic films with 0.1; 0.3; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.5 e 5.0 Gy in beta radiation field from a Sr-90/Y-90 source. Calibration was performed by establishing a correlation between the absorbed dose values and the corresponding radiochromic responses. Results showed significant differences in the absorbed dose values obtained with the three methods. Absorbed dose values showed errors from 0.6 to 4.4%, 0.3 to 31.8% and 0.2 to 47.3% for the Microtek scanner, the X-Rite Densitometer and the Shimadzu spectrophotometer, respectively. Due to the easy acquisition and use for absorbed dose measurements, the densitometer and the spectrophotometer showed to be suitable techniques to evaluate radiation dose in relatively homogeneous fields. In the case of inhomogeneous fields or for a two dimension mapping of radiation fields to identify anisotropies, the scanner technique is the most recommended. (author)

  7. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    Science.gov (United States)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  8. Dense CdS thin films on fluorine-doped tin oxide coated glass by high-rate microreactor-assisted solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yu-Wei, E-mail: suyuweiwayne@gmail.com [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ramprasad, Sudhir [Energy Processes and Materials Division, Pacific Northwest National Laboratory, Corvallis, OR 9730 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Han, Seung-Yeol; Wang, Wei [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Ryu, Si-Ok [School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeonsan, Gyeongbuk 712-749 (Korea, Republic of); Palo, Daniel R. [Barr Engineering Co., Hibbing, MN 55747 (United States); Paul, Brian K. [School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States); Chang, Chih-hung [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97330 (United States); Microproducts Breakthrough Institute and Oregon Process Innovation Center, Corvallis, Oregon 97330 (United States)

    2013-04-01

    Continuous microreactor-assisted solution deposition is demonstrated for the deposition of CdS thin films on fluorine-doped tin oxide (FTO) coated glass. The continuous flow system consists of a microscale T-junction micromixer with the co-axial water circulation heat exchanger to control the reacting chemical flux and optimize the heterogeneous surface reaction. Dense, high quality nanocrystallite CdS thin films were deposited at an average rate of 25.2 nm/min, which is significantly higher than the reported growth rate from typical batch chemical bath deposition process. Focused-ion-beam was used for transmission electron microscopy specimen preparation to characterize the interfacial microstructure of CdS and FTO layers. The band gap was determined at 2.44 eV by UV–vis absorption spectroscopy. X-ray photon spectroscopy shows the binding energies of Cd 3d{sub 3/2}, Cd 3d{sub 5/2}, S 2P{sub 3/2} and S 2P{sub 1/2} at 411.7 eV, 404.8 eV, 162.1 eV and 163.4 eV, respectively. - Highlights: ► CdS films deposited using continuous microreactor-assisted solution deposition (MASD) ► Dense nanocrystallite CdS films can be reached at a rate of 25.2 [nm/min]. ► MASD can approach higher film growth rate than conventional chemical bath deposition.

  9. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate

    International Nuclear Information System (INIS)

    Zhuo Yujiang; Sun Wendong; Dong Lihong; Chu Ying

    2011-01-01

    In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.

  10. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  11. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  12. Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

    Science.gov (United States)

    Tiguntseva, E. Y.; Saraeva, I. N.; Kudryashov, S. I.; Ushakova, E. V.; Komissarenko, F. E.; Ishteev, A. R.; Tsypkin, A. N.; Haroldson, R.; Milichko, V. A.; Zuev, D. A.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI3) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

  13. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  14. Theoretical study of quaternary compounds as thin-film solar cell absorber

    International Nuclear Information System (INIS)

    Su, Huai Wei

    2010-01-01

    Full text : Design of chalcogenide photovoltaic absorbers is carried out systematically through sequential cation mutation, from binary to ternary to quaternary compounds, using first-principles electronic structure calculations. Several universal trends are found for the ternary and two classes of quaternary chalcogenides. For example, the lowest-energy structure always has larger lattice constant a, smaller tetragonal distortion parameter η=c/2a, and larger band gap than the metastable structures for common-row cation mutations. The band gap is reduced during the mutation. The band gap decreases from binary II-VI to ternary I-III-VI 2 are mostly due to the p-d repulsion in the valence band, the decreases from ternary I-III-VI 2 to quaternary I 2 -II-IV-VI 4 chalcogenides are due to the downshift in the conduction band caused by the wavefunction localization on the group IV cation site. It was found that I 2 -II-IV-VI 4 compounds are more stable in the kesterite structure, whereas the widely-assumed stannite structure reported in the literature is most likely due to partial disorder in the I-II layer of the kesterite phase. Among the derived quaternary compounds, Cu 2 ZnSnS 4 (CZTS) is one of the ideal candidate absorber materials for thin-film solar cells with an optimal band gap, high absorption coefficient, abundant elemental components, and is adaptable to various growth techniques. It was performed a series of first-principles electronic structure calculations for CZTS. Also it was found that in the ground state kesterite structure, (i) the chemical potential region that CZTS can form is very small. Therefore, it will be very difficult to obtain high quality stoichiometric CZTS samples; (ii) The dominant p-type acceptor in CZTS is CuZn, however, the associated acceptor level is relatively high, suggesting that p-type doping in CZTS is more difficult than ternary compounds such as CuInSe 2 ; (iii) The formation of the self-compensated defect pair [Cu

  15. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  16. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  17. Bismuth X-ray absorber studies for TES microcalorimeters

    International Nuclear Information System (INIS)

    Sadleir, J.E.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; King, J.M.; Porter, F.S.; Robinson, I.K.; Saab, T.; Talley, D.J.

    2006-01-01

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long Fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in T c (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures

  18. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    Directory of Open Access Journals (Sweden)

    Apratim Majumder

    2016-03-01

    Full Text Available Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL, a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.

  19. A comprehensive simulation model of the performance of photochromic films in absorbance-modulation-optical-lithography

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, Apratim; Helms, Phillip L.; Menon, Rajesh, E-mail: rmenon@eng.utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Andrew, Trisha L. [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-03-15

    Optical lithography is the most prevalent method of fabricating micro-and nano-scale structures in the semiconductor industry due to the fact that patterning using photons is fast, accurate and provides high throughput. However, the resolution of this technique is inherently limited by the physical phenomenon of diffraction. Absorbance-Modulation-Optical Lithography (AMOL), a recently developed technique has been successfully demonstrated to be able to circumvent this diffraction limit. AMOL employs a dual-wavelength exposure system in conjunction with spectrally selective reversible photo-transitions in thin films of photochromic molecules to achieve patterning of features with sizes beyond the far-field diffraction limit. We have developed a finite-element-method based full-electromagnetic-wave solution model that simulates the photo-chemical processes that occur within the thin film of the photochromic molecules under illumination by the exposure and confining wavelengths in AMOL. This model allows us to understand how the material characteristics influence the confinement to sub-diffraction dimensions, of the transmitted point spread function (PSF) of the exposure wavelength inside the recording medium. The model reported here provides the most comprehensive analysis of the AMOL process to-date, and the results show that the most important factors that govern the process, are the polarization of the two beams, the ratio of the intensities of the two wavelengths, the relative absorption coefficients and the concentration of the photochromic species, the thickness of the photochromic layer and the quantum yields of the photoreactions at the two wavelengths. The aim of this work is to elucidate the requirements of AMOL in successfully circumventing the far-field diffraction limit.

  20. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  1. Effects of UV assistance on the properties of al-doped ZnO thin films deposited by sol-gel method

    Science.gov (United States)

    Tseng, Yung-Kuan; Pai, Feng-Ming; Chen, Yan-Cheng; Wu, Chao-Hsien

    2013-11-01

    We report here the preparation of aluminum doped zinc oxide transparent conductive thin films by a UV-assisted sol-gel method. It was found that UV irradiation creates ozone, which promotes the conductivity and transparency of the films. Boro-silicate glasses are used as substrates; an PGME is used as a solvent; after spin-coating, the films are dried and radiated with UV and then heated to 400°C for decarburization and 500°C for annealing under air. The surface morphologies of the prepared films are observed by FE-SEM and AFM. It was found that the films irradiated with UV-C are smoother and denser. An XRD analysis shows that the films have a typical wurtzite crystalline structure with a c-axis orientation normal to the surface. The electric resistance values measured with a four-point probe show that the films irradiated with UV have better conductivity (at approximately 3.4 × 10-3Ω-cm) than the films that did not undergo UV irradiation. An analysis by visible light spectrometry indicates that the AZO films irradiated with UV are more transparent than the films without UV-irradiation.

  2. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  3. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  4. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers

    International Nuclear Information System (INIS)

    Schlenker, E.; Mertens, V.; Parisi, J.; Reineke-Koch, R.; Koentges, M.

    2007-01-01

    Current-voltage and capacitance-voltage measurements serve to analyze thermally evaporated Al Schottky contacts on Cu(In, Ga)Se 2 based photovoltaic thin film devices, either taken as grown or etched in a bromine-methanol solution. The characteristics of the Schottky contacts on the as-grown films give evidence for some dielectric layer developing between the metal and the semiconductor. Etching the semiconductor surface prior to evaporation of the Al front contact yields a pure metal-semiconductor behavior, including effects that can be attributed to an additional diode at the Mo contact. Simulations confirm the experimental results

  5. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  6. Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Yee Ling; Peng Xingyu; Liao, Ying Chieh; Yao Shude; Chen, Li Chyong; Chen, Kuei Hsien; Feng, Zhe Chuan

    2011-01-01

    A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A 1 and E 1 plus E 2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 x 10 20 cm -3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.

  7. High temperature dielectric properties of (BxNyOz thin films deposited using ion source assisted physical vapor deposition

    Directory of Open Access Journals (Sweden)

    N. Badi

    2015-12-01

    Full Text Available The dielectric integrity has been one of the major obstacle in bringing out capacitor devices with suitable performance characteristics at high temperatures. In this paper, BxNyOz dielectric films for high temperature capacitors solutions are investigated. The films were grown on silicon substrate by using ion source assisted physical vapor deposition technique. The as-grown films were characterized by SEM, XRD, and XPS. The capacitor structures were fabricated using BxNyOz as a dielectric and titanium as metal electrodes. The elaborated devices were subjected to electrical and thermal characterization. They exhibited low electrical loss and very good stability when subjected to high temperature for a prolonged period of time.

  8. Synthesis of high Al content AlxGa1−xN ternary films by pulsed laser co-ablation of GaAs and Al targets assisted by nitrogen plasma

    International Nuclear Information System (INIS)

    Cai, Hua; You, Qinghu; Hu, Zhigao; Guo, Shuang; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    Highlights: • Al x Ga 1−x N films were synthesized by co-ablation of an Al target and a GaAs target. • Nitrogen plasma was used to assist the synthesis of Al x Ga 1−x N ternary films. • The Al x Ga 1−x N films are slightly rich in N with an Al content above 0.6. • The Al x Ga 1−x N films are hexagonal wurtzite in crystal structure. • The Al x Ga 1−x N films have an absorption edge of 260 nm and a band gap of 4.7 eV. - Abstract: We present the synthesis of Al x Ga 1−x N ternary films by pulsed laser co-ablation of a polycrystalline GaAs target and a metallic Al target in the environment of nitrogen plasma which provides nitrogen for the films and assists the formation of nitride films. Field emission scanning electron microscopy exposes the smooth surface appearance and dense film structure. X-ray diffraction, Fourier-transform infrared spectroscopy and Raman scattering spectroscopy reveal the hexagonal wurtzite structure. Optical characterization shows high optical transmittance with an absorption edge of about 260 nm and a band gap of 4.7 eV. Compositional analysis gives the Al content of about 0.6. The structure and optical properties of the Al x Ga 1−x N films are compared with those of binary GaN and AlN films synthesized by ablating GaAs or Al target with the same nitrogen plasma assistance

  9. Application of chitosan as biomaterial for active packaging of ethylene absorber

    Science.gov (United States)

    Warsiki, E.

    2018-03-01

    Chitosan was used for active packaging of ethylene absorber that can change the head space of food packaging to extend the shelf life. The purpose of this study was to develop active packaging from chitosan and KMnO4 and apply the active film to package tomatoes. Active film was prepared by mixing chitosan 6 g, 140 mL of acetic acid 1%, 60 mL of aquadest, 2 mL sorbitol, and KMnO4 with concentration of 3 g, 5 g, and 7 g. After 5 days of storage, the film used to wrap the tomatoes was sweated. The best formulation to absorb the ethylene was made from 7 g of KMnO4 since it could inhibit tomatoes from shortly ripening compared to other formulations. The fruits were packed at room temperature had a high hardness as much as 17,79 mm/50mg/5s compared to the control of 3,47 mm/50mg/5s, while at the refrigerator, the tomato had lower hardness value of the 2,72 mm/50mg/5s compared to the control of 4,29 mm/50mg/5s. Addition of KMnO4 on the film could maintain the value °Hue either for all treated sample and control in the range of the yellow to red.

  10. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  11. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  12. Nonlinear optical studies on 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Andreea [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Marinescu, Maria, E-mail: maria.marinescu@chimie.unibuc.ro [UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ion, Valentin; Mitu, Bogdana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Ionita, Iulian [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Physics, 405 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); Emandi, Ana [INFLPR - National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele RO-077125, Bucharest (Romania); UB - University of Bucharest, Faculty of Chemistry, 90-92 Şoseaua Panduri, Sector 5, RO-010184, Bucharest (Romania)

    2016-06-30

    Graphical abstract: - Highlights: • A newly synthesized ferrocene-derivative exhibits SHG potential. • Matrix-assisted pulsed laser evaporation is employed for thin film fabrication. • The optical properties of the films are investigated, presented and discussed. • At maximum laser output power, the SHG signal is strongly influenced by thin film thickness. - Abstract: We present results on a new, laboratory synthesized ferrocene-derivative, i.e. 4-(ferrocenylmethylimino)-2-hydroxy-benzoic acid. Thin films with controlled thickness are deposited by matrix-assisted pulsed laser evaporation (MAPLE), on quartz and silicon substrates, with the aim of evaluating the nonlinear optical properties for potential optoelectronic applications. Dimethyl sulfoxide was used as matrix, with 1% wt. concentration of the guest compound. The frozen target is irradiated by using a Nd:YAG laser (4ω/266 nm, 7 ns pulse duration, 10 Hz repetition rate), at low fluences ranging from 0.1 to 1 J/cm{sup 2}. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to probe the surface morphology of the films. Fourier transform infrared (FTIR) and Raman spectroscopy reveal similar structure of the thin film material when compared to the starting material. The optical properties of the thin films are investigated by spectroscopic-ellipsometry (SE), and the refractive index dependence with respect to temperature is studied. The second harmonic generation (SHG) potential is assessed by using a femtosecond Ti:sapphire laser (800 nm, 60–100 fs pulse duration, 80 MHz repetition rate), at 200 mW maximum output power, revealing that the SHG signal intensity is strongly influenced by the films’ thickness.

  13. Dehydrochlorinated poly vinyl alcohol (PVA) films for food irradiation dosimeters

    International Nuclear Information System (INIS)

    Susilawati; Saion, E.B.; Doyan, A.; Lepit, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation sensitive dosimeters based on dyed poly vinyl alcohol (PVA) films containing chloral hydrate CCl 3 CH(OH) 2 and acid-sensitive cresol-red dye have been developed for use in food irradiation dosimetry. These polymer dosimeters undergo colour change from yellow (colour of basic form) to red (colour of acid form) upon exposure to gamma radiation. The radiation-induced change in colour was analysed using UV-Vis spectrometer. The absorption spectra produced two absorption modes, peaking at 438 nm for low doses and 529 nm for high doses. The dose-response was obtained by the changes in absorbance as a function of the absorbed dose. Results of the dose-response curves show the absorption decreases and increases experientially at modes 438 nm and 529 nm respectively with absorbed dose. The change in colour of the irradiated films was analysed using Raman spectrometer, which provides the spectra of molecular stretching modes of vibration of some chemical bonds in the films. The relative intensity at C-Cl stretching peaks of chloral hydrate decreases with absorbed dose and makes the films more acidic. Consequently the relative intensity at S-H and C=C stretching peaks of the dye increases with absorbed dose as the acid reacts with the dye and changes the structure and colour of the dye. (Author)

  14. Absorption process of a falling film on a tubular absorber: An experimental and numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Raisul [Department of Mechanical Engineering, Curtin University of Technology, Sarawak Campus Malaysia, CDT 250, 98009 Miri, Sarawak (Malaysia)

    2008-08-15

    This paper describes an experimental and theoretical analysis of the combined heat and mass transfer processes that take place in the absorber of vapor absorption cooling systems. The effect of the main operating variables such as solution inlet temperature, solution flow rate, coolant inlet temperature, coolant flow rate and absorber vapor pressure on the performance of absorber is experimentally investigated. A mathematical model that takes account of the geometrical details of the solution and coolant flow is developed following the traditional heat exchanger analysis to obtain additional information on the performance of the absorber. The governing equations are solved analytically using Laplace Transformation technique. The variations of the concentration of solution and the temperature of the coolant and solution after each horizontal tube are analyzed. There is satisfactory agreement between the predictions of the analytical model and the experimental results. The serpentine arrangement of the coolant flow in the absorber tubes results in a temperature and concentration variation of the solution mainly along the height of the absorber. (author)

  15. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  16. Effect of reactive monomer on PS-b-P2VP film with UV irradiation

    Science.gov (United States)

    Kim, H. J.; Shin, D. M.

    2012-03-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block hydrophilic polyelectrolyte block polymer of 52 kg/mol -b- 57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic part of PS-b-P2VP. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. And band gaps of the lamellar films shifted by the time of UV light irradiation. That Photonic gel films were measured with the UV spectrophotometer. As a result the photonic gel film with reactive monomer had more clear color. The lamellar films were swollen by DI water, Ethyl alcohol (aq) and calcium carbonate solution. Since the domain spacing of dried photonic gel films were not showing any color in visible wavelength. The band gap of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution (absorbance peak 565nm-->617nm). And the lamellar films were shifted to shorter wave length swollen by ethanol (absorbance peak 565nm-->497nm). So each Photonic gel film showed different color.

  17. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  18. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....

  19. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  20. Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO{sub 2}-based solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Joong; Graetzel, Michael; Nazeeruddin, Md. Khaja [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Leventis, Henry C.; Haque, Saif A. [Department of Chemistry, Imperial College of Science Technology and Medicine, London SW72AZ (United Kingdom); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid (UAM), 28049 Madrid (Spain)

    2011-01-01

    In pursuit of panchromatic sensitizers for mesoporous TiO{sub 2}-based solid-state solar cells, a near-IR absorbing zinc phthalocyanine dye (coded TT1) was firstly adsorbed over relatively thin ({proportional_to}1 {mu}m) TiO{sub 2} mesoporous films and then a visible-light absorbing polymer [regioregular poly(3-hexylthiophene), P3HT] was incorporated into the mesopores as both a second sensitizer and a solid hole conductor. After optimizing some experimental parameters, these hybrid solid-state cells exhibited a clear panchromatic response, and an overall conversion efficiency of around 1% at full sun intensity. (author)

  1. Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan

    2011-01-01

    In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.

  2. Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Liu, Jincheng; Wang, Yinjie; Sun, Darren Delai

    2012-01-01

    Highlights: ► Few layer graphene was obtained by liquid exfoliation in oleic acid (OLA). ► The concentration of exfoliated few layer graphene is as high as 1.3 mg/mL. ► OLA-assisted graphite (OLA-G) film has high catalytic activity. ► A power conversion efficiency of 3.56% can be gained by DSSCs with the counter electrode of OLA-G film. - Abstract: We have demonstrated a facile sonication method to exfoliate graphite into few layer graphene with a high concentration of 1.3 mg/mL in oleic acid (OLA). The exfoliations of natural graphite in oleylamine (OA) and trioctylphosphine (TOP) are investigated as a comparison. The few layer graphene dispersion in OLA and the graphite nanoparticles in OA are confirmed by transmission electron microscopy (TEM) observation. The exfoliated graphene dispersion in OLA (OLA-G) and graphite dispersion in OA (OA-G) are fabricated into a film on the FTO substrate by the doctor-blading method. The morphology and catalytic activity in the redox couple regeneration of all the graphite films are examined by field emission scanning electron microscopy and cyclic voltammograms. The OLA-G films on FTO glass with few layer graphene flakes shows better catalytic activity than the OA-G films. The energy conversion efficiency of the cell with the OLA-G film as counter electrode reached 3.56%, which is 70% of dye-sensitized solar cell (DSSC) with the sputtering-Pt counter electrode under the same experimental condition.

  3. The phonon-assisted tunneling mechanism of conduction in ZnO nanowires and films

    International Nuclear Information System (INIS)

    Pipinys, Povilas; Ohlckers, Per

    2010-01-01

    The phonon-assisted tunneling (PhAT) model is applied for an explanation of the conductivity dependence on temperature and temperature-dependent I-V characteristics measured by other investigators for zinc oxide (ZnO) nanowires and films. Our proposed model describes well not only conductivity dependence on temperature measured in a wide temperature range, but also temperature-dependent I-V data using the same set of parameters characterizing the material under investigation. The values of active phonons energy are estimated from a fit of the conductivity dependence to temperature data with the PhAT theory.

  4. Black metal thin films by deposition on dielectric antireflective moth-eye nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Caringal, Gideon Peter; Clausen, Jeppe Sandvik

    2015-01-01

    Although metals are commonly shiny and highly reflective, we here show that thin metal films appear black when deposited on a dielectric with antireflective moth-eye nanostructures. The nanostructures were tapered and close-packed, with heights in the range 300-600 nm, and a lateral, spatial...... frequency in the range 5-7 mu m(-1). A reflectance in the visible spectrum as low as 6%, and an absorbance of 90% was observed for an Al film of 100 nm thickness. Corresponding experiments on a planar film yielded 80% reflectance and 20% absorbance. The observed absorbance enhancement is attributed...... to a gradient effect causing the metal film to be antireflective, analogous to the mechanism in dielectrics and semiconductors. We find that the investigated nanostructures have too large spatial frequency to facilitate efficient coupling to the otherwise non-radiating surface plasmons. Applications...

  5. Characterization of beta radiation fields using radiochromic films

    International Nuclear Information System (INIS)

    Benavente, Jhonny A.; Silva, Teogenes A. da

    2011-01-01

    The objective of this work was to study the response of radiochromic films for beta radiation fields in terms of absorbed dose. The reliability of the EBT model Gafchromic radiochromic film was studied. A 9800 XL model Microtek, transmission scanner, a 369 model X-Rite optical densitometer and a Mini 1240 Shimadzu UV spectrophotometer were used for measurement comparisons. Calibration of the three systems was done with irradiated samples of radiochromic films with 0.1; 0.3; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.5 e 5.0 Gy in beta radiation field from a Sr-90/Y-90 source. Calibration was performed by establishing a correlation between the absorbed dose values and the corresponding radiochromic responses. Results showed significant differences in the absorbed dose values obtained with the three methods. Absorbed dose values showed errors from 0.6 to 4.4%, 0.3 to 31.8% and 0.2 to 47.3% for the Microtek scanner, the X-Rite Densitometer and the Shimadzu spectrophotometer, respectively. Due to the easy acquisition and use for absorbed dose measurements, the densitometer and the spectrophotometer showed to be suitable techniques to evaluate radiation dose in relatively homogeneous fields. In the case of inhomogeneous fields or for a two dimension mapping of radiation fields to identify anisotropies, the scanner technique is the most recommended. (author)

  6. Low-cost solar collectors using thin-film plastics absorbers and glazings

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  7. ZnS top layer for enhancement of the crystallinity of CZTS absorber during the annealing

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Ettlinger, Rebecca Bolt

    2015-01-01

    Pulsed Laser Deposition (PLD) of thin films of Cu2ZnSnS4 (CZTS) has not yet led to solar cells with high efficiency. The reason for the relative low efficiency is discussed and a way to overcome this issue is presented. The present thin film absorbers of CZTS suffer from loss of volatile Zn durin...

  8. Thin film solar cells from earth abundant materials growth and characterization of Cu2(ZnSn)(SSe)4 thin films and their solar cells

    CERN Document Server

    Kodigala, Subba Ramaiah

    2013-01-01

    The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further developm

  9. Preparation of Ba1-xSrxWO4 and Ba1-xCaxWO4 films on tungsten plate by mechanically assisted solution reaction at room temperature

    International Nuclear Information System (INIS)

    Rangappa, Dinesh; Fujiwara, Takeshi; Watanabe, Tomoaki; Yoshimura, Masahiro

    2008-01-01

    Preparation of the alkaline earth tungstate films such as Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 on the tungsten substrate was studied with a simple solution process assisted with the ball rotation at room temperature. The solid solution formation and limitations, the effect of oxidizing agent H 2 O 2 and alkaline earth ions concentration on the dissolution of W substrate and the growth of Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 films were studied in detail. The ball rotation assistance plays a very important role to enhance the dissolution of the W substrate and mass transport of the reactant species such as alkaline earth ions and WO 4 2- ions onto the solid/solution interface region, where precipitation occurs. Therefore, the rate of film formation was accelerated by the ball rotation assistance to the reaction system. Ba-rich Ba 1-x Sr x WO 4 and Ba 1-x Ca x WO 4 films were formed without high energy or high temperature treatment

  10. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  11. Thin films of thermoelectric compound Mg2Sn deposited by co-sputtering assisted by multi-dipolar microwave plasma

    International Nuclear Information System (INIS)

    Le-Quoc, H.; Lacoste, A.; Hlil, E.K.; Bes, A.; Vinh, T. Tan; Fruchart, D.; Skryabina, N.

    2011-01-01

    Highlights: → Mg 2 Sn thin films deposited by plasma co-sputtering, on silicon and glass substrates. → Formation of nano-grained polycrystalline films on substrates at room temperature. → Structural properties vary with target biasing and target-substrate distance. → Formation of the hexagonal phase of Mg 2 Sn in certain deposition conditions. → Power factor ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn films doped with ∼1 at.% Ag. - Abstract: Magnesium stannide (Mg 2 Sn) thin films doped with Ag intended for thermoelectric applications are deposited on both silicon and glass substrates at room temperature by plasma assisted co-sputtering. Characterization by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction confirms the formation of fine-grained polycrystalline thin films with thickness of 1-3 μm. Stoichiometry, microstructure and crystal structure of thin films are found to vary with target biasing and the distance from targets to substrate. Measurements of electrical resistivity and Seebeck coefficient at room temperature show the maximum power factor of ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn thin films doped with ∼1 at.% Ag.

  12. Effect of composition on SILAR deposited CdxZn1-xS thin films

    Science.gov (United States)

    Ashith V., K.; Gowrish Rao, K.

    2018-04-01

    In the group of II-VI compound semiconductor, cadmium zinc sulphide (CdxZn1-xS) thin films have broad application in photovoltaic, optoelectronic devices etc. For heterojunction aspects, CdxZn1-xS thin film can be used as heterojunction partner for CdTe as the absorber layer. In this work, CdZnS thin films prepared on glass substrates by Successive Ion Layer Adsorption and Reaction (SILAR) method by varying the composition. The XRD patterns of deposited films showed polycrystalline with the hexagonal phase. The crystallite size of the films was estimated from W-H plot. The bond length of the film varied w.r.to the composition of the CdxZn1-xS films. The urbach energy of the films was calcualted from absorbance data.

  13. Enhancement of near-infrared detectability from InGaZnO thin film transistor with MoS2 light absorbing layer

    Science.gov (United States)

    Pak, Sang Woo; Chu, Dongil; Song, Da Ye; Kyo Lee, Seung; Kim, Eun Kyu

    2017-11-01

    We report an enhancement of near-infrared (NIR) detectability from amorphous InGaZnO (α-IGZO) thin film transistor in conjunction with randomly distributed molybdenum disulfide (MoS2) flakes. The electrical characteristics of the α-IGZO grown by radio-frequency magnetron sputtering exhibit high effective mobility exceeding 15 cm2 V-1 s-1 and current on/off ratio up to 107. By taking advantages of the high quality α-IGZO and MoS2 light absorbing layer, photodetection spectra are able to extend from ultra-violet to NIR range. The α-IGZO channel detector capped by MoS2 show a photo-responsivity of approximately 14.9 mA W-1 at 1100 nm wavelength, which is five times higher than of the α-IGZO device without MoS2 layer.

  14. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  15. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  16. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    International Nuclear Information System (INIS)

    Dřínek, Vladislav; Strašák, Tomáš; Novotný, Filip; Fajgar, Radek; Bastl, Zdeněk

    2014-01-01

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO 2 laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp 2 ) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H 1 , 2 bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  17. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    Energy Technology Data Exchange (ETDEWEB)

    Dřínek, Vladislav, E-mail: drinek@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Strašák, Tomáš [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Novotný, Filip [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Bastl, Zdeněk [J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejškova 2155/3, 182 23 Prague 8 (Czech Republic)

    2014-02-15

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO{sub 2} laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp{sup 2}) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H{sub 1}, {sub 2} bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  18. Initial stages of the ion-beam assisted epitaxial GaN film growth on 6H-SiC(0001)

    International Nuclear Information System (INIS)

    Neumann, L.; Gerlach, J.W.; Rauschenbach, B.

    2012-01-01

    Ultra-thin gallium nitride (GaN) films were deposited using the ion-beam assisted molecular-beam epitaxy technique. The influence of the nitrogen ion to gallium atom flux ratio (I/A ratio) during the early stages of GaN nucleation and thin film growth directly, without a buffer layer on super-polished 6H-SiC(0001) substrates was studied. The deposition process was performed at a constant substrate temperature of 700 °C by evaporation of Ga and irradiation with hyperthermal nitrogen ions from a constricted glow-discharge ion source. The hyperthermal nitrogen ion flux was kept constant and the kinetic energy of the ions did not exceed 25 eV. The selection of different I/A ratios in the range from 0.8 to 3.2 was done by varying the Ga deposition rate between 5 × 10 13 and 2 × 10 14 at. cm −2 s −1 . The crystalline surface structure during the GaN growth was monitored in situ by reflection high-energy electron diffraction. The surface topography of the films as well as the morphology of separated GaN islands on the substrate surface was examined after film growth using a scanning tunneling microscope without interruption of ultra-high vacuum. The results show, that the I/A ratio has a major impact on the properties of the resulting ultra-thin GaN films. The growth mode, the surface roughness, the degree of GaN coverage of the substrate and the polytype mixture depend notably on the I/A ratio. - Highlights: ► Ultra-thin epitaxial GaN films prepared by hyperthermal ion-beam assisted deposition. ► Surface structure and topography studied during and after initial growth stages. ► Growth mode dependent on nitrogen ion to gallium atom flux ratio. ► Change from three-dimensional to two-dimensional growth for Ga-rich growth conditions.

  19. Stress assisted selective ablation of ITO thin film by picosecond laser

    Science.gov (United States)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  20. Excimer laser assisted re-oxidation of BaTiO3 thin films on Ni metal foils

    International Nuclear Information System (INIS)

    Bharadwaja, S. S. N.; Ko, S. W.; Qu, W.; Clark, T.; Rajashekhar, A.; Motyka, M.; Podraza, N.; Randall, C. A.; Trolier-McKinstry, S.

    2016-01-01

    Excimer laser assisted re-oxidation for reduced, crystallized BaTiO 3 thin films on Ni-foils was investigated. It was found that the BaTiO 3 can be re-oxidized at an oxygen partial pressure of ∼50 mTorr and substrate temperature of 350 °C without forming a NiO x interface layer between the film and base metal foil. The dielectric permittivity of re-oxidized films was >1000 with loss tangent values <2% at 100 Hz, 30 mV rms excitation signal. Electron Energy Loss Spectroscopy indicated that BaTiO 3 thin films can be re-oxidized to an oxygen stoichiometry close to ∼3 (e.g., stoichiometric). High resolution cross sectional transmission electron microscopy showed no evidence of NiO x formation between the BaTiO 3 and the Ni foil upon excimer laser re-oxidation. Spectroscopic ellipsometry studies on laser re-oxidized [001] C and [111] C BaTiO 3 single crystals indicate that the re-oxidation of BaTiO 3 single crystals is augmented by photo-excitation of the ozone, as well as laser pulse induced temperature and local stress gradients

  1. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    Science.gov (United States)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  2. Influence of laser fluence in ArF-excimer laser assisted crystallisation of a-SiGe:H films

    International Nuclear Information System (INIS)

    Chiussi, S.; Lopez, E.; Serra, J.; Gonzalez, P.; Serra, C.; Leon, B.; Fabbri, F.; Fornarini, L.; Martelli, S.

    2003-01-01

    Polycrystalline silicon germanium (poly-SiGe) coatings are drawing increasing attention as active layers in solar cells, bolometers and various microelectronic devices. As a consequence, alternative low-cost production techniques, capable to produce such alloys with uniform and controlled grain size, become more and more attractive. Excimer laser assisted crystallisation, already assessed in thin film transistor production, has proved to be a valuable 'low-thermal budget' technique for the crystallisation of amorphous silicon. Main advantages are the high process quality and reproducibility as well as the possibility of tailoring the grain size in both, small selected regions and large areas. The feasibility of this technique for producing poly-SiGe films has been studied irradiating hydrogenated amorphous SiGe films with spatially uniform ArF-laser pulses of different fluences. Surface morphology, structure and chemical composition have been extensively characterised, demonstrating the need of using a 'step-by-step' process and a careful adjustment of both, total number of shots and laser fluence at each 'step' in order to diminish segregation effects and severe damages of the film surface and of segregation effects

  3. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  4. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  5. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  6. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  7. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    International Nuclear Information System (INIS)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-01-01

    We report the growth and characterization of III-nitride ternary thin films (Al x Ga 1−x N, In x Al 1−x N and In x Ga 1−x N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures

  8. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  9. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  10. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    International Nuclear Information System (INIS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-01-01

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In 2 O 3 and Sn targets. The deposited ITO films show a typical value of electrical resistivity (∼10 -4 Ω m) and sheet resistance can be controlled in the range of 20-230 Ω by variation in film thickness. Microstrip line with characteristic impedance of 50 Ω was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S 11 ) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S 21 ) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 Ω. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  11. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co{sub 73}Si{sub 12}B{sub 15} thin films prepared by Dual-Ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)

    2017-03-15

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.

  12. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  13. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    International Nuclear Information System (INIS)

    Deb, K.; Bera, A.; Saha, B.; Bhowmik, K. L.; Chattopadhyay, K. K.

    2016-01-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  14. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  15. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Science.gov (United States)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  16. Characterization of rich in calcium materials using X-ray selective absorbers

    International Nuclear Information System (INIS)

    Guereca, G.; Ruvalcaba, J.L.

    2004-01-01

    For Particle Induced X-ray Emission Spectroscopy (PIXE) and X-ray Fluorescence Technique (FRX), the analysis of materials rich in one or two elements may present some difficulties due to high counting rates and saturation effects in X-ray detectors. In this case, it is possible to use selective absorbers in order to reduce the intensity of the major elements with low attenuation for the X-rays of other elements of the material. Using selective absorbers, the detection limits and the sensitivity are increased. For rich Ca materials (shells, bone, teeth and stucco, for instance), the high intensity of Ca X-rays interferes with the detection of lighter and heavier elements. Cl, Ar and Ag compounds are good candidates for Ca selective absorbers, but only Ag and Ar may have a practical absorber thickness. A selective absorber for Ca X-rays using a combination of thin Ag films and a flux of Ar and He was tested at the external beam setup of the Tandem Pelletron Accelerator for PIXE measurements. The improvement on elements detection on bone and colored stucco is shown. (Author) 8 refs., 2 tabs., 8 figs

  17. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  18. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    Energy Technology Data Exchange (ETDEWEB)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.; Daures, J.; Bordy, J. M., E-mail: jean-marc.bordy@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette F-91191 (France)

    2016-07-15

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAP measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.

  19. Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mitu, B. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN HH, Magurele, Bucharest (Romania); Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, RO-077125 Magurele, Bucharest (Romania)

    2014-05-01

    Multifunctional thin films used as thermoresponsive substrate for engineering cell sheets represent an important area in tissue engineering. As the morphology and the chemical characteristics of the thin films directly control their interaction with cells, it is important to correlate these characteristics with the biological answer. In this study, thermally sensitive poly(N-isopropylacrylamide), (pNIPAAm) thin films were prepared by matrix assisted pulsed laser evaporation and utilized in L929 cell adhesion and detachment studies. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used to determine the pNIPAAm thin films chemical and morphological characteristics. The FTIR data demonstrated that the functional groups in the MAPLE-deposited films remained intact for fluences in the range of 200–600 mJ cm{sup −2}. Within this fluence range, the AFM topographical studies showed that the roughness of the coatings was dependent on laser fluence and the obtained surfaces were characterized by a granular aspect. L929 cell viability studies onto the pNIPAAm coatings showed little or no toxic effect for fluences below 600 mJ cm{sup −2}, while for higher fluences, viability was decreased with more than 50%. The adhesion and detachment of the cell was found to be mainly dependent on the film surface morphology.

  20. Impact of Electrostatic Assist on Halftone Mottle in Shrink Films

    Directory of Open Access Journals (Sweden)

    Akshay V. Joshi

    2015-09-01

    Full Text Available Gravure printing delivers intricate print quality and exhibit better feasibility for printing long run packaging jobs. PVC and PETG are widely used shrink films printed by gravure process. The variation in ink transfer from gravure cells on to the substrate results in print mottle. The variation is inevitable and requires close monitoring with tight control on process parameters to deliver good dot fidelity. The electrostatic assist in gravure improves the ink transfer efficiency but is greatly influenced by ESA parameters such as air gap (distance between charge bar and impression roller and voltage. Moreover, it is imperative to study the combined effect of ESA and gravure process parameters such as line screen, viscosity and speed for the minimization of half-tone mottle in shrink films. A general full factorial design was performed for the above mentioned parameters to evaluate half-tone mottle. The significant levels of both the main and interactions were studied by ANOVA approach. The statistical analysis revealed the significance of all the process parameters with viscosity, line screen and voltage being the major contributors in minimization of half-tone mottle. The optimized setting showed reduction in halftone mottle by 33% and 32% for PVC and PET-G respectively. The developed regression model was tested that showed more than 95% predictability. Furthermore, the uniformity of dot was measured by image to non-image area (ratio distribution. The result showed reduction in halftone mottle with uniform dot distribution.

  1. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A high-efficiency solution-deposited thin-film photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Mitzi, David B; Yuan, Min; Liu, Wei; Chey, S Jay; Schrott, Alex G [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States); Kellock, Andrew J; Deline, Vaughn [IBM Almaden Research Center, San Jose, CA (United States)

    2008-10-02

    High-quality Cu(In,Ga)Se{sub 2} (CIGS) films are deposited from hydrazine-based solutions and are employed as absorber layers in thin-film photovoltaic devices. The CIGS films exhibit tunable stoichiometry and well-formed grain structure without requiring post-deposition high-temperature selenium treatment. Devices based on these films offer power conversion efficiencies of 10% (AM1.5 illumination). (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  4. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    Science.gov (United States)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining

  5. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  7. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  8. Flexible composite via rapid titania coating by microwave-assisted ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... carbon fibre via microwave-assisted hydrothermal synthesis (MHS) ... Nanoparticles; titanium dioxide; microwave-assisted hydrothermal synthesis; carbon fibre. ..... study, the carbon fibre absorbs microwave radiation and con-.

  9. Multilayered metal oxide thin film gas sensors obtained by conventional and RF plasma-assisted laser ablation

    International Nuclear Information System (INIS)

    Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Multilayered thin films of In 2 O 3 and SnO 2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser (λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O 2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported

  10. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    International Nuclear Information System (INIS)

    Azmi, M S M; Sopian, K; Ruslan, M H; Fudholi, A; Majid, Z A A; Yasin, J M; Othman, M Y

    2012-01-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70–75 °C can be achieved at solar radiation range of 800–900 W/m 2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  11. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    Science.gov (United States)

    Azmi, M. S. M.; Othman, M. Y.; Sopian, K.; Ruslan, M. H.; Majid, Z. A. A.; Fudholi, A.; Yasin, J. M.

    2012-09-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70-75 °C can be achieved at solar radiation range of 800-900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  12. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  13. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Linjie; Wang, Lixin; Qin, Xiujuan; Cui, Li; Shao, Guangjie

    2016-01-01

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  14. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  15. Low temperature growth of Co{sub 2}MnSi films on diamond semiconductors by ion-beam assisted sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, M.; Ueda, K., E-mail: k-ueda@numse.nagoya-u.ac.jp; Asano, H. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    High quality Schottky junctions using Co{sub 2}MnSi/diamond heterostructures were fabricated. Low temperature growth at ∼300–400 °C by using ion-beam assisted sputtering (IBAS) was necessary to obtain abrupt Co{sub 2}MnSi/diamond interfaces. Only the Co{sub 2}MnSi films formed at ∼300–400 °C showed both saturation magnetization comparable to the bulk values and large negative anisotropic magnetoresistance, which suggests half-metallic nature of the Co{sub 2}MnSi films, of ∼0.3% at 10 K. Schottky junctions formed using the Co{sub 2}MnSi films showed clear rectification properties with rectification ratio of more than 10{sup 7} with Schottky barrier heights of ∼0.8 eV and ideality factors (n) of ∼1.2. These results indicate that Co{sub 2}MnSi films formed at ∼300–400 °C by IBAS are a promising spin source for spin injection into diamond semiconductors.

  16. Excellent solar energy absorbing and retaining fabric material. Chikunetsu hoon sen'i sozai

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T. (Unitika Ltd., Osaka (Japan). Central Research Lab.)

    1993-11-10

    Carbides of group IV transition metals such as ZrC, which are used as solar energy selective absorption film for solar energy collectors, has characteristics of absorbing light with a high energy of 0.6eV or more and of converting it to heat when exposed to light, and of not absorbing but reflecting light with a low energy of less than 0.6eV. By using ZrC as fabric materials, therefore, portable and durable heat absorbing and retaining materials can be produced. The authors have developed a solar energy absorbing and retaining fabric material, 'Solar [alpha]' (registered trade mark), which absorbs visible and near infrared rays and converts them to heat, and reflects heat from a human body and confines it. The use of Solar [alpha] has been found in various fields such as clothing as a new material for winter-sportswear, slacks, coats, and swimming suits. In this report, the heat absorbing and retaining mechanisms, basic properties of Solar [alpha], and the results of wearing tests are described. 12 refs., 6 figs., 3 tabs.

  17. Impact of Ultraviolet-Blocking Plastic Films on Insect Vectors of Virus Diseases Infesting Crisp Lettuce

    OpenAIRE

    Díaz Desani, Beatriz M.; Biurrun, R.; Moreno, Aránzazu; Nebreda, Miguel; Fereres, Alberto

    2006-01-01

    Ultraviolet (UV)-absorbing plastic films are being used as a photoselective barrier to control insect vectors and associated virus diseases in different horticultural crops. A 2-year experiment was carried out in northeastern Spain (Navarra) to evaluate the impact of a UV-blocking film (AD-IR AV) on the population density of insect pests and the spread of insect-transmitted virus diseases associated with head lettuce [Lactuca sativa (L.)]. Results showed that the UV-absorbing plastic film did...

  18. Orientation of Zn3P2 films via phosphidation of Zn precursors

    Science.gov (United States)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  19. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  20. Investigating On Colour Stability Conditions Of Postirradiation Radiochromic Film Dosimeter

    International Nuclear Information System (INIS)

    Nguyen Nguyet Dieu; Doan Binh; Pham Thu Hong; Cao Van Chung; Nguyen Thanh Duoc

    2011-01-01

    B3 dosimeter is a thin film with average thickness of 0.0194 mm, which is supplied by the Gex company, the United States. This dosimeter was influenced by many factors: light, temperature, humidity during and after irradiation process. In fact, B3 film dosimeters will be stable under certain conditions such as tightly sealed packs, controlled irradiation and stored temperature after irradiated. Therefore, investigation of the stability effect of postirradiated B3 film dosimeters on the heating temperature, heating time and storing time is carried out before the absorbed dose is read and followed standard reading procedures. When exposed to ionizing radiation, the dosimeters change from colorless to colour. The absorbed doses are read on a Genesys 20 spectrophotometer at a wavelength of 544 nm. Absorbed dose range is investigated from 0.55 to 80 kGy. Experimental results were indicated that colour stability of the postirradiated dosimeters at a temperature of 65 ± 3 o C for 30 minutes and keeping them in desiccator for 5 minutes before read out. Under these conditions, colour stability of B3 film dosimeter has maintained for 3 months. (author)

  1. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  2. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  3. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    Science.gov (United States)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination

  4. Spin-Orbit Torque-Assisted Switching in Magnetic Insulator Thin Films with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Wu, Mingzhong

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque that can induce magnetization switching in a neighboring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. This presentation reports the SOT-assisted switching in heavy metal/magnetic insulator systems.1 The experiments made use of Pt/BaFe12O19 bi-layered structures. Thanks to its strong spin-orbit coupling, Pt has been widely used to produce pure spin currents in previous studies. BaFe12O19 is an M-type barium hexagonal ferrite and is often referred as BaM. It is one of the few magnetic insulators with strong magneto-crystalline anisotropy and shows an effective uniaxial anisotropy field of about 17 kOe. It's found that the switching response in the BaM film strongly depends on the charge current applied to the Pt film. When a constant magnetic field is applied in the film plane, the charge current in the Pt film can switch the normal component of the magnetization (M⊥) in the BaM film between the up and down states. The current also dictates the up and down states of the remnant magnetization when the in-plane field is reduced to zero. When M⊥ is measured by sweeping an in-plane field, the response manifests itself as a hysteresis loop, which evolves in a completely opposite manner if the sign of the charge current is flipped. When the coercivity is measured by sweeping an out-of-plane field, its value can be reduced or increased by as much as about 500 Oe if an appropriate charge current is applied. 1. P. Li, T. Liu, H. Chang, A. Kalitsov, W. Zhang, G. Csaba, W. Li, D. Richardson, A. Demann, G. Rimal, H. Dey, J. S. Jiang, W. Porod, S. Field, J. Tang, M. C. Marconi, A. Hoffmann, O. Mryasov, and M. Wu, Nature Commun. 7:12688 doi: 10.1038/ncomms12688 (2016).

  5. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Bolat, Sami; Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-01

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N 2 /H 2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH 3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N 2 :H 2 ambient

  6. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    Science.gov (United States)

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  7. Covering that selectively absorbs visible and infrared radiation, and method for the production thereof

    OpenAIRE

    Céspedes, Eva; Prieto, C.; Escobar Galindo, R.; Sánchez-García, J. A.

    2011-01-01

    [EN] The present invention relates to a covering that selectively absorbs visible and infrared radiation, which comprises: (a) a first anti-diffusion barrier layer (2); (b) an IR-reflecting metallic layer (3) made from at least one metallic element selected from a group comprising Au, Ag, Al, Cu, Ti and Pt; (c) at least a second anti-diffusion barrier layer (4) formed by oxidation of the layer (3); (d) a structure that absorbs in the UV-VIS range, which comprises at least a first film (5) and...

  8. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  9. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  10. Study of structural and optical properties of PbS thin films

    Science.gov (United States)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  11. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.

    Science.gov (United States)

    Choi, Jae-Kyung; Kwak, Jinsung; Park, Soon-Dong; Yun, Hyung Duk; Kim, Se-Yang; Jung, Minbok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kim, Sung-Dae; Park, Dong-Yeon; Lee, Dong-Su; Hong, Suk-Kyoung; Shin, Hyung-Joon; Kwon, Soon-Yong

    2015-01-27

    Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

  12. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  13. Plasma-assisted self-formation of nanotip arrays on the surface of Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zimin, Sergey P.; Mokrov, Dmitry A. [Yaroslavl State University (Russian Federation); Gorlachev, Egor S.; Amirov, Ildar I.; Naumov, Viktor V. [Institute of Physics and Technology, Russian Academy of Sciences, Yaroslavl (Russian Federation); Gremenok, Valery F. [Scientific-Practical Materials Research Center, NAS of Belarus, Minsk (Belarus); Bente, Klaus [Applied Mineralogy, University Tuebingen (Germany); Kim, Woo Y. [Fusion Research Center, Hoseo University, Asan-City (Korea, Republic of)

    2017-06-15

    In this paper, we report on the phenomenon of nanostructure self-formation on the surface of Cu(In,Ga)Se{sub 2} (CIGS) thin films during inductively coupled argon plasma treatment with its duration varied from 10 to 120 s. The initial films were grown on glass substrates using the selenization technique. During the CIGS film surface treatment in the high-density low-pressure radio-frequency inductively coupled argon plasma there took place a formation of arrays of uniform vertical nanostructures, which shape with increasing processing duration changed from nanocones to nanorods and back to nanocones. A model of the nanotip plasma-assisted self-formation associated with the implementation of micromasking and vapor-liquid-solid mechanisms involving metallic In-Ga (In-Ga-Cu) liquid alloy droplets is proposed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  15. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  16. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  17. Fabrication and characterization of differentiated aramid nanofibers and transparent films

    Science.gov (United States)

    Luo, Jingjing; Zhang, Meiyun; Yang, Bin; Liu, Guodong; Song, Shunxi

    2018-03-01

    Aramid nanofibers (ANFs) frequently are employed as versatile building blocks for constructing high-performance nanocomposites due to its structural and performance superiority. In this paper, the different ANFs and ANF films derived from the typical aramid yarns, chopped fiber, pulp fiber and fibrid fiber, respectively, were fabricated through deprotonation with potassium hydroxide in dimethyl sulphoxide, protonation with deionized water and vacuum-assisted filtration. The physical tests such as tensile test, ultraviolet transmittance and absorbance, thermogravimetric analysis were executed to evaluate and contrast the thermodynamic and optical performances of these differentiated ANFs and ANF films. The analytical results suggested that ANFs films prepared by the different forms of aramid macrofibers presented with differentiated properties such as mechanical behaviors, transparencies and flexibilities. And also it was found that the oversized nanofiber in length led to the formation of flocculation which was adverse for ANFs films in the formation of high strength. Whereas, small diameter just facilitated for the achievement of high stiffness and transparency. By contrast, the ANFs films made from chopped nanofiber, with aspect ratio of 200-500, exhibited good transparency, thermal stability and mechanical properties with transmittance value of 83%, TG10% around 521 °C, ultimate strength (σ) of 103.41 MPa, stiffness (E) of 4.70 GPa and strain at break of 5.56%. This work offers an alternative nanoscale building block as an effective nanofiller for preparing high-performance nanocomposites with different requirements in the potential fields such as transparent coating and flexible electrode or display materials, battery separator and microporous membrane.

  18. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  19. The influence of wavelength, temporal sequencing, and pulse duration on resonant infrared matrix-assisted laser processing of polymer films

    Science.gov (United States)

    O'Malley, S. M.; Schoeffling, Jonathan; Jimenez, Richard; Zinderman, Brian; Yi, SunYong; Bubb, D. M.

    2014-06-01

    We have carried out a systematic investigation of laser ablation plume interactions in resonant infrared matrix-assisted pulsed laser evaporation. The laser source utilized in this study was a mid-infrared OPO capable of dual sequential ns pulses with adjustable delay ranging from 1 to 100 μs. This unique capability enabled us both to probe the ablation plume with a second laser pulse, and to effectively double the laser fluence. The primary ablation target used for this study consisted of poly(methyl methacrylate) dissolved in a binary mixture of methanol and toluene. Both the critical thermodynamic and optical properties of the binary mixture were determined and used to interpret our results. We found that deposition rates associated with single pulse irradiation tracks with the optical absorption coefficient in the spectral range from 2,700 to 3,800 nm. In the case of dual sequential pulses, discrepancies in this trend have been linked to the rate of change in the optical absorption coefficient with temperature. The influence of fluence on deposition rate was found to follow a sigmoidal dependence. Surface roughness was observed to have a diametrically opposed trend with pulse delay depending on whether the OH or CH vibrational mode was excited. In the case of CH excitation, we suggest that the rougher films are due to the absorbance of the second pulse by droplets within the plume containing residual solvent which leads to the formation of molecular balloons and hence irregularly shaped features on the substrate.

  20. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  1. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  2. Characterization of diamond thin films deposited by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xie Zhiqiang; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2010-06-15

    Diamond thin films were deposited by a CO{sub 2} laser-assisted O{sub 2}/C{sub 2}H{sub 2}/C{sub 2}H{sub 4} combustion-flame process. The effect of the deposition parameters, in particular the laser wavelength and power, on the film surface morphology, microstructure and phases present was the primary focus of the work. The laser power was set at 100, 400 and 800 W while the wavelength was varied and set at 10.591 {mu}m in the untuned condition and set at 10.532 {mu}m to resonantly match the CH{sub 2}-wagging vibrational mode of the C{sub 2}H{sub 4} molecule when in the tuned condition. When the laser was coupled to the combustion flame during deposition the diamond film growth was enhanced as the lateral grain size increased from 1 {mu}m to greater than 5 {mu}m. The greatest increase in grain size occurred when the wavelength was in the tuned condition. Scanning transmission electron microscopy images from focused-ion beam cross-sectioned samples revealed a sub-layer of smaller grains less than 1 {mu}m in size near the substrate surface at the lower laser powers and untuned wavelength. X-ray diffraction results showed a more intense Diamond (111) peak as the laser power increased from 100 to 800 W for the films deposited with the tuned laser wavelength. Micro-Raman spectra showed a diamond peak nearly twice as intense from the films with the tuned laser wavelength.

  3. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  4. Performance evaluation of solid oxide fuel cells with thin film electrolyte fabricated by binder-assisted slurry casting

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W.M.; Liu, X.M.; Li, L.J. [Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006 (China); Xiao, Y.F. [Department of Stomatology, Liuzhou Maternity and Child Health Hospital, Liuzhou 545001 (China); Chen, Y. [School of Yingdong Life Science, Shaoguan University, Shaoguan 512005 (China)

    2011-10-15

    A gas-tight yttria-stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO-YSZ anode substrates by a binder-assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 {mu}m. La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)-YSZ was applied to cathode using a screen-print technique and the single fuel cells were tested in a temperature range from 600 to 800 C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 C were 0.13, 0.44, and 1.1 W cm{sup -2}, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Bismuth-doped Cu(In,Ga)Se2 absorber prepared by multi-layer precursor method and its solar cell

    International Nuclear Information System (INIS)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi; Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori

    2015-01-01

    Bismuth (Bi)-doped Cu(In,Ga)Se 2 (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V OC ). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi 4 Se 3 . Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V OC . (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  7. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    Lu, Jinlin; Song, Hua; Li, Suning; Wang, Lin; Han, Lu; Ling, Han; Lu, Xuehong

    2015-01-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO 2 ) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO 2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO 2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO 2 and the synergistic effect between the inorganic nano-TiO 2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO 2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO 2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO 2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO 2 film displays a good stability for electrochromic application

  8. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinlin, E-mail: jinlinlu@hotmail.com [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Song, Hua [School of Mechanical Engineering and Automation, University of Science and Technology, Liaoning, Anshan 114051 (China); Li, Suning; Wang, Lin; Han, Lu [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Ling, Han; Lu, Xuehong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-06-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO{sub 2}) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO{sub 2} nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO{sub 2} nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO{sub 2} and the synergistic effect between the inorganic nano-TiO{sub 2} and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO{sub 2} nanocomposite film by electropolymerization • PEDOT:PSS/TiO{sub 2} film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO{sub 2} film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO{sub 2} film displays a good stability for electrochromic application.

  9. Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition

    Science.gov (United States)

    Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou

    2018-01-01

    Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.

  10. Suitability of some common polymer films for MeV proton beam dosimetry

    International Nuclear Information System (INIS)

    Makkonen-Craig, S.; Paronen, M.; Arstila, K.; Helariutta, K.; Rauhala, E.; Tikkanen, P.

    2005-01-01

    We have been evaluating the efficacy of polymer films for proton beam dosimetry. PE, PS, PVF, PVDF, PFA and FEP films were irradiated with 4.1 and 9.4 MeV protons at a flux of 2.5 x 10 11 cm -2 s -1 and a fluence of 2.5 x 10 13 cm -2 . The perfluorinated films were relatively insensitive to the proton irradiation. The UV absorption of PS displayed significant radiation-induced red shift, but no quantifiable absorption peaks. The strongly absorbing chromophore at 225 nm of irradiated PVDF is too unstable for practical dosimetry. PE has a stable and moderately absorbing radiolytic chromophore at 235 nm, but is transparent in the visible wavelength region. Irradiated PVF absorbs strongly in both UV and visible regions, and its UV absorbance is linearly proportional to the dose over the range of 10-1000 kGy when irradiated with 4.1 MeV protons at a dose rate of 840 Gy s -1 . PVF shows the most potential as multipurpose dosimeter for high resolution profiling of ion beams. Pertinent applications include irradiations that require verification of lateral beam homogeneity

  11. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    Science.gov (United States)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  12. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Roberts, A. T. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  13. Plasticization of Poly (lactic) acid Film as a Potential Coating Material

    Science.gov (United States)

    Yang, Ping; Li, Hua; Liu, Qingsong; Dong, Hongbiao; Duan, Yafei; Zhang, Jiasong

    2018-01-01

    PLA-based composite films with different plasticizers, such as polyethylene glycol (PEG) and Tributyl citrate (TBC), were prepared using a solvent casting method and their machanical, water absorbency and NO3 --N permeability properties were tested. Tensile strength, elongation at break, water absorbency and NO3 --N permeability of neat PLA film were 1.99 ± 0.04 MPa, 2.7 ± 0.46%, 29.33 ± 0.3% and 216.03 ± 19.92 mg·L-1·m-2·h-1, respectively. After the addition of plasticizers the tensile strength were decreased, tensile strength of flims added 40wt% TBC and PEG decreased by 59.3% and 52.26%. While the elongation at break of the PLA film gradually increased. The elongation at break reached the value of 23.96±0.48% and 38.55±1.66% for the films added PEG and TBC respectively at the concentration of 40wt%. Water absorbency decreased as the increase of plasticizers. The NO3 --N permeability attained a maximum of 300.05±10.47 and 270.97±14.54 mg·L-1·m-2·h-1 for films added PEG and TBC at the concentration of 10 wt % respectively. Considered the NO3 --N permeability, PEG at 10wt% seemed the better plasticizer for PLA used in control release of fertilizer.

  14. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, J.P., E-mail: jan.p.liebig@fau.de [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Göken, M. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Richter, G. [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Mačković, M.; Przybilla, T.; Spiecker, E. [Institute of Micro, and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 6, 91058 Erlangen (Germany); Pierron, O.N. [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States); Merle, B. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany)

    2016-12-15

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF{sub 2}) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF{sub 2} etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. - Highlights: • A new method for the preparation of sub-micron tensile specimens from thin films is presented. • The method is based on the combination of focused ion beam milling and electron-beam-assisted xenon difluoride etching. • It enables the target preparation of individual microstructural defects. • The sample section is protected from ion beam damage by the use of a shadow milling geometry.

  15. Synergy between plasma-assisted ALD and roll-to-roll atmospheric pressure PE-CVD processing of moisture barrier films on polymers

    NARCIS (Netherlands)

    Starostin, S.A.; Keuning, W.; Schalken, J.R.G.; Creatore, M.; Kessels, W.M.M.; Bouwstra, J.B.; Sanden, van de M.C.M.; Vries, de H.W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  16. Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers

    NARCIS (Netherlands)

    Starostin, S. A.; Keuning, W.; Schalken, J.; Creatore, M.; Kessels, W. M. M.; Bouwstra, J. B.; van de Sanden, M. C. M.; de Vries, H. W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  17. Radiochromic film containing methyl viologen for radiation dosimetry

    DEFF Research Database (Denmark)

    Lavalle, M.; Corda, U.; Fuochi, P.G.

    2007-01-01

    Poly(vinyl alcohol) (PVA) films containing methyl viologen (MV2+) that colours blue upon exposure to ionizing radiation were investigated as possible dosimeters for use in radiation processing applications. In order to find the most suitable composition of the PVA-MV2+ film, different......, humidity and temperature on the response of the PVA-MV2+ dosimeter film have been studied under laboratory conditions. We conclude that the PVA film containing MV2+ is a promising tool for the absorbed dose measurements in several industrial applications of ionizing radiations. (C) 2007 Elsevier Ltd. All...

  18. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  19. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  20. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  1. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  2. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  3. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Kinno, T.; Akutsu, H.; Tomita, M.; Kawanaka, S.; Sonehara, T.; Hokazono, A.; Renaud, L.; Martin, I.; Benbalagh, R.; Sallé, B.; Takeno, S.

    2012-01-01

    Highlights: ► Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. ► Comparison of depth profiles of single-hit events and those of multi-hit events. ► ∼80% of Pt atoms were detected in multi-hit events. ► Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  4. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films

    Directory of Open Access Journals (Sweden)

    Yong Chan Choi

    2017-02-01

    Full Text Available We develop antisolvent-assisted powder engineering for the controlled growth of hybrid inorganic-organic CH3NH3PbI3 (MAPbI3 perovskite thin films. The powders, which are used as the precursors for solution processing, are synthesized by pouring a MAPbI3 precursor solution into various antisolvents, such as dichloromethane, chloroform, diethyl ether, and toluene. Two types of powders having different colors are obtained, depending on the antisolvent used. The choice of the antisolvent used for synthesizing the powders strongly influences not only the phases of the powders but also the morphology and structure of the thin films subsequently fabricated by solution processing. This, in turn, affects the photovoltaic performance.

  5. Extraordinary optical transmission through nonlocal holey metal films

    DEFF Research Database (Denmark)

    David, Christin; Christensen, Johan

    2017-01-01

    We investigate nonlocal electrodynamics based on the generalized hydrodynamic approach including electron diffusion in holey gold films, showing extraordinary optical transmission (EOT). Dramatic changes with respect to the local approximation for rather large film thicknesses t less than...... or similar to 100 nm impact both reflectance and absorbance at normal incidence. Beyond the familiar resonance blueshift with the decreasing film thickness, the interference of longitudinal pressure waves in the holey structure generates an unexpected oscillatory response with geometrical parameters...

  6. Rapid prototyping tool for tuning of vibration absorbers; Rapid-Prototyping-Tool zur Abstimmung von Schwingungstilgern

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, P.M.; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany); Bohn, C. [Technische Univ. Clausthal (Germany); Svaricek, F. [Univ. der Bundeswehr Muenchen (Germany); Knake-Langhorst, S. [Deutsches Zentrum fuer Luft- und Raumfahrt, Braunschweig (Germany)

    2008-07-01

    In the automotive industry passive vibration absorbers are a well established method to reduce structural vibrations in automotive vehicles. Designing a vibration absorber consists of selecting its mechanical properties. Usually extensive tests are necessary with different absorbers in the vehicle and subjective as well as objective evaluation of the results. This requires hardware modifications between different tests. In this paper, an approach is proposed that can assist in the development of vibration absorbers. It is based on tuning an active vibration control system such that it reproduces the behavior of a specified vibration absorber. This behavior can then be changed electronically without modifying the hardware. Two different control approaches are compared. In the first approach, the apparent physical properties of a vibration absorber are directly modified through acceleration, velocity or displacement feedback. In the second approach, a desired dynamic mass transfer function for the vibration absorber is prescribed and an H2-norm optimal model matching problem is solved. Experimental results obtained with this approach are presented. (orig.)

  7. Organic Photovoltaic Devices Based on Oriented n-Type Molecular Films Deposited on Oriented Polythiophene Films.

    Science.gov (United States)

    Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-04-01

    The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.

  8. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  9. The Effects of Ion-Assisted Deposition on the Mechanical, Physical, Chemical and Optical Properties of Magnesium Fluoride Thin Films.

    Science.gov (United States)

    Kennemore, Charles Milton, III

    1992-01-01

    This dissertation investigates the results of ion assisted deposition (IAD) on various properties of magnesium fluoride thin films deposited on room temperature substrates. MgF_2 films deposited in this manner have increased abrasion resistance and increased adhesion comparable to that found in films deposited at the usual substrate temperature of approximately 300 ^circC. IAD tends to drive the normal high tensile stress of non-IAD films to a more compressive state thereby reducing the overall stress. The IAD MgF _2 films have a higher index of refraction than non-IAD films, as high as 1.41, and the ultraviolet absorption edge in shifted to longer wavelengths beginning about 350 nm but no detectable absorption at visible wavelengths is seen in the films deposited with less than 250 eV bombardment energies. However, at higher IAD energies beginning at approximately 600 eV an absorption band is present in the red end of the visible spectrum making low energy bombardment the parameter of choice. Transmission electron microscopy and X-ray diffraction studies show that the IAD films have a more amorphous-like structure with fewer and smaller crystallites than non-IAD films deposited on either heated or unheated substrates. Rutherford backscattering spectroscopy (RBS) shows the bombarded films have fluorine depletion that roughly scales with the energy of bombardment with F:Mg ratios as low as 1.69 being found. Bombardment by fluorinated compounds, specifically C_2 F_6 and SF_6 , limit this depletion and in some instances super fluorinate the resulting compound. Additionally, RBS shows that IAD introduces a significant amount of oxygen throughout the film that is unaccountable as water take-up. X-ray photoelectron spectroscopy (XPS) indicates the presence of two compounds of oxygen that are attributed to MgO and Mg(OH)_2 or some oxy-fluoride complex similar to them and it is the introduction of these compounds which provide for the changes in the properties of IAD MgF_2

  10. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    Lan, Yung-Hsiang; Brahma, Sanjaya; Tzeng, Y.H.; Ting, Jyh-Ming

    2014-01-01

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  11. Bismuth-doped Cu(In,Ga)Se{sub 2} absorber prepared by multi-layer precursor method and its solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi [Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori [Environment and Energy Research Center, Nitto Denko Corporation, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-06-15

    Bismuth (Bi)-doped Cu(In,Ga)Se{sub 2} (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V{sub OC}). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi{sub 4}Se{sub 3}. Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V{sub OC}. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Quasiparticle Diffusion in Al Films Coupled to Tungsten Transition Edge Sensors

    Science.gov (United States)

    Yen, J. J.; Young, B. A.; Cabrera, B.; Brink, P. L.; Cherry, M.; Moffatt, R.; Pyle, M.; Redl, P.; Tomada, A.; Tortorici, E. C.

    2014-08-01

    We report recent results obtained from several W/Al test devices on Si wafers fabricated specifically to better understand energy collection in phonon sensors used for the Cryogenic Dark Matter Search (CDMS) experiment. The devices under study consist of three different lengths of 250 m-wide by 300 nm-thick Al absorber films, coupled to 250 m x 250 m (40 nm thick) W-TESs at each end of the Al film. An Fe source was used to excite a NaCl reflector producing 2.6 keV Cl X-rays that were absorbed in our test device after passing through a collimator. The impinging X-rays broke Cooper pairs in the Al film, producing quasiparticles that we detected after they propagated into the W-TESs. We studied the diffusion of these quasiparticles in the Al, trapping effects in the Al film, and energy transmission at the Al/W interfaces.

  13. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    Science.gov (United States)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  14. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region

    Science.gov (United States)

    Fu, Pan; Liu, Fei; Ren, Guang Jun; Su, Fei; Li, Dong; Yao, Jian Quan

    2018-06-01

    A broadband metamaterial absorber, composed of the periodic graphene pattern on SiO2 dielectric with the double layer graphene films inserted in it and all of them backed by metal plan, is proposed and investigated. The simulation results reveal that the wide absorption band can be flexibly tuned between the low-frequency band and the high-frequency band by adjusting graphene's Fermi level. The absorption can achieve 90% in 5.50-7.10 THz, with Fermi level of graphene is 0.3 eV, while in 6.98-9.10 THz with Fermi level 0.6 eV. Furthermore, the proposed structure can be switched from reflection (>81%) to absorption (>90%) over the whole operation band, when the Fermi level of graphene varies from 0 to 0.6 eV. Besides, the proposed absorber is insensitive to the polarization and can work over a wide range of incident angle. Compared with the previous broadband absorber, our graphene based wideband terahertz absorber can enable a wide application of high performance terahertz devices, including sensors, imaging devices and electro-optic switches.

  15. A Film Canister Colorimeter.

    Science.gov (United States)

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  16. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  17. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  18. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  19. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  20. Copper indium diselenide films deposited by spray-pyrolysis; Filmes de disseleneto de cobre e indio depositados por spray-pirolise

    Energy Technology Data Exchange (ETDEWEB)

    Manhanini, C. S.; Paes Junior, H.R., E-mail: carlamanhanini@gmail.com, E-mail: hervalpaes@gmail.com [Universidade Estadual do Norte Fluminense, (CCT/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados

    2017-04-15

    Cu{sub 1-x}In{sub x} Se{sub 2} (0.45≤ x ≤0.80) films were deposited on glass substrate by spray pyrolysis technique, for use as absorbing layer of photovoltaic cells. The structural, morphological, optical and electrical properties of the films were analyzed according to the variation of the stoichiometry used. The analysis by X-ray diffraction showed that the most intense peaks were of orientation (204/220) and the films have the phases CuSe, CuSe{sub 2} and CuInSe{sub 2}. The films showed uniform surface without cracks independently of the stoichiometry used. In the electrical characterization, the deposited films showed activation energy of the electrical conduction process with average value of 0.74 eV and typical behavior for semiconductors. The optical characterization was performed at the wavelength gap of 350 to 1100 nm, and the films showed absorption coefficient on the order of 10{sup 3} cm{sup -1} in the wavelength of 550 nm and optical band gap of 1.4 eV. The results indicated that the most suitable condition for deposition of films for their application as absorbing layer had as substrate temperature 400 °C, a solution flow rate of 1 mL/min, deposition time of 10 min and stoichiometry of Cu{sub 0.2}In{sub 0.8}Se{sub 2}, thus obtaining films without cracks, with large absorption coefficient of 6.8x10{sup 3} cm{sup -1} for the wavelength of 550 nm, thickness of approximately 2.5 μm and electrical resistivity of 0.13 kΩ.m at room temperature. (author)

  1. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    DEFF Research Database (Denmark)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo

    2016-01-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow......-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light...... within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au...

  2. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  3. Optimizing analysis of W-AlN cermet solar absorbing coatings

    International Nuclear Information System (INIS)

    Zhang Qichu

    2001-01-01

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al 2 O 3 ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350 0 C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al 2 O 3 anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal infrared reflector

  4. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qichu [School of Physics, University of Sydney, NSW (Australia)

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup 0}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  5. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [University of Sydney, NSW (Australia). School of Physics

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup o}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350{sup o}C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  6. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  7. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  8. The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers

    International Nuclear Information System (INIS)

    Miller, W.A.

    2001-01-01

    A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier

  9. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  10. Room temperature photoluminescence from In{sub x}Al{sub (1−x)}N films deposited by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Mohanta, A. [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Roberts, A. T. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [Plasma Chemistry Research Center-CNR, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 10–12 nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1−x)}N were comparatively investigated for indium compositions ranging from x = 0.092 to 0.235, including x = 0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  11. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  12. Active packaging using ethylene absorber to extend shelf-life

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: patponce@iq.usp.br, e-mail: guilacaz@uol.com.br, e-mail: ablugao@ipen.br

    2009-07-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  13. Active packaging using ethylene absorber to extend shelf-life

    International Nuclear Information System (INIS)

    Ponce, Patricia; Carbonari, Guilherme L.R.; Lugao, Ademar B.

    2009-01-01

    Ethylene gas is a plant hormone which is produced by fruits and vegetables during ripening and it is also found in the environment. It plays an essential role in normal ripening, but excessive exposure can radically reduce the shelf-life of the product, in some cases inducing undesirable reactions such as development of bitter flavors and loss of chlorophyll (yellowing of greens). The objectives of our work were: to test an active packaging of polyvinyl alcohol (PVA) for apple stored; to test the effect of ethylene absorber agent, impregnated in plastic film, to reduce decay of fresh apple; to study the influence of radiation on the barrier properties, mechanical properties and biodegradability of PVA films. This study evaluated the effect of coating produced from PVA and polyol (glycerol and sorbitol) as plasticizer on apple conservation (75 deg F (24 deg C); 70%RH). The coated product was analyzed for mass loss, color alterations and fungi. The PVA films were produced by casting process (dehydration of a filmogenic solution on Petriplastic dishes) and were irradiated at low doses of 2, 5 and 10 kGy, commonly used in food irradiation. The resulting films were transparent and homogeneous. The active packaged fruits presented higher acceptance, lower microbiological growth, less alterations in acidity, lower weight loss rate during the storage time and an extended shelf-life as compared to the control fruits (without plastic films). (author)

  14. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  15. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.

    2008-01-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection

  16. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  17. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  18. Development of TES microcalorimeters with Sn absorber for hard x-ray detection

    International Nuclear Information System (INIS)

    Hatakeyama, Shuichi; Ohno, Masashi; Damayanthi, R.M. Thushara; Takahashi, Hiroyuki

    2013-01-01

    Superconducting transition edge sensors (TES) are used for high-resolution X-ray spectroscopy. In this study, we have designed a new TES detector using a superconducting tin (Sn) absorber to detect high energy photons over 100 keV. The Sn absorber is coupled to an Ir/Au super-conducting film which is deposited on an ultra-thin SiN membrane (500 nm thick) with a small amount of epoxy post (Stycast 2850FT) by handling with a flip-chip bonding machine. The 241 Am photoelectron peak, the Sn K α and K β X-ray escape peaks are clearly observed. The measured energy resolution is 320 eV FWHM at 59.5 keV and is better than that of HPGe detector. (author)

  19. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  20. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    International Nuclear Information System (INIS)

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  1. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  2. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    Science.gov (United States)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  3. Ion-assisted phase separation in compound films: An alternate route to ordered nanostructures

    International Nuclear Information System (INIS)

    Norris, Scott A.

    2013-01-01

    In recent years, observations of highly ordered, hexagonal arrays of self-organized nanostructures on binary or impurity-laced targets under normal-incidence ion irradiation have excited interest in this phenomenon as a potential route to high-throughput, low-cost manufacture of nanoscale devices or nanostructured coatings. The currently prominent explanation for these structures is a morphological instability driven by ion erosion discovered by Bradley and Shipman; however, recent parameter estimates via molecular dynamics simulations suggest that this erosive instability may not be active for the representative GaSb system in which hexagonal structures were first observed. Motivated by recent experimental and numerical evidence suggesting the likely importance of phase separation during thin-film processing, we here generalize the Bradley-Shipman theory to include the effect of ion-assisted phase separation. The resulting system admits a chemically driven finite-wavelength instability that can explain the order of observed patterns even when the erosive Bradley-Shipman instability is inactive. In a relevant simplifying limit, it also provides an intuitive instability criterion similar to results in thin-film deposition, as well as predictions on pattern wavelengths that agree qualitatively with experimental observations. Finally, we identify a characteristic experimental signature that distinguishes the chemical and morphological instabilities and highlights the need for specific additional experimental data on the GaSb system

  4. Morphological and thermal properties of photodegradable biocomposite films

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2013-07-01

    Full Text Available Biocomposites containing ultraviolet (UV) radiation absorbing inorganic nanofillers are of great interest in food packaging applications. The biodegradable polylactide (PLA) composite films were prepared by solvent casting method by incorporating 1...

  5. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  6. Influence of Te and Se doping on ZnO films growth by SILAR method

    Science.gov (United States)

    Güney, Harun; Duman, Ćaǧlar

    2016-04-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  7. Influence of Te and Se doping on ZnO films growth by SILAR method

    International Nuclear Information System (INIS)

    Güney, Harun; Duman, Çağlar

    2016-01-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  8. Influence of Te and Se doping on ZnO films growth by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Güney, Harun, E-mail: harunguney25@hotmail.com [Department of Electric and Energy, Vocation High School, Ağrı İbrahim Çeçen University (Turkey); Duman, Çağlar, E-mail: caglarduman@erzurum.edu.tr [Department of Electrical and Electronic Engineering, Faculty of Engineering, Erzurum Technical University (Turkey)

    2016-04-18

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  9. Crystalline phase control and growth selectivity of β-MnO{sub 2} thin films by remote plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Akl, M.; Tabbal, M., E-mail: malek.tabbal@aub.edu.lb; Kassem, W.

    2016-08-01

    In this paper, we exploit the effect of coupling an oxygen remote plasma source to Pulsed Laser Deposition (PLD) for the growth of pure and well crystallized β-MnO{sub 2} films. Films were grown on Si substrates by laser ablation of a MnO target in oxygen ambient and remote plasma. X-Ray Diffraction, Fourier Transform Infra-Red spectroscopy and Raman scattering were used to determine the crystalline structure and bonding in the grown layers, whereas Atomic Force Microscopy was used to study their morphology and surface roughness. Deposition at 500 °C and high oxygen pressure (33.3–66.6 Pa) resulted in the formation of films with roughness of 12 nm consisting of nsutite γ-MnO{sub 2}, a structure characterized by the intergrowth of the pyrolusite β-MnO{sub 2} in a ramsdellite R-MnO{sub 2} matrix. Deposition at the same temperature but low pressure (1.33–3.33 Pa) in oxygen ambient lead to the formation of Mn{sub 2}O{sub 3} whereas plasma activation within the same pressure range induced the growth of single phase highly crystalline β-MnO{sub 2} having smooth surfaces with a roughness value of 0.6 nm. Such results underline the capability of remote plasma assisted PLD in selecting and controlling the crystalline phase of manganese oxide layers. - Highlights: • MnO{sub 2} films were grown by Remote Plasma Assisted Pulsed Laser Deposition. • Crystalline MnO{sub 2} is formed at a substrate temperature of 500 °C. • Smooth crystalline single phase β-MnO{sub 2} films were obtained at 1.33–3.33 Pa. • Deposition at 1.33–3.33 Pa without plasma activation lead to the growth of Mn{sub 2}O{sub 3}. • Without plasma, mixed phases of MnO{sub 2} polymorphs are obtained at 33.3 Pa and above.

  10. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  11. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  12. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  13. Plasma assisted growth of MoO{sub 3} films on different substrate locations relative to sublimation source

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B. [Thin film laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India)

    2016-05-06

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO{sub 3} films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO{sub 3} films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO{sub 3})but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO{sub 3} NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO{sub 3} NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  14. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    Science.gov (United States)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern

  15. Ion beam analysis of Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Karydas, A.G. [International Atomic Energy Agency (IAEA), IAEA Laboratories, Nuclear Science and Instrumentation Laboratory, A-2444 Seibersdorf (Austria); Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153 10 Aghia Paraskevi, Athens Greece (Greece); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Radovic, I. Bogdanovic [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Kaufmann, C.; Rissom, T. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Jaksic, M. [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E. N. 10, Apartado 21, 2686-953 Sacavém (Portugal)

    2015-11-30

    Graphical abstract: - Highlights: • Elemental depth profiles for various CIGS thin films were quantitatively determined. • Pure absorbers, complete cell and bilayer solar cells were prepared and analyzed. • Synergistic PIXE and RBS analysis of thin solar cells using alpha beam particles. • High energy alpha beam resolved completely the Indium depth profile. • Synchrotron based Reference Free GIXRF quantitative analysis validated IBA results. - Abstract: The present work investigates the potential of ion beam analysis (IBA) techniques such as the Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) using helium ions to provide quantitative in-depth elemental analysis of various types of Cu(In,Ga)Se{sub 2} thin films. These films with a thickness of about 2 μm are used as absorber layers in photovoltaic devices with continuously increasing the performance of this technology. The preparation process generally aims to obtain an in-depth gradient of In and Ga concentrations that optimizes the optoelectronic and electrical properties of the solar cell. The measurements were performed at directly accessible single or double layered CIGS absorbers and at buried absorbers in completed thin film solar cells. The IBA data were analyzed simultaneously in order to derive best fitted profiles that match all experimental RBS and PIXE spectra. For some samples elemental profiles deduced form synchrotron based, reference free grazing incidence X-ray fluorescence analysis were compared with the IBA results and an overall good agreement was observed within quoted uncertainties.

  16. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  17. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  18. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    Science.gov (United States)

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  19. Transparent Low Electrostatic Charge Films Based on Carbon Nanotubes and Polypropylene. Homopolymer Cast Films

    Directory of Open Access Journals (Sweden)

    Zoe Vineth Quiñones-Jurado

    2018-01-01

    Full Text Available Use of multi-wall carbon nanotubes (MWCNTs in external layers (A-layers of ABA-trilayer polypropylene films was investigated, with the purpose of determining intrinsic and extrinsic factors that could lead to antistatic behavior of transparent films. The incorporation of 0.01, 0.1, and 1 wt % of MWCTNs in the A-layers was done by dilution through the masterbatch method. Masterbatches were fabricated using isotactic polypropylene (iPP with different melt flow indexes 2.5, 34, and 1200 g/10 min, and using different ultrasound assist methods. It was found that films containing MWCNTs show surface electrical resistivity of 1012 and 1016 Ω/sq, regardless of the iPP melt flow index (MFI and masterbatch fabrication method. However, electrostatic charge was found to depend upon the iPP MFI, the ultrasound assist method and MWCNT concentration. A percolation electron transport mechanism was determined most likely responsible for this behavior. Optical properties for films containing MWCNTs do not show significant differences compared to the reference film at MWCNT concentrations below 0.1 wt %. However, an enhancement in brightness was observed, and it was attributed to ordered iPP molecules wrapping the MWCNTs. Bright transparent films with low electrostatic charge were obtained even for MWCNTs concentrations as low as 0.01 wt %.

  20. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  1. The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films

    Directory of Open Access Journals (Sweden)

    Somnath Mahato

    2017-06-01

    Full Text Available Cadmium selenide (CdSe thin films have been deposited on indium tin oxide coated glass substrate by simple electrodeposition method. X-ray Diffraction (XRD studies identify that the as-deposited CdSe films are highly oriented to [002] direction and they belong to nanocrystalline hexagonal phase. The films are changed to polycrystalline structure after annealing in air for temperatures up to 450 °C and begin to degrade afterwards with the occurrence of oxidation and porosity. CdSe completely ceases to exist at higher annealing temperatures. CdSe films exhibit a maximum absorbance in the violet to blue-green region of an optical spectrum. The absorbance increases while the band gap decreases with increasing annealing temperature. Surface morphology also shows that the increase of the annealing temperature caused the grain growth. In addition, a number of distinct crystals is formed on top of the film surface. Electrical characteristics show that the films are photosensitive with a maximum sensitivity at 350 °C.

  2. Film dosimeters based on methylene blue and methyl orange in polyvinyl alcohol

    DEFF Research Database (Denmark)

    Chung, W.H.; Miller, A.

    1994-01-01

    Polyvinyl alcohol (PVA) films containing methylene blue and methyl orange are useful as gamma and electron radiation dosimeters. Absorbed doses should not exceed 40 kGy for methylene blue and 500 kGy for methyl orange. Because PVA is water-soluble, the films may be made without toxic solvents...

  3. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  4. The design of wideband metamaterial absorber at E band based on defect

    Science.gov (United States)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  5. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  6. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  7. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  8. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  9. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    Science.gov (United States)

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  10. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    Science.gov (United States)

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  11. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films

    International Nuclear Information System (INIS)

    Khan, Shamshad A.; Khan, Zishan H.; El-Sebaii, A.A.; Al-Marzouki, F.M.; Al-Ghamdi, A.A.

    2010-01-01

    (PbSe) 100-x Cd x thin films of thickness 3000 A with variable concentrations of Cd (x=5, 10, 15 and 20) were prepared by thermal evaporation on glass substrates at room temperature at a base pressure of 10 -6 Torr. The structural, optical and electrical properties of these films were studied. X-ray diffraction patterns were used to determine the crystal structure of the films. Films were of polycrystalline texture over the whole range of study. Optical constants of all films were determined by absorbance and reflection measurements in a wavelength range 400-1200 nm. Analysis of the optical absorption data showed that the rule of direct transitions predominates. The values of the absorption coefficient (α), extinction coefficient (k) and imaginary part of the dielectric constant were found to increase with increasing Cd content in lead chalcogenides while the refractive index (n) and real part of dielectric constant were increased with increasing Cd concentration up to 15% and then they decreased with 20% of Cd content in PbSe. These results were interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities and activation energies of the films were measured in the temperature range 298-398 K. It was observed that the dc conductivity increases at all temperatures with the increase of Cd content in lead chalcogenide system. The experimental data suggests that the conduction is due to the thermally assisted tunneling of the carriers in the localized states near the band edges. The activation energy and optical band gap were found to decrease with increasing Cd concentration in lead chalcogenide.

  12. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    International Nuclear Information System (INIS)

    Bankvall, G.; Hakansson, H.A.

    1982-01-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  13. Fast-response cryogenic calorimeter containing a 52-KG radiation absorber

    International Nuclear Information System (INIS)

    Bendt, P.J.; Yarnell, J.L.

    1977-01-01

    An isothermal liquid helium boiloff calorimeter containing a 52-kg copper radiation absorber, and having a time constant 235 U foils irradiated in a nuclear reactor. The short response time was achieved by the large reduction in heat capacity of solids at 4 0 K, and by nearly isothermal operation. Though the initial power level was approx.3 W, the maximum thermal energy storage was approx.1 joule. The Al clad foils were transported in approx.1 s, and cooled to liquid helium temperature in approx.3 s. Boil-off helium gas was warmed to room temperature in a controlled manner, and measured with a hot-film anemometer flowmeter, which was calibrated by comparison with a dry-test volume flowmeter, and by electric heating of the radiation absorber. The correction for gamma leakage from the absorber was less than or equal to 3%, and the correction at short cooling times for sample cooldown, 2.24-m activity of the Al cladding, and system response time, amounted to 3.4% at 10 s. The overall accuracy (1 sigma) of the radiation measurements is less than or equal to 2%, except at the shortest cooling time (10 s), where it rises to 4%

  14. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    International Nuclear Information System (INIS)

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-01-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed

  15. Computer-assisted radiology

    International Nuclear Information System (INIS)

    Lemke, H.U.

    1988-01-01

    New digital imaging modalities and more sophisticated image processing systems will have a profound effect on those areas of medicine concerned with imaging. This mainly means computer-assisted radiology (CAR) and implies a transition from analog film systems to digital imaging systems, integration of digital imaging modalities through picture archiving and communication systems (PACS) and the graduated employment of image-oriented medical work stations (MWS) for computer-assisted representation, communication, diagnosis, and therapy planning. (orig.) [de

  16. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  17. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  18. Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity

    International Nuclear Information System (INIS)

    Kharlampieva, Eugenia; Kozlovskaya, Veronika; Chan, Jennifer; Ankner, John Francis; Tsukruk, Vladimir V.

    2009-01-01

    We apply neutron reflectivity to probe the internal structure of spin-assisted layer-by-layer (LbL) films composed of electrostatically assembled polyelectrolytes. We find that the level of stratification and the degree of layer intermixing can be controlled by varying the type and concentration of salt during LbL assembly. We observe well-defined layer structure in spin-assisted LbL films when deposited from salt-free solutions. These films feature 2-nm-thick bilayers, which are ∼3-fold thicker than those in dipped LbL films assembled under similar conditions. Addition of a 10mM phosphate buffer promotes progressive layer inter-diffusion with increasing distance from the substrate. However, adding 0.1M NaCl to the phosphate buffer solution restores the layer stratification. We also find that spin-assisted LbL films obtained from buffer solutions are more highly stratified as compared to the highly intermixed layers seen in dipped LbL films assembled from buffer. Our results yield new insight into the mechanism of spin-assisted LbL assembly that should prove useful for biotechnological applications.

  19. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Science.gov (United States)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  20. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  1. Structural, Optical, and Electrical Characterization of β-Ga2O3 Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy Suitable for UV Sensing

    Directory of Open Access Journals (Sweden)

    Abraham Arias

    2018-01-01

    Full Text Available β-Ga2O3 thin films were grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The films were grown using an elemental gallium source and oxygen supplied by an RF plasma source. Reflection high-energy electron diffraction (RHEED was used to monitor the surface quality in real time. Both in situ RHEED and ex situ X-ray diffraction confirmed the formation of single crystal β-phase films with excellent crystallinity on c-plane sapphire. Spectroscopic ellipsometry was used to determine the film thicknesses, giving values in the 11.6–18.8 nm range and the refractive index dispersion curves. UV-Vis transmittance measurements revealed that strong absorption of β-Ga2O3 starts at ∼270 nm. Top metal contacts were deposited by thermal evaporation for I-V characterization, which has been carried out in dark, as well as under visible and UV light illumination. The optical and electrical measurements showed that the grown thin films of β-Ga2O3 are excellent candidates for deep-ultraviolet detection and sensing.

  2. Optical properties of vacuum deposited polyaniline ultra-thin film

    International Nuclear Information System (INIS)

    Wahab, M. R. A.; Din, M.; Yunus, W. M. M.; Hasan, Z. A.; Kasim, A.

    2005-01-01

    Full text: Ultra-thin films of emeraldine base (EB) and emeraldine salt (ES) form of polyaniline (PANi) were prepared using electron-gun vacuum deposition. Thickness range studied was between 100AA and 450AA. Dielectric permittivity of the films determined from Kretchmann Configuration Surface Plasmon Resonance (SPR) angles-scanning set-up show shifts and narrowing of the SPR dip. Absorbance spectra of S-polarized and P-polarized light show the aging effect on orientation of the film. The effect of aging on its conductivity and photoluminescence is also correlated to the surface morphology

  3. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environ......We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user......- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering. We find that particularly beneficial...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  4. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  5. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  6. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    International Nuclear Information System (INIS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-01-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  7. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  8. Electrical and photovoltaic characteristics of CuInSe2 thin films processed by nontoxic Cu–In precursor solutions

    International Nuclear Information System (INIS)

    Choi, Ik Jin; Jang, Jin Woo; Lee, Seung Min; Yeon, Deuk Ho; Jo, Yeon Hwa; Lee, Myung Ho; Cho, Yong Soo; Yun, Jae Ho; Yoon, Kyung Hoon

    2013-01-01

    Nontoxic Cu–In solution-processed CuInSe 2 absorber thin films and resultant photovoltaic cells have been investigated. Acetate-based Cu–In precursors having different Cu/In ratios of 0.8–1.2 were deposited by spin-coating and then selenized in Se atmosphere up to 550 °C. Single tetragonal CuInSe 2 phase was dominantly obtained regardless of Cu/In ratios, with the segregation of Cu 2−x Se secondary phase only in the case of Cu-rich films as evidenced by Raman spectra. The films with the 1.1 ratio demonstrated a larger grain size of ∼1.06 µm with an increased carrier concentration of ∼1.7 × 10 18 cm −3 and a decreased band gap of ∼1.02 eV, compared to the values obtained for Cu-deficient absorber films. The resultant best cell efficiency was ∼3.1% for the absorber having the 1.1 ratio, suggesting a potential of this simple spin-coating method as an alternative to typical vacuum processes. (paper)

  9. Effect of Advanced Plasma Source bias voltage on properties of HfO2 films prepared by plasma ion assisted electron evaporation from metal hafnium

    International Nuclear Information System (INIS)

    Zhu, Meiping; Yi, Kui; Arhilger, Detlef; Qi, Hongji; Shao, Jianda

    2013-01-01

    HfO 2 films, using metal hafnium as starting material, are deposited by plasma-ion assisted electron evaporation with different Advanced Plasma Source (APS) bias voltages. The refractive index and extinction coefficient are calculated, the chemical state and composition, as well as the stress and aging behavior is investigated. Laser induced damage threshold (LIDT) and damage mechanism are also evaluated and discussed. Optical, structural, mechanical and laser induced damage properties of HfO 2 films are found to be sensitive to APS bias voltage. The film stress can be tuned by varying the APS bias voltage. Damage morphologies indicate the LIDT of the HfO 2 films at 1064 nm and 532 nm are dominated by the nodular-defect density in coatings, while the 355 nm LIDT is dominated by the film absorption. HfO 2 films with higher 1064 nm LIDT than samples evaporated from hafnia are achieved with bias voltage of 100 V. - Highlights: • HfO 2 films are evaporated with different Advanced Plasma Source (APS) bias voltages. • Properties of HfO 2 films are sensitive to APS bias voltage. • With a bias voltage of 100 V, HfO 2 coatings without any stress can be achieved. • Higher 1064 nm laser induced damage threshold is achieved at a bias voltage of 100 V

  10. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  11. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  12. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  13. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  14. Effect of diffraction and film-thickness gradients on wafer-curvature measurements of thin-film stress

    International Nuclear Information System (INIS)

    Breiland, W.G.; Lee, S.R.; Koleske, D.D.

    2004-01-01

    When optical measurements of wafer curvature are used to determine thin-film stress, the laser beams that probe the sample are usually assumed to reflect specularly from the curved surface of the film and substrate. Yet, real films are not uniformly thick, and unintended thickness gradients produce optical diffraction effects that steer the laser away from the ideal specular condition. As a result, the deflection of the laser in wafer-curvature measurements is actually sensitive to both the film stress and the film-thickness gradient. We present a Fresnel-Kirchhoff optical diffraction model of wafer-curvature measurements that provides a unified description of these combined effects. The model accurately simulates real-time wafer-curvature measurements of nonuniform GaN films grown on sapphire substrates by vapor-phase epitaxy. During thin-film growth, thickness gradients cause the reflected beam to oscillate asymmetrically about the ideal position defined by the stress-induced wafer curvature. This oscillating deflection has the same periodicity as the reflectance of the growing film, and the deflection amplitude is a function of the film-thickness gradient, the mean film thickness, the wavelength distribution of the light source, the illuminated spot size, and the refractive indices of the film and substrate. For typical GaN films grown on sapphire, misinterpretation of these gradient-induced oscillations can cause stress-measurement errors that approach 10% of the stress-thickness product; much greater errors occur in highly nonuniform films. Only transparent films can exhibit substantial gradient-induced deflections; strongly absorbing films are immune

  15. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. Microwave plasma-assisted photoluminescence enhancement in nitrogen-doped ultrananocrystalline diamond film

    Directory of Open Access Journals (Sweden)

    Yu Lin Liu

    2012-06-01

    Full Text Available Optical properties and conductivity of nitrogen-doped ultrananocrystal diamond (UNCD films were investigated following treatment with low energy microwave plasma at room temperature. The plasma also generated vacancies in UNCD films and provided heat for mobilizing the vacancies to combine with the impurities, which formed the nitrogen-vacancy defect centers. The generated color centers were distributed uniformly in the samples. The conductivity of nitrogen-doped UNCD films treated by microwave plasma was found to decrease slightly due to the reduced grain boundaries. The photoluminescence emitted by the plasma treated nitrogen-doped UNCD films was enhanced significantly compared to the untreated films.

  17. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  18. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  19. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  20. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Chou Chau, Yuan-Fong, E-mail: a0920146302@gmail.com, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam); Chiang, Chien-Ying [National Taipei University of Technology, Department of Electro-Optical Engineering (China); Voo, Nyuk Yoong; Muhammad Idris, Nur Syafi’ie; Chai, Siew Ung [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam)

    2016-04-15

    The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.

  1. Synthesis and characterisation of co-evaporated tin sulphide thin films

    Science.gov (United States)

    Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.

    2006-04-01

    Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.

  2. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    Science.gov (United States)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  3. Radiation absorbed doses at radiographic examination of third molars.

    Science.gov (United States)

    Rehnmark-Larsson, S; Stenström, B; Julin, P; Richter, S

    1982-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. In the maxilla three, and in the mandible four different projections were used; also an extraoral lateral view. The greatest thyroid dose, 35 muGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. the thyroid dose from an extraoral lateral view with high sensitivity screens was 3.7 muGy. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. The corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50%. the Ekta-Speed film required approximately 40% lower exposure than the Ultra-Speed film. Without shielding the gonadal doses from a complete examination of four third molars were of the same order of magnitude as from a full survey with intraoral films, i.e. 3-7 muGy. A horizontal radiation shield reduced the thyroid doses by between 12 and 46% and the gonadal doses by between 50 and 95%. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses by between 15 and 42% and the gonadal doses by two orders of magnitude.

  4. Evaluation of tensile properties and water absortion of cassava starch film

    Science.gov (United States)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  5. Print-Assisted Photovoltaic Assembly (PAPA)

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an innovative method for the fabrication of thin-film photovoltaic panels. Print-Assisted Photovoltaic Assembly, or PAPA,...

  6. Morphology and structure evolution of Cu(In,Ga)S{sub 2} films deposited by reactive magnetron co-sputtering with electron cyclotron resonance plasma assistance

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus [Department of Solar Fuels and Energy Storage Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D14109 Berlin (Germany)

    2014-02-28

    Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). All 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.

  7. Gasochromic performance of WO3-nanorod thin films fabricated with an ArF excimer laser

    International Nuclear Information System (INIS)

    Yaacob, M. H.; Ou, J. Z.; Wlodarski, W.; Kim, C. S.; Lee, J. Y.; Kim, Y. H.; Oh, C. M.; Dhakal, K. P.; Kim, J. Y.; Kang, J. H.

    2012-01-01

    Thin films with tungsten trioxide (WO 3 ) nanorods were fabricated by using an ArF pulsed laser deposition system. Because the ArF excimer laser operates at a very short wavelength of 193 nm, short enough to expect strong absorption of the photons in the semiconductor oxide targets, and because the clusters incoming to the substrates have high momentum, we could build thin films with good surface morphology. Highly homogeneous arrays of nanorods with sizes mostly in the range of 30 - 40 nm were observed. The absorbance response towards hydrogen (H 2 ) gas was investigated for a WO 3 film coated with 25-A-thick palladium (Pd). The Pd/WO 3 -nanorod thin films exhibited excellent gasochromic response when measured in the visible-NIR range (400 - 1000 nm). As low as 0.06% H 2 concentration was clearly sensed. A significant reversible absorbance change and fast recovery ( 2 at different concentrations.

  8. Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition

    Science.gov (United States)

    Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul

    2017-10-01

    For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.

  9. Optical properties and surface topography of CdCl2 activated CdTe thin films

    Science.gov (United States)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  10. Mathematical Modeling of HC Emissions Released by Oil Film for Gasoline and Alcohol Fuels

    Directory of Open Access Journals (Sweden)

    M. İhsan KARAMANGİL

    2013-04-01

    Full Text Available Oil film on cylinder liner has been suggested as a major source of engine-out hydrocarbon emissions. So in the present study, the rate of absorption/desorption of the fuel in the oil film has been investigated numerically in a spark ignition engine by using gasoline, ethanol and methanol fuels. To aim this purpose, a thermodynamic cycle model has been developed and then a mathematical modeling for the rate of absorption/desorption of the fuel in the oil film has been developed and adapted for this thermodynamic cycle model.It was seen that the absorption/desorption mechanism of ethanol and methanol into the oil film were lower than gasoline. It was determined that the most dominant parameter of this difference was Henry’s constant, which was related to solubility. As interaction time of oil filmfuel vapor was longer at low engine speeds, the quantities of HC absorbed/desorbed increased. The quantities of HC absorbed/desorbed increased with increasing inlet pressure and compression ratio

  11. Potassium doped methylammonium lead iodide (MAPbI3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties

    Science.gov (United States)

    Muzammal uz Zaman, Muhammad; Imran, Muhammad; Saleem, Abida; Kamboh, Afzal Hussain; Arshad, Muhammad; Khan, Nawazish Ali; Akhter, Parvez

    2017-10-01

    In this article, we have demonstrated the doping of K in the light absorbing CH3NH3PbI3 perovskite i.e. (M = CH3, A = NH3; x = 0-1). One of the major merits of methylammonium lead iodide (CH3NH3PbI3) perovskites is that they act as efficient absorbing material of light in photovoltaic cell imparting long carrier lifetime and optimum band gap. The structural, morphological, electronic and optoelectric properties of potassium (K) doped light absorber methylammonium lead iodide (CH3NH3PbI3) perovskites are reported here i.e. Kx(MA)1-xPbI3 (M = CH3, A =NH3; x = 0-1). The thin films of perovskites (x = 0-1) were deposited by spin coating on cleaned FTO substrates and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), current-voltage (IV), X-ray photoelectron spectroscopy (XPS) and Diffused reflectance spectroscopy (DRS) analysis. The organic constituents i.e. MA = CH3NH3, in perovskites solar cells induce instability even at the room temperature. To overcome such instabilities we have replaced the organic constituents by K because both of them have electropositive nature. Potassium successfully replaces the CH3NH3. Initially, this compound grows in a tetragonal crystal structure, however, beyond 30% doping of potassium orthorhombic distortions are induced in the parent tetragonal unit cell. Such phase transformation is microscopically visible in the electron micrographs of doped samples; cubic grains for MAPbI3 begin to transform into strip like structures in K-doped samples. The resistance of the samples is decreased for partial K-doping, which we suggested to be arising due to the electropositive nature of K. It is observed that the binding energy difference between Pb4f and I3d core levels are very similar in all the investigated systems and show formal oxidation states. Also, the partially doped samples showed increased absorption and bandgaps around 1.5 eV which is an optimum value for solar absorption.

  12. Nanorods on surface of GaN-based thin-film LEDs deposited by post-annealing after photo-assisted chemical etching

    OpenAIRE

    Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu

    2017-01-01

    This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted ...

  13. Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Wang, Lin; Pei, Yuxin; Jiang, Jinqiang

    2014-01-01

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO 2 nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO 2 nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO 2 multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO 2 multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO 2 films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO 2 films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates

  14. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength

    International Nuclear Information System (INIS)

    Kang, Z; Li, Q; Gao, X J; Jia, Z X; Qin, G S; Qin, W P; Zhang, L; Feng, Y

    2014-01-01

    Gold nanorods (GNRs) were used as a saturable absorber (SA) for passive mode-locking at 1 μm wavelength. The GNR-SA film was fabricated by mixing GNRs with sodium carboxymethylcellulose. The longitudinal surface plasmon resonance absorption of GNRs was used to induce mode-locking. By using the GNR-SA film, stable passive mode-locking at 1039 nm was experimentally demonstrated in an ytterbium-doped fiber laser cavity pumped by a 980 nm laser diode. The laser produced ∼440 ps pulses with a repetition rate of 36.6 MHz and an average output power of ∼1.25 mW for a pump power of ∼82 mW. (letter)

  15. Rare earth-based low-index films for IR and multispectral thin film solutions

    Science.gov (United States)

    Stolze, Markus; Neff, Joe; Waibel, Friedrich

    2017-10-01

    Non-thoriated rare-earth fluoride based coating solutions involving DyF3 and YbF3 based films as well as non-wetting fluorohydrocarbon cap layers on such films, have been deposited, analyzed and partly optimized. Intermediate results for DyF3 based films from ion assisted e-gun deposition with O2 and N2 alone and as base for the non-wetting to-player as well as for YbF3 starting material with or without admixtures of CaF2 are discussed for low-loss LWIR and multispectral solutions.

  16. Measurement of quasiparticle transport in aluminum films using tungsten transition-edge sensors

    International Nuclear Information System (INIS)

    Yen, J. J.; Shank, B.; Cabrera, B.; Moffatt, R.; Redl, P.; Young, B. A.; Tortorici, E. C.; Brink, P. L.; Cherry, M.; Tomada, A.; Kreikebaum, J. M.

    2014-01-01

    We report on experimental studies of phonon sensors which utilize quasiparticle diffusion in thin aluminum films connected to tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. These studies allow the design of phonon sensors with improved performance.

  17. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  18. [Assisted suicide in the movies - what is (not) shown?

    Science.gov (United States)

    Schmidt, Kurt W

    2017-01-01

    Whereas changes to the existing legal situation regarding assisted suicide have been a topic of controversial debate in Germany for the last few years, this issue has long been of interest for international film-makers. Since the mid-1980s, the theme of assisted suicide has repeatedly been taken up by cinema, predominantly as central to a relationship drama. A sick person asks somebody close to them for help. Often this somebody is a physician or a nurse, ultimately an obvious way of solving the practical problem of how the assistant is to gain access to a lethal substance. At the same time, this constellation enables a physician or nurse to be forced into a dramatic conflict between professional ethics and a personal obligation towards a loved one.Alongside more classic clinical pictures such as terminal cancer, recent films about assisted suicide have featured neurodegenerative diseases and physical disabilities. Another new development is that elderly patients are no longer alone in requesting assistance; films also and increasingly portray young adults. Besides a fear of unbearable pain, more recent films have also increasingly addressed the worry that permanent nursing might be required, as well as the subjectively experienced loss of dignity. The possibilities offered by palliative care hardly play a role in feature films. However, we should not forget, that movies are fictional and orchestrated, or, in other words, they are neither educational nor documental. They neither need nor want to portray reality, although they do wish to draw upon real experiences. They exploit highly emotional and ethically controversial themes to create tensions and stir up emotions in the audience, but ultimately they seek to entertain. Movies about death and dying are always "die-tainment".

  19. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  20. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Fatemeh Zabihi

    2017-05-01

    Full Text Available In this work, we communicate a facile and low temperature synthesis process for the fabrication of graphene-TiO2 photocatalytic composite thin films. A sol-gel chemical route is used to synthesize TiO2 from the precursor solutions and spin and spray coating are used to deposit the films. Excitation of the wet films during the casting process by ultrasonic vibration favorably influences both the sol-gel route and the deposition process, through the following mechanisms. The ultrasound energy imparted to the wet film breaks down the physical bonds of the gel phase. As a result, only a low-temperature post annealing process is required to eliminate the residues to complete the conversion of precursors to TiO2. In addition, ultrasonic vibration creates a nanoscale agitating motion or microstreaming in the liquid film that facilitates mixing of TiO2 and graphene nanosheets. The films made based on the above-mentioned ultrasonic vibration-assisted method and annealed at 150 °C contain both rutile and anatase phases of TiO2, which is the most favorable configuration for photocatalytic applications. The photoinduced and photocatalytic experiments demonstrate effective photocurrent generation and elimination of pollutants by graphene-TiO2 composite thin films fabricated via scalable spray coating and mild temperature processing, the results of which are comparable with those made using lab-scale and energy-intensive processes.

  1. Use of film digitizers to assist radiology image management

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  2. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    Science.gov (United States)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8-12 GHz) and Ku (12-18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  3. In situ infrared spectroscopic study of the electrochromic reactions of tungsten trioxide films

    International Nuclear Information System (INIS)

    Habib, M.A.; Maheswari, S.P.

    1991-01-01

    This paper reports on thin WO 3 films which are transparent in the oxidized state and colored in the reduced state. These changes in optical properties are associated with compositional variations of the material. Changes in vibrational intensities of W double-bond O, W emdash O, and W double-bond O emdash H bonds in the electrochromic WO 3 film were detected by an in situ FTIR technique at various stages of reduction (coloration). The absorbance due to O emdash H stretching and bending vibrations was found to increase during the electrochemical reduction of the film, indicating the incorporation of water into the film along with the formation of H x WO 3 bronze during coloration. The absorbance due to W double-bond O vibration decreased while that due to W emdash O vibration increased during reduction. These observations suggest that during the coloration process W double-bond O bonds break and new W emdash O bonds form in the film, and thus, provide direct evidence for the electrochromic reaction. O 2 W double-bond O + xH + + xe - ↔ O 2 W emdash O emdash H x

  4. [The correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK].

    Science.gov (United States)

    Zhang, Luyan; Sun, Xiyu; Yu, Ye; Xiong, Yan; Cui, Yuxin; Wang, Qinmei; Hu, Liang

    2016-01-01

    To investigate the correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK (FS-LASIK) surgery. In this prospective clinical study, 31 patients undergoing FS-LASIK for myopia were recruited. The upper and lower tear meniscus volumes (UTMV and LTMV) were measured by customized anterior segment optical coherence tomography, tear film osmolarity was measured by a TearLab Osmolarity test device, central corneal sensation was measured by a Cochet-Bonner esthesiometer preoperatively, at 1 week, 1 and 3 months postoperatively. Repeated measures analysis of variance was used to evaluate whether the tear film osmolarity, tear meniscus volume, and corneal sensation were changed after surgery. The correlations between these variables were analyzed by the Pearson correlation analysis. The tear film osmolarity was (310.03 ± 16.48) mOsms/L preoperatively, (323.51 ± 15.92) mOsms/L at 1 week, (319.93 ± 14.27) mOsms/L at 1 month, and (314.97±12.91) mOsms/L at 3 months. The UTMV was (0.42±0.15), (0.25± 0.09), (0.30±0.11), and (0.35±0.09) μL, respectively; the LTMV was (0.60±0.21),(0.37±0.08), (0.44± 0.14), and (0.52±0.17) μL, respectively. The tear film osmolarity was significantly higher at 1 week and 1 month postoperatively compared with the baseline (P=0.001, 0.004), and reduced to the preoperative level at 3 months (P=0.573). The UTMV, LTMV, and corneal sensation values presented significant decreases at all postoperative time points (all Psensation at 1 week after surgery (r=0.356,P=0.005). There were significant correlations between the preoperative LTMV and corneal sensation at 1 week, 1 and 3 months (respectively, r=0.422, 0.366, 0.352;P=0.001, 0.004, 0.006). No significant correlations were found between the tear film osmolarity, tear meniscus volume, and corneal sensation after surgery (all P>0.05). The tear film osmolarity, tear meniscus volume, and corneal sensation became aggravated due

  5. Radiochromic film calibration for the RQT9 quality beam

    Science.gov (United States)

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  6. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  7. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  8. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    International Nuclear Information System (INIS)

    Xin Tang Huang

    2000-01-01

    High critical current density and in-plane aligned YBa 2 Cu 3 O 7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O + ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18 deg. and 11 deg., respectively. The critical current density of YBCO film is 7.9 x 105 A cm -2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K. (author)

  9. Ionic molecular films. Applications. 3. Electron beam stimulated enhanced adherence

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G; Montereali, R M; Scavarda do Carmo, L C

    1989-11-01

    This paper reports on the advantages of the use of the technique of electron beam lithography to imprint enhanced sensitive patterns on ionic molecular substrates (bulk crystals or films). With this technique, localized superficial defects are produced which change the chemical properties of surfaces. Sensitized surfaces react with absorbates providing enhanced adherence of such substances. The use of spacially controlled electron beams allows the construction of small (sub-micron) feature chemical and very localized enhanced adherence of absorbates.

  10. Post Deposition Annealing Effects on Optical, Electrical and Morphological Studies of ZnTTBPc Thin Films

    Directory of Open Access Journals (Sweden)

    B. R. Rejitha

    2012-01-01

    Full Text Available Phthalocyanines (Pcs act as efficient absorbants of photons in the visible region, specifically between 600 and 700 nm. It will produce an excited triplet state. In this paper we report the annealing effects of optical, electrical and surface morphological properties of thermal evaporated Zinc-tetra-tert-butyl-29H, 31H phthalocyanine (ZnTTBPc thin films. The optical transmittance measurements were done in the visible region (400-800 nm and, films were found to be absorbing in nature. From spectral data the absorption coefficient α, dielectric constant ε and the extinction coefficient k were evaluated and, results discussed. Also the optical band gap of the material was estimated. The activation energies were measured. Scanning electron microscopic studies was carried out to determine surface uniformity of films.

  11. Optical detection of ion diffusion in electrochromic poly(3,4-ethylenedioxy)thiophene film using microcantilever electrodes

    DEFF Research Database (Denmark)

    Lin, Rong; Stokbro, Kurt; Madsen, Dorte Nørgaard

    2005-01-01

    potential of the film induced dark (light-absorbing) rings, which spread out from the anode on a time scale of seconds. The rate of expansion of the rings as well as the final diameter depended on the bias voltage. Using two micro four-point probes simultaneously, we measured with one probe the conductance......We present measurements of microscale electrochromic switching of poly(3,4-ethylenedioxy)thiophene doped with poly(4-styrene sulfonate), thin film using microfabricated multi-point probe electrodes. After treatment with a dilute hydrochloric acid, a voltage bias above 3 V with respect to the ground...... of the film outside, near and inside a dark ring induced by a voltage applied to another probe and found the resistivity to be directly related to the observed absorbance of the film. The standard electrochromic mechanism of ion insertion was used to explain the observations. We anticipate this experimental...

  12. Experimental study of the response of radiochromic films to proton radiation of low energy

    International Nuclear Information System (INIS)

    Mercado-Uribe, H.; Gamboa-deBuen, I.; Buenfil, A.E.; Avila, O.; Brandan, M.E.

    2009-01-01

    We have investigated the response of radiochromic films (MD-55 and HD-810) exposed to protons of 0.6 MeV. Each film is bombarded with a proton beam in an angular geometry, in such a way that the absorbed dose is related to angle. Depending on the energy and the angular fluence, the irradiated volume is total or partial. We compare the dose of these irradiated films with fully irradiated films exposed to γ radiation from a 60 Co calibrated source.

  13. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  14. Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film

    Science.gov (United States)

    Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang

    2015-12-01

    Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.

  15. Surfactant assisted electrodeposition of MnO2 thin films: Improved supercapacitive properties

    International Nuclear Information System (INIS)

    Dubal, D.P.; Kim, W.B.; Lokhande, C.D.

    2011-01-01

    Highlights: → Effect of Triton X-100 on physico-chemical properties of MnO 2 films. → High supercapacitance of 345 F g -1 . → Charge-discharge, impedance spectroscopy. - Abstract: In order to obtain a high specific capacitance, MnO 2 thin films have been electrodeposited in the presence of a neutral surfactant (Triton X-100). These films were further characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and contact angle measurement. The XRD studies revealed that the electrodeposited MnO 2 films are amorphous and addition of Triton X-100 does not change its amorphous nature. The electrodeposited films of MnO 2 in the presence of the Triton X-100 possess greater porosity and hence greater surface area in relation to the films prepared in the absence of the surfactant. Wettability test showed that the MnO 2 film becomes superhydrophilic from hydrophilic due to Triton X-100. Supercapacitance properties of MnO 2 thin films studied by cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy showed maximum supercapacitance for MnO 2 films deposited in presence of Triton X-100 is 345 F g -1 .

  16. Professor Camillo Negro's Neuropathological Films.

    Science.gov (United States)

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  17. Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition

    Science.gov (United States)

    Bär, M.; Ennaoui, A.; Klaer, J.; Kropp, T.; Sáez-Araoz, R.; Allsop, N.; Lauermann, I.; Schock, H.-W.; Lux-Steiner, M. C.

    2006-06-01

    The application of Zn compounds as buffer layers was recently extended to wide-gap CuInS2 (CIS) based thin film solar cells. Using an alternative chemical deposition route for the buffer preparation aiming at the deposition of a single-layer, nominal ZnS buffer without the need for any toxic reactants such as hydrazine has helped us to achieve a similar efficiency as respective CdS-buffered reference devices. In order to shed light on the differences of other Zn-compound buffers deposited in conventional chemical baths [chemical bath deposition (CBD)] compared to the buffer layers deposited by this alternative CBD process, the composition of the deposited buffers was investigated by x-ray excited Auger electron and x-ray photoelectron spectroscopy to potentially clarify their superiority in terms of device performance. We have found that in the early stages of this alternative CBD process a thin ZnS layer is formed on the CIS, whereas in the second half of the CBD the growth rate is greatly increased and Zn(S,O) with a ZnS/(ZnS+ZnO) ratio of ~80% is deposited. Thus, a ZnS/Zn(S,O) bilayer buffer is deposited on the CIS thin film solar cell absorbers by the alternative chemical deposition route used in this investigation. No major changes of these findings after a postannealing of the buffer/CIS sample series and recharacterization could be identified.

  18. The effect of Na on Cu-K-In-Se thin film growth

    Science.gov (United States)

    Muzzillo, Christopher P.; Tong, Ho Ming; Anderson, Timothy J.

    2018-04-01

    Co-evaporation of Cu-KF-In-Se was performed on substrates with varied Na supply. Compositions of interest for photovoltaic absorbers were studied, with ratios of (K + Cu)/In ∼ 0.85 and K/(K + Cu) ∼ 0-0.57. Bare soda-lime glass (SLG) substrates had the highest Na supply as measured by secondary ion mass spectrometry, while SLG/Mo and SLG/SiO2/Mo substrates led to 3x and 3000x less Na in the growing film, respectively. Increased Na supply favored Cu1-xKxInSe2 (CKIS) alloy formation as proven by X-ray diffraction (XRD), while decreased Na supply favored the formation of CuInSe2 + KInSe2 mixed-phase films. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed the KInSe2 precipitates to be readily recognizable planar crystals. Extrinsic KF addition during film growth promoted diffusion of Na out from the various substrates and into the growing film, in agreement with previous reports. Time-resolved photoluminescence showed enhanced minority carrier lifetimes for films with moderate K compositions (0.04 interdependency can be used to engineer alkali metal bonding in Cu(In,Ga)(Se,S)2 absorbers to optimize both initial and long-term photovoltaic power generation.

  19. Layer-by-layer assembled TiO{sub 2} films with high ultraviolet light-shielding property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaozhou [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Wang, Lin, E-mail: wanglin0317@nwsuaf.edu.cn [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Pei, Yuxin [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Jiang, Jinqiang [State Key Lab of Applied Surface and Colloid Chemistry, College of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China)

    2014-11-28

    Ultraviolet (UV) B is hazardous to human, plants and animals. With the rapid growth of ozone holes over the earth, the exploration of optical materials that can cut off harmful UV radiation is important. In this work, fusiform TiO{sub 2} nanoparticles were synthesized by a hydrothermal synthesis method. The thin films assembled with TiO{sub 2} nanoparticles and oppositely charged polyelectrolytes were fabricated via a layer-by-layer assembly method. The fabrication of poly(ethylene imine) (PEI)/TiO{sub 2} multilayer films was verified by ultraviolet–visible spectra measurements, scanning electron microscopy and atomic force microscopy. The as-prepared PEI/TiO{sub 2} multilayer films can effectively absorb harmful UVB light and filter off visible light. Most importantly, the PEI/TiO{sub 2} films can be deposited directly on various kinds of hydrophilic substrates such as quartz, glass, silicon and hydrophobic substrates such as polystyrene, polypropylene, polyethylene and polymethyl methacrylate when the hydrophilic substrates were modified to obtain a hydrophilic surface. - Highlights: • PEI/TiO{sub 2} films were fabricated via a layer-by-layer self-assembly method. • The films could effectively absorb harmful UVB light and filter off visible light. • The films could deposit directly on either hydrophilic or hydrophobic substrates.

  20. Photoelectrochemical behavior of Al{sub x}In{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com; Ganesh, V.; Pandikumar, A.; Goh, B.T.; Azianty, S.; Huang, N.M.; Rahman, S.A., E-mail: saadah@um.edu.my

    2016-06-15

    In this work the dependence of photoelectrochemical (PEC) behavior of Al{sub x}In{sub 1−x}N (0.48 ≤x ≤ 0.66) thin films grown by plasma-assisted dual source reactive evaporation, on the plasma dynamics and the alloys properties was studied. The influence of nitrogen flow rate on the compositional, morphological, structural and optical properties of the as-prepared films were investigated using X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), micro Raman spectroscopy and UV–vis spectroscopy. The PEC study of the as-grown Al{sub x}In{sub 1−x}N thin films targeted for water splitting application were performed in the presence of simulated solar irradiation of AM 1.5G (100 mW/cm{sup 2}). The PEC results revealed that the photocurrent for the Al{sub x}In{sub 1−x}N thin film grown at nitrogen flow rate of 80 sccm is ∼10-fold higher than the dark current. From the Mott–Schottky (MS) plots it was deduced that by increasing N{sub 2} flow rate up to 80 sccm, the flat band potential shifts toward more negative values. The good photoelectrochemical behavior of Al{sub x}In{sub 1−x}N thin films showed that this material could be a potential candidate for PEC water splitting. - Highlights: • Al{sub x}In{sub 1−x}N films were grown by Plasma-aided dual source reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films decreased from 2.33 to 1.92 eV. • A good photoelectrochemical behavior of the Al{sub x}In{sub 1−x}N thin films was shown. • The photocurrent for the Al{sub 0.55}In{sub 0.45}N films is ∼10-fold higher than dark current.