WorldWideScience

Sample records for absorber pellets

  1. Results of post-irradiation examinations of the absorber NS 201 (with pellets) of the KNK II first core

    International Nuclear Information System (INIS)

    The absorber NS-201 of the KNK II first core has been unloaded after a residence time of 273 equivalent full-power days, because gap closure between pellet and cladding had to be expected in 24 pins with B4C-pellets. Selected pins of this element underwent post-irradiation examinations in the hot cells of the KfK Karlsruhe. The evaluated and interpreted results of the investigations, which are documented in this report, allow the conclusion that the absorber could have been irradiated for the full core residence time. The good irradiation behaviour of the pellets and the cladding without any visible interaction, lead to the plan for further irradiation of a complete pellet column of one pin in the third core of KNK II

  2. A study on the oxidation characteristic of UO2-Gd2O3 pellet for recycling of burnable absorber pellet scrap

    International Nuclear Information System (INIS)

    The development of recycling process of defective (U,Gd)O2 scrap is one of the important subject in this project. Among the several burnable absorbers, Gd has a very large neutron absorption cross-section. Therefore, gadolinia bearing UO2 fuel, (U,Gd)O2, has been widely used as a burnable absorber in light water reactors. During the pellet fabrication process, fairly amount of defective (U,Gd)O2 pellets are produced and it is necessary to recycle the scraps. Generally, the defective scraps are powdered through the oxidation in air in the temperature range of 450 to 550 deg C and then mixed with co-milled powder, and further processed to fabricate (U,Gd)O2 pellets. In addition, the sintered pellet properties are closely depend on the powder property of oxidized M3O8 powder. Therefore, the careful investigate of oxidation kinetics and related powder property of (U,Gd)O2 is very important. The oxidation behavior of UO2-6wt% Gd2O3 and UO2-12wt% Gd2O3 has been studied in the temperature range from 350 to 700 deg C using TGA and XRD techniques in air. UO2 was necessarily oxidized to U3O8 regardless of oxidation temperature and its weight gain was 4wt%. However, (U,Gd)O2 exhibit a different oxidation behavior ; The final phase and saturated weight gain depends on oxidation temperature. The saturated weight gain increases with oxidation temperature up to 500deg C and thereafter decreases with temperature. In addition, the amount of weight gain obtained at 500 deg C was smaller in UO2-12wt% Gd2O3 than in UO2-6wt% Gd2O3 and the final phase at the saturated weight gain was M3O8 in UO2-6wt% Gd2O3 but the mixture of M4O9 and M3O8 in UO2-12wt% Gd2O3. It is supposed that Gd substitution for U decreases the equilibrium O/M ratio and thereby enhance the stability of M4O9 type cubic phase

  3. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  4. Development of Boron Carbide Pellet for CEFR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Many shielding subassemblies which contain B4C absorber material are arranged outside the reflecting subassemblies in China experimental fast reactor (CEFR). A hot press process has been adopted for preparing B4C pellet. The B4C powder is synthesized by boric acid and carbon black. The B4C pellet is fabricated by cold press, hot press and sintering, precision working, cleaning surface and drying. Among those processes, hot press process is very important because of its

  5. Injection of Deuterium Pellets

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, P.; Andersen, S. A.;

    1984-01-01

    to velocities above 1400 m/s, deuterium pellets to velocities above 1300 m/s and neon pellets to velocities above 500 m/s. Finally, a new acceleration method where a pellet should be accelerated by means of a magnetically stabilised electrical discharge is discussed, and a set up for measuring of the pellet...

  6. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity (3). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  7. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al2O3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B4C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  8. Wood pellet research program

    Energy Technology Data Exchange (ETDEWEB)

    Sohkansanj, S.; Bi, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2006-07-01

    Wood pellets are composed of waste wood materials such as sawmill residue, municipal landfill waste and grain crops. Due to the high temperature combustion used to form the waste materials into the pellet, no additives or glues are necessary to bind them. The pellets are typically used for home heating; heat and power production; poultry bedding; and in biorefineries. This presentation provided an outline of the University of British Columbia wood pellet research and development program. Research at the university is being conducted to develop new types of pellets. Researchers at the program also analyze the physical and chemical properties of pellets in order to optimize pellet density and heating values. Wood pellet modelling and simulation studies are carried out, and various training and education programs are also offered. Research is currently being conducted to develop a reactor for off-gassing experiments. This presentation also provided details of a study investigating the economics of wood pellet production and transport. Pellet production costs and feedstock costs were compared. A summary of the costs and energy inputs of pellet production included details of product storage; transportation and transfer; handling; and transportation to energy plants. It was concluded that more than 35 per cent of the energy content of biomass is used up in the processing and transport of Canadian wood pellets to Europe. refs., tabs., figs.

  9. Wood pellet research program

    International Nuclear Information System (INIS)

    Wood pellets are composed of waste wood materials such as sawmill residue, municipal landfill waste and grain crops. Due to the high temperature combustion used to form the waste materials into the pellet, no additives or glues are necessary to bind them. The pellets are typically used for home heating; heat and power production; poultry bedding; and in biorefineries. This presentation provided an outline of the University of British Columbia wood pellet research and development program. Research at the university is being conducted to develop new types of pellets. Researchers at the program also analyze the physical and chemical properties of pellets in order to optimize pellet density and heating values. Wood pellet modelling and simulation studies are carried out, and various training and education programs are also offered. Research is currently being conducted to develop a reactor for off-gassing experiments. This presentation also provided details of a study investigating the economics of wood pellet production and transport. Pellet production costs and feedstock costs were compared. A summary of the costs and energy inputs of pellet production included details of product storage; transportation and transfer; handling; and transportation to energy plants. It was concluded that more than 35 per cent of the energy content of biomass is used up in the processing and transport of Canadian wood pellets to Europe. refs., tabs., figs

  10. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  11. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  12. Shock implosion of a small homogeneous pellet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y.; Mishkin, E.A.; Alejaldre, C.

    1985-10-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.

  13. Pellet plant energy simulator

    Science.gov (United States)

    Bordeasu, D.; Vasquez Pulido, T.; Nielsen, C.

    2016-02-01

    The Pellet Plant energy simulator is a software based on advanced algorithms which has the main purpose to see the response of a pellet plant regarding certain location conditions. It combines energy provided by a combined heat and power, and/or by a combustion chamber with the energy consumption of the pellet factory and information regarding weather conditions in order to predict the biomass consumption of the pellet factory together with the combined heat and power, and/or with the biomass consumption of the combustion chamber. The user of the software will not only be able to plan smart the biomass acquisition and estimate its cost, but also to plan smart the preventive maintenance (charcoal cleaning in case of a gasification plant) and use the pellet plant at the maximum output regarding weather conditions and biomass moisture. The software can also be used in order to execute a more precise feasibility study for a pellet plant in a certain location. The paper outlines the algorithm that supports the Pellet Plant Energy Simulator idea and presents preliminary tests results that supports the discussion and implementation of the system

  14. MULTIPLE UNIT DOSAGE FORM - PELLET AND PELLETIZATION TECHNIQUES: AN OVERVIEW

    OpenAIRE

    Kumar Vikash; Mishra Santosh Kumar; Lather Amit; Vikas; Singh Ranjit

    2011-01-01

    Pellets have been used in the pharmaceutical industry for more than four decades, with the advent of controlled release technology, that the full impact of the inherent advantages of pellets over single unit dosage forms have been realized, not only has focused on refining and optimizing existing pelletization techniques, but also focused on the development of novel approaches and procedures for manufacturing of pellets. The present review outlines the manufacturing and evaluation of pellets....

  15. Mobile Biomass Pelletizing System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  16. Detonation drive pellet injector

    International Nuclear Information System (INIS)

    Detonation drive pellet injector has been developed and tested. By this method the free piston is not necessary because the pellet accelerated the high pressure shock directly. In the experiment, the Teflon pellet (5 mm dia., 5 mm length) was accelerated by hydrogen, oxygen and dilution gas mixtured detonation. When the gas pressure was only 500 kPa and the mixture rates of hydrogen, oxygen and helium were 3:6:1 or 3:6:0, the Teflon pellet speed was up to 747 m/s. Typical experimental results over 300 kPa of the initial gas pressure range are 78--92% of the one-dimensional calculational values. It showed that the pellet could be accelerated by a relative low pressure gas. When the helium dilution rate is larger than 20%, it was often found the strong detonation of which speed is more than the Chapman-Jouguet speed. Then the pellet speed above 1,100 m/s was obtained

  17. Pelletizing properties of torrefied spruce

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.;

    2011-01-01

    Torrefaction is a thermo-chemical conversion process improving the handling, storage and combustion properties of wood. To save storage space and transportation costs, it can be compressed into fuel pellets of high physical and energetic density. The resulting pellets are relatively resistant...... were determined using a single pellet press and pellet stability was determined by compression testing. The bonding mechanism in the pellets was studied by fracture surface analysis using scanning electron microscopy. The composition of the wood changed drastically under torrefaction......, with hemicelluloses being most sensitive to thermal degradation. The chemical changes had a negative impact, both on the pelletizing process and the pellet properties. Torrefaction resulted in higher friction in the press channel of the pellet press and low compression strength of the pellets. Fracture surface...

  18. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar;

    2005-01-01

    Gasification Group at MEK-DTU has been installed for experiments with different types of wood, straw, waste materials and additives such as adhesives and inorganic compounds. A series of pelletizing tests has been performed using a ring die with a compression ratio of 6.5. Pine shavings and beech wood dust has...... been tested individually and combined. Pine dust is relatively easy to pelletize while beech dust is almost impossible to pelletize with the present pellet mill conditions. Additionally, the inorganic part of the beech wood was rich in corrosive alkali chloride salts. With the die used it was possible...... corrosiveness and the sintering ability of the ash residues. It had earlier been observed that straw could be pelletized, but that the pellet quality in general did not appear to be very high. Similar results have been obtained in the present study. The pellets were not as durable as the pine/beech pellets...

  19. Owl Pellet Paleontology

    Science.gov (United States)

    McAlpine, Lisa K.

    2013-01-01

    In this activity for the beginning of a high school Biology 1 evolution unit, students are challenged to reconstruct organisms found in an owl pellet as a model for fossil reconstruction. They work in groups to develop hypotheses about what animal they have found, what environment it inhabited, and what niche it filled. At the end of the activity,…

  20. PELLETIZATION TECHNIQUES: A LITERATURE REVIEW

    OpenAIRE

    Punia Supriya; Bala Rajni; Rana A. C.

    2012-01-01

    In present times, the pelletization technologies are gaining much attention as they represent an efficient pathway for manufacture of oral drug delivery systems. This is due to the reason that pellets offer many therapeutic, technological as well as biopharmaceutical advantages over the conventional oral dosage forms. Pelletization technique enables the formation of spherical beads or pellets with a mean diameter usually ranging from 0.5-2.0 mm which can be eventually coated for preparation o...

  1. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  2. Pellet imaging techniques on ASDEX

    International Nuclear Information System (INIS)

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened DαDβ, and Dγ spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 x 1017cm-3 or higher in the regions of strongest light emission. A spatially resolved array of Dα detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs

  3. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa;

    2016-01-01

    (SPP) can be extrapolated to larger scale pellet mills. The single pellet press was used to find the optimum moisture content and die operating temperature for pellet production. Then, these results were compared with those obtained from a bench-scale pellet mill. A moisture content of around 10 wt......The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press.......% was found to be optimal for the six biomass feedstocks. A friction increase was seen when the die temperature increased from room temperature to 60-90 degrees C for most biomass types, and then a friction decrease when the die temperature increased further. The results obtained in the bench...

  4. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Purpose: To effectively absorb the swelling at the central portion of a pellet, as well as obtain a sufficient creep velocity and reduce the release of gaseous fission products in fuel pellets for use in BWR type reactors. Method: A pellet is divided into a central region and outer peripheral region. The crystal grain size and the porosity in the central region are made greater than those in the outer peripheral region. In the central region, the O/U ratio for the UO2 powder is set to 2.10 - 2.30, material for increasing crystal grain size (TiO2, Nb2O5, Cr2O3, etc.) is mixed as additives and the specific surface area is made to 3 - 8 g/cm3. Further, in the outer peripheral region, O/U ratio for the UO2 powder is set to 2.00 - 2.100, and material for increasing sintering density (Al(OH)3, Al, etc.) is mixed as additives and the specific surface area is set to 3 g/cm3. Thus, the increase in the inner pressure and the elevation of temperature for the fuel can in the fuel rod can effectively be suppressed to prevent stress corrosion cracking in the fuel can. (Ikeda, J.)

  5. An investigation into the behaviour of air rifle pellets in ballistic gel and their interaction with bone.

    Science.gov (United States)

    Wightman, G; Beard, J; Allison, R

    2010-07-15

    Although air weapons are considerably lower in power than other firearms, there is increasing concern that serious injuries can result from their misuse. The present study was therefore carried out to improve understanding of the terminal ballistic behaviour of air rifle pellets. Pellets were fired into ballistic gel under a variety of conditions. The pellets penetrated further than anticipated from their low cross-sectional density, and Bloom number was not necessarily a good guide to gel behaviour. Pellet penetration into the gel decreased with increasing gel concentration, and appeared to be linear at higher concentrations. Pointed pellets penetrated up to 50% further than rounded pellets. Power and range affect penetration, but other factors are also important, and power alone is not a simple guide to potential penetration. Test firings were also carried out firing pellets into ballistic gel that contained sections of animal bone. Computed tomography (CT) and visual observation were employed to record the interactions. CT scanning showed potential as a tool for examining pellet damage. The bone appeared to be undamaged, but the pellets were severely deformed on impact. If the pellet strikes the bone at an angle, less energy is absorbed by the impact and the pellet fragments may ricochet and cause further damage in the gel. A tentative model is proposed for estimating the energy absorbed by the impact. PMID:20413234

  6. Pelleting of feed for broiler chickens: Factors affecting pellet quality

    Directory of Open Access Journals (Sweden)

    Daniel José Antoniol Miranda

    2011-01-01

    Full Text Available The efficiency of the pellet can be translated by the quality of the pellet which is defined as the proportion of intact pellets that come to feeders for chickens, i.e., its resistance to breakage between the feed mill and farms. The use of diets with a higher percentage of intact pellets results in better performance of birds when compared with the feed rations. The main factors that affect pellet quality are: characteristics of pelleting, the feed composition, particle size, pelleting temperature, moisture and steam injection. From a nutritional standpoint, one can consider that the smaller the particle size of food increased their contact with the digestive juices, which aids digestion and absorption of nutrients. However, finely ground lead to less stimulation and growth of intestinal ephitellium. But from the standpoint of production of feed, the larger the particle size of ingredients largest economy with energy and greater efficiency (tons / hour milling. Because of this, it is suggested that the particle sizes used vary between 500 and 700 ìm to not to cause loss of performance of the birds, nor the income from the factory. Increased energy, through the addition of oils and fats, have much influence on performance parameters of broilers and the quality of the pellet produced. The presence of oils and / or fat, depending on the amount, on its hydrophoby characteristic, causing damage to the particles aggregation acting as a lubricant between food particles and the matrix of pelleting, decreasing the pelleting pressure and its gelatinization, resulting into poor quality pellets.

  7. PELLETIZATION TECHNIQUES: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Punia Supriya

    2012-03-01

    Full Text Available In present times, the pelletization technologies are gaining much attention as they represent an efficient pathway for manufacture of oral drug delivery systems. This is due to the reason that pellets offer many therapeutic, technological as well as biopharmaceutical advantages over the conventional oral dosage forms. Pelletization technique enables the formation of spherical beads or pellets with a mean diameter usually ranging from 0.5-2.0 mm which can be eventually coated for preparation of modified release dosage forms. Pelletization leads to an improvement in flowability, appearance and mixing properties thus avoiding generation of excessive dust and reducing segregation, and, generally, eliminating undesirable properties and improving the physical and chemical properties of fine powders. Pellets are produced by various techniques, such as, extrusion/ spheronization, layering, cryopelletization, freeze pelletization, spray congealing, spray drying and compression. Amongst various techniques, Extrusion/Spheronization technique is the most widely utilized technique due to its high efficiency and simple and fast processing. The aim of this paper is to review some general aspects about pellets and pelletization and some common techniques being utilized in the pharmaceutical industry.

  8. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  9. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  10. Owl Pellets and Crisis Management.

    Science.gov (United States)

    Anderson, Tom

    2002-01-01

    Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…

  11. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    from 22% d(-1) (July 2005) to 87% d(-1) (May). Protozooplankton (dinoflagellates and ciliates) in the size range of 20 to 100 mu m were the key degraders of the fecal pellets, contributing from 15 to 53% of the total degradation rate. Free-living in situ bacteria did not affect pellet degradation rate...

  12. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  13. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single- stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. A new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellets. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  14. Moving behavior of pellets in a pellet shaft furnace

    Institute of Scientific and Technical Information of China (English)

    梁儒全; 赫冀成

    2008-01-01

    The downward moving behavior of pellets in a 8 m2 pellet shaft furnace with an internal vertical air channel and a drying bed was studied by means of a visualized model(1-15) and a top model(1-1).The visualized model experiment shows that the downward movement of pellets can be regarded as plug flow approximately inside the furnace except for the lower region of cooling zone due to the influence of the drained hopper.The top model experiment reveals that the pellet sizes increase along the moving direction because of the percolation phenomenon,which results in a decrease of the resistance coefficient and an increase of the gas flow rate from the furnace wall toward the furnace center.

  15. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  16. Method of fabricating nuclear fuel pellets

    International Nuclear Information System (INIS)

    Purpose: To use uranium tetraoxide as a pore forming agent thereby to produce UO2 nuclear fuel pellets having stable pores almost not liable to shrink by heat or radiation during the operation of the reactor. Method: UO2 powder, alone or added with a Gd2O3 powder up to 6% of the former as a neutron absorber, is mixed with 5 to 15% based on mixed powder of UO4, nH2O powder of 10 to 325 meshes. Thus obtained mixed powder is pressed, formed, and sintered. In the sintering process, UO4.nH2O gradually loses its crystal water, and is converted into UO2, it shrinks and pores remain in the sintered body. (Kamimura, M.)

  17. Pelletizing of sulfide molybdenite concentrates

    Science.gov (United States)

    Palant, A. A.

    2007-04-01

    The results of a pelletizing investigation using various binding components (water, syrup, sulfite-alcohol distillery grains, and bentonite) of the flotation sulfide molybdenite concentrate (˜84% MoS2) from the Mongolian deposit are discussed. The use of syrup provides rather high-strength pellets (>3 N/pellet or >300 g/pellet) of the required size (2 3 mm) for the consumption of 1 kg binder per 100 kg concentrate. The main advantage of the use of syrup instead of bentonite is that the molybdenum cinder produced by oxidizing roasting of raw ore materials is not impoverished due to complete burning out of the syrup. This fact exerts a positive effect on the subsequent hydrometallurgical process, decreasing molybdenum losses related to dump cakes.

  18. Handling of Deuterium Pellets for Plasma Refuelling

    DEFF Research Database (Denmark)

    Jensen, Peter Bjødstrup; Andersen, Verner

    1982-01-01

    The use of a guide tube technique to inject pellets in pellet-plasma experiments is described. The effect of the guide tube on the mass and speed of a slowly moving pellet ( nu approximately 150 m s-1) is negligible. To improve the divergence in trajectories of the pellets on leaving the guide tube...

  19. Effect of Sawdust Characteristics on Pelletizing Properties and Pellet Quality

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Robert; Thyrel, Mikael; Lestander, Torbjoern; Jonsson, Carina [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Sjoestroem, Michael [Univ. of Umeaa (Sweden). Dept. of Chemistry

    2006-07-15

    Sawdust of pine and spruce from sawmills is the most common raw material for pellet production in Sweden today. Experiences from pellet plants indicate that raw material properties like wood species, storage time (maturity), growing latitude and moisture content influence the pelletizing properties and the pellet quality. However, no systematic investigation where the above mentioned parameters were studied in combination with pelletizing parameters like die length and steam treatment has been reported so far. In this paper the pelletizing of sawdust using a reduced factorial design with six parameters is described. The independent parameters studied were wood species (pine, spruce), growing latitude (57, 64 deg N), storage time (fresh, 140 days), moisture content (9 %, 12 %), die length (55 mm, 65 mm) and steam treatment (2,0 kg/h, 6,0 kg/h). The pelletizing parameters measured during the experiments were i.e. die temperature, energy consumption, Pellets temperature, while the main pellet quality parameters were bulk density, durability, fines and moisture content. All results were evaluated by using multivariate data analysis. The results can be summarized as follows: Bulk density: The two-factor interaction between moisture content and steam treatment affected the bulk density most significantly. The best response was obtained at either high moisture content and low steam treatment or vice versa. In addition, the results showed that long storage time influenced the bulk density positively. durability: Storage time is the most significant factor for the durability; long storage results in higher durability. Even for the durability the two-factor interaction between moisture content and steam treatment is of great importance. fines: The amount of fines is to a large extent determined by the two-factor interaction between moisture content and steam treatment together with the storage time. The amount of fines is also affected by wood species and growing latitude

  20. Binders for pellets from biomass

    OpenAIRE

    Bartoš, Pavel

    2013-01-01

    Pellets from biomass represent an appropriate form of biofuel for combustion. They are characterized by good fuel parameters, they enable efficient storage, transport and handling, and automatic fuel supply to the combustion chamber. Pellet production is quite a complicated and energy-consuming process. During the production it is necessary to ensure that the amount of input energy was the same or even smaller than the energy obtained. To streamline the production and improve thermo-mechanica...

  1. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  2. Physics of inertial confinement pellets

    International Nuclear Information System (INIS)

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  3. 46 CFR 148.04-21 - Coconut meal pellets (also known as copra pellets).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Coconut meal pellets (also known as copra pellets). 148.04-21 Section 148.04-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... § 148.04-21 Coconut meal pellets (also known as copra pellets). (a) Coconut meal pellets; (1)...

  4. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    Science.gov (United States)

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  5. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  6. Pelletization Techniques for Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jagan Mohan Kandukuri

    2009-07-01

    Full Text Available Multiparticulates are discrete particles that make up a multiple unit system. Although pellets have been used in the pharmaceutical industry for more than four decades, with the advent of controlled release technology, that the full impact of the inherent advantages of pellets over single unit dosage forms have been realized, not only has focused on refining and optimizing existing pelletization techniques, but also focused on the development of novel approaches and procedures for manufacturing of pellets. The present review outlines the manufacturing and evaluation of pellets. The manufacturing techniques include layering, cryopelletization, freeze pelletization, extrusion spheronization and hot melt extrusion have been discussed. Characterization of pellets is discussed with reference to the particle size distribution, surface area, porosity, density, hardness, friability and tensile strength of pellets.

  7. Method of producing ceramic fuel pellets

    International Nuclear Information System (INIS)

    Prior to the evaporation procedure the UO2-ceramic powder, possible to sinter, is mixed with epoxy resin pellets or UO2-gel-pellets and compacted at a pressure between 700 and 2800 kg/cm2. After sintering at 12000 up to 16500C the pellets show a uniform porosity. (RW)

  8. Pellet fired appliances. Market survey. 7. rev. ed.; Pelletheizungen. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The market survey under consideration reports on pellet central heating systems and pellet fired appliances. The main chapters of this market survey are concerned to: (1) Information on wood pellets and pellet fired appliances; (2) Information about the interpretation of the market survey; (3) Survey of all compared pellet fired appliances with respect to the nominal power; (4) Price lists of pellet fired appliances and pellet central heating systems; (5) Type sheets of the compared pellet fired appliances and pellet central heating systems. Finally, this brochure contains the addresses of the produces and distribution partners of pellet fired appliances and pellet central heating systems.

  9. Standard specification for nuclear-grade aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This specification applies to pellets composed of mixtures of aluminum oxide and boron carbide that may be ultimately used in a reactor core, for example, in neutron absorber rods. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  10. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  11. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  12. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove;

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  13. Application of burnable poisons integrated with fuel pellets in LWR

    International Nuclear Information System (INIS)

    The problem of using burnable poisons (gadolinium and erbium oxides) integrated with fuel pellets for suppression of the excess reactivity in the LWR reactor cores at fuel cycle begin when the fuel with maximum enrichment is loaded in the core is discussed. It is shown that application of the fuel elements with such pellets ensures sufficient burnup growth for fuel with increased enrichment, increase in the fuel cycle duration and decrease in neutron fluence on reactor vessel in the cases of optimized layouts of fresh and irradiated fuel assemblies in the reactor core. Basing on the analysis of studying into (U, Gd)O2 pellet heating and thermal conductivity under high burnups it is proved that the fuel with enrichment of 4.4 % of 235U may be used if the Gd2O3 content amounts to 2 %. Application of erbium absorber is recommended in uranium and plutonium fuel in inertial (nonfissible) matrix designed for burnups greater than 100 GeV · days/t

  14. Hydrothermal pretreatment of biomass for pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Tooyserkani, Z. [British Columbia Univ., Vancouver, BC (Canada). Clean Energy Research Centre, Biomass and Bioenergy Research Group

    2010-07-01

    This presentation discussed innovative technologies for the production of wood pellets using the hydrothermal pre-treatment of biomass. Conventional techniques use low-cost mill residues, such as saw dust and shavings, as feedstock to produce durable, low-ash pellets. However, mill residues are becoming less available as a result of fewer saw mills, increased pellet production, and increased competition for saw dust. Advanced techniques use mixed biomass such as logging residue as feedstock, creating pellets that are durable for handling and long-term storage, of a higher energy density for transport and mixing with coal for co-firing, and a choice feedstock for biofuels. Advanced pellet production uses steam explosion/pre-treatment in which biomass receives a short-term high-pressure steam treatment followed by sudden decompression. Mild torrefaction seems to have positive feedback, and steam-treated pellets are durable with superior hydrophobicity. 3 figs., 3 tabs.

  15. Pelletization Techniques for Oral Drug Delivery

    OpenAIRE

    Jagan Mohan Kandukuri; Venkatesham Allenki; Chandra Mohan Eaga; Vasu Keshetty; Kiran Kumar Jannu

    2009-01-01

    Multiparticulates are discrete particles that make up a multiple unit system. Although pellets have been used in the pharmaceutical industry for more than four decades, with the advent of controlled release technology, that the full impact of the inherent advantages of pellets over single unit dosage forms have been realized, not only has focused on refining and optimizing existing pelletization techniques, but also focused on the development of novel approaches and procedures for manufacturi...

  16. Screw Extruder for Pellet Injection System

    Directory of Open Access Journals (Sweden)

    Sharadkumar K. Chhantbar

    2014-05-01

    Full Text Available Solid hydrogenic pellets are used as fuel for fusion energy reactor. A technique for continuous production of solid hydrogen and its isotopes by a screw extruder is suggested for the production of an unlimited number of pellets. The idea was developed and patented by PELIN laboratories, Inc. (Canada. A Gifford McMahon cryocooler is used for the generation of solid hydrogenic fluid pellets. Requirements of the pellets is depends upon the energy to be produced by tokamak. This review paper focuses on the model for the screw extruder for solidification of hydrogen ice having high injection reliability.

  17. Capabilities of nitrogen admixed cryogenic deuterium pellets

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, Igor; Sergeev, Vladimir [SPU, Saint-Petersburg (Russian Federation); Lang, Peter; Ploeckl, Bernhard; Cavedon, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP RMI, Budapest (Hungary); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Operation at high core density with high energy confinement - as foreseen in a future fusion reactor like DEMO - is being investigated at ASDEX Upgrade tokamak. The efficiency of pellet fuelling from the high-field side usually increases with increasing injection speed. Due to the fragile nature of the deuterium ice, however, the increment of pellet mass losses and subsequent pellet fragmentations take place when the speed is increased. Studies show, that admixing of a small amount of nitrogen (N{sub 2}) into D{sub 2} gas can be favorable for the mechanical stability of pellets. This might be helpful for deeper pellet penetration. Besides, seeding by N{sub 2} can enhance plasma performance due to both increasing the energy confinement time and reducing the divertor heat load in the envisaged ELMy H-mode plasma scenario. Fuelling efficiency of N{sub 2}-admixed solid D{sub 2} pellets and their nitrogen seeding capabilities were investigated. It was found that both the overall plasma density increase and the measured averaged pellet penetration depth were smaller in case of the admixed (1% mol. in the gas resulting in about 0.8% in the ice) pellet fuelling. Possibility of the N{sub 2}-seeding by admixed pellets was confirmed by CXRS measurements of N{sup 7+} content in plasma.

  18. Micromachining for laser fusion pellet

    International Nuclear Information System (INIS)

    In laser nuclear fusion, the fusion reaction is induced by irradiating powerful laser beam on the pellets filled with fuel, and compressing and heating the fuel by implosion. At this time, in order to compress it up to high density, it is very important to compress as the spherical symmetry is maintained. The uniformity of the sphericity and wall thickness is required to be more than 98 %. Besides, in order to heighten the efficiency, it is necessary to limit the temperature of main fuel low, to ignite with hot sparks at the center, and to burn remaining fuel with the alpha particles which are generated by the nuclear fusion reaction there. For this purpose, various target structures have been proposed. The cryogenic target for ablative compression, the double shell target and the cannonball target are shown. In order to produce these targets, the development of the fuel spheres which have high uniformity and good sphericity in the required size, the development of the coating process with good surface finish which can do uniform coating at the rate of about 10 μm/h, the development of micromachining technology, the development of cryogenic technology and so on are necessary. Also the levitation of pellets by magnetic suspension method is explained. (K.I.)

  19. Process optimization of DUPIC fuel pellet fabrication

    International Nuclear Information System (INIS)

    DUPIC pellets are remotely fabricated by using DUPIC powder prepared by the OREOX treatment of spent fuel pellets. DUPIC pellets were successfully fabricated using spent PWR fuel material with an average discharge burn-up of 27,300 MWd/tU. Sintered density, grain size and surface roughness of the DUPIC pellets were investigated on the basis of CANDU fuel criteria. In order to optimize the DUPIC pellet manufacturing processes, 3 series of experiments for the pre-qualification and 3 series for the qualification were performed. In these experiments, the sintered densities of the pellets ranged from 10.35 g/cm3(95.7 % of T.D.) to 10.43 g/cm3(96.4 % of T.D.) and the average grain size ranged from 14.6 to 14.9 μm. Based on these results, the optimum manufacturing processes of DUPIC pellets have been established. Then, under the control of the QA program developed with the assistance of AECL, 8 series of production runs have been performed to make DUPIC pellets in a batch size of 1 kg. The sintered densities of the fabricated pellets ranged from 10.26 g/cm3 to 10.43 g/cm3. The surface roughness of the ground pellets was less than Ra 0.8 μm by the dry grinding process. As the results of the production runs, DUPIC fuel pellets meeting the standard CANDU fuel specifications were successfully fabricated by the established processes. (author)

  20. Refractory Pellet for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the term,definition,classification,specification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of refractory pellet for hot blast stove.This standard is applicable to refractory pellet for hot blast stove.

  1. Hydrogen Pellet-Rotating Plasma Interaction

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard; Øster, Flemming

    1977-01-01

    Spectroscopic measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. It was found that the light emitted is specific to the pellet material, and that the velocity of the ablated H-atoms is of the order of l0^4 m/s. The investigation was carried out...

  2. Pellet-plasma interactions in tokamaks

    DEFF Research Database (Denmark)

    Chang, C.T.

    1991-01-01

    The ablation of a refuelling pellet of solid hydrogen isotopes is governed by the plasma state, especially the density and energy distribution of the electrons. On the other hand, the cryogenic pellet gives rise to perturbations of the plasma temperature and density. Based on extensive experimental...... data, the interaction between the pellet and the plasma is reviewed. Among the subjects discussed are the MHD activity, evolution of temperature and density profiles, and the behaviour of impurities following the injection of a pellet (or pellets). The beneficial effect of density peaking on the energy...... confinement time, offset by the accumulation of impurities at the plasma core is brought into focus. A possible remedy is suggested to diminish the effect of the impurities. Plausible arguments are presented to explain the apparent controversial observations on the propagation of a fast cooling front ahead of...

  3. Quality of pellets from torrefied biomass and pellets torrefied at different temperatures

    DEFF Research Database (Denmark)

    Shang, Lei; Dahl, Jonas; Ahrenfeldt, Jesper;

    Torrefaction is a mild thermal treatment in an inert atmosphere, which is known to increase the energy density of biomass on a mass basis (MJ kg-1). By combining the torrefaction process and pelletization the specific energy density on volume basis is further increased would thus allow for more...... cost effective volume limited transport. There are two ways of combining torrefaction and pelletization: pelletize torrefied biomass and torrefy regular pellets. The former is the one used for producing commercial torrefied pellets, while the latter one could be relevant for power plant which has...... facility to do torrefaction before co-firing. In this study, both ways were utilized to produce torrefied pellets. The quality of these pellets have been characterized for higher heating value (HHV), energy consumption during grinding, mechanical durability and equilibrium moisture content (EMC) under...

  4. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  5. Comparative properties of bamboo and rice straw pellets

    OpenAIRE

    Xianmiao Liu; Zhijia Liu,; Benhua Fei; Zhiyong Cai; Zehui Jiang,; Xing’e Liu

    2013-01-01

    Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw pellets (CRP) met the requirements of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified includin...

  6. [Controlled release of pseudoephedrine HCl from pellets].

    Science.gov (United States)

    Vertommen, J

    1997-01-01

    This study describes the development work on a dosage form, which should release the drug pseudoephedrine HCl over twelve hours. Pellets were chosen as the dosage form. The pellets contained 20, respectively, 45 percent pseudoephedrine HCL and were produced using a high shear mixer-granulator. These pellets were coated in a fluidized bed and in a high shear mixer-granulator equipped with a microwave drying installation. The results of the experiments indicate that it is possible to produce pellets in a high shear mixer-granulator. Strong pellets with a narrow size distribution were obtained. A high shear mixer-granulator appears, therefore, to be a valuable alternative to the more commonly used pellet-forming technique of extrusion-sphere formation. The pellets could be coated as well in a fluidized bed as in a high shear mixer-granulator equipped with a microwave drying installation. A major advantage of the high shear mixer-granulator equipped with a microwave drying installation is the possibility to perform several unit operations such as mixing, pellet formation drying, and coating in one piece of equipment. With respect to the requirement of getting a release of pseudoephedrine HCl over twelve hours, the pellets containing 20 percent pseudoephedrine HCl fulfilled this requirement. For pellets containing 45 percent pseudoephedrine HCl it appears to be hard to obtain a sufficient delay in release using the commonly used coating formulations. This can be attributed to the very good solubility of pseudoephedrine HCl in water. Optimization of the coating formulation by changing the nature and concentration of the plasticizer may solve the problem. PMID:9543819

  7. Speed of the internal pellet target in CSRm

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Pellet target is one of the main candidate targets in CSRm (cooler storage ring’s main ring) for hadron physics studies. Pellet speed is an important physical parameter for the target. Larger pellet speed could shorten the interacting time interval between the pellet and the cyclotron beam, and thus results in a small temperature variation for the pellet. This could make the pellet facility work in a stable condition. A fluid dynamic simulation was carried out for the pellet speed, and it was found that the maximum speed for the target pellet may be restricted to about 100 m/s even if all working parameters were set to their optimal values.

  8. A centrifuge CO2 pellet cleaning system

    Science.gov (United States)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  9. A Review of Pellets from Different Sources

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2015-03-01

    Full Text Available The rise in pellet consumption has resulted in a wider variety of materials for pellet manufacture. Thus, pellet industry has started looking for alternative products, such as wastes from agricultural activities, forestry and related industries, along with the combination thereof, obtaining a broad range of these products. In addition, the entry into force of EN ISO 17225 standard makes wood pellet market (among other types possible for industry and household purposes. Therefore, wastes that are suitable for biomass use have recently increased. In this study, the main characteristics of ten kinds of laboratory-made pellets from different raw materials were analyzed. Thus, we have focused on the most limiting factors of quality standards that determine the suitability for biomass market, depending on the kind of pellet. The results showed considerable differences among the analyzed pellets, exceeding the limits established by the standard in almost all cases, especially concerning ash content and N and S composition. The requirements of the studied standard, very demanding for certain factors, disable the entry of these densified wastes in greater added value markets.

  10. Pellets - the advance of refined bioenergy

    International Nuclear Information System (INIS)

    This conference paper discusses the role of pellets in the use of bioenergy in Sweden. Pellets (P) have many advantages: (1) P are dry and can be stored, (2) P create local jobs, (3) P burn without seriously polluting the environment, (4) P are made from domestic and renewable resources, (5) P have high energy density, (6) P fit well in an energy system adapted to nature, (6) P are an economical alternative, both on a small scale and on a large scale. Pellets are more laborious to use than oil or electricity and require about three times as much storage space as oil. The Swedish pellets manufacturers per 1997 are listed. Locally pellets are most conveniently transported as bulk cargo and delivered to a silo by means of pressurized air. Long-distance transport use train or ship. At present, pellets are most often used in large or medium-sized heat plants, but equipment exists for use from private houses and up to the size of MW. Pellets may become the most important alternative to the fossil fuels which along with electricity today are dominating the small scale market. 1 fig., 1 table

  11. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  12. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  13. Microbiological survey of birds of prey pellets.

    Science.gov (United States)

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets. PMID:26026881

  14. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  15. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. UO2 pellet and manufacturing method

    International Nuclear Information System (INIS)

    The present invention concerns an uranium dioxide pellet having a large crystal grain size. The grain size of the pellet is enlarged to increase the distance of an FP gas generated in the crystal grain to reach the grain boundary and, as a result, decrease the releasing speed of the FP gas. A UO2 powder having a specific surface area of from 5 to 50m2/g is used as a starting powder in a step of forming a molding product, and chlorine or a chlorine compound is added in such an amount that the chlorine content in the UO2 pellet is from 3 to 25ppm, in one of a production step, a molding step or a sintering step for UO2 powder. With such procedures, a UO2 pellet having a large crystal grain size can be prepared with good reproducibility. (T.M.)

  17. Comment on Li pellet Conditioning in TFTR

    International Nuclear Information System (INIS)

    Li pellet conditioning in TFTR results in a reduction of the edge electron density which allows increased neutral beam penetration, central heating, and fueling. Consequently the temperature profiles became more peaked with higher central Ti, Te, and neutron emission rates.

  18. DURABILITY AND BREAKAGE OF FEED PELLETS DURING REPEATED ELEVATOR HANDLING

    Science.gov (United States)

    Pelleting of animal feeds is important for improved feeding efficiency and for convenience of handling. Pellet quality impacts the feeding benefits for the animals and pellet integrity during handling. To determine the effect of repeated handling on feed pellet breakage and durability, a 22.6-t (100...

  19. The effect of polycarbophil on the gastric emptying of pellets.

    Science.gov (United States)

    Khosla, R; Davis, S S

    1987-01-01

    The influence of the putative bioadhesive, polycarbophil, on the gastric emptying of a pellet formulation, has been investigated in three fasted subjects. The pellets were radiolabelled with technetium-99m. Gastric emptying was measured using the technique of gamma scintigraphy. The pellets emptied from the stomach rapidly and in an exponential manner. Polycarbophil did not retard the gastric emptying of the pellets.

  20. Effect of magnesia on the compressive strength of pellets

    Institute of Scientific and Technical Information of China (English)

    Feng-man Shen; Qiang-jian Gao; Xin Jiang; Guo Wei; Hai-yan Zheng

    2014-01-01

    The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO affects the strength of the pellets. Experimental re-sults show that when the MgO-bearing flux content in the pellets increases from 0.0wt%to 2.0wt%, the compressive strength of the pellets at ambient temperature decreases, but the compressive strength of the pellets after reduction increases. Therefore, the compressive strength of the pellets after reduction exhibits no certain positive correlation with that before reduction. The porosity and pore size of all the pellets (with different MgO contents) increase when the pellets are reduced. However, the increase in porosity of the MgO-fluxed pellets is relatively smaller than that of the traditional non-MgO-fluxed pellets, and the pore size range of the MgO-fluxed pellets is relatively narrower. The re-duction swelling index (RSI) is a key factor for governing the compressive strength of the reduced pellets. An approximately reversed linear relation can be concluded that the lower the RSI, the greater the compressive strength of the reduced pellets is.

  1. Incorporation of industrial wastes in wood pellets

    OpenAIRE

    Ferreira, Eduardo Campos; Vilarinho, Cândida; De Castro, F.; Pinto, A.; Ferreira, Pedro Tiago; Teixeira, J. C. F.

    2009-01-01

    ABSTRACT: The present work evaluates the incorporation of industrial wastes (Refuse Derived Fuel-RDF) into biomass for pellet production. Its influence on parameters such as pellet production, combustion and gas emissions was studied for up to 10% of residues incorporation. This approach also deals with the diverting of industrial waste from landfills. The main objectives were: increasing the heat value of the final product, diverting industrial residues with energy potential from landfill an...

  2. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    A UO2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO2-Gd2O3 is in the core and UO2-Er2O3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO2 and additives. The open porosity of UO2 pellet was reduced by only mixing AUC-UO2 powder with ADU-UO2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO2-U3O8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U3O8 single crystals were added to UO2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO2-Gd2O3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  3. Penetrated Shotgun Pellets: A Case Report

    OpenAIRE

    Kara, M Isa; Polat, Hidayet B.; Ay, Sinan

    2008-01-01

    Shotgun wounds can result in devastating functional and aesthetic consequences for patients. There is no consensus in terms of removing or retaining foreign bodies such as shotgun pellets. In this report a 54-year-old man who suffered from accidental shotgun wounds on the face approximately 26 years ago is presented. Although most of pellets were still present, there were no symptoms such as poisoning, fistula formation, recurrent infections, or secondary hemorrhage to date except feeling col...

  4. Dissolution test for homogeneity of mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Experiments were performed to determine the relationship between fuel pellet homogeneity and pellet dissolubility. Although, in general, the amount of pellet residue decreased with increased homogeneity, as measured by the pellet figure of merit, the relationship was not absolute. Thus, all pellets with high figure of merit (excellent homogeneity) do not necessarily dissolve completely and all samples that dissolve completely do not necessarily have excellent homogeneity. It was therefore concluded that pellet dissolubility measurements could not be substituted for figure of merit determinations as a measurement of pellet homogeneity. 8 figures, 3 tables

  5. Ciliates Expel Environmental Legionella-Laden Pellets To Stockpile Food

    OpenAIRE

    Hojo, Fuhito; Sato, Daisuke; Matsuo, Junji; Miyake, Masaki; Nakamura, Shinji; Kunichika, Miyuki; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Takemura, Hiromu; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2012-01-01

    When Tetrahymena ciliates are cultured with Legionella pneumophila, the ciliates expel bacteria packaged in free spherical pellets. Why the ciliates expel these pellets remains unclear. Hence, we determined the optimal conditions for pellet expulsion and assessed whether pellet expulsion contributes to the maintenance of growth and the survival of ciliates. When incubated with environmental L. pneumophila, the ciliates expelled the pellets maximally at 2 days after infection. Heat-killed bact...

  6. Trapping of pellet cloud radiation in thermonuclear plasmas

    International Nuclear Information System (INIS)

    The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)

  7. Comparative properties of bamboo and rice straw pellets

    Directory of Open Access Journals (Sweden)

    Xianmiao Liu

    2013-02-01

    Full Text Available Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP, untreated rice straw pellets (URP, carbonized bamboo pellets (CBP, and carbonized rice straw pellets (CRP met the requirements of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified including dimension, density, and strength. The inorganic ash (15.94 % and gross heat value (15375 J/g of rice straw pellets could not meet the requirement of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified (≤6.0% for PFI Utility and the minimum requirement for making commercial pellets of DIN 51731 (>17500 J/g, respectively. Rice straw pellets have been a main type of biomass solid fuel and widely used. Bamboo pellets have better combustion properties compared with rice straw pellets. It is confirmed that bamboo pellets have great potential as biomass solid fuel, especially with respect to development of commercial pellets on an industrial scale in China. The information provided by this research is useful for development and utilization of bamboo resource and pellets.

  8. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  9. Thermo-Physical Properties of Micro-Cell UO2 Pellets and High Density Composite Pellets for Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    This study presents the design and fabrication of micro-cell UO2 fuel pellets and high-density fuel pellets and also evaluates their out-of-pile performance. Micro-cell UO2 pellets are characterized by enhanced retention capability of their fission products and/or thermal conductivity. High-density pellets are composite pellets consisting of oxide and nitride components and they are expected to offer enhanced uranium density and thermal conductivity. (author)

  10. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Robert; Thyrel, Mikael; Lestander, Torbjoern A. [Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, Box 4097, SE-904 03 Umeaa (Sweden); Sjoestroem, Michael [Department of Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)

    2009-09-15

    Sawdust of conifers as a by-product from saw mills is the most commonly used biomaterial for pellet production in Sweden today. Experiences from the biofuel pellet industry indicate that different biomaterial properties influence the final pellet quality. A systematic study was conducted where five factors were varied according to a two level fractional factorial design. The factors were: tree species (Scots pine, Norway spruce); origin of growth-place (latitudes 57 and 64 N); storage time of sawdust (0 and 140 days), moisture content (9 and 12%) and steam treatment (2 and 6 kg/h). The measured responses bulk density and mechanical durability represented the pellet quality while the press current and the fines produced in the pelletizing process were measures of the pelletizing property. The results showed that low moisture content and long storage time resulted in increased bulk densities and press currents. For mechanical durability and fines, a long storage time and intermediate moisture contents were found favourable. In addition, indications were found that the reduction of fatty and resin acids during the storage also influenced the pelletizing properties and the pellet quality. (author)

  11. The enhanced ASDEX Upgrade pellet centrifuge launcher

    Science.gov (United States)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  12. Estimating shot distance from limited pellets pattern.

    Science.gov (United States)

    Plebe, Alessio; Compagnini, Domenico

    2012-10-10

    Several methods are available for shooting range estimation based on pellets pattern on the target that have a remarkable degree of accuracy. The task is usually approached working under the assumption that the entire distribution of pellets is available for examination. These methods fail, however, when the victim has been hit by a portion of the pattern only. The problem can be solved with reasonable accuracy when there are areas of void in the victim that are adjacent to the area struck by pellets. This study presents a method that can be used in precisely this type of situation, allowing the estimation of shot distance in cases of partial pellet patterns. It is based on collecting distributions in test shots at several distances, and taking samples in the targets, constrained by the shape of the void and the pellet hit areas. Statistical descriptors of patterns are extracted from such samples, and fed into a neural network classifier, estimating shot ranges of distance. PMID:22658795

  13. Lithium Pellet Injector Development for NSTX

    Energy Technology Data Exchange (ETDEWEB)

    G. Gettelfinger; J. Dong; R. Gernhardt; H. Kugel; P. Sichta; J. Timberlake

    2003-12-04

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described.

  14. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  15. Characteristics of pellet injected discharges in TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Finken, K.H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Sato, K.N. [National Institute for Fusion Science, Nagoya 464-01 (Japan); Akiyama, H. [Kumamoto University, Kumamoto 860 (Japan); Fuchs, G.; Jaspers, R. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Kogoshi, S. [Science University of Tokyo, Noda 278 (Japan); Koslowski, H.R.; Mank, G. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany); Sakakita, H.; Sakamoto, M. [National Institute for Fusion Science, Nagoya 464-01 (Japan); Sander, M.; Soltwisch, H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Assocition Euratom-KFA, 52425 Juelich (Germany)

    1995-09-01

    Pellets injected into the TEXTOR tokamak lead to a density profile peaking which is strongest at low plasma current and weakest at high current independent of {ital B}{sub {ital T}}. After the injection two types of density oscillations are excited, the first type follows immediately the injection and the second one is excited with a delay of more than ten milliseconds. The oscillations are also observed in runaway discharges; the synchrotron light from the relativistic electrons drops after the pellet injection and is subsequently modulated due to a trapping of the runaways in magnetic islands. First Faraday measurements have been performed indicating that the distribution of the plasma current is not measurably modified by the pellet. {copyright} {ital 1995 American Institute of Physics.}

  16. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  17. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  18. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.;

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...... no such effect is observed at elevated temperatures. Fuel pellets made from extracted wheat straw have a slightly higher compression strength which might be explained by a better interparticle adhesion in the absence of hydrophobic surface waxes....

  19. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  20. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  1. Development and optimization of solid dispersion containing pellets of itraconazole prepared by high shear pelletization.

    Science.gov (United States)

    Ye, Guanhao; Wang, Siling; Heng, Paul Wan Sia; Chen, Ling; Wang, Chao

    2007-06-01

    This study investigated the solid dispersion containing pellets of itraconazole for enhanced drug dissolution rate. The influence of process parameters used during high shear pelletization on the pellet properties including pellet size and dissolution rate was also studied. Solid dispersions of itraconazole were prepared with Eudragit E100, a hydrophilic polymer, by a simple fusion method followed by powdered and characterized by differential scanning calorimetry and X-ray powder diffraction. Solid dispersions containing pellets were consequently prepared using a lab-scale high shear mixer. In order to improve the product quality, a central composite design was applied to optimize the critical process variables, such as impeller speed and kneading time, and the results were modeled statistically. Itraconazole was presented as an amorphous state in the solid dispersion prepared at a drug to polymer ratio of 1:2. Both studied parameters had great effect on the responses. Powdered solid dispersion and pellets prepared using the optimal parameter settings showed approximately 30- and 70-fold increases in dissolution rate over the pure drug, respectively. Solid dispersion prepared by simple fusion method could be an option for itraconazole solubility enhancement. Pelletization process in high shear mixer can be optimized effectively by central composite design. PMID:17241757

  2. International Trade of Wood Pellets (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  3. Implantation of methodology for determination of fluorine and chlorine contents in fuel pellets by pyrohydrolysis at CDTN-MG (Brazil)

    International Nuclear Information System (INIS)

    The system and the methodology that were developed to perform fuel pellets quality control at CDTN, in relation to fluorine and chlorine contents by pyrohydrolysis ion-selective electrode method, are shown. The method is based on the separation of these halogens in the presence of wet oxygen, in a temperature ranging from 950 to 1.100 deg C. Fluoride and chloride are volatilized as acids, absorbed in a potassium acetate buffer solution, and measured with ion-selective electrodes. The system was utilized to perform the quality control of uranium dioxide and thorium and uranium mixed oxide fuel pellets, manufactured to research cooperative programs between Brazil and Germany. The obtained results showed that the pellets presented contents of such impurities lower than the maximal limits required by the specifications of these fuels. (author)

  4. Decay rate of reindeer pellet-groups

    Directory of Open Access Journals (Sweden)

    Anna Skarin

    2008-06-01

    Full Text Available Counting of animal faecal pellet groups to estimate habitat use and population densities is a well known method in wildlife research. Using pellet-group counts often require knowledge about the decay rate of the faeces. The decay rate of a faecal pellet group may be different depending on e.g. substrate, size of the pellet group and species. Pellet-group decay rates has been estimated for a number of wildlife species but never before for reindeer (Rangifer tarandus. During 2001 to 2005 a field experiment estimating the decay rate of reindeer pellet groups was performed in the Swedish mountains close to Ammarnäs. In total the decay rate of 382 pellet groups in three different habitat types (alpine heath, birch forest and spruce forest was estimated. The slowest decay rate was found in alpine heath and there the pellet groups persisted for at least four years. If decay was assumed to take place only during the bare ground season, the estimated exponential decay rate was -0.027 pellet groups/week in the same habitat. In the forest, the decay was faster and the pellet groups did not persist more than two years. Performing pellet group counts to estimate habitat use in dry habitats, such as alpine heath, I will recommend using the faecal standing crop method. Using this method makes it possible to catch the animals’ general habitat use over several years. Abstract in Swedish / Sammanfattning:Nedbrytningshastighet av renspillningInom viltforskningen har spillningsinventeringar använts under flera årtionden för att uppskatta habitatval och populationstäthet hos olika djurslag. För att kunna använda data från spillningsinventeringar krävs ofta att man vet hur lång tid det tar för spillningen att brytas ner. Nedbrytningshastigheten är olika beroende på marktyp och djurslag. Nedbrytningshastighet på spillning har studerats för bland annat olika typer av hjortdjur, men det har inte studerats på ren (Rangifer tarandus tidigare. I omr

  5. Dysprosium hafnate as absorbing material for control rods

    International Nuclear Information System (INIS)

    Dysprosium hafnate is proposed as a promising absorbing material for control rods of thermal nuclear reactors. The properties of dysprosium hafnate pellets with different Dy and Hf contents are presented in this article. The fluorite phase is characterized by the density range 6.8-7.8 g/cm3 and; the thermal diffusivity achieves 0.58-0.83 mm2/s at 20 deg. C, thermal conductivity of 1.5-2.0 W/(K m) and TLEC of (8.4-8.6) x 10-6 K-1 at 20 deg. C. The temperature dependence of the thermophysical properties of dysprosium hafnate are presented. The neutron absorption efficiency of dysprosium hafnate was estimated in comparison with boron carbide. The radiation resistance of pellets after irradiation in the BOR-60 reactor is presented as well

  6. Influence of consumption on pellets production in Austria

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar

    2008-01-01

    Full Text Available Results of the research on pellet production in Austria as well as the influence of consumption on the production are presented. In that sense, the functional relation between pellet production and pellet consumption obtained by modeling method has been given. The basic elements and trends on pellet market are shown and the summary of other factors influencing pellet production in Austria are explained. The choice of Austria as a market to carry out research is due to the fact that Austria is a leader in Europe in pellet production and consumption and its experiences could be significant for the formation of the market and energy policy in Serbia. This adds to the fact that pellet market, as well as the policy in the field of renewable sources of energy (including pellets, in Serbia are still at the very beginning.

  7. Foreign metallic pellet in the heart

    Institute of Scientific and Technical Information of China (English)

    AN Yong; XIAO Ying-bin; ZHONG Qian-jin

    2007-01-01

    @@ Foreign bodies in the heart are a rare but serious form of cardiac injury. The objects usually are sharp pointed. Such as acupuncture needles,sewing needles, coat hangers, fragments of Kirschner wires, pins, etc. 1 We report a patient with a metallic pellet lodged in the heart, which was accurately diagnosed and successfully removed.

  8. New Results with the Ignitor Pellet Injector

    Science.gov (United States)

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Combs, S. K.; Foust, C. R.; Meitner, S.; Fehling, D.; Roveta, G.

    2011-10-01

    The Ignitor Pellet Injector (IPI) has been developed in collaboration between ENEA and ORNL to provide greater control over the density time evolution and the density peaking in plasmas produced by the Ignitor device. The four barrel, two stage injector has been designed to reach speeds up to 4 km/s, for effective low field side injection into ignited plasmas (Te ≅Ti ≅ 11 keV). The present arrangement accomodates both a two-stage gun and a standard propellant valve on each barrel, allowing seamless switching between standard and high speed operation on any or all gun barrels. The cryostat is actively cooled by a pulse tube refrigerator, equipped with supplemental cooling from a liquid He dewar. The injector has shown very good repeatability; however, intact pellets were not observed over 2 km/s, possibly due to a spinning effect on the pellets at higher speed. The cross sections of the guiding tubes have been increased and other design improvements have been implemented, aimed in particular at reducing leak rates and reducing the dispersion of the pellet trajectories, in preparation of the experimental campaign reported here. Sponsored in part by ENEA of Italy, and by the U.S. D.O.E.

  9. Co-gasification of pelletized wood residues

    Energy Technology Data Exchange (ETDEWEB)

    Carlos A. Alzate; Farid Chejne; Carlos F. Valdes; Arturo Berrio; Javier De La Cruz; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    A pelletization process was designed which produces cylindrical pellets 8 mm in length and 4 mm in diameter. These ones were manufactured using a blend of Pinus Patula and Cypress sawdust and coal in proportions of 0%, 5%, 10%, 20%, and 30% v/v of coal of rank sub-bituminous extracted from the Nech mine (Amaga-Antioquia). For this procedure, sodium carboxymethyl cellulose (CMC) was used as binder at three different concentrations. The co-gasification experiments were carried out with two kinds of mixtures, the first one was composed of granular coal and pellets of 100% wood and the second one was composed of pulverized wood and granular coal pellets. All samples were co-gasified with steam by using an electrical heated fluidized-bed reactor, operating in batches, at 850{sup o}C. The main components of the gaseous product were H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and N{sub 2} with approximate quantities of 59%, 6.0%, 20%, 5.0%, and 9.0% v/v, respectively, and the higher heating values ranged from between 7.1 and 9.5 MJ/Nm{sup 3}.

  10. Development of D2 Pellet Injectors

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, S. A.; Nordskov Nielsen, A.;

    1985-01-01

    A versatile extrusion-type pneumatic gun is described. The extrusion nozzle/gun barrel system can easily be exchanged to produce pellets in the diameter range 0.4—2.0 mm. Velocities in the range 0.1—1.35 km/s are obtained by adjusting the propeller gas pressure. It is proposed that this gun type...

  11. Alpha particle diagnostics using impurity pellet injection

    International Nuclear Information System (INIS)

    We have proposed using impurity injection to measure the energy distribution of the fast confined alpha particles in a reacting plasma. The ablation cloud surrounding the injected pellet is thick enough that an equilibrium fraction Fo∞(E) of the incident alphas should be neutralized as they pass through the cloud. By observing neutrals created in the large spatial region of the cloud which is expected to be dominated by the helium-like ionization state, e.g., Li+ ions, we can determine the incident alpha distribution dnHe2+/dE from the measured energy distribution of neutral helium atoms. Initial experiments were performed on TEXT in which we compared pellet penetration with our impurity pellet ablation model, and measured the spatial distribution of various ionization states in carbon pellet clouds. Experiments have recently begun on TFTR with the goal of measuring the alpha particle energy distribution during D-T operation in 1993--94. A series of preliminary experiments are planned to test the diagnostic concept. The first experiments will observe neutrals from beam-injected deuterium ions and the high energy 3He tail produced during ICH minority heating on TFTR interacting with the cloud. We will also monitor by line radiation the charge state distributions in lithium, boron, and carbon clouds

  12. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    Science.gov (United States)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  13. Paleoparasitological analysis of a raptor pellet from southern Patagonia.

    Science.gov (United States)

    Fugassa, M H; Sardella, N H; Denegri, G M

    2007-04-01

    Organic remains attributable to one regurgitated pellet were examined. The pellet, belonging to a bird of prey and collected from a cave of Southern Patagonia, was dated at 6,540 +/- 110 yr. With standard paleoparasitological procedures, eggs of Capillaria sp. and a mite, Demodex sp., were found. The parasites found in the pellet belong to a rodent ingested by the bird. The present report constitutes the first paleoparasitological study of a regurgitated pellet. PMID:17539429

  14. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  15. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  16. Unidirectional perfect absorber.

    Science.gov (United States)

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  17. Transonic ablation flow regimes of high-Z pellets

    CERN Document Server

    Kim, Hyoungkeun; Parks, Paul

    2015-01-01

    In this letter, we report results of numerical studies of the ablation of argon and neon pellets in tokamaks and compare them with theoretical predictions and studies of deuterium pellets. Results demonstrate the influence of atomic physics processes on the pellet ablation process.

  18. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang;

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture cont...

  19. Optimization of backfill pellet properties AASKAR DP2-Laboratory tests

    International Nuclear Information System (INIS)

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling's ability to

  20. Optimization of backfill pellet properties AASKAR DP2 - Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Linus; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden)

    2012-12-15

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling

  1. 46 CFR 148.04-9 - Fishmeal or scrap, ground or pelletized; fishmeal or scrap, ground and pelletized (mixture).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Fishmeal or scrap, ground or pelletized; fishmeal or scrap, ground and pelletized (mixture). 148.04-9 Section 148.04-9 Shipping COAST GUARD, DEPARTMENT OF... Additional Requirements for Certain Material § 148.04-9 Fishmeal or scrap, ground or pelletized; fishmeal...

  2. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  3. Development of Advanced Pellet Injector Systems for Plasma Fueling

    OpenAIRE

    SAKAMOTO, Ryuichi; Yamada, Hiroshi; LHD Experimental Group

    2009-01-01

    Two types of solid hydrogen pellet injection systems have been developed, and plasma refueling experiments have been performed using these pellet injectors. One is an in-situ pipe-gun type pellet injector, which has the simplest design of all pellet injectors. This in-situ pipe-gun injector has 10 injection barrels, each of which can independently inject cylindrical solid hydrogen pellets (3.4 and 3.8mm in diameter and length, respectively) at velocities up to 1,200m/s. The other is a repetit...

  4. Pelletization processes for pharmaceutical applications: a patent review.

    Science.gov (United States)

    Politis, Stavros N; Rekkas, Dimitrios M

    2011-01-01

    Pellets exhibit major therapeutic and technical advantages which have established them as an exceptionally useful dosage form. A plethora of processes and materials is available for the production of pellets, which practically allows inexhaustible configurations contributing to the flexibility and versatility of pellets as drug delivery systems. The scope of this review is to summarize the recent literature on pelletization processes for pharmaceutical applications, focusing on the awarded and pending patents in this technical field. The first part of the article provides an overview of innovation in pelletization processes, while the second part evaluates their novel applications. PMID:21143125

  5. Pelletizing and combustion of wood from thinning; Pelletering och foerbraenning av gallringsvirke

    Energy Technology Data Exchange (ETDEWEB)

    Oerberg, Haakan; Thyrel, Mikael; Kalen, Gunnar; Larsson, Sylvia

    2007-12-14

    This work has been done in order to find new raw material sources for an expanding pellet industry, combined with finding a use for a forest product that has no market today. The raw material has been forest from early thinning in two typical stands in Vaesterbotten. The purpose has been to evaluate this material as a raw material for producing pellets. Two typical stands have been chosen. One stand with only pine trees and one mixed stand dominated by birch. The soil of these stands was poor. Half of the trees were delimbed by harvest and half of the trees were not delimbed. This formed four different assortments that were handled in the study. After harvesting the assortments were transported to an asphalt area to be stored. Half of the material was stored during one summer and half of the material was stored during one year and one summer. The different assortments were upgraded to pellets and test combusted in the research plant BTC at the Swedish University of Agricultural Sciences, in Umeaa. The upgrading process contains of the following steps: 1.Chipping by a mobile chipper. 2.Low temperature drying (85 deg C). 3. Coarse shredding ({phi}15 mm). 4. Fine shredding ({phi}4-6 mm) and 5. Pelletizing (Die: {phi}8). Samples for fuel analysis were taken during the chipping. Analyses shows that the net calorific value for delimbed assortments are about 0,3 MJ/kg DM higher than for limbed assortments. Pellets made of the assortments Mixed limbed and Pine limbed has shown a net calorific value comparable to stem wood pellets. Pellets made of Birch delimbed show a net calorific value 0,4 MJ/kg DM lower than stem wood pellets. Analyses show that ash contents of the assortment Mixed delimbed was 1 %-unit higher compared to stem wood pellets. The assortment Pine delimbed and Birch delimbed has showed an ash contents comparable with stem wood pellets. The ash melting characteristics can reduce the value of a raw material. Low ash melting temperature for a fuel might cause

  6. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation

    International Nuclear Information System (INIS)

    The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)

  7. Quality properties of fuel pellets from forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lehtikangas, P.

    1999-07-01

    Nine pellet assortments, made of fresh and stored sawdust, bark and logging residues (a mixture of Norway spruce and Scots pine) were tested directly after production and after 5 months of storage in large bags (volume about 1 m{sup 3} loose pellets) for moisture content, heating value and ash content. Dimensions, bulk density, density of individual pellets and durability were also determined. Moreover, sintering risk and contents of sulphur, chlorine, and lignin of fresh pellets were determined. It is concluded that bark and logging residues are suitable raw materials for pellets production, especially regarding durability and if the ash content is controlled. Pellets density had no effect on its durability, unlike lignin content which was positively correlated. The pellets had higher ash content and lower calorific heating value than the raw materials, probably due to loss of volatiles during drying. In general, the quality changes during storage were not large, but notable. The results showed that storage led to negative effects on durability, especially on pellets made of fresh materials. The average length of pellets was decreased due to breakage during storage. Microbial growth was noticed in some of the pellet assortments. Pellets made out of fresh logging residues were found to be weakest after storage. The tendency to reach the equilibrium with the ambient moisture content should be taken into consideration during production due to the risk of decreasing durability.

  8. An advanced cold moderator using solid methane pellets

    Energy Technology Data Exchange (ETDEWEB)

    Foster, C.A. [Cryogenic Applications F, Inc., Clinton, TN (United States); Carpenter, J.M. [Argonne National Laboratory, Argonne, Illinois (United States)

    2001-03-01

    This paper reports developments of the pellet formation and transport technologies required for producing a liquid helium or hydrogen cooled methane pellet moderator. The Phase I US DOE SBIR project, already completed, demonstrated the production of 3 mm transparent pellets of frozen methane and ammonia and transport of the pellets into a 40 cc observation cell cooled with liquid helium. The methane pellets, formed at 72 K, stuck together during the loading of the cell. Ammonia pellets did not stick and fell readily under vibration into a packed bed with a 60% fill fraction. A 60% fill fraction should produce a very significant increase in long-wavelength neutron production and advantages in shorter pulse widths as compared to a liquid hydrogen moderator. The work also demonstrated a method of rapidly changing the pellets in the moderator cell. The Phase II project, just now underway, will develop a full-scale pellet source and transport system with a 1.5 L 'moderator' cell. The Phase II effort will also produce an apparatus to sub-cool the methane pellets to below 20 K, which should prevent the methane pellets from sticking together. In addition to results of the phase I experiments, the presentation includes a short video of the pellets, and a description of plans for the Phase II project. (author)

  9. Tabletting behaviour of pellets of a series of porosities--a comparisonbetween pellets of two different compositions.

    Science.gov (United States)

    Nicklasson, F; Johansson, B; Alderborn, G

    1999-04-01

    The tabletting behaviour of pellets prepared from a 4:1 mixture of dicalcium phosphate dihydrate (DCP) and microcrystalline cellulose (MCC) was studied and compared with the tabletting behaviour of pellets made solely from microcrystalline cellulose (results from an earlier study by Johansson et al.). A series of pellets with porosities in the range 26-55% were prepared and tabletted at applied pressures of 25-200 MPa. Tablets were also formed from lubricated pellets. The degree of compression during compaction was calculated, and the porosity and tensile strength of the tablets and their permeability to air flow were determined. The porosity of the pellets was found to significantly affect the tabletting behaviour of the DCP/MCC pellets. However, the relationship between pellet porosity and tablet data for the DCP/MCC pellets was different from that for the MCC pellets. The DCP/MCC pellets were generally less prone to a reduction in volume during tabletting, and the pore structure of the DCP/MCC tablets was more closed. It was concluded that the DCP/MCC pellets were more rigid and underwent a different mode of deformation during tabletting than the MCC pellets. This mode of deformation was characterised by a more limited bulk deformation and a more extensive surface deformation at the pellet surfaces. The DCP/MCC pellets tended to give tablets of a lower mechanical strength. They were also less sensitive to lubrication in terms of their compactability, which may be explained either by less surface coverage by the lubricant before compression or rupture of the lubricant film during compression caused by the more extensive surface deformation of DCP/MCC pellets.

  10. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  11. Reprint of: Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter K.; Hansen, Hans Ove;

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  12. High-rate behaviour of iron ore pellet

    Directory of Open Access Journals (Sweden)

    Gustafsson Gustaf

    2015-01-01

    Full Text Available Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  13. Effectiveness of using burnable absorbers in a VVER-1000

    International Nuclear Information System (INIS)

    The operational efficiency and safety of a nuclear reactor depends on the method used to compensate its excess reactivity. In a VVER-1000, along with the boron dissolved in the water in the primary coolant loop, the excess reactivity is compensated with a burnable absorber. The main purpose of using burnable absorber rods as a method to compensate for part of the excess reactivity instead of a liquid absorber is to provide the reactor negative feedback with respect to the coolant temperature and consequently to make it self-regulating. There are disadvantages associated with burnable poisons that can be partially corrected by using another type of absorber - an integral absorber. Examples of such an absorber are gadolinium, integrated in the form of an oxide (Gd2O3) with the fuel, and boron, which is incorporated in the form of zirconium diboride (ZrB2) on the surface of the fuel pellets. Successful experience has been accumulated abroad in using both uranium - gadolinium fuel and fuel coated with a thin film containing ZrB2 in PWRs. The effectiveness of using different types of burnable absorbers in a VVER-1000 was investigated, using a stationary three-year fuel cycle as an example. The neutron physics characteristics of the reactor were calculated using the KASSETA-OKA-BIPR-KR program package. The results of the comparative calculations of the fuel loading characteristics of a VVER-1000 show that replacing lumped absorbers with integral ones demonstrates a real possibility of improving the economic indices and safety of nuclear power plants with VVER's

  14. Deuterium pellet injection in the TFR Tokamak

    International Nuclear Information System (INIS)

    Injecting fresh fuel deep inside the plasma of a thermonuclear reactor appears to be necessary; the only way to do that is to inject fast solid deuterium pellets. The existing theoretical, technical and experimental aspects of this method are presented. The experiments on TFR have confirmed that injecting pellets is technically feasible; a new kind of injector is presented. The injection does not degrade stability nor confinement of the plasma. The study of the transient phenomena occuring during the injection has proved to be an efficient way to investigate particles and energy transport in the discharge; in particular, a fast transport phenomenon, similar to those occuring during disruptions, has been studied in details. Conclusions about disruptions are drawn. (Ref 101)

  15. On the pelletizing of sulfide molybdenite concentrate

    International Nuclear Information System (INIS)

    Investigation results are discussed on the process of pelletizing with the use of various binders (water, syrup, sulfite-alcoholic residue and bentonite) for flotation sulfide molybdenite concentrate (∼84 % MoS2) of the Mongolian deposit. It is established that with the use of syrup rather strong pellets (>300 g/p) of desired size (2-3 mm) can be obtained at a binder flowrate of 1 kg per 100 kg of concentrate. The main advantage of using syrup instead of bentonite lies in the fact that in this instance no depletion of a molybdenum calcine obtained by oxidizing roasting of raw ore takes place due to syrup complete burning out. This affects positively subsequent hydrometallurgical conversion because of decreasing molybdenum losses with waste cakes

  16. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  17. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  18. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  19. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  20. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  1. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  2. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  3. Investigation of pellet acceleration by an arc heated gas gun

    International Nuclear Information System (INIS)

    This report describes work on pellet acceleration by means of an arc heated gas gun. The work is a continuation of the work described in RISO-M-2536. The aim of the work is to obtain velocities well above 2 km/s for 3.2 mm diameter deuterium pellets. By means of a cryogenic arc chamber in which the hydrogen propellant is pre-condensed, extruded deutetrium pellets are accelerated up to a maximum velocity of 1.93 km/s. When increasing the energy input to the arc in order to increase the pellet velocity further the heat input to the extrusion/punching pellet loading mechanism was found to be critical: preparation of pellets became difficult and cooling times between shots became inconveniently long. In order to circumvent this problems the concept of a room temperature hydrogen propellant pellet fed arc chamber was proposed. Preliminary results from acceleration of polyurethane pellets with this arc chamber are described as well as the work of developing of feed pellet guns for this chamber. Finally the report describes design consideration for a high pressure propellant pellet fed arc chamber together with preliminary results obtained with a proto-type arc chamber. (author)

  4. Cryogenic pellet production developments for long-pulse plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A. [Oak Ridge National Laboratory, 1Bethel Valley Rd Oak Ridge, TN 37831 (United States)

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  5. RECENT DEVELOPMENTS IN BIOMASS PELLETIZATION – A REVIEW

    Directory of Open Access Journals (Sweden)

    Wolfgang Stelte,

    2012-07-01

    Full Text Available The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.

  6. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  7. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia.

    Science.gov (United States)

    Nair, Ramkumar B; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-12-01

    Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus, Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0-10.0), agitation rate (100-150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0-4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast-fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L). PMID:27103628

  8. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  9. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. MULTIPARTICULATE DRUG DELIVERY SYSTEM: PELLETIZATION THROUGH EXTRUSION AND SPHERONIZATION

    Directory of Open Access Journals (Sweden)

    Anshuli Sharma

    2013-02-01

    Full Text Available Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. Recent trends indicate that multiparticulate drug delivery systems are especially suitable for achieving controlled or delayed release oral formulations with low risk of dose dumping, flexibility of blending to attain different release patterns as well as reproducible and short gastric residence time. Pelletization is a technique used to prepare fine powders into pellets used as multiparticulate drug delivery systems. There are different pelletization techniques used to prepare pellets. Extrusion and spheronization is one of them used to prepare pellets drug loaded beads/pellets for extended release or sustained release oral formulations such as tablets and capsules.

  11. Pellet injectors for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system

  12. Microstability analysis of pellet fuelled discharges in MAST

    CERN Document Server

    Garzotti, L; Roach, C M; Valovic, M; Dickinson, D; Naylor, G; Romanelli, M; Scannell, R; Szepesi, G

    2014-01-01

    Reactor grade plasmas are likely to be fuelled by pellet injection. This technique transiently perturbs the profiles, driving the density profile hollow and flattening the edge temperature profile. After the pellet perturbation, the density and temperature profiles relax towards their quasi-steady-state shape. Microinstabilities influence plasma confinement and will play a role in determining the evolution of the profiles in pellet fuelled plasmas. In this paper we present the microstability analysis of pellet fuelled H-mode MAST plasmas. Taking advantage of the unique capabilities of the MAST Thomson scattering system and the possibility of synchronizing the eight lasers with the pellet injection, we were able to measure the evolution of the post-pellet electron density and temperature profiles with high temporal and spatial resolution. These profiles, together with ion temperature profiles measured using a charge exchange diagnostic, were used to produce equilibria suitable for microstability analysis of th...

  13. Oxidation and pulverization of UO2 and MOX pellets

    International Nuclear Information System (INIS)

    Accidents in plutonium processing plants due to the combustion of kerosene may involve the oxidation and pulverization of nuclear fuel pellets. Hence, some simulation experiments were performed in a glove box to study the behaviour of pellets of different composition (UO2/PuO2, i.e. MOX) and preparation conditions (sintered or green pellets with or without binding agent) as a function of temperature, time and oxidation atmosphere, especially in relation to the formation of coarse and respirable particles. (orig.)

  14. In vivo cellular uptake of bismuth ions from shotgun pellets

    OpenAIRE

    Stoltenberg, M; Locht, L.; Larsen, Agnete; Jensen, D.

    2003-01-01

    Shotgun pellets containing bismuth (Bi) are widely used and may cause a rather intense exposure of some wild animals to Bi. A Bi shotgun pellet was implanted intramuscularly in the triceps surae muscle of 18 adult male Wistar rats. Another group of 9 animals had a Bi shotgun pellet implanted intracranially in the neocortex. Eight weeks to 12 months later the release of Bi ions was analysed by autometallography (AMG) of tissue sections from different organs (bra...

  15. Methods of Nitrogen Oxide Reduction in Pellet Boilers

    OpenAIRE

    Žandeckis, A; Blumberga, D; Rochas, C.; Veidenbergs, I; Siliņš, K

    2010-01-01

    The main goal of this research was to create and test technical solutions that reduce nitrogen oxide emissions in low-capacity pellet boiler. During the research, wood pellets were incinerated in a pellet boiler produced in Latvia with a rated capacity of 15 kW. During the research two NOx emission reduction methods were tested: secondary air supply in the chamber and recirculation of flue gases. Results indicated a drop of NOx concentration only for flue gas recirculation methods. Maximum re...

  16. Depth profiling of irradiated alanine-polymer pellets

    International Nuclear Information System (INIS)

    An alanine-polyethylene (PE) pellet is used as an alanine/electron spin resonance (ESR) dosimeter in radiation facilities. Using the unique depth profiling capability of Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), the chemical structure of the alanine-PE pellet and its fading reaction after γ-ray irradiation have been studied. It was found that PE concentration of the alanine-PE pellet in a surface or near surface is larger that in a bulk. The products resulting from fading were observed in the bulk alanine-PE pellet irradiated and stored for 6 months at room temperature. (author)

  17. Pellet X-ray spectra for laser fusion reactor designs

    International Nuclear Information System (INIS)

    The calculated X-ray energy contents, spectra and pulse lengths for a range of simple target designs that include deuterium-tritium fuel surrounded by mercury are given. The calculations start with a compressed pellet core at the time of ignition and the evolution of the burning pellet is followed by using a plasma hydrodynamic-thermonuclear burn-radiative transfer computer code. It is shown that the pellet-released radiation energy contents, spectra and pulse lengths depend upon pellet mass, density and material structure, and total yield. (author)

  18. Status of the JET high frequency pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Géraud, A., E-mail: alain.geraud@cea.fr [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Lennholm, M. [JET-EFDA CSU, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alarcon, T. [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Bennett, P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Frigione, D. [ENEA, CP 65, Frascati, Rome (Italy); Garnier, D. [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Lang, P.T. [MPI für Plasmaphysik, 85748 Garching (Germany); Lukin, A. [PELIN LLC, 27 Gzhatskaya St., Saint-Petersburg 195220 (Russian Federation); Mooney, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Vinyar, I. [PELIN LLC, 27 Gzhatskaya St., Saint-Petersburg 195220 (Russian Federation)

    2013-10-15

    Highlights: ► JET pellet injection system operational for plasma fuelling and ELM pacing. ► Good reliability of the system for Low Field Side injection of fuelling size pellets. ► ELM triggered by small pellets at up to 4.5 times the intrinsic ELM frequency. ► Pellet parameters range leading to a high probability to trigger ELM identified. -- Abstract: A new high frequency pellet injector, part of the JET programme in support of ITER, has been installed on JET at the end of 2007. Its main objective is the mitigation of the Edge Localized Modes (ELMs), responsible for unacceptable thermal loads on the wall when their amplitude is too high. The injector was also required to have the capability to inject pellets for plasma fuelling. To reach this double goal, the injector has to be capable to produce and accelerate either small pellets to trigger ELMs (pace making), allowing to control their frequency and thus their amplitude, or large pellets to fuel the plasma. Operational since the beginning of the 2009 JET experimental campaign, the injector, based on the screw extruder technology, suffered from a general degradation of its performance linked to extrusion instability. After modifications of the nozzle assembly, re-commissioning on plasma has been undertaken during the first half of 2012 and successful pellet ELM pacing was achieved, rising the intrinsic ELM frequency up to 4.5 times.

  19. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  20. EFFECT OF POLYMERS ON DISSOLUTION PROFILE OF VENLAFAXINE HYDROCHLORIDE PELLETS

    Directory of Open Access Journals (Sweden)

    Devarajan Krishnarajan

    2012-11-01

    Full Text Available The present invention concerns with the development of modified release capsules of Venlafaxine hydrochloride which are designed to modify the drug release by sustained release action.The present study was carried out by advanced pelletization technique. Sustained release capsules of Venlafaxine hydrochloride were formulated by using the pelletization process by drug layering on inert sugar pellets by using sucrose and Hypermellose 606 as a binder. The drug layered pellets were coated by using the HPMC, CMC & with Eudragit grades as a coating material, P.E.G-6000 as a plasticizer, aerosil and magnesium stearate as a glidant & Isopropyl alcohol and water used as solvent materials to sustain the drug release.Formulation of venlafaxine hydrochloride pellets has been done by two stages drug loading and coating. Loading of pellets has been done by coating pan method and the coating has been done by FBC. The coated pellets size and shape is observed during processing.The coated pellets is filled in capsules size no.2 and these pellets were evaluated for appearance ,angle of repose, compressibility, Hausner’s ratio, Friability test, sieve analysis disintegration and dissolution test were performed & capsules were also evaluated for assay, weight variation, content uniformity, disintegration and in-vitro dissolution tests and observed & they are within range. There is no physicochemical interaction between drug and excipient's.

  1. Prolonged release matrix pellets prepared by melt pelletization. I. Process variables

    DEFF Research Database (Denmark)

    Thomsen, L.J.; Schaefer, T.; Sonnergaard, Jørn;

    1993-01-01

    A melt pelletization process was investigated in an 8 litre laboratory scale high shear mixer using a formulation with paracetamol, glyceryl monostearate 40-50, and microcrystalline wax. The effects of jacket temperature, product temperature during massing, product load, massing time and impeller...

  2. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  3. Entrapment of Andrographolide in Cross- Linked Aliginate Pellets: II. Physicochemical Characterization to Study the Pelletization of Andrographolide

    OpenAIRE

    Shariff, Arshia; Manna, PK; Paranjothy, KLK; Manjula, M.

    2007-01-01

    This paper deals with the characterization of pellets containing andrographolide in two parts. The first part deals with characterization of the pellets to ascertain the identity and integrity of andrographolide. Part two involves characterization of the pellets containing Andrographis paniculata extract (33.3%) prepared in the paper I for their micromeritic properties like Particle size, Particle size distribution, Sphericity measurements like Shape ratio and Aspect ratio, Tapped density, Co...

  4. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  5. Automatic control system for uniformly paving iron ore pellets

    Science.gov (United States)

    Wang, Bowen; Qian, Xiaolong

    2014-05-01

    In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.

  6. Quality of Pelleted Olive Cake for Energy Generation

    Directory of Open Access Journals (Sweden)

    Radmilo Čolović

    2012-03-01

    Full Text Available Olive cake is by-product of olive oil production. This material cannot be stored in original condition for a long time because it has high water content and relatively high portion of oil that causes rapid deterioration. Thus it is necessary to investigate possible methods of remediation of such by-product, where utilization for energy generation presents a useful option. Several studies have been conducted on energy generation from olive cake, however not one that includes pelleting as a pre-treatment. Therefore, the aim of this paper was to determine the chemical composition of different cultivars of olive cake, to produce pellets, and determine their basic quality parameters. The pellets obtained from olive cake had mainly satisfactory results regarding their quality in comparison to standards for fuel pellets. It should be kept in mind that these standards are manly for wood pellets, and therefore some lower criteria could be applied for olive cake and such biomass. The highest amount of residual oil and the lowest amount of protein was found in cultivar ‘Buža’ and produced pellets had the smallest abrasion index (8.15%. Other cultivars had lower oil and higher protein content, and abrasion index higher than 10%. For these cultivars preparation of material (conditioning and/or binder adding prior to pelleting is necessary. Higher heating value (HHV and lower heating value (LHV were not significantly influenced by different chemical composition of cultivars, thus attention should be paid on their influence on pelleting process.

  7. Experimental study of curved guide tubes for pellet injection

    International Nuclear Information System (INIS)

    The use of curved guide tubes for transporting frozen hydrogen pellets offers great flexibility for pellet injection into plasma devices. While this technique has been previously employed, an increased interest in its applicability has been generated with the recent ASDEX Upgrade experimental data for magnetic high-field side (HFS) pellet injection. In these innovative experiments, the pellet penetration appeared to be significantly deeper than for the standard magnetic low-field side injection scheme, along with corresponding greater fueling efficiencies. Thus, some of the major experimental fusion devices are planning experiments with HFS pellet injection. Because of the complex geometries of experimental fusion devices, installations with multiple curved guide tube sections will be required for HFS pellet injection. To more thoroughly understand and document the capability of curved guide tubes, an experimental study is under way at the Oak Ridge National Laboratory (ORNL). In particular, configurations and pellet parameters applicable for the DIII-D tokamak and the International Thermonuclear Experimental Reactor (ITER) were simulated in laboratory experiments. Initial test results with nominal 2.7- and 10-mm-diam deuterium pellets are presented and discussed

  8. Automatic defect identification on PWR nuclear power station fuel pellets

    International Nuclear Information System (INIS)

    This article presents a new automatic identification technique of structural failures in nuclear green fuel pellet. This technique was developed to identify failures occurred during the fabrication process. It is based on a smart image analysis technique for automatic identification of the failures on uranium oxide pellets used as fuel in PWR nuclear power stations. In order to achieve this goal, an artificial neural network (ANN) has been trained and validated from image histograms of pellets containing examples not only from normal pellets (flawless), but from defective pellets as well (with the main flaws normally found during the manufacturing process). Based on this technique, a new automatic identification system of flaws on nuclear fuel element pellets, composed by the association of image pre-processing and intelligent, will be developed and implemented on the Brazilian nuclear fuel production industry. Based on the theoretical performance of the technology proposed and presented in this article, it is believed that this new system, NuFAS (Nuclear Fuel Pellets Failures Automatic Identification Neural System) will be able to identify structural failures in nuclear fuel pellets with virtually zero error margins. After implemented, the NuFAS will add value to control quality process of the national production of the nuclear fuel.

  9. FIBRE FLAX PREPLANT TREATMENT BASED ON SEED PELLETING AND ELECTROTECHNICS

    Directory of Open Access Journals (Sweden)

    Spiridonov A. B.

    2013-10-01

    Full Text Available The method of fibre flax preplant seed treatment that includes pelleting in bionanosuspension and influence of electrophysical fields on the pellet is described in the article. Due to given treatment technology it is possible to increase the crop capacity and engineering performance of the flax production

  10. Ablation of Hydrogen Pellets in Hydrogen and Helium Plasmas

    DEFF Research Database (Denmark)

    Jørgensen, L W; Sillesen, Alfred Hegaard; Øster, Flemming

    1975-01-01

    Measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. The investigations were carried out because of the possibility of refuelling fusion reactors by the injection of pellets. The ablation rate found is higher than expected on the basis of a theory...

  11. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  12. Ablation of hydrogen ice pellet in JT-60 plasma

    International Nuclear Information System (INIS)

    Ablation of hydrogen ice pellet in the JT-60 plasma was calculated by ORNL pellet ablation code, which employs a neutral gas shielding model. An optimum scheme to produce central peaked ne profile of ne(O) = 2 X 10∼3 and ne(O)/e> ∼ 3 in the ohmic discharge appears to be a pellet injection with the pellet size of 3.4 mm diameter and velocity of 2 km/s. Under the assumption of electron heat diffusivity Xe = 2 x 1019/ne (m2/s), the 1-D tokamak code (LIBRARY) predicts ∼ 30 % increment of fusion multiplication (Q) for pellet fueled peaked density profile compared with gas fueled discharge. (author)

  13. Straw pellets as fuel in biomass combustion units

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, P.; Larsen, M.G. [Danish Technological Inst., Aarhus (Denmark)

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  14. Mechanical durability and combustion characteristics of pellets from biomass blends.

    Science.gov (United States)

    Gil, M V; Oulego, P; Casal, M D; Pevida, C; Pis, J J; Rubiera, F

    2010-11-01

    Biofuel pellets were prepared from biomass (pine, chestnut and eucalyptus sawdust, cellulose residue, coffee husks and grape waste) and from blends of biomass with two coals (bituminous and semianthracite). Their mechanical properties and combustion behaviour were studied by means of an abrasion index and thermogravimetric analysis (TGA), respectively, in order to select the best raw materials available in the area of study for pellet production. Chestnut and pine sawdust pellets exhibited the highest durability, whereas grape waste and coffee husks pellets were the least durable. Blends of pine sawdust with 10-30% chestnut sawdust were the best for pellet production. Blends of cellulose residue and coals (raw materials. The addition of coal to the biomass in low amounts did not affect the thermal characteristics of the blends. PMID:20605093

  15. ["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].

    Science.gov (United States)

    Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta

    2014-01-01

    Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear. PMID:24855739

  16. Calculation of density profiles in tandem mirrors fueled by pellets

    International Nuclear Information System (INIS)

    We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100

  17. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen.

    Science.gov (United States)

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2002-06-20

    The aim of this study was to evaluate the in-vivo behaviour of matrix pellets formulated with nanocrystalline ketoprofen after oral administration to dogs. No significant differences in AUC-values were seen between pellet formulations containing nanocrystalline or microcrystalline ketoprofen and a commercial ketoprofen formulation (reference: Rofenid 200 Long Acting). C(max) of the formulations containing nano- or microcrystalline ketoprofen was significantly higher compared to reference, whereas t(max) was significantly lower. The in-vivo burst release observed for the spray dried nanocrystalline ketoprofen matrix pellets was reduced following compression of the pellets in combination with placebo wax/starch pellets. These matrix tablets sustained the ketoprofen plasma concentrations during 5.6 and 5.4 h for formulations containing nano- and microcrystalline ketoprofen, respectively.

  18. Modeling of biofuel pellets torrefaction in a realistic geometry

    Directory of Open Access Journals (Sweden)

    Artiukhina Ekaterina

    2016-01-01

    Full Text Available Low temperature pyrolysis also known as torrefaction is considered as a promising pretreatment technology for conversion of biomass into a solid biofuel with enhanced properties in terms of lower moisture and volatile matter content, hydrophobicity and increased heating value. A thermal treatment leads to a non-uniform temperature field and chemical reactions proceeding unevenly within the pellets. However the temperature is assumed to be uniform in the pellets in the majority of models. Here we report on the model of single pellet biomass torrefaction, taking into account the heat transfer and chemical kinetics in the realistic geometry. The evolution of temperature and material density in the non-stationary thermo-chemical process is described by the system of non-linear partial differential equations. The model describing the high-temperature drying of biomass pellet was also introduced. The importance of boundary effects in realistic simulations of biomass pellets torrefaction is underlined in this work.

  19. Upgrade of JT-60 pellet injector for higher velocity

    International Nuclear Information System (INIS)

    Pellet injection experiments have been performed to improve the plasma performance by the JT-60 tokamak from June, 1988. From the results of the experiments, it was found that the plasma confinement time increased up to 40% with pellet injection (velocity over 1.5 km/s), in which was obtained with 10 MW neutral beam injection highly peaked electron density profile. The experimental results suggested that improvement of the plasma confinement time depends on the penetration depth of the pellet into the plasma column, especially into 'q2 to 100 kg/cm2 and from 80degC to 200degC respectively. The upgraded pellet injector can inject, independently, four pellets, two of which are 3.0 mm in diameter x 3.0 mm in length and the other two of which are 4.0 mm in diameter x 4.0 mm in length. (author)

  20. Energy-absorbing effectiveness factor

    OpenAIRE

    Jones, Norman

    2010-01-01

    Abstract A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy-absorbers made from different materials. The infl...

  1. Dissolution experiments of unirradiated uranium dioxide pellets

    International Nuclear Information System (INIS)

    The purpose of this study was to measure the dissolution rate of uranium from unirradiated uranium dioxide pellets in deionized water and natural groundwater. Moreover, the solubility limit of uranium in natural groundwater was measured. Two different temperatures, 25 and 60 deg C were used. The low oxygen content of deep groundwater was simulated. The dissolution rate of uranium varied from 10-7 to 10-8 g cm-2 d-1. The rate in reionized water was one order of magnitude lower than in groundwater. No great difference was observed between the natural groundwaters with different composition. Temperature seems to have effect on the dissolution rate. The solubility limit of uranium in natural groundwater in reducing conditions, at 25 deg C, varied from 20 to 600 μg/l and in oxidizing conditions, at 60 deg C, from 4 to 17 mg/l

  2. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  3. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    Energy Technology Data Exchange (ETDEWEB)

    Varentsov, Victor L., E-mail: v.varentsov@gsi.de [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2011-08-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  4. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    International Nuclear Information System (INIS)

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  5. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    Science.gov (United States)

    Varentsov, Victor L.

    2011-08-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Gañán-Calvo and Barreto (1997,1999) [28,30] combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  6. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  7. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  8. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  9. Hybrid pellets: an improved concept for fabrication of nuclear fuel

    International Nuclear Information System (INIS)

    The feasibility of fabricating fuel pellets using gel-derived microspheres as press feed was evaluated. By using gel-derived microspheres as press feed, the potential exists for eliminating dusty operations like milling, slugging, and granulation, from the pelleting process. The free-flowing character of the spheres should also result in limited dust generation during powder transport and pressing operations. The results of this study clearly demonstrate that fuel pellets can be successfully fabricated on a laboratory scale using UO2 gel microspheres as press feed. Under moderate sintering conditions, 1,5000C for 4 h in Ar-4% H2, UO2 pellets with densities up to 96% TD were fabricated. A range of pellet microstructures and densities were achieved depending on sphere forming and calcining conditions. Based on these results, a set of necessary sphere properties are suggested: O/U less than 2.20, crystallite size less than 500 A, specific surface area greater than 8 m2/g, and sphere size 200 and 400 μm. Preliminary attempts to fabricate ThO2 and ThO2-UO2 pellets using microspheres were unsuccessful because the requisite sphere properties were not achieved. Areas requiring additional development include: demonstration of the process on scaled-up equipment suitable for use in a remote fuel fabrication facility and evaluation of the irradiation performance of pellet fuels from gel-spheres

  10. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  11. Consolidated waste forms: glass marbles and ceramic pellets

    Energy Technology Data Exchange (ETDEWEB)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes.

  12. Laser driven pellet refuelling for JET (and reactor) uses

    International Nuclear Information System (INIS)

    Published estimates of pellet sizes and velocities required to refuel JET and post-JET experiments are summarized. Possible advantages and difficulties of accelerating solid, unconstrained hydrogenic (and also jacketed) pellets to these velocities using laser techniques are then discussed. An essential problem to be solved is adequate axial guidance of the pellet during its acceleration, since laser pulse durations of many sound-transit times (in the solid D2) are necessary to avoid shock-heating the pellet. It is shown that Culham's multikilojoule CO2 TROJAN laser facility is well suited to testing many of the concepts proposed. In particular it is shown that successful verification, and subsequent optimization, of such (novel) techniques would permit single shot tests of contemporary pellet ablation theories by the injection of approximately 1 mm diameter D2 pellets at velocities 6 cm s-1 into the JET plasma. Means for scaling these techniques to repetition rates of order 10 Hz, and to the 1 cm pellet diameters possibly required in a working Tokamak reactor, are also discussed. (author)

  13. Pellet formation of zygomycetes and immobilization of yeast.

    Science.gov (United States)

    Nyman, Jonas; Lacintra, Michael G; Westman, Johan O; Berglin, Mattias; Lundin, Magnus; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2013-06-25

    Pelleted growth provides many advantages for filamentous fungi, including decreased broth viscosity, improved aeration, stirring, and heat transfer. Thus, the factors influencing the probability of pellet formation of Rhizopus sp. in a defined medium was investigated using a multifactorial experimental design. Temperature, agitation intensity, Ca(2+)-concentration, pH, and solid cellulose particles, each had a significant effect on pelletization. Tween 80, spore concentration, and liquid volume were not found to have a significant effect. All of the effects were additive; no interactions were significant. The results were used to create a simple defined medium inducing pelletization, which was used for immobilization of a flocculating strain of Saccharomyces cerevisiae in the zygomycetes pellets. A flor-forming S. cerevisiae strain was also immobilized, while a non-flocculating strain colonized the pellets but was not immobilized. No adverse effects were detected as a result of the close proximity between the filamentous fungus and the yeast, which potentially allows for co-fermentation with S. cerevisiae immobilized in pellets of zygomycetes. PMID:23711366

  14. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen.

    Science.gov (United States)

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2001-05-21

    A controlled release pellet formulation using a NanoCrystal colloidal dispersion of ketoprofen was developed. In order to be able to process the aqueous NanoCrystal colloidal dispersion into a hydrophobic solid dosage form a spray drying procedure was used. The in vitro dissolution profiles of wax based pellets loaded with nanocrystalline ketoprofen are compared with the profiles of wax based pellets loaded with microcrystalline ketoprofen and of a commercial sustained release ketoprofen formulation. Pellets were produced using a melt pelletisation technique. All pellet formulations were composed of a mixture of microcrystalline wax and starch derivatives. The starch derivatives used were waxy maltodextrin and drum dried corn starch. Varying the concentration of drum dried corn starch increased the release rate of ketoprofen but the ketoprofen recovery remained problematic. To increase the dissolution yield surfactants were utilised. The surfactants were either added during the production process of the NanoCrystal colloidal dispersion (sodium laurylsulphate) or during the pellet manufacturing process (Cremophor RH 40). Both methods resulted in a sustained but complete release of nanocrystalline ketoprofen from the matrix pellet formulations.

  15. Overview of recent developments in pellet injection for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephen Kirk, E-mail: combssk@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States); Baylor, L.R.; Meitner, S.J.; Caughman, J.B.O.; Rasmussen, D.A. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States); Maruyama, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Status of the ITER pellet injection system. Black-Right-Pointing-Pointer Fueling requirements for ITER. Black-Right-Pointing-Pointer Summarizes the design/operating parameters and highlights recent developments. Black-Right-Pointing-Pointer Benefits of plasma fueling by the injection of pellets, composed of frozen hydrogen isotopes and millimeters in size, into magnetically confined plasmas (core fueling). Black-Right-Pointing-Pointer ELM mitigation with pellets (ELM pacing). - Abstract: Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outer wall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate of each injector is to be up to 120 Pa m{sup 3}/s, which will require the formation of solid D-T at a volumetric rate of {approx}1500 mm{sup 3}/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectors during the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities is presented, highlighting recent progress.

  16. Fast imaging of intact and shattered cryogenic neon pellets.

    Science.gov (United States)

    Wang, Zhehui; Combs, S K; Baylor, L R; Foust, C R; Lyttle, M S; Meitner, S J; Rasmussen, D A

    2014-11-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  17. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 8000C for 2 hours the pellets are impact resistant and have a leach resistance of 10-4 g/cm2 . day, based on Soxhlet leaching for 100 hours at 950C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  18. Fast Imaging of Intact and Shattered Cryogenic Neon Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory (LANL); Combs, Stephen Kirk [ORNL; Baylor, Larry R [ORNL; Foust, Charles R [ORNL; Lyttle, Mark S [ORNL; Meitner, Steven J [ORNL; Rasmussen, David A [ORNL

    2014-01-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100- m- and sub- s-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of m to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  19. Fast imaging of intact and shattered cryogenic neon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Combs, S. K.; Baylor, L. R.; Foust, C. R.; Lyttle, M. S.; Meitner, S. J.; Rasmussen, D. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-11-15

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  20. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical...... the developed methodology to test the pelletizing properties of thermally pre‐treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 °C resulted in severe degradation of biomass polymers, thus reducing the ability to form strong inter...

  1. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga2O3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  2. Absorbers: Definitions, properties and applications

    Directory of Open Access Journals (Sweden)

    G. Belitskii

    1998-01-01

    Full Text Available Roughly speaking, the absorber is a set, which includes, after finite number of initial states, each trajectory of a transformation of space into itself. This paper deals with the exact definition of absorbers for linear operators, the study of the properties, the applications to “classical” dynamics and to solvability of operator equations. It is expected that the description of the structure of absorbers will add new insights to the recent discussion of nature and content of notion of attractiveness for nonlinear dynamics.

  3. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    This paper reports that the selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth, compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts

  4. Gas Flow Distribution in Pelletizing Shaft Furnace

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; DONG Hui; WANG Guo-sheng; YANG Jun

    2006-01-01

    Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends; among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC; the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone h3 are the main factors affecting flow distribution. In case the ratio of b2/b1, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.

  5. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  6. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy.

    Science.gov (United States)

    Asami, Koji

    2016-04-01

    We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field. PMID:26407874

  7. Role of shielding in modelling cryogenic deuterium pellet ablation

    International Nuclear Information System (INIS)

    For the better characterization of pellet ablation, the numerical LLP code has been enhanced by combining two relevant shielding mechanisms: that of the spherically expanding neutral cloud surrounding the pellet and that of the field elongated ionized material forming a channel flow. In contrast to our expectation the presence of the channel flow can increase the ablation rate although it reduces the heat flux travelling through it. The contribution of the different shielding effect in the ablation process is analysed for several pellet and plasma parameters and an ablation rate scaling is presented based on simple regression in the ASDEX Upgrade pellet and plasma parameter range. Finally the simulated results are compared with experimental data from typical ASDEX Upgrade discharges

  8. Research Progress and Development Trend of Mycelial Pellets

    Directory of Open Access Journals (Sweden)

    Lixin Li

    2015-06-01

    Full Text Available Mycelial pellets are generated by the fermentation of microorganisms as a particle, it has good biological activity, rapid subsidence performance and simple solid-liquid separation technology, so that it can better be used in fermentation production, wastewater treatment and as biological carrier. The researches of using mycelial pellets to ferment production, treat some kinds of wastewater as biological adsorbent and enhance efficiency of treatment wastewater as bio-carrier, were discussed in detail. Development trend of mycelial pellets was presented at end of the article. It was also pointed out that the mycelial pellets as bio-carrier or biological adsorbent will be considered as a wide range of application prospects in wastewater treatment.

  9. Modeling of thermal conductivity of stainless-steelmaking dust pellets

    Institute of Scientific and Technical Information of China (English)

    彭兵; 彭及; 余笛

    2004-01-01

    The thermal conductivity of stainless-steelmaking dust pellets, an important parameter for the direct recycling of the dust, is naturally of interest to metallurgists. The measurement of central temperature and surface temperature was taken in a furnace. The physical model and calculation model for the heating process were set up to check the thermal conductivity of the dust pellets. The physical structure parameters δ and λ of the basic unit are 0.92 and 0.45 based on the calculation. The temperature in the pellet can be expressed in a linear equation a5 Tp =a1 TN +a2 TM +a4. This is convenient to determine the central temperature of a pellet in the direct recycling process.

  10. Feed Pellet and Corn Durability and Breakage During Repeated Elevator Handling

    Science.gov (United States)

    Pelleting of animal feeds is important for improved feeding efficiency and for convenience of handling. Pellet quality impacts the feeding benefits for the animals and pellet integrity during handling. To determine the effect of repeated handling on feed pellet breakage and durability, a 22.6-t (100...

  11. Research Progress and Development Trend of Mycelial Pellets

    OpenAIRE

    Lixin Li; Fang Ma; Zhiwei Song; Ting Li; Erkui Tang

    2015-01-01

    Mycelial pellets are generated by the fermentation of microorganisms as a particle, it has good biological activity, rapid subsidence performance and simple solid-liquid separation technology, so that it can better be used in fermentation production, wastewater treatment and as biological carrier. The researches of using mycelial pellets to ferment production, treat some kinds of wastewater as biological adsorbent and enhance efficiency of treatment wastewater as bio-carrier, were discussed i...

  12. Formulation and characterization of self emulsifing pellets of carvedilol

    OpenAIRE

    Vikas Bhandari; Amelia Avachat

    2015-01-01

    The purpose of present study was aimed at developing self emulsifying drug delivery system in liquid and then in pellet form that would result in improved solubility, dissolution and permeability of the poorly water soluble drug carvedilol. Pellets were prepared using extrusion-spheronization technique incorporating liquid SEDDS (carvedilol, capmul MCM EP, cremophore EL, tween 20, propylene glycol), adsorbents ( and crospovidone), microcrystalline cellulose and binder (povidone K-30). Ternary...

  13. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  14. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  15. Digestibility of pelleted rations containing diverse potato flour and urea

    Directory of Open Access Journals (Sweden)

    Isabel Martinele

    2015-11-01

    Full Text Available The aim of this study was to evaluate ruminal in situ degradability and in vitro digestibility of dry matter (DM in concentrate supplements containing diverse potato flour pelletized with urea (0%, 4%, 8%, and 12% DM. Samples of feeds were incubated for 0, 2, 4, 8, 12, 24, 36, and 48h in the rumen of four fistulated sheep. Level of urea added had no significant effect (P>;0.05 on the soluble fraction (a or potentially degradable fraction (b of the pellets and ranged from 2.1% to 12.2% and 72.9% to 87.5%, respectively. Quadratic effects (P=0.03 of the rate of degradation of fraction "b" ranged from 4.75% h-1to 7.39% h-1; the estimated maximum value at 7.4% h-1was obtained when 5.9% urea was added to the pellet. Quadratic effects (P≤0.02 of the level of urea added to the pellets on the effective degradability (ED of DM were evaluated after considering rumen passage rates of 2.5% h-1and 8% h-1; the maximum values of ED calculated under these rumen passage rates were estimated at 6.3% to 7.3% urea in the pellets. The in vitro digestibility of DM of the pellets showed a quadratic effect (P=0.02 at different levels of urea, with a maximum value of 96.9% achieved when 7.9% urea was added to the pellets. Our results suggest that the addition of 6-8% urea to pelleted feed promotes an increase in the in vitro digestibility and ED of DM.

  16. Are owl pellets good estimators of prey abundance?

    Directory of Open Access Journals (Sweden)

    Analia Andrade

    2016-07-01

    Full Text Available Some ecologists have been skeptics about the use of owl pellets to estimate small mammal’s fauna. This is due to the assumptions required by this method: (a that owls hunt at random, and (b that pellets represent a random sample from the environment. We performed statistical analysis to test these assumptions and to assess the effectiveness of Barn owl pellets as a useful estimator of field abundances of its preys. We used samples collected in the arid Extra-Andean Patagonia along an altitudinal environmental gradient from lower Monte ecoregion to upper Patagonian steppe ecoregion, with a mid-elevation ecotone. To test if owls hunt at random, we estimated expected pellet frequency by creating a distribution of random pellets, which we compared with data using a simulated chi-square. To test if pellets represent a random sample from the environment, differences between ecoregions were evaluated by PERMANOVAs with Bray–Curtis dissimilarities. We did not find evidence that owls foraged non-randomly. Therefore, we can assume that the proportions of the small mammal’s species in the diet are representative of the proportions of the species in their communities. Only Monte is different from other ecoregions. The ecotone samples are grouped with those of Patagonian steppes. There are no real differences between localities in the small mammal’s abundances in each of these ecoregions and/or Barn owl pellets cannot detect patterns at a smaller spatial scale. Therefore, we have no evidence to invalidate the use of owl pellets at an ecoregional scale.

  17. Determination of organochlorine pesticides adsorbed on plastic pellets

    OpenAIRE

    2016-01-01

    In the past years, several studies have revealed the presence of organic contaminants at concentrations from sub ng g–1 to mg g–1 on/in plastic pellets found in coastal environment worldwide [1,2,3]. Plastic pellets are actually industrial raw material, typically in the shape of small granules with a diameter of a few mm. They are categorized as microplastics (< 5 mm). They can be unintentionally lost in the environment during manufacturing and transport. They can subsequently ...

  18. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  19. Key Formulation Variables in Tableting of Coated Pellets

    OpenAIRE

    Murthy Dwibhashyam V.S.N; Ratna J

    2008-01-01

    Multiple unit controlled release dosage forms offer various advantages over their single unit counterparts. Most of these advantages are associated with the uniform distribution of multiparticulates throughout the gastrointestinal tract. Though coated pellets can be filled into hard gelatin capsules, tablet formulation is the preferred one because of various advantages associated with it. However, compression of coated pellets is a challenging task necessitating the optimization of various fo...

  20. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  1. Levels of Polychlorinated Bihpenyls (PCBs) in plastic resin pellets collected from selected beaches in Accra and Tema

    International Nuclear Information System (INIS)

    This research seeks to investigate marine pollution along selected beaches in Accra and Tema in Ghana by measuring the levels of PCBs in plastic resin pellets. The PCB congeners identified included PCB numbers; 28, 52, 101, 105, 153, 156, 138 and 180. PCB numbers was deducted in all sample locations. The mean concentrations values were in the range of 0.4-3.23 μg/kg, 3.43-5.67 μg/kg, 0.33-2.73 μg/kg, 0.13-0.93 μg/kg and 0.13-0.2 μg/kg for PCB-28, 52, 101, 153, 180 respectively. The highest concentration of PCBs recorded in the study was that of PCB numbers 52 (5.67μg/kg), from the independence square beach. Generally, it was observed that the white pellets from most of the beaches absorbed higher levels of PCBs followed by the coloured and fouled pellets (white > coloured > discoloured). However, the coloured pellets from Tema Sakumono Beach retained higher levels of PCBs (10.3μg/kg) than the white pellets. The average concentration of PCB congeners detected ranges between 0.02 μg/kg and 2.25 μg/kg. The percentage distribution of the individual congeners are in the decreasing order of PCB 28 (43%) > PCB 52 (28%) > PCB 101 (11%), > PCB 156 (10%) > PCB 153 (5%), > PCB 180 (2%) > PCB 138 (1%) > PCB 105 (0%). The results also show that the sum total concentration of PCSs from the various sample locations ranged from 6.8 μg/kg to 47 μg/kg, with the highest concentration occurring at the Accra Independence Square Beach and the least concentration at Korle Gonno Beach. The pollution level is in the order of AISB> TSB> TMB> AACB> LB> KGB> (Accra Independence Square Beach > Tema Sakumono Beach > Tema Mighty Beach > Accra Art Center Beach Labadi Beach > Korle Gonno Beach). Results from the INAA for chlorine analysis revealed that coloured pellets had more extracted organochlorine than the fouled and the white pellets (Coloured> Fouled> White). The range of EOCI mean concentration in all samples ranged from 2.24mg/kg to 30.90 mg/kg. The range of EOCI mean

  2. Determination of gas residues in uranium dioxide pellets

    International Nuclear Information System (INIS)

    The measurement of low amounts of residual gases, excluding water, in ceramic grade uranium dioxide pellets, using high temperature vacuum extraction technique, is dealt with. The high temperature extraction gas analysis apparatus was designed and assembled for sequential analysis of up to eight uranium dioxide pellets by run. The system consists of three major units, namely outgassing unit, transfer unit and analytical unit. The whole system is evacuated to a final pressure of less then 10-5 torr. A weighed pellet is transfered into the outgassing unit for subsequent dropping into a Platinum-Rhodium crucible which is heated inductively up to 16000C during 30 minutes. The released gases are imediately transfered from the outgassing to analytical unit passing through a cold trap at -950C to remove water vapor. The gases are transfered to previously calibrated volumetric bulb where the total pressure and temperature are determined. An estimate of the gas content in the pellets at STP condition is obtained from the measured volume, pressure and temperature of the gas mixture by applying ideal gases equation. Analysis to two lots (fourteen samples) of uranium dioxide pellets by the method described here indicated a mean gas content of 0,060cm3/g UO2. The lower limit of this technique is 0,03cm3/g UO2 (STP). The time required for the analysis of eight pellets is about 9 hours

  3. Formulation and characterization of self emulsifing pellets of carvedilol

    Directory of Open Access Journals (Sweden)

    Vikas Bhandari

    2015-09-01

    Full Text Available The purpose of present study was aimed at developing self emulsifying drug delivery system in liquid and then in pellet form that would result in improved solubility, dissolution and permeability of the poorly water soluble drug carvedilol. Pellets were prepared using extrusion-spheronization technique incorporating liquid SEDDS (carvedilol, capmul MCM EP, cremophore EL, tween 20, propylene glycol, adsorbents ( and crospovidone, microcrystalline cellulose and binder (povidone K-30. Ternary phase diagram was constructed to identify different oil-surfactant-cosurfactant mixtures according to the proportion of each point in it. The optimal CAR-SEDDS pellets showed a quicker redispersion with a droplet size of the reconstituted microemulsion being 160.47 nm, which was almost unchanged after solidification. SEM analysis confirmed good spherical appearance of solid pellets; DSC and XRD analysis confirmed that there was no crystalline carvedilol in the pellets. Pellets were then capable of transferring lipophilic compounds into the aqueous phase and significantly enhancing its release with respect to pure drug.

  4. Effect of aluminum oxide on the compressive strength of pellets

    Institute of Scientific and Technical Information of China (English)

    Jian-liang Zhang; Zhen-yang Wang; Xiang-dong Xing; Zheng-jian Liu

    2014-01-01

    Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.

  5. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  6. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    This paper reports on the TFTR tritium pellet injector (TPI) designed to provide a tritium pellet fueling capability with pellet speeds in the 1-to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector (DPI) is being modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle (TPOP) injector experiments conducted on the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller (PLC)

  7. Angular response of alanine samples: From powder to pellet

    International Nuclear Information System (INIS)

    Alanine radicals produced by irradiation can be observed through the ESR measurement of powder or in a pellet with an angular response. There are five main peaks in the ESR alanine spectrum. Usually, the central peak amplitude (A1) is chosen to perform dose measurements because it is the largest. Looking at the angular response it seems that the peak amplitude (A2) shows lower maximal deviation and standard deviations. The angular response exists from the first step of the process as powder through the granular form until the final compact pellet form. Results about the angular response on pure alanine powders and its evolution during the manufacturing process of homemade pellets, as well as commercial pellets from different suppliers are presented. The evolution of the angular response with time gives information about the stability of radicals. The manufacturing process of pellet also influences the stabilization of the radicals produced by irradiation; therefore pellet reproducibility. This study raises questions and makes proposals for a better approach to reduce measurement uncertainties for high and low doses measurements

  8. New fabrication process of large grain pellet for LWR

    International Nuclear Information System (INIS)

    'Oxidation-sintering pellets' and 'Al2O3/SiO2 additive pellets' were developed. Both pellets will be used for high burnup due to their good FGR and PCI properties. In the 'oxidation-reduction sintering process', U3O8 powder is added to UO2 powder as a source of oxygen to produce U4O9 and to get large grain pellets. Atmosphere of the oxidation sintering process is O2+N2 and the sintering temperatures for both the oxidation and the reduction processes are relatively low compared with that for the standard sintering process. In Al2O3/SiO2 addition, Al2O3/SiO2 covers UO2 grain and enhances its grain growth. Contents of Al2O3 and SiO2 are very low (∼50,50 PPM), therefore there is little impact on a reprocessing process. Both type of pellets are under irradiation in test reactors and a commercial reactor as demonstration fuels. We will choose one type of pellet after PIE, and will use it for high burnup (55 GWd/t) as commercial fuels. (author)

  9. Modeling operation mode of pellet boilers for residential heating

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  10. Key formulation variables in tableting of coated pellets

    Directory of Open Access Journals (Sweden)

    Murthy Dwibhashyam V.S.N

    2008-01-01

    Full Text Available Multiple unit controlled release dosage forms offer various advantages over their single unit counterparts. Most of these advantages are associated with the uniform distribution of multiparticulates throughout the gastrointestinal tract. Though coated pellets can be filled into hard gelatin capsules, tablet formulation is the preferred one because of various advantages associated with it. However, compression of coated pellets is a challenging task necessitating the optimization of various formulation and process variables. The key formulation variables include composition, porosity, size, shape and density of the pellets; type and amount of polymer coating; nature, size and amount of tableting excipients. The pellet core should be strong with some degree of plasticity. It should be highly porous, small, with an irregular shape. The critical density to achieve prolonged release was reported to lie between 2.4 and 2.8 g/cm 3 . Acrylic polymer films are more flexible and more suitable for the coating of pellets to be compressed into tablets. Thicker coatings offer better resistance to frictional forces. Solvent based coatings are more flexible and have a higher degree of mechanical stability than the aqueous based ones. The tableting excipients should have cushioning property. They should not be significantly different in size and density from those of the pellet cores in order to avoid segregation. Addition of 30%-60% of tableting excipients is necessary to avoid any damage to the polymer coat and to retain its functional property.

  11. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  12. Roll pelleting. Evaluation of a new technique for producing pellets from bioash suitable for forest nutrient; Valspelletering. Utvaerdering och uppfoeljning av pilotprojekt omfattande ny teknik foer framstaellning av pellets foer aaterfoering av bioaska till skogsmark

    Energy Technology Data Exchange (ETDEWEB)

    Windelhed, Kjell [Sycon Teknikkonsult AB, Stockholm (Sweden)

    2000-05-01

    Roll pelleting has earlier been tested in laboratory scale as a technique for processing wood ash to a product suitable to be spread into forest and thereby returning mineral nutrients to forest soils. The roll pelleting technique for producing pellets has, in this project, been evaluated in full scale. A container-based pelleting machine has been tested during nine months in AssiDomaen Froevi and Stora Enso Fors. Totally about 1500 tons of pellets were produced. The project started with a laboratory leach study. This study showed that pellets produced in a laboratory pelleting machine has a very low leach rate, in fact so low that the pellets seems possible to be spread on clearcuts. The pelleting machine was designed for a capacity of 5 tons per hour but the test indicated that production of 10 tons per hour was possible. The evaluation showed that this technique is suitable for producing pellets intended for returning nutrients to forest soils. However, it is important to start with a well humidified wood ash and to connect the control system for the humidification mixer with the pelleting machine to get an automatic system. Further, spreading of the pellets with a common disc spreader has been tested. The test turned out successful.

  13. Development of a Tritium Extruder for ITER Pellet Injection

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Gouge; P.W. Fisher

    1998-09-01

    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular

  14. Self-Navigation of Laser Drivers on Injected IFE Direct Drive Pellets

    International Nuclear Information System (INIS)

    Full text: There are many serious obstacles complicating the classical direct drive IFE scheme -even putting in doubts its practical feasibility. Among the most serious ones is the insufficient predictability of the injected pellets' trajectories resulting from their expected interactions with remnants of previous fusion explosions due to the considered 5-10 Hz repetition rate. This is one of the reasons why the indirect drive scheme -despite its higher demand on laser energy -seems to be currently considered a more serious IFE candidate. The corresponding hohlraum targets are by three orders of magnitude heavier compared to their direct drive counterparts thus allowing for more reliable prediction of their trajectories. In this contribution a recent progress achieved in the stimulated Brillouin scattering (SBS) phase conjugating mirror (PCM) based inertial fusion energy (IFE) approach proposed recently as an alternative to the IFE classical approach mentioned above will be presented. By taking care of automatic self-navigation of every individual laser beam on injected pellets with no need for any final optics adjustment this technology is of particular importance to the direct drive scheme. Conceptual design of one typical laser driver will be shown and its features discussed. This approach would allow for higher number of laser drivers to be employed. Operating with lower energies (∼ 1 kJ - thus avoiding the optics damage caused by perpendicular SBS) such laser drivers would be easier to design for the required repetition rate. In comparison with the earlier design an upgraded scheme was developed with the low energy illumination laser beam entering the reactor chamber through the same entrance window as used by the corresponding high energy irradiation laser beam. The pellet survival conditions in the period between its low energy illumination and subsequent high energy irradiation were studied and upper limits on the energies absorbed after their

  15. Implementation of an iron ore green pellet on-line size analyser at the QCMC pelletizing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bouajila, A.; Boivin, J.-A. [Centre de recherche minerale due Quebec (CRM), Quebec, PQ (Canada); Ouellet, G.; Beaudin, S. [Quebec Cartier Mining Company (QCMC), Quebec, PQ (Canada)

    1999-07-01

    This paper describes work into the design, implementation and performance evaluation of a 3D-image analysis system at the QCMC pelletizing plant. First, the measurement system is reviewed. Second, the ability of the system to achieve reliable, on-line results on a moving conveyor belt is presented and discussed. The problem of segregation caused by disk classification is particularly addressed, as it hinders full size distribution estimation from the top layer. Finally, pelletizing disk controllability is investigated. (author)

  16. Communal pellet deposition sites of himalayan musk deer (Moschus chrysogaster) and associated vegetation composition

    OpenAIRE

    Shrestha, Bhakta Bahadur

    2012-01-01

    The Himalayan musk deer (Moschus chrysogaster), found in the sub-alpine and alpine vegetation of the Himalayan region, is one of the endangered deer species of Nepal. This study conducted in the Langtang National Park, Nepal analyzed how the musk deer select their communal pellet deposition sites, compared vegetation at the pellet deposition sites with adjacent sites (5-10m from a pellet site) and control sites (30 m from pellet site without pellet groups) and explored the potential role o...

  17. Roasting Properties of Pellets With Iron Concentrate of Complex Mineral Composition%Roasting Properties of Pellets With Iron Concentrate of Complex Mineral Composition

    Institute of Scientific and Technical Information of China (English)

    FAN Jian-jun; QIU Guan-zhou; JIANG Tao; GUO Yu-feng; CAI Mei-xia

    2011-01-01

    Investigation was conducted on roasting properties of pellets with an iron concentrate of complex mineral composition. The results indicated that the pellets of complex mineral composition concentrate required higher pre- heating temperature and longer pr

  18. Absorber materials in CANDU PHWRs

    International Nuclear Information System (INIS)

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in the relatively benign environment of low pressure, low temperature heavy water between neighbouring rows or columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a redesigned back-fit resolved the problem. (author). 3 refs, 8

  19. Wood pellets and work environment; Traepiller og arbejdsmiljoe

    Energy Technology Data Exchange (ETDEWEB)

    Skov, S.

    2012-07-01

    The project aim was to evaluate the working environment in the production, transport and use of wood pellets. Furthermore, obtained knowledge and guidelines should be disseminated to relevant audiences. The first aim was achieved by making dust measurements at various relevant locations and analyze the results. Several technical problems regarding the measurements occurred during the project. In general, the manual handling of pellets often is a short-term task, which limits the amount of dust that can be collected on the sampling filter. The solution to this problem could be the use of in situ monitoring equipment, however, this technic did not work well for wood dust. Dissemination is mainly done by publishing the findings and guidelines on the webpage www.fyrmedpiller.dk. The result shows that there are widespread dust problems associated with the use and handling of pellets. The result may have been expected in the wood pellet industry, which has been reluctant to support this project. Legislation on the working environment has set a threshold limit for the dust concentration in the air on max 1 mg of dust per cubic meters of air over a working day and in over shorter periods this limit may be doubled. These threshold values were exceeded in many cases. Brief overview: The production of pellets takes place in a very dusty working environment, but the specific pelletizing and bagging processes only produce limited amounts of dust. The dust problems are major in the large warehouses where the handling of the raw material for the pellets increases the dust concentration in the air to levels that by far exceeds the legal threshold values. The work is mainly carried out from the cabin of different machines e.g. loaders and bobcats. It turns out that the average dust concentration in these cabins with filters also exceeds the threshold values. The transports of wood pellets include loading, unloading and delivery of loose pellets, all situations that are critical

  20. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  1. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  2. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  3. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  4. Development of automatic surface defect inspection of fuel pellets, (1)

    International Nuclear Information System (INIS)

    Automatic surface defect inspection of nuclear fuel pellets at the last stage of pellet fabrication process has been recently requested in order to reduce the radiation dose of operators. Especially, nuclear fuel such as PuO2-UO2 pellets must be set apart when they do not meet certain standards. Most of the fuel pellets are cylindrical sintered bodies with flat ends. The cracks, chips and fissures of these finished products have been inspected with eyes so far. However, such inspection is not accurate enough to find defects. Moreover, since fuel pellets are radioactive, mechanization of the inspection process is highly desirable in view of safety. At first, the inspection method with optical appliances was inadequate in the reliability and efficiency. In this paper, detection principle, inspection apparatus such as visual inspection machine, cylindrical-chip inspection unit, corner inspection device and cylindrical surface inspection device, and some experimental results, for example, correlation between defective areas and output pressure in corner inspection device, correlation between number of chips at the corner and output pressure, and correlation between output power and defective area on the pneumatic inspection method are reported. (Nakai, Y.)

  5. Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier

    Institute of Scientific and Technical Information of China (English)

    薛爱军; 潘继红; 田茂诚; 伊晓璐

    2016-01-01

    By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a one-dimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyro-lysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.

  6. Blower Gun pellet injection system for W7-X

    International Nuclear Information System (INIS)

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D2) or Hydrogen (H2). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H2 and D2 pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H2 and D2, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  7. Characterization of grape pomace and pyrenean oak pellets

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.T.; Arranz, J.I.; Roman, S.; Rojas, S.; Montero, I.; Lopez, M.; Cruz, J.A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    One possibility for the elimination of the by-products generated in the viticulture industry can be their densification for subsequent use as a solid biofuel. In this work, washed grape pomace has been considered due to its thermal characteristics. Since it could show problems in the densification process, other by-products such as pyrenean oak residues, with good pelleting properties and available in this region, are also used. So that, samples of different concentrations from both residues were densified by means of a flat die pelletizer, obtaining pellets of 6 mm diameter. The densified samples were characterized in terms of the proximate and ultimate analyses, heating value and physical characteristics such as durability or bulk density. Also, the combustion profile of the pellets was studied by thermogravimetry and inorganic emissions such as sulphur dioxide and nitric oxide were considered, by means of coupled mass spectrometry (TG-MS). The results obtained showed that both residues show good characteristics for their densification and manufacture in pellets. Also, they show good physical and thermal properties for its use as biofuel, as well as its different blends. Therefore, it is possible to give a more efficient energetic use to both residues. (author)

  8. Pellet injector development at ORNL [Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  9. Studies on implementation of pellet tracking in hadron physics experiments

    Directory of Open Access Journals (Sweden)

    Pyszniak A.

    2014-01-01

    Full Text Available A system for optical tracking of frozen hydrogen microsphere targets (pellets has been designed. It is intended for the upcoming hadron physics experiment PANDA at FAIR, Darmstadt, Germany. With such a tracking system one can reconstruct the positions of the individual pellets at the time of a hadronic interaction in the offline event analysis. This gives information on the position of the primary interaction vertex with an accuracy of a few 100 µm, which is very useful e.g. for reconstruction of charged particle tracks and secondary vertices and for background suppression. A study has been done at the WASA detector setup (Forschungszentrum Jülich, Germany to check the possibility of classification of hadronic events as originating in pellets or in background. The study has been done based on the instantaneous rate a Long Range TDC which was used to determine if a pellet was present in the accelerator beam region. It was clearly shown that it is possible to distinguish the two event classes. Also, an experience was gained with operation of two synchronized systems operating in different time scales, as it will also be the case with the optical pellet tracking.

  10. Characterization of grape pomace and pyrenean oak pellets

    International Nuclear Information System (INIS)

    One possibility for the elimination of the by-products generated in the viticulture industry can be their densification for subsequent use as a solid biofuel. In this work, washed grape pomace has been considered due to its thermal characteristics. Since it could show problems in the densification process, other by-products such as pyrenean oak residues, with good pelleting properties and available in this region, are also used. So that, samples of different concentrations from both residues were densified by means of a flat die pelletizer, obtaining pellets of 6 mm diameter. The densified samples were characterized in terms of the proximate and ultimate analyses, heating value and physical characteristics such as durability or bulk density. Also, the combustion profile of the pellets was studied by thermogravimetry and inorganic emissions such as sulphur dioxide and nitric oxide were considered, by means of coupled mass spectrometry (TG-MS). The results obtained showed that both residues show good characteristics for their densification and manufacture in pellets. Also, they show good physical and thermal properties for its use as biofuel, as well as its different blends. Therefore, it is possible to give a more efficient energetic use to both residues. (author)

  11. Chemisorption of uranium hexa-fluoride on sodium fluoride pellets

    International Nuclear Information System (INIS)

    This paper comprises kinetics of chemical reaction or rather chemisorption of uranium hexafluoride gas on sodium fluoride pellets. The chemisorption is essentially irreversible at room temperature, while the process reverses at high temperature above 280 deg C. This chemisorption process was experimentally conducted in static condition at room temperature and its kinetics was studied. In the experiments, practically pure UF6 was used and the effects of gas pressure and weight of NaF pellets, were studied. In this heterogenous reaction, in which diffusion through ash layer is followed by chemical reaction, the reaction part is instantaneous and is first order with respect to gas concentration. Since the process of chemisorption is not only pure chemical reaction but also gas diffusion through ash layer, the rate constant depreciates with the percentage loading of UF6 on NaF pellets. The kinetic equation for the above process has been established for a particular size of NaF pellets and pellet porosity. (author)

  12. Particle transport in pellet fueled JET [Jet European Torus] plasmas

    International Nuclear Information System (INIS)

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a 2/s that increases rapidly to ∼0.3 m2/s at r/a = 0.6 and then increases out to the plasma edge as (r/a)2. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs

  13. The influence of compacting pressure on green pellet density in UO2 pelletizing process

    International Nuclear Information System (INIS)

    Generally compacting pressure on UO2 powder in pelletizing process can affect the green density. There are many correlation models presented this effect, derived from the basic phenomena and empiric (experiment) as well In the other hand, those correlation have many limitation on validation due to their assumptions, material conditions and equipment conditions as well. Based on those limitations this research was performed. It was performed with utilizing two different UO2 powder, i.e. UO2 powder resulted from granulation of pre-compacted powder with the compaction force of 2.5 tons, and the other with the compaction force of 3.0 tons. The compaction force was seven times variated within the range between five tons up to 18 tons, with ten replication for each. The green pellets wen visually observed to see the defect and their density were geometrically measured. The data were statistically proceed to prove the hypotheses and to formulate the correlation. The result showed that hypotheses was accepted. It resulted five correlations model formulas within the accepted range. Fifth correlation model showed better correlation than the others, and was able to describe tile phenomena of compaction process. It was a new model as an improvement on the forst model Although, this model had limited validation. It was only valid for compaction force in the range of 5 to 18 tons. The third and fourth models were able to describe the mechanical characteristic of material. It was prove by various comparation, and it complied with their phenomena. The obtained characteristic were strength of material and compressability factor

  14. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  15. Anomalous Diffusion with Absorbing Boundary

    OpenAIRE

    Kantor, Yacov; Kardar, Mehran

    2007-01-01

    In a very long Gaussian polymer on time scales shorter that the maximal relaxation time, the mean squared distance travelled by a tagged monomer grows as ~t^{1/2}. We analyze such sub-diffusive behavior in the presence of one or two absorbing boundaries and demonstrate the differences between this process and the sub-diffusion described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of diffuser between two absorbing boundaries is finite. Our res...

  16. Perfectly Reflectionless Omnidirectional Electromagnetic Absorber

    CERN Document Server

    Sainath, Kamalesh

    2014-01-01

    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

  17. Present and future trends in pellet markets, raw materials, and supply logistics in Sweden and Finland

    Energy Technology Data Exchange (ETDEWEB)

    Selkimaeki, Mari; Mola-Yudego, Blas [Finnish Forest Research Institute, Joensuu Research Unit, Yliopistokatu 6, P.O. Box 68, FI-80101 Joensuu (Finland); University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111 FI-80101 Joensuu (Finland); Roeser, Dominik; Prinz, Robert [Finnish Forest Research Institute, Joensuu Research Unit, Yliopistokatu 6, P.O. Box 68, FI-80101 Joensuu (Finland); Sikanen, Lauri [University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111 FI-80101 Joensuu (Finland)

    2010-12-15

    Wood pellets have become an important fuel in heat and power production, and pellet markets are currently undergoing rapid development. In this paper, the pellet markets, raw materials and supply structures are analyzed for Sweden and Finland, based on a database of the current location and production capacity of the pellet producers, complemented with existing reports and literature. In Sweden, a total of 94 pellet plants/producers were identified, producing 1.4 million tonnes of pellets, while the domestic consumption was 1.7 million tonnes, and about 400,000 t of pellets were imported to fulfil the demand in 2007. In Finland, 24 pellet plants/producers were identified and the production was around 330,000 t while the domestic consumption was 117,000 t in 2007. In Finland, pellet market has been long time export oriented, whereas domestic consumption has been growing mainly in the small scale consumer sector, estimated 15,000 households had pellet heating systems in 2008. In the future, the increasing number of pellet users will require a reliable delivery network and good equipment for bulk pellet deliveries. Provision of new raw materials and ensuring the good quality of pellets through the whole production, delivery and handling chain will be fundamental in order to increase the use of pellets and sustain the ability to compete with other fuels. (author)

  18. Control System of Pellet Injector on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper the control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and provides the interface to the remote system. And the remote control system has acquired present signals with analog input card and perform the actions through digit output card, it also has an interface for Windows programming easily used by the operators when carrying out the pellet injection experiments. Through several HT-7 campaigns, the remote control system has been validated to be feasible and reliable and has made successful shots for studying the interactions between the pellets and plasma.

  19. FORMULATION AND EVALUATION OF SUSTAINED RELEASE PELLETS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Baskara Haripriya

    2013-02-01

    Full Text Available The aim of the present research is to develop and evaluate a better sustained release multiple unit pellets (MUP formulation of Tramadol hydrochloride. Dissolution and diffusion controlled systems have classically been of primary importance in oral delivery of medication because of their relative ease of production and cost compared with other methods of sustained or controlled delivery. Most of these systems are solids, although a few liquids and suspension have been recently introduced. The present work aimed at developing SR pellets of Tramadol HCl by Wurster process. FTIR studies showed no unacceptable extra peaks which confirm the absence of chemical interaction between the drug and polymer. Angle of repose, tapped density, bulk density values for the formulations were within the range which indicates that pellets prepared by Wurster process were satisfactory for further studies. The percentage drug content of Tramadol was determined by extraction with methanol and analyzed by using UV-visible spectrophotometer at 271nm.

  20. Choosing an Appropriate Method for Sustained Release Flurbiprofen Pellet Production

    Directory of Open Access Journals (Sweden)

    S. Zenginer

    2015-07-01

    Full Text Available Flurbiprofen is a slightly water soluble, nonsteroidal anti-inflammatory active ingredient with analgesic and antipyretic activity. The purpose of this study was to develop an appropriate pellet production method for pH independent sustained release pellet formulation of flurbiprofen. Flurbiprofen pellets were produced by three different production methods; Suspension Layering, Extrusion Spherization, Rotagranulation. Although the simple and fast processing properties of Extrusion Spheronization and Rotagranulation methods, according to visual control and comparative dissolution profiles, Suspension Layering method was found more suitable for Flurbiprofen SR (Sustained Release having high drug load for each single dose. Beginning with the spherical core has brought great advantage to Suspension Layering method, since ideal sphericity could not be reached at Extrusion Spheronization and Rotagranulation methods due to limited microcrystalline cellulose amount.

  1. Standard specification for sintered (Uranium-Plutonium) dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This specification covers finished sintered and ground (uranium-plutonium) dioxide pellets for use in thermal reactors. It applies to uranium-plutonium dioxide pellets containing plutonium additions up to 15 % weight. This specification may not completely cover the requirements for pellets fabricated from weapons-derived plutonium. 1.2 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all applicable international, federal, state, and local regulations pertaining to possessing, processing, shipping, or using source or special nuclear material. Examples of U.S. government documents are Code of Federal Regulations Title 10, Part 50Domestic Licensing of Production and Utilization Facilities; Code of Federal Regulations Title 10, Part 71Packaging and Transportation of Radioactive Material; and Code of Federal Regulations Tit...

  2. Formation of particulate matter monitoring during combustion of wood pellete with additives

    Science.gov (United States)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  3. STUDY OF THE INFLUENCE OF COMPLEMENTARY HYDRATION ON THE MECHANICAL PROPERTIES OF SELF-REDUCING PELLETS

    Directory of Open Access Journals (Sweden)

    Felippe de Oliveira Sousa

    2015-06-01

    Full Text Available This study has investigated how different methods and time of complementary hydration affects the cold strength of self-reducing pellets. Identical pellets had been made by the addition of pellet feed, coal, cement and lime and have been subjected to hydration by water immersion or in a moist chamber for different periods. A group of non-hydrated pellets was used as reference for evaluation the effect of hydration. The pellets were then characterized by mechanical tests of compression and tumbling strength. The results have shown an increase in the mechanical properties of pellets and have proved that the hydration by moist chamber was the most efficient method.

  4. Can adult and juvenile European rabbits be differentiated by their pellet sizes?

    Science.gov (United States)

    Delibes-Mateos, Miguel; Rouco, Carlos; Villafuerte, Rafael

    2009-03-01

    Recently, a new method for differentiating juvenile and adult rabbits based on faecal pellet size was published. According to this method, pellets >6 mm diameter are inferred to be deposited by adults, while those test the accuracy of this methodology. Twelve adult rabbits were housed in individual outdoor cages and their pellets were removed every day for 10 consecutive days. Pellets were separated using a sieve according to their size and counted. Results showed that adult rabbits produce pellets >6 mm diameter in the same proportion as those 6 mm, whereas others deposit mostly pellets animals in the absence of validating studies.

  5. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  6. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  7. Development of wood pellets market in South East Europe

    Directory of Open Access Journals (Sweden)

    Glavonjić Branko D.

    2015-01-01

    Full Text Available The paper presents the results of researching wood pellets market in nine countries in South East Europe and Slovakia. Objective of the research was to observe the actual situation regarding the number of producers, size of installed capacities, production volume, foreign trade flows and existing problems and obstacles which significantly limit the sustainable development of wood pellets market in the selected countries. Selection of such an objective results from the fact that according to the stated elements there are no sufficiently reliable data, wherefore this region is a huge gap in numerous reports of international and national organizations and institutions. Results of the conducted research show that in the middle of 2014, 245 producers were engaged in wood pellets production in South East Europe and Slovakia, 116 of which were located in Bulgaria and Serbia. Most of the producers of wood pellets has installed capacities of 1,000-5,000 tons annually, while only 18 factories in the entire region have the installed capacity over 30,000 tons/year. Observed collectively in all stated countries, the total installed capacities for wood pellets production were 2.2 million tons in 2013 and the realized production was 1.36 million tons. The largest part of the produced amounts of wood pellets in this region is exported. 1.06 million tons were exported from the region in 2013, which is 77.9% of the realized production. Such high export is the result of the underdevelopment of the local market (Slovenia is the only exception and the problems which exist and limit its faster development in most countries.

  8. Hydro-mechanical behaviour of bentonite pellet mixtures

    Science.gov (United States)

    Hoffmann, C.; Alonso, E. E.; Romero, E.

    Granular mixtures made of high-density pellets of bentonite are being evaluated as an alternative buffer material for waste isolation. Ease of handling is an often-mentioned advantage. The paper described the experimental program performed to characterize the hydro-mechanical behaviour of compacted pellet’s mixtures used in the engineered barrier (EB) experiment. The material tested in the laboratory was based in the pellet’s mixtures actually used for the emplacement of the EB in situ experiment. Grain size distribution was adjusted to a maximum pellet size compatible with the specimen’s dimensions. Dry densities of statically compacted specimens varied in most of the cases in the range: 1.3-1.5 Mg/m 3. Pellets had a very high dry density, close to 2 Mg/m 3. The outstanding characteristic of these mixtures is its discontinuous porosity. Pore sizes of the compacted pellets vary around 10 nm. However the inter-pellet size of the pores is four to five orders of magnitude higher. This double porosity and the highly expansive nature of the pellets controlled all the hydraulic and mechanical properties of the mixture. Tests performed include infiltration tests using different water injection rates and mechanisms of water transfer (in liquid and vapour phases), suction controlled oedometer tests and swelling pressure tests. The interpretation of some of the tests performed required backanalysis procedures using a hydro-mechanical (HM) computer code. Material response was studied within the framework of the elastoplastic constitutive model proposed by Alonso et al. [Alonso, E.E., Gens, A., Josa, A., 1990. A constitutive model for partially saturated soils. Géotechnique 40 (3), 405-430] (Barcelona Basic Model, BBM). Parameters for the model were identified and also a set of hydraulic laws necessary to perform coupled HM analysis.

  9. Nonisothermal Behavior of Oxidation of Natural Ilmenite Pellet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The nonisothermal behavior of the oxidation of natural ilmenite pellets was interpreted in the light of a nonisothermal kinetic model which fits the experimental results very well.The rate of the overall oxidation was predominantly controlled by the intrapellet diffusion of oxygen and the rate of heat transfer was mainly limited by the heat conduction through the product layer.The oxidation of natural ilmenite pellet can not be treated as an isothermal reaction system within the temperature range of 1073~ 1173K unless the concentration of oxygen in the gaseous reactants is less than 10 mol%.

  10. The Magnetic Shielding Effect of a Re-Fuelling Pellet

    DEFF Research Database (Denmark)

    Chang, C. T.

    1975-01-01

    The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt that the ex......The magnetic shielding effect of a refuelling pellet is considered by first briefly reviewing the existing balloon model. The limitation of the model is pointed out and discussed. Since solid deuterium is an insulator and the ablated plasma is expected to be cold and dense, it is felt...

  11. Quality of Pelleted Olive Cake for Energy Generation

    Directory of Open Access Journals (Sweden)

    Tea Brlek

    2014-02-01

    Full Text Available Normal 0 21 false false false SR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olive cake is by-product of olive oil production. This material cannot be stored in original condition for a long time because it has high water content and relatively high portion of oil that causes rapid deterioration. Thus it is necessary to investigate possible methods of remediation of such by-product, where utilization for energy generation presents a useful option. Several studies have been conducted on energy generation from olive cake, however not one that includes pelleting as a pre-treatment. Therefore, the aim of this paper was to determine the chemical composition of different cultivars of olive cake, to produce pellets, and determine their basic quality parameters. The pellets obtained from olive cake had mainly satisfactory results regarding their quality in comparison to standards for fuel pellets. It should be kept in mind that these standards are manly for wood pellets, and therefore some lower criteria could be applied for olive cake and such biomass. The highest amount of residual oil and the lowest amount of protein was found in cultivar ‘Buža’ and produced pellets had the smallest abrasion index (8.15%. Other cultivars had lower oil and higher protein content, and abrasion index

  12. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  13. First in China Caprolactam Pelletizing Line Put on Stream

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In August 2008 the caprolactam palletizing section at the Shijiazhuang Chemical Fiber Company was put on stream successfully at the first attempt during feeding of process streams. It is told that this is the only one caprolactam pel-letizing facility in China, which is imported from Germany rated at a production capacity of 56 kt/a. Compared to the caprolactam chips, the caprolactam pellets are not prone to moisture pickup and oxidation and can improve the packag-ing environment thanks to its minor amount of pulverized fines to fundamentally prevent safety hazards.

  14. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  15. Vision guided robotic handling for density measurement of fuel pellets

    International Nuclear Information System (INIS)

    Handling and inspection of fuel pellets are routine requirements in nuclear fuel fabrication facilities. In order to minimize human exposure to hazards of radioactivity and to eliminate worker involvement in repetitive and monotonous tasks, it is desirable to deploy robots to perform these tasks. A robot-based system is potentially safe, reliable, consistent and accurate in measurements compared to a manually managed system. This paper describes the development of a vision guided robotic system for the measurement of density of fuel pellets. The system is capable of locating, picking, placing and finally computing density by using immersive technique. (author)

  16. Control System for the NSTX Lithium Pellet Injector

    Energy Technology Data Exchange (ETDEWEB)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  17. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R., E-mail: BaylorLR@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37830-8050 (United States); Lang, P.T. [Max Plank Institute für Plasmaphysik, EURATOM Association., Boltzmannstr. 2, 85748 Garching (Germany); Allen, S.L. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Combs, S.K.; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37830-8050 (United States); Evans, T.E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Huijsmans, G. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Jernigan, T.C. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37830-8050 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Leonard, A.W. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Loarte, A. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Maingi, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maruyama, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Meitner, S.J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37830-8050 (United States); Moyer, R.A. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States); Osborne, T.H. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-08-15

    The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components (PFCs). Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation. A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.

  18. Implantation of methodology for determination of fluorine and chlorine contents in fuel pellets by pyrohydrolysis at CDTN-MG (Brazil); Implantacao no CDTN de metodologia para determinacao de teores de fluor e de cloro em pastilhas combustiveis atraves de pirohidrolise

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Alberto Neto; Avelar, Marta Maria; Morais, Carlos Antonio de; Lula, Zilmar Lima; Silva, Luiz Carlos da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: ranf@cdtn.br; avelarm@cdtn.br; cmorais@cdtn.br; zlula@cdtn.br; lcs@cdtn.br

    2005-07-01

    The system and the methodology that were developed to perform fuel pellets quality control at CDTN, in relation to fluorine and chlorine contents by pyrohydrolysis ion-selective electrode method, are shown. The method is based on the separation of these halogens in the presence of wet oxygen, in a temperature ranging from 950 to 1.100 deg C. Fluoride and chloride are volatilized as acids, absorbed in a potassium acetate buffer solution, and measured with ion-selective electrodes. The system was utilized to perform the quality control of uranium dioxide and thorium and uranium mixed oxide fuel pellets, manufactured to research cooperative programs between Brazil and Germany. The obtained results showed that the pellets presented contents of such impurities lower than the maximal limits required by the specifications of these fuels. (author)

  19. Pellet market, raw materials, handling and logistics in Northern Periphery. PELLETime

    Energy Technology Data Exchange (ETDEWEB)

    Selkimaeki, M.; Prinz, R.; Mola-Yudego, B.; Roeser, D. email: dominik.roser@metla.fi

    2010-07-01

    Wood pellets have become an important fuel in heat and power production. The pellet market and supply structures are currently undergoing rapid development. Ensuring the quality of pellets through the whole production, delivery and handling chain is important in order to increase the use of pellets and sustain its ability to compete with other fuels. This study focuses on the development of the pellet market, raw materials and supply structures mainly in Sweden and Finland. Sweden has a highly developed pellet market, where fuel taxation has promoted the use of wood pellets especially in large scale boilers of >2MW, where more than half of the pellets are combusted. There are about 120 000 households using pellet heating systems in addition to the 20 000 households using pellet stoves. Sweden is the world's largest producer and consumer of pellets. In 2007 a total of 94 pellet plants/producers were producing 1.4 million tonnes of pellets, while at the same time the consumption was 1.7 million tonnes. In addition, about 400 000 tonnes of pellets were imported to meet domestic demand. In Finland, pellet production has been growing steadily despite the fact that domestic consumption has remained relatively small until recently. Today there are 24 pellet plants/producers. In 2007 production was around 330 000 tonnes while the domestic consumption was 117 000 tonnes. The pellet market in Finland has long been export oriented; with 75% and 58% of production being exported in 2006 and 2007, respectively. Domestic consumption has been growing mainly in the small scale consumer sector; it is estimated that 15 000 households had pellet heating systems in 2008. Concerning supply structures, Sweden has well established pellet distribution networks, for domestic household consumers pellets are mainly delivered in sacks (80%) directly from the plant or through extensive network of retailers while bulk deliveries are less common (20%). In Finland pellets are delivered to

  20. Comments on Pellet Ablation in Hot Plasmas and the Problem of Magnetic Shielding

    DEFF Research Database (Denmark)

    Chang, C. T.

    1979-01-01

    Clarifications are provided concerning the consistency of a previously formulated magnetic nozzle model in connection with pellet ablation.......Clarifications are provided concerning the consistency of a previously formulated magnetic nozzle model in connection with pellet ablation....

  1. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  2. DEVELOPMENT AND EVALUATION OF CLOZAPINE PELLETS FOR CONTROLLED RELEASE

    Directory of Open Access Journals (Sweden)

    D.V. Gowda

    2012-08-01

    Full Text Available This research work was done to design oral controlled release matrix pellets of water insoluble drug Clozapine, using blend of Hydroxypropyl cellulose and glyceryl palmito stearate as as matrix polymers, methyl crystalline cellulose as spheronizer enhancer,sodium lauryl sulphate as pore forming agent. Clozapine formulations developed by the pellitization technique by drug loaded pellets were characterized with regard to the drug content, size distribution, Scanning electron microscopy, differential scanning calorimetry, fourier transform infrared spectroscopy and Xray Diffraction study. Stability studies were carried out on the optimized formulation for aperiod of 90 days, 40 ± 2 oC and 75 ± 5% relative humidity. The drug content was in the range of 95.34 – 98.12 %. The mean particle size of drug loaded pellets was in the range 1018 to 1065 mm. SEM photographs and calculated sphericity factor confirms that the prepared formulations were spherical in nature. The drug loaded pellets were stable and compatible as confirmed by DSC and FTIR studies. XRD patterns revealed the crystalline nature of pure clozapine. Loose surface crystal study indicated that crystalline clozapine was observed in all formulation and more clear in formulation A5. Higher amount of clozapine released was observed from formulation A5 and Syclop® 25 mg tablet as compared to all other formulations and mechanism of drug release followed Fickian diffusion. It can be concluded that formulation A5 is an ideal formulation for once a day administration.

  3. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  4. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  5. NTA 8080 analysis of the JaLo pellet chain

    NARCIS (Netherlands)

    Poppens, R.P.

    2011-01-01

    JaLo Biopellets Twente intends to harvest biomass from landscape elements and turn that into pellets for energy purposes. The sustainability of these future operations was assessed through a specially developed sustainability framework consisting of several tools. This NTA 8080 study takes the JaLo

  6. Pellet in the stomach:Where did it come from?

    Institute of Scientific and Technical Information of China (English)

    Baris Dogu Yildiz; Barlas Sulu

    2012-01-01

    Gunshot might have unexpected findings in the victim owing to the ballistics of the injury. The trajectory of the bullet plays a central role in the surprising findings in gunshot injuries. We are presenting a case with pellets seen in the stomach after a gunshot.

  7. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  8. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    Science.gov (United States)

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  9. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    Science.gov (United States)

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  10. Connect Them Bones! An Interdisciplinary Study of Owl Pellets.

    Science.gov (United States)

    Zipko, Stephen J.

    1983-01-01

    Discusses a field/laboratory study of the barn owl in which students collect and dissect owl pellets. Interdisciplinary lessons focus on eco-politics, reconstruction of owl prey skeletons, studies of predator-prey relationships, and construction/installation of nest boxes for owls and other birds. The unit begins and ends with an attitude…

  11. Model analysis for combustion characteristics of RDF pellet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fundamental studies of the combustion characteristics and the de-HCl behavior of a single refuse-derived fuel(RDF) pellet were carried out to explain the de-HCl phenomena of RDF during fluidized bed combustion and to provide data for the development of high efficiency power generation technology using RDF previously. For further interpreting the devolatilization and the char combustion processes of RDF quantitatively, an unsteady combustion model for single RDF pellet, involving reaction rates, heat transfer and oxygen diffusion in the RDF pellet, was developed. Comparisons of simulation results with experimental data for mass loss of the RDF samples made from municipal solid waste, wood chips and poly-propylene when they were heated at 10K/min or put into the furnace under 1073K show the verifiability of the model. Using this model, the distributions of the temperature and the reaction ratio along the radius of RDF pellet during the devolatilization process and the char combustion process were presented, and discussion about the inference of heating rate on the combustion characteristics were performed.

  12. Impurity injection by use of multiple-shell pellet

    International Nuclear Information System (INIS)

    A model of the three-layered multiple-shell pellet is studied in order to apply to the impurity injection experiment. The mass dependence of the ablation is examined by employing the neutral-cloud shielding model. The localization width of the impurity is estimated. (author)

  13. Pellet in the stomach: Where did it come from?

    Directory of Open Access Journals (Sweden)

    Baris Dogu Yildiz

    2012-01-01

    Full Text Available Gunshot might have unexpected findings in the victim owing to the ballistics of the injury. The trajectory of the bullet plays a central role in the surprising findings in gunshot injuries. We are presenting a case with pellets seen in the stomach after a gunshot.

  14. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  15. The sensitivity theory for inertial confinement pellet fusion system

    International Nuclear Information System (INIS)

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  16. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  17. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  18. Performance of a domestic pellet boiler as a function of operational loads: Part-2

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V.K.; De Ruyck, J. [Department Mechanical Engineering, Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Bram, S. [Department Mechanical Engineering, Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Department of Industrial Sciences and Technology, Erasmushogeschool Brussel, Nijverheidskaai 170, 1070 Brussel (Belgium); Gauthier, G. [Unite de Thermodynamique et Turbomachines (TERM), Universite Catholique de Louvain (U.C.L.), 1348 Louvain-la-Neuve (Belgium)

    2011-01-15

    Emissions and efficiency of a pellet boiler (40 kW) at nominal load were compared with emissions and efficiency at reduced load, while fired with six biomass pellets. The pellets include reed canary grass (Phalaris arundinacea), pectin waste from citrus shells (Citrus reticulata), sunflower husk (Helianthus annuus), peat, wheat straw (Triticum aestivum) and wood pellets. The measurements of emissions comprised of carbon monoxide (CO), nitrogen oxides (NO{sub x}), sulphur oxides (SO{sub x}) and flue dust mass concentrations (using DINplus and isokinetic sampling techniques). Emissions varied as a function of operational loads, for each type of pellets. The CO emissions were insignificant with reed canary grass (RCG), citrus pectin waste (CPW) and straw pellets at nominal load, however, at reduced load same pellets emitted 1.9, 4.0 and 7.4 times higher CO than wood pellets, respectively. Peat pellets emitted maximum CO at nominal load (4221.1 mgNm{sup -3}, 12.6 times higher than wood pellets) however; at reduced load CO emission was insignificant. The highest NO{sub x} emissions were reported with CPW, which were 3.4 and 4.6 times higher than wood pellets at nominal load and reduced load, respectively. Dust emissions were highest with sunflower husk and lowest with RCG pellets, at both operational modes. The best performance was reported with wood pellets, followed by RCG and pectin pellets, however, wood pellets combustion emitted 1.7 and 2.0 times higher dust{sub DINplus} than RCG at nominal and reduced loads, respectively. Not only fuel specific combustion optimization but also operational load specific optimization is essential for efficient use of agro-pellets in this type of boilers. (author)

  19. Fabrication of uranium dioxide ceramic pellets with controlled porosity from oxide microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Remy, E. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Picart, S., E-mail: sebastien.picart@cea.fr [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Delahaye, T. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Jobelin, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Dugne, O. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Bisel, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Blanchart, P. [Heterogeneous Materials Research Group, Centre Européen de la Céramique, F-87068 Limoges (France); Ayral, A. [Institut Européen des Membranes, UMR 5635 CNRS-ENSCM-UM2, University of Montpellier, F-34095 Montpellier cedex 5 (France)

    2014-05-01

    This study concerns the fabrication of uranium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Details are given about oxide microsphere synthesis and particularly about loading operation and heat treatments. The fabrication of ceramic pellets is also described and discussed. Results showed that this process allows the preparation of either dense or porous pellets by mixing U{sub 3}O{sub 8} and UO{sub 2}-like microspheres before pressing and sintering.

  20. Properties of Peanut Hull Pellets Prepared by Extruding%挤压制备的花生壳颗粒的性质研究

    Institute of Scientific and Technical Information of China (English)

    陈洪兴; 崔刚; 房健; 邢晓平

    2013-01-01

    Peanut hull pellets were prepared by extruding, and its bulk density was increased 4.44 times than peanut hull. Peanut hull pellets absorbed moisture when exposed to air conditioned to relative humidity of 60%and 80%, and lost moisture when the relative humidity of the air was 50%. The plot of the moisture sorption data for peanut hull pellets at 25 ℃ was sigmoid in shape. While moisture content for peanut hull pellets 13.7 % w.b. and above allows for mildew growth. Yield of water soluble dietary fiber of peanut hull pellets was raised by extruding.%应用挤压制粒技术制备花生壳颗粒,其容积密度是未经挤压花生壳的4.44倍。花生壳颗粒暴露在相对湿度为60%和80%的空气中时吸收水分,在相对湿度为50%的空气中时失去水分。花生壳颗粒在25℃的水分吸附等温线为S形曲线,花生壳颗粒含水量高于13.7%w.b.时不易贮存。挤压操作不但没有破坏花生壳中的功能成分,还能提高可溶性膳食纤维的含量。

  1. Response to Delibes-Mateos et al. : Pellet size matters

    Science.gov (United States)

    Rueda, Marta; Rebollo, Salvador; Gálvez-Bravo, Lucía

    2009-05-01

    In Rueda et al. [Rueda, M., Rebollo, S., Gálvez-Bravo, L., 2008. Age and season determine European rabbit habitat use in Mediterranean ecosystems. Acta Oecol. 34, 266-273] we used a threshold of 6 mm faecal pellet diameter to differentiate between adult and juvenile European rabbit ( Oryctolagus cuniculus) habitat use. Delibes-Mateos et al. designed a housing experiment with 12 adult rabbits and criticised the choice of 6 mm as a threshold to separate adult and juvenile rabbit pellets, claiming that adults can produce pellets both larger and smaller than 6 mm in similar proportions. In response to their criticism we argue the following. The selection of a 6 mm threshold has a bibliographic basis, it is not a new method developed by Rueda et al. and produces consistent results when applied in the field. Assuming that Delibes-Mateos et al. results are accurate, we should have found a greater number of 6 mm, overall and seasonally, which is not the case. We believe that the use of commercial pelleted food, keeping animals isolated in small cages for over a year, and the use of adult rabbits only, makes the experimental design used by these authors not suitable to refute the usefulness of separating rabbit pellets smaller and larger than 6 mm diameter as indicators of changes in the relative abundance of juvenile and adult rabbits in the field. Finally, we agree with the authors that the use of indirect methods of animal aging would require case-specific validation studies; however, we believe these studies should be correctly designed.

  2. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    Energy Technology Data Exchange (ETDEWEB)

    Tuohig, W. (Honeywell FM& T, Kansas City, MO); Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

  3. Role of prereduced pellets in the slag foaming in modern EAFs

    Science.gov (United States)

    Kozhukhov, A. A.

    2013-06-01

    The problems of electric arc furnace slags are considered, and the role of prereduced pellets in the slag foaming in electric arc furnaces is studied. The optimum rate of loading of prereduced pellets into a furnace that ensures effective steelmaking slag foaming is determined as a function of the degree of pellet prereduction.

  4. Intertrial Pellets Influence the Acquisition and Expression of Timed Appetitive Responding in Rats

    Science.gov (United States)

    Williams, Douglas A.; Lussier, April L.

    2011-01-01

    Two experiments examined temporally based changes in the conditioned magazine-entries of rats when a target food pellet arrived at a fixed time before the termination of a conditioned stimulus. Both experiments found that increasing the rate of intertrial pellets systematically interfered with the rate of acquisition. When intertrial pellets were…

  5. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  6. Glueing of solar absorbers; Solarabsorber kleben

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-04-20

    Bonding technologies in absorber fabrication are evolving. After soldering, ultrasonic welding and laser welding, glueing is the latest development. The Go Innovate AG company developed a process for glueing the most varied absorber materials.

  7. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  8. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover.

    Science.gov (United States)

    Hoover, Amber N; Tumuluru, Jaya Shankar; Teymouri, Farzaneh; Moore, Janette; Gresham, Garold

    2014-07-01

    Pelletization process variables, including grind size (4, 6mm), die speed (40, 50, 60 Hz), and preheating (none, 70°C), were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also, the durability of the pelletized AFEX corn stover was>97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6mm) had similar or lower sugar yields. Pellets generated with 4mm AFEX-treated corn stover, a 60Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  9. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri; Garold L. Gresham; Janette Moore

    2014-07-01

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  10. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  11. Differences between pellets from biomass made in manufactory and in domestic conditions

    Science.gov (United States)

    Holubcik, Michal; Jachniak, Ewa; Smatanová, Helena

    2014-08-01

    Pellets from biomass are more and more used. As input material can be used various types of biomass, like wood, straw, grass or different organic materials. A lot of people want to produce pellets from biomass in domestic condition. But qualities of these pellets don't achieve quality of pellets made in manufacture. In this work are compared energetic and qualitative parameters of pellets made from spruce wood and wheat straw in domestic condition and in manufacture. There are results from moisture content, total heating value, mechanical durability, amount of fines and disintegration time in water test.

  12. Ablation of a Deuterium Pellet in a Fusion Plasma Viewed as a Stopping Power Problem

    DEFF Research Database (Denmark)

    Chang, C. T.

    1983-01-01

    sublimation energy of hydrogen isotopes, shortly after the direct impact of the electrons, a dense cloud forms around the pellet. This cloud of ablated material then serves as a stopping medium for the incoming electrons, thus prolongs the pellet life-time. As a result, the deep penetration of the pellet into......At present, the most exploited technology to refuel a future fusion reactor is the high speed injection of macroscopic size pellet of solid hydrogen isotopes. The basic idea is that the ablation of a pellet in a fusion reactor is mainly caused by thermal electrons (~ 10 keV) /1/. Due to the low...

  13. "Proposed High Speed Pellet Injection System ""HIPEL"" for Large Helical Device"

    OpenAIRE

    Sudo, S.; Kanno, M.; Kaneko, H.; Saka, S.; Shirai, T; Baba, T

    1993-01-01

    "From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order...

  14. Proposed High Speed Pellet Injection System "HIPEL" for Large Helical Device

    OpenAIRE

    Sudo, S.; Kanno, M.; Kaneko, H.; Saka, S.; Shirai, T; Baba, T

    1993-01-01

    From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order ...

  15. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.;

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency....... Current available theories of pellet ablation are then discussed. For a given penetration depth inside the reactor, the necessary pellet injection speed is examined in terms of the ablation theory adopted and the temperature and density profiles of the reactor plasma. The interaction between the injected...

  16. A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.

    Science.gov (United States)

    Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy

    2015-06-20

    The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. PMID:25835791

  17. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets.

    Science.gov (United States)

    Wang, Congwei; Peng, Jianghong; Li, Hui; Bi, Xiaotao T; Legros, Robert; Lim, C J; Sokhansanj, Shahab

    2013-01-01

    Oxidative torrefaction of sawdust with a carrier gas containing 3-6% O(2) was investigated in a TG and a fluidized bed reactor, with the properties of the torrefied sawdust and pellets compared with traditional torrefaction without any O(2), as well as the dry raw material. It is found that the oxidative torrefaction process produced torrefied sawdust and pellets of similar properties as normally torrefied sawdust and corresponding pellets, especially on the density, energy consumption for pelletization, higher heating value and energy yield. For moisture absorption and hardness of the torrefied pellets, the oxidative torrefaction process showed slightly poor but negligible performance. Therefore, it is feasible to use oxygen laden combustion flue gases as the carrier gas for torrefaction of biomass. Besides, torrefied sawdust can be made into dense and strong pellets of high hydrophobicity at a higher die temperature than normally used in the production of traditional control pellets.

  18. Proposed high speed pellet injection system 'HIPEL' for Large Helical Device

    International Nuclear Information System (INIS)

    From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order to obtain the pellet velocity range of 3 km/s. Based upon the above results, a high speed flexible multiple-pellet injection system 'HIPEL' for LHD is proposed. HIPEL consists of independent (1) 10 two-stage gun barrels and (2) 10 single-stage gun barrels. It has multi purposes such as refueling and flexible density profile control, diagnostics and the other functions. (author)

  19. Ammonia-pellet generation system for the Baseball II-T target plasma experiment

    International Nuclear Information System (INIS)

    The irradiation of a small pellet by a pulsed laser is one method of producing a startup target plasma for plasma experiments employing neutral-beam injection. A system for generating charged, uniformly sized, solid-ammonia, 150-μm-diam, spherical pellets having a charge-to-mass ratio of 10-4 C/kg is described. These pellets are electrostatically guided at a speed of 32 m/sec (over a distance of several meters) to a laser focal zone. This complete system (pellet generation and pellet guidance) has been successfully operated on a 3-m test stand where 250-μm-diam pellets were regularly irradiated by a pulsed, 30-J CO2 laser. The system is now installed on the Baseball II-T experiment; in preliminary tests, several 150-μm-diam pellets were irradiated with the pulsed 300-J CO2 laser

  20. SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets.

    Science.gov (United States)

    Tooyserkani, Zahra; Kumar, Linoj; Sokhansanj, Shahab; Saddler, Jack; Bi, Xiaotao T; Lim, C Jim; Lau, Anthony; Melin, Staffan

    2013-02-01

    Densification can partially resolve the logistical challenges encountered when large volumes of biomass are required for bioconversion processes to benefit from economies-of-scale. Despite the higher bulk density of pellets, their lower mechanical strength and sensitivity to moisture are still recurring issues hindering long term transportation and storage. In this study, we have evaluated the potential benefits of SO(2)-catalyzed steam treatment to achieve both the needed size reduction prior to pelletization while improving the stability of the produced pellets. This pretreatment substantially reduced the particle size of the woodchips eliminating any further grinding. The treated pellets had a higher density and exhibited a two-time higher mechanical strength compared to untreated pellets. Despite a higher moisture adsorption capacity, treated pellets remained intact even under highly humid conditions. The high heating values, low ash content and good overall carbohydrate recovery of treated pellets indicated their potential suitability for both biochemical and thermochemical applications.

  1. Wood pellet heating plants. Market survey. 4. upd. ed.; Hackschnitzel-Heizung. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Wood pellets from the agriculture and forestry offer an enormous potential for the development of the use of bio energy in the private area as well as in industry and commerce. Within the market survey 'Wood pellet heating systems', the Fachagentur Nachwachsende Rohstoffe e.V. (Guelzow-Pruezen, Federal Republic of Germany) reported on the targets and measures of the Federal Government with respect to the heating with biomass, wood pellets as solid biofuels (standardization of solid biofuels, supply, features, evaluation), wood pellet heating plants, economic considerations, market survey on wood pellet heating plants as well as list of addresses for producers of wood pellet heating plants and suppliers of wood pellets.

  2. The CIT [compact ignition tokamak] pellet injection system: Description and supporting research and development

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) will use an advance, high-velocity pellet injection system to achieve and maintain ignited plasmas. Two pellet injectors are provided: a moderate-velocity (1-to 1.5-km/s), single-stage pneumatic injector with high reliability and a high-velocity (4- to 5-km/s), two-stage pellet injector that uses frozen hydrogenic pellets encased in sabots. Both pellet injectors are qualified for operation with tritium feed gas. Issues such as performance, neutron activation of injector components, maintenance, design of the pellet injection vacuum line, gas loads to the reprocessing system, and equipment layout are discussed. Results and plans for supporting research and development (R and D) in the areas of tritium pellet fabrication and high-velocity, repetitive two-stage pneumatic injectors are presented. 7 refs., 4 figs., 2 tabs

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. Preparation of Fluidization Feed of UO2 Pellets by Oxidation

    International Nuclear Information System (INIS)

    The investigation of oxidation of uranium dioxide (UO2) pellets to thetri uranium octoxide (U3O8) powder had been carried. Several factor suchtemperature, time of oxidation and the concentration of air are important.The oxidation of UO2 pellet are carried out on electric furnace atatmosphere as media. The oxidation temperature started at 300 oC, 400 oC,500 oC, and 600 oC along 1 hour. The time oxidation removed to 2 hours and3 hours. The efficiency of oxidation are the ratio of the weight of thepowder product are the uranium content, true density, and specific surfacearea. Result the optimum temperature are 500 oC along 3 hours, uraniumcontent : 84.78%, true density: 8.8293 g/cm3 and specific surface area :0.389071 m2/g. (author)

  5. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  6. Density gradients in ceramic pellets measured by computed tomography

    International Nuclear Information System (INIS)

    Density gradients are of fundamental importance in ceramic processing and computed tomography (CT) can provide accurate measurements of density profiles in sintered and unsintered ceramic parts. As a demonstration of this potential, the density gradients in an unsintered pellet pressed from an alumina powder were measured by CT scanning. To detect such small density gradients, the CT images must have good density resolution and be free from beam-hardening effects. This was achieved by measuring high-contrast (low-noise) images with the use of an Ir-192 isotopic source. A beam-hardening correction was applied. The resulting images are discussed relative to the transmission of forces through the powder mass during the pelletizing process

  7. Snake perturbation during pellet injection in the EAST tokamak

    Science.gov (United States)

    Yao, Xingjia; Hu, Jiansheng; Xu, Liqing; Xu, Zong; Chen, Yue; Li, Changzheng; Liu, Haiqing; Zhao, Hailing; Duan, Yanmin; Shi, Tonghui; Shen, Wei; EAST Team

    2016-11-01

    The pellet-induced snake oscillation was observed by soft x-ray (SXR) diagnostic in EAST for the first time after a fueling-sized pellet penetrated the q  =  1 surface. The snake phenomenon has a long lifetime with a helicity of m  =  1 and n  =  1. Basic behaviors of the snake, including the triggering condition, interaction with the sawtooth and snake rotation frequency, were discussed in detail by multiple core diagnostics. The snake location was also analyzed through observation of the vertical SXR arrays and raw SXR brightness profiles. It is clear that the snake resided in a broad region between the magnetic axis and the q  =  1 surface derived from equilibrium reconstruction. This investigation is beneficial for the understanding of the snake formation for EAST and future devices, like ITER and DEMO.

  8. Fabrication characteristics of DUPIC fuel pellets at DFDF

    International Nuclear Information System (INIS)

    In this study, based on the simulated DUPIC fuel fabrication experiment and DUPIC fuel characterization experiment at PIEF, DUPIC fuel manufacturing technologies and processes have been developed at DFDF(DUPIC Fuel Development Facility, IMEF M6). Using DUPIC powder prepared by the oxidation and reduction processes, the DUPIC fuel pellets were fabricated and characterized in terms of the process parameters such as the burn-up of spent fuel, compaction pressure, sintering temperature, and sintering time. As a result of the experiment, DUPIC pellets were characterized by 10.02 ∼ 10.43 g/cm3 of sintered density, 7.26 ∼ 9.48μm of grain size, and less than Ra 0.8μm of surface roughness at hot cell. The optimum DUPIC processes have been established based on the results of the experiment

  9. Pellets de trigo e soja produzidos por extrusão Wheat and soybean pellets produced by extrusion-cooking

    Directory of Open Access Journals (Sweden)

    Sin Huei Wang

    2008-09-01

    Full Text Available A mistura de trigo e soja representa uma importante fonte calórico-protéica com proteínas de boa qualidade. Apesar disso, a utilização da soja como ingrediente tem sido limitada pelo seu sabor de feijão cru (beany flavor, o qual é melhorado pelo processo de extrusão. Foram estudados os efeitos de umidade da mistura, Temperatura de Barril (TB e Velocidade de Rotação de Parafuso (VRP, Nº 5 do extrusor no Índice de Expansão (IE, no Índice de Solubilidade em Água (ISA e nas características sensoriais de pellets produzidos com mistura de trigo e soja (90:10, objetivando a otimização deste processo para a obtenção de pellets fritos com melhores qualidades sensoriais. A farinha mista crua foi extrusada em 2 umidades (32 e 35%, 4 TB (60 a 90 °C e 4 VRP (60 a 150 rpm, totalizando 32 tratamentos. O pellet frito, preparado com a farinha mista com 32% de umidade e extrusada em 60 rpm a 80 °C, apresentou o maior IE e as melhores qualidades sensoriais (aparência, sabor e textura, sendo preferido pela equipe de provadores não treinados, tanto com sabor de bacon como com sabor de queijo.The mixture of wheat with soybean represents an important calorie-protein source with good protein quality. In spite of this, the use of soybeans as an ingredient has been limited by their beany flavor, which is improved by the extrusion process. Effects of mixture moisture, Barrel Temperature (BT and Screw-Speed (SS, Nº 5 on Expansion Index (EI, Water Solubility Index (WSI and sensory characteristics of pellets produced with a wheat-soybean (90:10 mixture were studied, in order to optimize this process for obtaining fried pellets with better sensory qualities. Raw mixed flour was extruded at two moisture contents (32 and 35%, four BT (60 to 90 °C and four SS (60 to 150 rpm, totalizing 32 treatments. The fried pellets, prepared with the mixed flour with 32% moisture and extruded at 60 rpm and 80 °C, presented the greatest EI and the best sensory

  10. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    Science.gov (United States)

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  11. Heating system of pellet samples integrated with terahertz spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    This article describes automation of temperature-dependent terahertz spectroscopic experiments. The proposed dual-heater temperature controller based on a cascade proportional-integral-derivative algorithm provides smooth temperature changes in the polyethylene-based pharmaceutical pellet samples. The device has been integrated with a terahertz time-domain spectrometer. Thermodynamic experiments can now be performed without any probe inserted into the measured sample. Selected results of temperature-induced evolution in terahertz spectra are presented.

  12. Design and Evaluation of Self-Nanoemulsifying Pellets of Repaglinide

    OpenAIRE

    Desai, N S; Nagarsenker, M. S.

    2013-01-01

    The aim of study was to develop self-nanoemulsifying pellets (SNEP) for oral delivery of poorly water soluble drug, repaglinide (RPG). Solubility of RPG in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). The surfactants and cosurfactants were screened for their ability to emulsify oily phase. Ternary phase diagrams were constructed to identify nanoemulsification area for the selected systems. SNEDDS formulations with glo...

  13. Quality of Pelleted Olive Cake for Energy Generation

    OpenAIRE

    Tea Brlek; Neven Voća; Tajana Krička; Đuro Vukmirović; Radmilo Čolović

    2012-01-01

    Olive cake is by-product of olive oil production. This material cannot be stored in original condition for a long time because it has high water content and relatively high portion of oil that causes rapid deterioration. Thus it is necessary to investigate possible methods of remediation of such by-product, where utilization for energy generation presents a useful option. Several studies have been conducted on energy generation from olive cake, however not one that includes pelleting as a pre...

  14. Emissions from realistic operation of residential wood pellets heating systems

    OpenAIRE

    Win, Kaung Myat

    2015-01-01

    Emissions from residential combustion appliances vary significantly depending on the firing behaviours and combustion conditions, in addition to combustion technologies and fuel quality. Although wood pellet combustion in residential heating boilers is efficient, the combustion conditions during start-up and stop phases are not optimal and produce significantly high emissions such as carbon monoxide and hydrocarbon from incomplete combustion. The emissions from the start-up and stop phases of...

  15. Thermal Diffusivity of Carbon Pellets (CPs) Treated with KOH

    OpenAIRE

    M. Haydari; M. M. Moksin; A. E. Abdelrahman; M. Deraman; W. M.M. Deraman; W. M.M. Yunus; I. V Grozescu

    2008-01-01

    In this work thermal diffusivity of carbon pellets (CPs) treated with different percentage level of KOH has been studied. Thermal diffusivity measurements were carried out at room temperature by using photoflash technique. The technique consists of a camera flash having approximately 5 ms pulse duration for heating and a thin film of polyvinylidene difluoride (PVDF) attached to the back of the samples for signal detection. Eight carbon samples treated with different percentage level of KOH (0...

  16. The interaction between clothing and air weapon pellets.

    Science.gov (United States)

    Wightman, G; Wark, K; Thomson, J

    2015-01-01

    Comparatively few studies have been carried out on air weapon injuries yet there are significant number of injuries and fatalities caused by these low power weapons because of their availability and the public perception that because they need no licence they are assumed to be safe. In this study ballistic gel was tested by Bloom and rupture tests to check on consistency of production. Two series of tests were carried out firing into unclothed gel blocks and blocks loosely covered by different items of clothing to simulate attire (tee shirt, jeans, fleece, and jacket). The damage to the clothing caused by different shaped pellets when fired at different ranges was examined. The apparent hole size was affected by the shape of pellet (round, pointed, flat and hollow point) and whether damage was predominantly caused by pushing yarn to one side or by laceration of the yarn through cutting or tearing. The study also compared penetration into clothed gel and unclothed gel under identical conditions, and loose clothing greatly reduced penetration. With loose clothing at 9.1 m range clothing reduced penetration to 50-70% of the penetration of unclothed gel but at 18.3m range only 7 out of 36 shots penetrated the gel. This cannot be accounted for by the energy loss at the longer range (3-7% reduction from 9.1 m to 18.3 m range in unclothed gels) and it is suggested that impulse may have a role to play. Shots that did not penetrate the gel were used to estimate the possible stopping time for the pellet (around 75 μs) and force (1700 N) or stress (100 MPa) required to bring the pellet to a halt. Even with these low energy projectiles, cloth fibres were entrained in the gel showing the potential for penetration of the body and subsequent infection. PMID:25460102

  17. Demand Side Management in Pellet Production: Internal and External Factors

    Science.gov (United States)

    Vigants, Haralds; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    This paper demonstrates a demand side management case study: how to save energy and how research and data analysis help to create an energy management system in a pellet production facility; and shows ways to implement the EU energy efficiency directive in production facilities. The study carried out in this research serves as a far-reaching step that can be taken to improve energy efficiency during the operation mode of technological equipment. The benchmarking methodology is used for analysis of results. Internal and external factors and indicators, which affect energy management potential in pellet production are analysed. Analysis of external factors is based on the state legal framework regulating the development of the energy sector. Methodology on the analysis of energy demand includes the internal energy management of an enterprise. The experimental results discussed in this paper show that particular steps, which are oriented to specific use of technological equipment, could play significant role in energy efficiency improvement in industry which is illustrated by the pre-milling process in the pellet production system using power.

  18. The quality analyses of olive cake fuel pellets - mathematical approach

    Directory of Open Access Journals (Sweden)

    Brlek Tea I.

    2016-01-01

    Full Text Available This article investigates the effect of processing parameters (conditioning temperature and binder content, on final quality of produced agro-pellets for heat energy generation, obtained from four different olive cultivars using different technological parameters. Technological, physical and chemical properties of pellets (carbon, hydrogen, nitrogen and sulphur content, particle density, abrasion length, moisture, ash content, higher and lower heating values, fixed carbon and volatile matter content have been determined to assess their quality. The performance of Artificial Neural Network (ANN was compared with the performance of second order polynomial (SOP model, as well as with the obtained experimental data in order to develop rapid and accurate mathematical model for prediction of final quality parameters of agro-pellets. SOP model showed high coefficients of determination (r2, between 0.692 and 0.955, while ANN model showed high prediction accuracy with r2 between 0.544 and 0.994. [Projekat Ministarstva nauke Republike Srbije, br. III 46005 i br. TR-31055

  19. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  20. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  1. Design and evaluation of self-nanoemulsifying pellets of repaglinide.

    Science.gov (United States)

    Desai, N S; Nagarsenker, M S

    2013-09-01

    The aim of study was to develop self-nanoemulsifying pellets (SNEP) for oral delivery of poorly water soluble drug, repaglinide (RPG). Solubility of RPG in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). The surfactants and cosurfactants were screened for their ability to emulsify oily phase. Ternary phase diagrams were constructed to identify nanoemulsification area for the selected systems. SNEDDS formulations with globule size less than 100 nm were evaluated for in vivo anti-hyperglycemic activity in neonatal streptozotocin rat model. A significant reduction in glucose levels was produced by optimized SNEDDS formulation in comparison to the control group. The optimized SNEDDS formulations were pelletized via extrusion/spheronization technique using microcrystalline cellulose and lactose. SNEP were characterized by X-ray powder diffraction and scanning electron microscopy. X-ray diffraction study indicated loss of crystallinity of RPG in SNEP. The SNEP exhibited good flow properties, mechanical strength and formed nanoemulsion with globule size less than 200 nm. SNEP showed in vitro release of more than 80% RPG in 10 min which was significantly higher than RPG containing reference pellets. In conclusion, our studies illustrated that RPG, a poorly water soluble drug can be successfully formulated into SNEP which can serve as a promising system for the delivery of poorly water soluble drugs. PMID:23775389

  2. Applying a novel electrostatic dry powder coating technology to pellets.

    Science.gov (United States)

    Yang, Qingliang; Ma, Yingliang; Zhu, Jesse

    2015-11-01

    The present study aimed to apply a novel dry powder technology to coat pellets with different coating materials grounded into fine powders. Piroxicam, a non-steroidal anti-inflammatory drug, was used as the active pharmaceutical ingredient (API). Eudragit® EPO, Eudragit® RS/RL and Acryl EZE were used as the coating materials to achieve immediate release, sustained release and delayed release, respectively. Three steps including preheating, powder adhesion and curing were carried out to form the coating film while liquid plasticizers were used to decrease the glass transition temperature of coating powders and also served to reduce the electrical resistance of pellets. Results of SEM indicated coating film could be better formed by increasing curing temperature or extending curing time. Dissolution tests showed that three different drug release profiles, including immediate release, sustained release and delayed release, were achieved by this coating technology with different coating formulations. And the dry powder coated pellets using this developed technology exhibited an excellent stability with 1 month at 40 °C/75% RH. The coating procedure could be shortened to within 120 min and the use of fluidized hot air was minimized, both cutting down the overall cost dramatically compared to organic solvent coating and aqueous coating. All results demonstrated that the novel electrostatic dry powder coating method is a promising technology in the pharmaceutical coating industry.

  3. Dysprosium titanate as an absorber material for control rods

    Energy Technology Data Exchange (ETDEWEB)

    Risovany, V.D. E-mail: fae@niiar.ru; Varlashova, E.E.; Suslov, D.N

    2000-09-02

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point ({approx}1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4x10{sup 22} cm{sup -2} (E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  4. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  5. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  6. Scaling of the Density Peak with Pellet Injection in ITER*%Scaling of the Density Peak with Pellet Injection in ITER*

    Institute of Scientific and Technical Information of China (English)

    P. KLAYWITTAPHAT; T. ONJUN

    2012-01-01

    Scalings of the density peak and pellet penetration length in ITER are developed based on simulations using 1.5D BALDUR integrated predictive modeling code. In these simulations , the pellet ablation is described by the Neutral Gas Shielding (NGS) model with grad-B drift effect taken into account. The NGS pellet model is coupled with a plasma core transport model, which is a combination of an MMM95 anomalous transport model and an NCLASS neoclassical transport model. The BALDUR code with a combination of MMM95 and NCLASS models, together with the NGS model, is used to simulate the time evolution of plasma current, ion and electron temperatures, and density profiles for ITER standard type I ELMy H-mode discharges during the pellet injection. As a result, the scaling of the density peak and pellet penetration length at peak density can be established using this set of predictive simulations that covers a wide range of ITER plasma conditions and pellet parameters. The multiple regression technique is utilized in the development of the scalings. It is found that the scaling for density at center is sensitive to both the plasma and pellet parameters; whereas the scalings for density and location of the additional peak are sensitive to the pellet parameters only.

  7. Results from recent hydrogen pellet acceleration studies with a 2-m railgun

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, D.J.; King, T.; Haywood, R.; Manns, W.; Venneri, F.

    1989-12-01

    A new 3.2-mm-diameter, two-stage, fuseless, plasma-arc-driven electromagnetic railgun has been designed, constructed, and successfully operated to achieve a record velocity of 2.67 km/s({sup b}) for 3.2 mmD {times} 4 mmL solid hydrogen pellet. The first stage of this hydrogen pellet injector is a combination of a hydrogen pellet generator and a gas fun. The second stage is a 2-m-long railgun which serves as a booster accelerator. The gas fun accelerates a frozen hydrogen pellet to a medium velocity and injects it into the railgun through a perforated coupling piece, which also serves a pressure-relieving mechanism. An electrical breakdown of the propellant gas, which has followed the pellet from the gas fun into the railgun, forms a conducting plasma-arc armature immediately behind the pellet allowing for fuseless operation of the railgun. Study of the pressure profile and the behavior of the plasma-arc armature inside the railgun bore led to elimination of spurious arcing, which prevents operation of the railgun at high voltages (and, therefore, at high currents). A timing circuit that can automatically measure the pellet input velocity and allows for accurate control of arc initiation behind the pellet helps prevent pellet disintegration and mistriggering of the arc initiation circuit. Results from the recent cryogenic operation of the two-stage pellet acceleration system are reported. 11 refs., 2 figs., 1 tab.

  8. Remote Visual Inspection Of Nuclear Fuel Pellets With Fiber Optics And Video Image Processing

    Science.gov (United States)

    Moore, Frank W.

    1987-02-01

    Westinghouse Hanford Company has designed and constructed a nuclear fuel fabrication process line for the U.S. Department of Energy. This process line includes a system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder delivers the pellets directly to a fiber optic inspection head, which views one pellet surface at a time and images it to a closed-circuit color televison camera (CCTV). The output signal of the CCTV is input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator visually examines the images of the pellet surfaces on a high resolution monitor and accepts or rejects the pellets based on visual standards. The operator uses a digitizing tablet to record the location of rejected pellets, which are then automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image.

  9. Fabrication of Micro-cell UO{sub 2} Pellet for HALDEN Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Kim, Jong Hun; Rhee, Young Woo; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The micro-cell UO2 pellet consists of UO2 grains or granules enveloped by thin cell walls. Depending on the materials used for making the cell walls, there are ceramic and metallic micro-cell UO2 pellets. The ceramic wall in ceramic micro-cell UO2 pellets is composed of oxides having chemical affinity to volatile fission products such as Cs or I, which are highly radioactive and corrosive fission products, and act as multiple traps to immobilize the volatile fission products. That is to say, the ceramic micro-cell walls can block the migration of fission products to the pellet outside. The increased retention capability of fission products will reduce the stress corrosion cracking at the inner surface of cladding as well as the rod internal pressure. By implementing the metallic cell walls with high thermal conductivity, the thermal conductivity of a micro-cell UO2 pellet can be increased. To investigate the irradiation behaviors of the micro-cell UO2 fuel pellet materials, a HALDEN irradiation test is planned for two kinds of micro-cell UO2 pellets. Two kinds (ceramic and metallic) of micro-cell UO2 pellets were prepared. The in-situ data of irradiated micro-cell UO2 pellets are expected to be obtained, and the progress of the irradiation testing continuously reported. Through the irradiation test and post-irradiation examination, the designed fuel performances of the micro-cell UO2 fuel pellets will be verified.

  10. Use of coffee (Coffea arabica pulp for the production of briquettes and pellets for heat generation

    Directory of Open Access Journals (Sweden)

    Robert Cubero-Abarca

    2014-10-01

    Full Text Available Coffee bean (Coffea arabica processing generates high amount of residues that are sources of environmental pollution. Therefore, an appropriate solution is needed. The objective of this study was to determine the potential of coffee pulp to produce briquettes and pellets. The study included pulp drying (using air, solar and hot air methods; the production of briquettes and pellets; the evaluation of their energy, physical and mechanical properties; and the evaluation of pellet quality using X-ray densitometry. The results showed that the pulp presented an initial moisture content of 90%, resulting in drying times of 699, 308 and 55 hours for air, solar and hot air drying, respectively, and the calorific values of the pellets and briquettes were 12,501 kJ kg-1 and 11,591 kJ kg-1, respectively. The ash content was 8.68% for the briquettes and 6.74% for the pellets. The density of the briquettes was 1,110 kg m-3, compared with 1,300 kg m-3 for the pellets. The apparent densities were 1,000 kg m-3 and 600 kg m-3 for the briquettes and pellets, respectively, and the water absorptions by the briquettes were 7.90% and 8.10% by the pellets. The maximum horizontal compression effort was 26.86 kg cm-2, measured in the pellets, compared with 4.52 kg cm-2 in the briquettes. The maximum horizontal load was 93.24 kg, measured in the briquettes, compared with 33.50 kg in the pellets. The value of the pellet durability test was 75.54%. X-ray densitometry showed that the pellet was uniform and a few cracks were observed on the pellet surface.

  11. Planar Metamaterial Absorber Based on Lumped Elements

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  12. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  13. Wood pellet use in Sweden. A systems approach to the residential sector

    International Nuclear Information System (INIS)

    This empirically based thesis deals with a biofuel market in a systems context with focus on Sweden. Fuel pellets is a new consumer market for wood products. Initially used mainly by large-scale heating plants, wood pellets expanded into the Swedish residential heating market in the mid 1990s. The overall aim of this work is to provide a deeper understanding of the system for small-scale use of densified wood fuels. The objective was to provide a mapping and logistic analysis of fuel and delivery chains primarily for wood pellets. The description includes both technical as well as economic and organisational aspects. The thesis in particular investigates (i) experience from practical densification operations in the past, (ii) wood pellet retailers in Sweden, (iii) wood pellet consumers in Austria, Sweden and the United States, (iv) imports of wood pellets, and (v) forecasting of pellet consumption and inventory management for wood pellet distributors. Previous international studies revealed that the availability of cheap raw materials for fuel production and the price and availability of the most important competing fuels: coal, oil and natural gas were important factors that have guided production and use of densified wood and bark fuels. A major network of wood pellet distributors was mapped. It was concluded from a survey to these retailers that the Swedish residential market was now firmly in place and that the price of wood pellets was competitive with prices of traditional national fuels. A majority of pellet users in Austria, Sweden and the United States were pleased with pellet heating. One way to improve pellet distribution systems would be to optimise inventory management. An internal model for optimising inventory management, Pell-Sim, was constructed. For Sweden, wood pellets in 1997 represented the second most traded biofuel assortment, with 4.35 PJ or 18% of the total biofuel imports. Contrary to trade with other biofuel assortments, wood pellet trade

  14. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  15. Use of implantable pellets to administer low levels of methyl mercury to fish

    Science.gov (United States)

    Arnold, B.S.; Jagoe, C.H.; Gross, T.S.

    1999-01-01

    Implantable pellets of methyl mercury chloride were tested in Nile Tilapia (Oreochromis niloticus) to appraise the effectiveness of the method for chronic studies of mercury. Two dosing regimes of 15 and 1.5 grams/CH3HgCl pellet (test 1) and 1 and 0.1 grams/pellet (test 2-3) of methyl mercury chloride were used in three tests. Additional pellets containing only matrix were used as controls. The pellets were inserted into the peritoneal cavity along with a microchip for identification. Three methods of incision closure: sutures and two types of surgical glue, were tested. Pellets used in test one released the dose too fast, resulting in premature death of the fish. Results from test 2 and 3 show blood mercury concentrations over time and tissue levels at necropsy consistent with dose suggesting that this is a viable method of dosing fish.

  16. Use of implantable pellets to administer low levels of methyl mercury to fish

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.S.; Jagoe, C.H.; Gross, T.S.

    1999-07-01

    Implantable pellets of methyl mercury chloride were tested in Nile Tilapia (oreochromis niloticus) to appraise the effectiveness of the method for chronic studies of mercury. Two dosing regimes of 15 and 1.5 grams/CH{sub 3}HgCl pellet (test 1) and 1 and 0.1 grams/pellet (tests 2--3) of methyl mercury chloride were used in three tests. Additional pellets containing only matrix were used as controls. The pellets were inserted into the peritoneal cavity along with a microchip for identification. Three methods of incision closure: sutures and two types of surgical glue, were tested. Pellets used in test one released the dose too fast, resulting in premature death of the fish. Results from tests 2 and 3 show blood mercury concentrations over time and tissue levels at necropsy consistent with dose suggestion that this is a viable method of dosing fish.

  17. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets.

    Science.gov (United States)

    Mizukawa, Kaoruko; Takada, Hideshige; Ito, Maki; Geok, Yeo Bee; Hosoda, Junki; Yamashita, Rei; Saha, Mahua; Suzuki, Satoru; Miguez, Carlos; Frias, João; Antunes, Joana Cepeda; Sobral, Paula; Santos, Isabelina; Micaelo, Cristina; Ferreira, Ana Maria

    2013-05-15

    We analyzed polychlorinated biphenyls (PCBs), dichlorodiphenyl dichloroethane and its metabolites, hexachlorocyclohexanes (HCHs), polycyclic aromatic hydrocarbons (PAHs), and hopanes, in plastic resin pellets collected from nine locations along the Portuguese coast. Concentrations of a sum of 13 PCBs were one order of magnitude higher in two major cities (Porto: 307 ng/g-pellet; Lisboa: 273 ng/g-pellet) than in the seven rural sites. Lower chlorinated congeners were more abundant in the rural sites than in the cities, suggesting atmospheric dispersion. At most of the locations, PAH concentrations (sum of 33 PAH species) were ∼100 to ∼300 ng/g-pellet; however, three orders of magnitude higher concentrations of PAHs, with a petrogenic signature, were detected at a small city (Sines). Hopanes were detected in the pellets at all locations. This study demonstrated that multiple sample locations, including locations in both urban and remote areas, are necessary for country-scale pellet watch. PMID:23499535

  18. Bioswirl: A Wood Pellet Burner for Oil Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, Boo; Lundberg, Henrik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-11-01

    A compact and robust firing system for wood pellets has been developed and its operation demonstrated during one season. The firing system was developed with the aim to retrofit heat producing oil-fired burners in the range of 0.5 to 5 MW. In this power range there are severe economical restrictions on the firing systems used; operation with high availability and low emissions of unburned gases and NO{sub x} should be secured with only periodic supervision of the boiler. At the same time there are technical restrictions since, for instance, scale up of existing commercial small grate firing technique leads to an undesired volumetric increase of the pellet burner, compared to the oil-burners to be retrofitted. Here a burner system for crushed wood pellets was developed in order to increase the combustion intensity. The pellets are fed from the storage silo to a mill/crusher where the fuel is crushed to a coarse wood powder with a size distribution of 0.5 to 4 mm, which is about the same size as the original particle size distribution used for the pellet production. Thus a simple crushing mill can be used and any excess energy demand for milling is avoided. The crushed pellets are thereafter directly fed into a cyclone burner. The centrifugal forces assure a sufficient residence time to complete thermal conversion of the large wood particles in the burner, i.e. the particles are large compared to pulverised fuel. The burner is designed with secondary -and tertiary air registers for a staged air supply and connected to a furnace in which the final burn out of combustible gases takes place. This results in an efficient burn out and low NO, emissions even at turn down ratios in the order of 1:8. Ash particles will follow the exhaust gas as fly ash. During the heating season 2001-2002 the Bioswirl burner has been demonstrated in a small-scale district heating system. A 1200 kW oil burner has been replaced with an 800 kW Bioswirl burner. The system has been operated with

  19. Energy wood. Part 2b: Wood pellets and pellet space-heating systems; Holzenergie Teil 2b: Holzpellets und Pelletheizungen / Energie du bois Partie 2b: Granules de bois et installations de chauffage a granules de bois

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T. [Verenum, Zuerich (Switzerland)

    2002-07-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  20. Pellet bed reactor concept for nuclear electric propulsion

    Science.gov (United States)

    El-Genk, Mohamed S.; Morley, Nicholas J.; Juhasz, Albert

    1993-01-01

    For Nuclear Electric Propulsion (NEP) applications, gas cooled nuclear reactors with dynamic energy conversion systems offer high specific power and low total mass. This paper describes the Pellet Bed Reactor (PeBR) concept for potential NEP missions to Mars. The helium cooled, 75-80 MWt PeBR, consists of a single annular fuel region filled with a randomly packed bed of spherical fuel pellets, is designed for multiple starts, and offers unique safety and operation features. Each fuel pellet, about 8-10 mm in diameter, is composed of hundreds of TRISO type fuel microspheres embedded in a graphite matrix for a full retention of fission products. To eliminate the likelihood of a single-point failure, the annular core of the PeBR is divided into three 120° sectors. Each sector is self contained and separate and capable of operating and being cooled on its own and in cooperation with either one or two other sectors. Each sector is coupled to a separate, 5 MWe Closed Brayton Cycle (CBC) energy conversion unit and is subcritical for safe handling and launching. In the event of a failure of the cooling system of a core sector, the reactor power level may be reduced, allowing adjacent sectors to convect the heat away using their own cooling system, thus maintaining reactor operation. Also, due to the absence of an internal core structure in the PeBR core, fueling of the reactor can easily be performed either at the launch facility or in orbit, and refueling can be accomplished in orbit as needed to extend the power system lifetime

  1. Local strain in cladding tube due to radial pellet cracking

    International Nuclear Information System (INIS)

    A study was made to develop a method for evaluation of the local strain in a cladding tube of the Advanced Thermal Reactor due to radial cracking of a UO2 fuel pellet. Effects of the number of cracks, initial crack width and the friction coefficient of a pellet-clad interface on behaviors of the local strain in a cladding tube were evaluated with a modelized experiment. A Zircaloy-2 ring specimen with inner diameter of 95 mm, height of 25 mm and wall thickness of 5 mm was expanded at room temperature with equally divided peripheral dice of a tool steel set in a specimen. The dice were divided into 8, 12 or 16 pieces. For each dividing number, two dice edge geometries were prepared, that is, not chamfered and chamfered by 2 mm. Strains of an external surface of the specimen were measured with 28 wire strain gages with gage length of 0.3 mm. The friction coefficient on the pellet-clad contact surface was not measured, but two friction conditions were prepared. One was metal-metal contact and the other was a contact surface coated with teflon film. The estimated friction coefficient was 0.1 for the former and 0.05 for the latter. An elastic-plastic analysis was carried out in order to evaluate the membrane hoop strain in the cladding tube. The analysis was made under two conditions. One was a plane stress condition of a radial and hoop stress which resembled the state of stress-strain developed in the ring specimen. The other was a plane strain condition of a radial and hoop strain which approximated the stress-strain state in a cladding tube

  2. The interplay between chondrocyte redifferentiation pellet size and oxygen concentration.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available Chondrocytes dedifferentiate during ex vivo expansion on 2-dimensional surfaces. Aggregation of the expanded cells into 3-dimensional pellets, in the presence of induction factors, facilitates their redifferentiation and restoration of the chondrogenic phenotype. Typically 1×10(5-5×10(5 chondrocytes are aggregated, resulting in "macro" pellets having diameters ranging from 1-2 mm. These macropellets are commonly used to study redifferentiation, and recently macropellets of autologous chondrocytes have been implanted directly into articular cartilage defects to facilitate their repair. However, diffusion of metabolites over the 1-2 mm pellet length-scales is inefficient, resulting in radial tissue heterogeneity. Herein we demonstrate that the aggregation of 2×10(5 human chondrocytes into micropellets of 166 cells each, rather than into larger single macropellets, enhances chondrogenic redifferentiation. In this study, we describe the development of a cost effective fabrication strategy to manufacture a microwell surface for the large-scale production of micropellets. The thousands of micropellets were manufactured using the microwell platform, which is an array of 360×360 µm microwells cast into polydimethylsiloxane (PDMS, that has been surface modified with an electrostatic multilayer of hyaluronic acid and chitosan to enhance micropellet formation. Such surface modification was essential to prevent chondrocyte spreading on the PDMS. Sulfated glycosaminoglycan (sGAG production and collagen II gene expression in chondrocyte micropellets increased significantly relative to macropellet controls, and redifferentiation was enhanced in both macro and micropellets with the provision of a hypoxic atmosphere (2% O2. Once micropellet formation had been optimized, we demonstrated that micropellets could be assembled into larger cartilage tissues. Our results indicate that micropellet amalgamation efficiency is inversely related to the time cultured as

  3. Study of Advanced Railgun Hydrogen Pellet Injectors for Fusion Reactor Refueling.

    Science.gov (United States)

    King, Tony Levone

    An advanced railgun system has been developed to assess its feasibility as a hypervelocity hydrogen pellet injector for magnetically confined plasmas. It consists of a pellet generator/gas gun assembly for freezing hydrogen pellets and injecting them into the railgun at velocities as high as 1.5 km/s. A plasma armature is formed by ionizing the low-Z propellant gas behind the pellet and firing the railgun. This fuseless operation prevents high-Z impurities from entering the reactor during pellet injection. The railgun system has several features that distinguish it from its predecessors, including: (1) a more compact, versatile pellet generator, (2) a new gas gun configuration that produces significantly higher pellet speeds, (3) a perforated coupling piece between the gas gun and railgun to prevent spurious arcing, and (4) ablation-resistant sidewalls, perforated sidewalls and transaugmentation to reduce inertial and viscous drag, the primary obstacles to achieving hypervelocity. A unique system of sophisticated controls and diagnostics has been assembled to operate the railgun system and assess its performance, including fully automated pellet freezing and gas gun operation, an automatic timing circuit that is immune to mistriggering caused by pellet fragmentation or electromagnetic interference, a streak camera, photostations, light gates, current trans formers, B-dot probes, laser interferometry and optical spectroscopy. Free-arc and hydrogen pellet experiments were conducted to evaluate various railgun designs. Transaugmented and simple railguns 1.2 and 2 m long were tested. The performances of railguns using Mullite, solid Lexan and perforated Lexan sidewalls were compared. The railgun theory of operation and anticipated losses are also examined. The theoretical predictions are found to be in good agreement with the experimental results. The advanced railgun system has set several world records for bare hydrogen pellet velocity, including a 3.3 km/s shot on

  4. Melt-in-Mouth Pellets of Fexofenadine Hydrochloride Using Crospovidone as an Extrusion–Spheronisation Aid

    OpenAIRE

    Jain, Satishkumar P.; Mehta, Dharmini C.; Sejal P Shah; Singh, Pirthi Pal; Purnima D. Amin

    2010-01-01

    Microcrystalline cellulose (MCC) is well established as an extrusion spheronisation aid for the preparation of pellets. Crospovidone (Polyplasdone® XL-10) is compared with microcrystalline cellulose for the preparation of melt-in-mouth pellets. Taste-masked fexofenadine hydrochloride was incorporated in the melt-in-mouth formulation. Crospovidone was found to be well suited as extrusion–spheronisation aid for the preparation of melt-in-mouth pellets. The great advantage of crospovidone is, ho...

  5. Study of the damage produced by high velocity pellets on graphite first wall elements

    International Nuclear Information System (INIS)

    In the RFX experiment the first wall is completely covered by graphite tiles and a multishot pellet injector for hydrogen (H) and deuterium (D) pellets with masses of 1.5--5 · 1020 atoms at velocity of 500--1,500 m/s has been installed. Some concern existed about the possibility of seriously damaging the graphite with non-ablated hydrogen pellets. The paper presents a study performed by launching plastic and metal pellets at various velocities to evaluate the damage induced on graphite samples. The use of non-hydrogen pellet avoided the necessity of working in a vacuum environment and allowed to explore a wider parameter range than it would be possible with a single hydrogen pellet injector. The results obtained show that the amount of graphite dug out from the sample depends linearly on the kinetic energy only of the incoming pellet, with a threshold value of ≥0.1--0.2 J. Tests performed with hydrogen pellets confirmed that, at low and medium velocity, little or no damage is done to the graphite and indicated that the threshold value for hydrogen is ≥0.7 J. Hence in RFX, while H pellets fired at low velocity have an energy below threshold, the largest size pellets fired at high velocity, are expected to produce significant damage, i.e., removal of graphite masses comparable to the pellet size. Tests performed on Inconel elements of the vacuum vessel show that even the largest RFX pellet fired at 1,500 m/s is not able to punch through a 1 mm thick Inconel sheet

  6. Growth of Agaricus campestris NRRL 2334 in the Form of Pellets

    OpenAIRE

    Martin, Antonio M.; Bailey, Valerie I.

    1985-01-01

    The production of pellets of the fungus Agaricus campestris NRRL 2334 was studied in submerged fermentation with peat extract as the main substrate source. Pellets up to 6 mm in diameter were obtained when the peat extract was diluted to reduce the concentration of growth inhibitors. Yeast extract and yeast extract plus glucose were the most effective nutrient supplements in the diluted peat extract media and stimulated the formation of large pellets which contained 44.4% crude protein, 2.8% ...

  7. Pellet fuelling of plasmas with ELM mitigation by resonant magnetic perturbations in MAST

    OpenAIRE

    Valovic, M.; Cunningham, G.; Garzotti, L.; Gurl, C; Kirk, A.; Naylor, G.; Patel, A; Scannell, R.; Thornton, A. J.; team, on behalf of the MAST

    2013-01-01

    Shallow fuelling pellets are injected from the high field side into plasmas in which ELMs have been mitigated using external magnetic perturbation coils. The data are compared with ideal assumptions in the ITER fuelling model, namely that mitigated ELMs are not affected by fuelling pellets. Firstly it is shown that during the pellet evaporation an ELM is triggered, during which the amount particle loss could be larger (factor ~1.5) than the particle loss during an ELM which was not induced by...

  8. Demand Side Management in Pellet Production: Internal and External Factors

    Directory of Open Access Journals (Sweden)

    Vigants Haralds

    2014-12-01

    Full Text Available This paper demonstrates a demand side management case study: how to save energy and how research and data analysis help to create an energy management system in a pellet production facility; and shows ways to implement the EU energy efficiency directive in production facilities. The study carried out in this research serves as a far-reaching step that can be taken to improve energy efficiency during the operation mode of technological equipment. The benchmarking methodology is used for analysis of results.

  9. Gunshot (Pellets injury to the maxillofacial complex: a case report

    Directory of Open Access Journals (Sweden)

    Kiran D.N

    2014-06-01

    Full Text Available Gunshot injuries are rather serious but uncommon type of trauma in India. A 45-year-old male was presented with gunshot (pellets embedded in the maxillofacial area for 22 years. There is no consensus in the literature whether to attempt their removal or leave them in situ. Our patient had no long-term sequela like infection, fistula formation, carcinogenesis or metal poisoning to date except for chill feeling on cold days. Management of this patient presented a dilemma in treatment in view of the effects of foreign bodies in the maxillofacial area. Key words: Maxillofacial injuries; Wounds, gunshot; Firearms

  10. Gunshot (Pellets) injury to the maxillofacial complex: a case report

    Institute of Scientific and Technical Information of China (English)

    D.N.Kiran; Shina Mittal

    2014-01-01

    Gunshot injuries are rather serious but uncommon type of trauma in India.A 45-year-old male was presented with gunshot (pellets) embedded in the maxillofacial area for 22 years.There is no consensus in the literature whether to attempt their removal or leave them in situ.Our patient had no long-term sequela like infection,fistula formation,carcinogenesis or metal poisoning to date except for chill feeling on cold days.Management of this patient presented a dilemma in treatment in view of the effects of foreign bodies in the maxillofacial area.

  11. Computer simulations of laser driven implosion of seeded hollow pellets

    International Nuclear Information System (INIS)

    The use of a hollow pellet of high r/Δ r permits the successful generation of thermonuclear energy for a moderate laser input. Incorporation of a medium-z material is required for minimization of plasma instabilities and thus suppression of pathologically hot electrons. Designs of this nature are capable of giving yield ratios in excess of 20 for 100 kJ input. It is also likely that a lower-z material may be advantageous to minimize the x-rays radiation into the DT, but this will be at the sacrifice of using less laser power to remain below the plasma instability threshold. (U.S.)

  12. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    International Nuclear Information System (INIS)

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  13. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki;

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... hydrate (nitrofurantoin), dehydration was observed at higher temperatures. To reach an understanding of the process and to find the critical process parameters, the use of complementary analytical techniques are absolutely necessary when signals from APIs and different excipients overlap each other....

  14. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  15. Thermal Diffusivity of Carbon Pellets (CPs Treated with KOH

    Directory of Open Access Journals (Sweden)

    M. Haydari

    2008-01-01

    Full Text Available In this work thermal diffusivity of carbon pellets (CPs treated with different percentage level of KOH has been studied. Thermal diffusivity measurements were carried out at room temperature by using photoflash technique. The technique consists of a camera flash having approximately 5 ms pulse duration for heating and a thin film of polyvinylidene difluoride (PVDF attached to the back of the samples for signal detection. Eight carbon samples treated with different percentage level of KOH (0 to 7 mole percent were studied and the thermal diffusivity result was compared with SEM which showed that the sample with highest thermal diffusivity had distinctly lower porosity and better grain alignment.

  16. Economics and price risks in international pellet supply chains

    CERN Document Server

    Ehrig, Rita; Wörgetter, Manfred; Strasser, Christoph

    2014-01-01

    The aim of this book is to investigate critical economic aspects and price risks along international pellet supply chains and to offer new insights into the interconnections between the sector, the various supply risks within the market and guidelines for de-risking biomass supply chains. It provides three real case studies as practical examples of determining actual supply costs from resource production to end-user and in doing so identifies and analyzes general economic performance indicators and price drivers for biomass supply chains. It also investigates the impact of several risks like r

  17. Imaging polychromator for density measurements of polystyrene pellet cloud on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, I. A., E-mail: i.sharov@spbstu.ru; Sergeev, V. Yu.; Miroshnikov, I. V. [Saint-Petersburg State Polytechnical University, Saint-Petersburg (Russian Federation); Tamura, N.; Sudo, S. [National Institute for Fusion Science, Toki (Japan); Kuteev, B. V. [Russian Scientific Centre Kurchatov Institute, Moscow (Russian Federation)

    2015-04-15

    Experimental data on spatial distributions of a pellet cloud electron density are necessary for the development of many applications of pellet injection, namely, plasma fuelling, discharge control, and plasma diagnostics. An improved approach of electron density measurements inside the cloud of a polystyrene pellet ablating in hot plasma of the large helical device is described. Density values of (1-30) × 10{sup 16} cm{sup −3} depending on the background plasma parameters and distance from the solid pellet were measured.

  18. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment.

    Science.gov (United States)

    Md Ramli, Siti Hajar; Wong, Tin Wui; Naharudin, Idanawati; Bose, Anirbandeep

    2016-11-01

    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology. PMID:27516284

  19. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    International Nuclear Information System (INIS)

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m3. Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  20. ORNL mock-up tests of inside launch pellet injection on JET and LHD

    International Nuclear Information System (INIS)

    In experiments on ASDEX-Upgrade and DIII-D tokamaks, the injection of D2 pellets from the magnetic high-field side of the plasma resulted in deeper pellet penetration and improved fueling efficiency. Based on those successful experiments, fusion researchers at the Joint European Torus and the Large Helical Device decided to implement inside launch pellet injection. These injection schemes require the use of curved guide tubes to route the pellets from the acceleration devices to the inside launch locations, and the pellets are subjected to stresses from centrifugal and impact forces in traversing the tubes. Before the installations on the large experimental fusion devices, mock-ups of the guide tubes were constructed and tested at the Oak Ridge National Laboratory to determine the pellet speed limit for reliable operation without pellet fracturing. In laboratory testing of the mock-ups, it was found that the pellet speed had to be limited to a few hundreds of meters per second for intact pellets. In this paper, the test equipment and experimental results are described

  1. Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting

    Science.gov (United States)

    Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.

    2016-08-01

    The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.

  2. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Science.gov (United States)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  3. Combined solar and pellet heating systems : Study of energy use and CO-emissions

    OpenAIRE

    Fiedler, Frank

    2006-01-01

    In this study 4 solar and pellet heating systems have been studied with the help of annual dynamic simulations. Two of the systems comprised a pellet stove and two systems were solar combisystems; one with a store integrated pellet burner, the other with a separate pellet boiler. The aim was to evaluate their thermal performance and their CO-emissions. The systems have been modelled based on lab measurements of the single system components. The used models allow a detailed study of the dynami...

  4. Energy characterization of fresh and torrified pellets produced from Pinus waste wood

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2015-12-01

    Full Text Available he objective of this research was to evaluate torrified and fresh pellets produced from Pinus waste wood, used for direct generation of thermal energy. The compaction of Pinus sp. waste wood from lumbermill was performed in a pelletizer with a planar array of 8 mm. Roastings were performed in an electric furnace, type muffle, stabilized at final temperatures of 220 °C and 250 °C for 30 min. The following pellets properties were determined: apparent and unit energy density, bulk density, energy bulk density, immediate chemical composition (volatile materials, ash and fixed carbon, high heating value and moisture. It was observed an increase in high heating value and reduction of moisture content of torrified pellets. However, the gain in calorific value was less than the mass loss of the pellets after roasting, reducing the energy densities of the pellets. The pellets raw have marketing potential in European countries such as Germany, Austria and Sweden. The methodology used for roasting is not suitable for pellets heat treatment. However, further research on pellet roasting in a wider temperature and residence time range is recommended, in order to define parameters that optimize their energetic properties.

  5. Persistent organic pollutants monitoring in marine coastal environment using beached plastic resin pellets and effective risk communication via International Pellet Watch (IPW) as a tool.

    Science.gov (United States)

    Yeo, B. G. M.; Takada, H.; Hosoda, J.

    2014-12-01

    International Pellet Watch (IPW) is an ongoing global monitoring of persistent organic pollutants (POPs) using preproduction plastic resin pellets. These pellets are easily collected and transported allowing the general public worldwide to get involved. Thus, risk communication toward the pellet collectors is a significant part of IPW to ensure continuous effort and interest. The pellet samples were analyzed for polychlorinated biphenyl (PCBs), dichlorodiphenyltrichloroethane and degradation products (DDTs), and hexachlorocyclohexanes (HCHs). Additional pollutants such as polycyclic aromatic hydrocarbons (PAHs) and Hopanes were also analyzed for some samples. Analytical results showed distinct patterns with high concentrations (pollution where PCBs were used extensively before the ban in the late 1980's. Pesticide DDTs instead were found to be higher in developing countries such as Brazil and Vietnam (> 500ng/g-pellet). These countries may still be using DDTs as a vector control mostly to combat malaria. High concentrations of DDTs were also found in Greece, China and Australia (> 100ng/g-pellet) suggesting the possibility of illegal usage as pesticide or anti fouling paint. HCHs concentrations were mostly low due to its low retention in the environment. However, high HCHs concentrations were mostly found in the southern hemisphere. Very high concentration of PAHs in pellet samples can be utilized for early identification of recent oil pollution. High PAHs concentration in Tauranga, New Zealand was found to be caused by local oil spill. Hopanes in pellets can be used for source identification of oil pollution. Global mapping and comparison among IPW data can be used to provide better explanations to IPW volunteers by sorting concentrations into pollution categories. Communication reports are tailor written based on the volunteers familiarity to IPW's issues, educational background, occupation and their potential to further spread awareness. Based on feedbacks, the

  6. A mechanistic investigation on the utilization of lactose as a protective agent for multi-unit pellet systems.

    Science.gov (United States)

    Chin, Wun Chyi; Chan, Lai Wah; Heng, Paul Wan Sia

    2016-03-01

    The effect of lactose particle size on the extent of pellet coat damage was investigated. The extent of pellet coat damage increased linearly with lactose median particle size. It was observed that coated pellets compressed with coarser lactose grades had larger and deeper surface indentations. The surfaces of the pellets compressed with coarser lactose grades were also found to be significantly rougher. Micronized lactose was capable of protecting pellet coats from damage brought about by the presence of coarser lactose particles. The findings suggested a protective effect that micronized lactose conferred to pellet coats was not only through dimensional delimitations but also by higher interparticulate friction and longer particle rearrangement phase. As a result, the pellet volume fraction in the system was reduced. The extent of pellet coat damage was found to escalate when the pellet volume fraction in such system increased beyond a critical value of 0.39.

  7. A mechanistic investigation on the utilization of lactose as a protective agent for multi-unit pellet systems.

    Science.gov (United States)

    Chin, Wun Chyi; Chan, Lai Wah; Heng, Paul Wan Sia

    2016-03-01

    The effect of lactose particle size on the extent of pellet coat damage was investigated. The extent of pellet coat damage increased linearly with lactose median particle size. It was observed that coated pellets compressed with coarser lactose grades had larger and deeper surface indentations. The surfaces of the pellets compressed with coarser lactose grades were also found to be significantly rougher. Micronized lactose was capable of protecting pellet coats from damage brought about by the presence of coarser lactose particles. The findings suggested a protective effect that micronized lactose conferred to pellet coats was not only through dimensional delimitations but also by higher interparticulate friction and longer particle rearrangement phase. As a result, the pellet volume fraction in the system was reduced. The extent of pellet coat damage was found to escalate when the pellet volume fraction in such system increased beyond a critical value of 0.39. PMID:25519982

  8. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  9. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  10. Measurement of Persistent Organic Pollutants (POPs) in plastic resin pellets from remote islands : Toward establishment of baseline level for International Pellet Watch

    Science.gov (United States)

    Takada, H.; Heskett, M.; Yamashita, R.; Yuyama, M.; Itoh, M.; Geok, Y. B.; Ogata, Y.

    2011-12-01

    Plastic resin pellets collected from remote islands in open oceans (Canary, St. Helena, Cocos, Hawaii, Maui Islands and Barbados) were sorted and yellowing polyethylene (PE) pellets were measured for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and the degradation products (DDTs), and hexachlorocyclohexanes (HCHs) by gas chromatograph equipped with mass spectrometer (GC-MS) and with electron capture detector (GC-ECD). PCBs were detected from all the pellet samples, confirming the global dispersion of PCBs. Median concentrations of PCBs (sum of 13 congeners : CB-66, CB-101, CB-110, CB-118, CB-105, CB-149, CB-153, CB-138, CB-128, CB-187, CB-180, CB-170, CB-206) in the remote island pellets ranged from 0.1 to 10 ng/g-pellet. These were one to three orders of magnitude lower than those observed for pellets from industrialized coastal zones (hundreds ng/g in Los Angeles, Boston, Tokyo; Ogata et al., 2009). Because these remote islands are far (>100 km) from industrialized zones, these concentrations (i.e., 0.1 to 10 ng/g-pellet) can be regarded as global "baseline" level of PCB pollution. Concentrations of DDTs in the remote island pellets ranged from 0.2 to 5.5 ng/g-pellet. At some locations, DDT was dominant over the degradation products (DDE and DDD), suggesting current usage of the pesticides in the islands. HCHs concentrations were 0.4 - 1.8 ng/g-pellet and lower than PCBs and DDTs, except for St. Helena Island at 18.8 ng/g-pellet where the current usage of the pesticides are of concern. The analyses of pellets from the remote islands provided "baseline" level of POPs (PCBs plastic debris which were contaminated in industrialized coastal zones may have rapidly transported to the remote islands before they would reach equilibrium (i.e., desorption completed). Because POPs concentrations in the other media are at trace levels in these remote environments, the sporadic high concentrations of POPs in the plastic debris may pose threat to the

  11. Structured Metal Film as Perfect Absorber

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  12. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  13. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  14. Reduction mechanism of stainless steelmaking dust and carbon pellets

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; SONG Hai-chen; CHAI Li-yuan; WANG Ja; WANG Yun-yan; MIN Xiao-bo; HE De-wen

    2005-01-01

    The reduction mechanism of stainless steelmaking dust and carbon pellets was investigated. The metal oxides present in the dust were reduced by carbon with a new direct reduction technology. The direct reduction parameters were determined by measuring the rates of dust melting and reduction. The results show that the rate of reduction is faster than that of the melting. Both melting and reduction processes are accelerated by the direct transfer of heat from the smelting slag. The recovery of metals is improved while the pellets were added to argon oxygen decarburization(AOD) or vacuum oxygen decarburization(VOD) vessels in the late period of the first smelting stage. More carbon travels to the slag instead of to the steel because the diffusion coefficient of carbon, impacted by the viscosity of slag and surface tension between slag and melted steel, is larger in the slag than in the steel. The viscosity of slag is about 2.54Pa·s and the surface tension between slag and steel is about 490mN/m.

  15. Effectiveness of fluidized pellet bed for removing soluble contaminants

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaochang; LI Zhihua; WANG Zhen; LI Jinrong; LI Jiayu; CHEN Rong

    2009-01-01

    Fluidized pellet bed (FPB) has been successfully applied in water and wastewater treatment. However, the removal mechanism of contaminants especially the soluble ones, is still unclear. This study aimed to evaluate the effectiveness of FPB reactor for removing soluble contaminants from synthetic wastewater. By only coagulation through jar test operation with addition of polyaluminium chloride (PACl) as primary coagulant and polyacryamide (PAM) as coagulant-aid, the removals of soluble chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), and NH4+-N were found to be only 2.2%--7.5%, 5.7%--25.5%, and 9.9%--18.5%, respectively. However, by FPB operation under the same dosage of coagulants, these values increased to 82.7%, 37.2%, and 50%, indicating that the formation of pellets in the FPB effectively enhanced the removal of soluble contaminants. By careful comparison of the settleablility and filterability of the pollutants after coagulation, the originally soluble contaminants could be divided into three groups, namely: (i) coagulated-and-settleable, (ii) coagulated-but-nonsettleable, and (iii) uncoagulable. It was found that not only the first two groups but also a large part of the third group could be effectively removed by FPB operation. However, the mechanism for the removal of the uncoagulable pollutants by FPB operation still needs further investigation.

  16. Electrical conduction and dielectric studies of ZnO pellets

    Energy Technology Data Exchange (ETDEWEB)

    Chaari, Mariem, E-mail: m_chaari@yahoo.fr [Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP), Scientific Faculty of Sfax, Route of the Soukra Km 4, Sfax 3038 (Tunisia); Matoussi, Adel [Laboratory of Composite Ceramic and Polymer Materials (LaMaCoP), Scientific Faculty of Sfax, Route of the Soukra Km 4, Sfax 3038 (Tunisia)

    2012-09-01

    A series of Zinc Oxide pellets sintered at different temperatures was studied by means of dielectric spectroscopy in the wide frequency range of 1-10{sup 6} Hz and temperature interval from -100 Degree-Sign C to 30 Degree-Sign C. Electrical conductivity was analysed using Jonsher's universal power law, and the values of s were found to decrease with the increase in temperature, which agrees well with the correlation barrier hopping (CBH) model. As the temperature increased, energy activation E{sub dc} became less than 0.39 eV and dc conductivity ({sigma}{sub dc}) values in the range of 1.9 Multiplication-Sign 10{sup -14}-9.7 Multiplication-Sign 10{sup -10} {Omega} m{sup -1} were observed. The dielectric modulus showed ionic polarisation at the intermediate and high frequencies related to oxygen interstitial O{sub i}, oxygen vacancy V{sub O} and Zinc interstitial Zn{sub i}. At low frequency, it revealed a Maxwell-Wagner-Sillars relaxation with barrier heights of grain boundaries between 0.74 and 0.88 eV for all the studied pellets.

  17. Development and evaluation of porous membrane pellets of disopyramide phosphate for sustained release

    Directory of Open Access Journals (Sweden)

    Afifa Bathool

    2012-01-01

    Full Text Available Aim of the present study was to prepare pellets of disopyramide phosphate (DPP using blend of Hydroxy Propyl Methyl Cellulose (HPMC K4M and Avicel PH 101 (Microcrystalline cellulose and to coat the prepared pellets by mixture of Eudragit L100 and Eudragit S100 to obtain microporous membrane for controlled release. Extrusion/spheronization method was employed to produce spherical discrete pellets of uniform size. Solid, porous, discrete, reproducible pellets were obtained. Sieve analysis data indicated that the size of prepared pellets was in the range of 850 - 1180 μm. Yield of pellets was found to be 96.5%. Prepared pellets were spherical in shape, with pores on the surface, as evidenced by scanning electron microscopy (SEM. Compatibility of the drug after encapsulation in the pellets was confirmed by DSC and by FTIR. The prepared pellets were analyzed quantitatively for the drug content and were found to be 96.2%. In vitro drug release studies indicated F3C2 as optimized formulation. Formulation F3C2 shows 93.26% drug release up to 12 hrs. It was also observed that there was no significant release of drug in gastric pH. The release kinetics for all the formulations indicated that drug release followed non-Fickian diffusion. In vivo study of DPP (300 mg pellets was carried out in healthy albino rats. Plasma DPP concentrations and other pharmacokinetic parameters were statistically analyzed. The results of paired T-test for the comparison of pharmacokinetic data showed that there was no significant variation between the marketed (Norpace® CR and F3C2. The stability studies performed on F3C2 showed no significant difference in drug content. It was concluded that the drug release performance was greatly affected by microporous membrane coating used in the preparation of pellets.

  18. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO2 Fuel Pellet Fabrication

    International Nuclear Information System (INIS)

    The improvement in the thermal conductivity of the UO2 fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO2 fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO2 fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO2 matrix must be formed. To enhance the thermal conductivity of a UO2 fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO2 pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained

  19. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  20. Gas emission from the UO2 samples, containing fission products and burnable absorber

    Science.gov (United States)

    Kopytin, V. P.; Baranov, V. G.; Burlakova, M. A.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.

    2016-04-01

    The process gas released from the fuel pellets of uranium fuel during fuel burn-up reduces the thermal conductivity of the rod-shell gap, enhances hydrogen embrittlement of the cladding material, causes it's carbonization, as well as transport processes in the fuel. In this study a technique of investigating the thermal desorption of gases from the UO2 fuel material were perfected in the temperature range 300-2000 K for uniform sample heating rate of 15 K/min in vacuum. The characteristic kinetic dependences are acquired for the gas emission from UO2 samples, containing simulators of fission products (SFP) and the burnable neutron absorber (BNA). Depending on the amount of SFP and BNA contained in the sample thermal desorption gas spectra (TDGS) vary. The composition of emitted gas varies, as well as the number of peaks in the TDGS and the peaks shift to higher temperatures. This indicates that introduction of SFPs and BNA alters the sample material structure and cause the creation of so- called traps which have different bonding energies to the gases. The traps can be a grid of dislocations, voids, and contained in the UO2 matrix SFP and BNA. Similar processes will occur in the fuel pellets in the real conditions of the Nuclear Power Plant as well.

  1. Applications of spectroscopic methods to the characterization of the ablation clouds of pellets in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Koubiti, M.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R. [PIIM UMR 6633 CNRS-Universite de Provence, F-13397 Marseille Cedex 20 (France); Goto, M.; Morita, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2011-07-01

    In the field of magnetic fusion research, pellet injection is considered as a major technique for deep plasma fuelling and plasma control by mitigation of edge instabilities. Pellet injection is planned for ITER as the primary core fuelling system. For such major purposes, pellets made of hydrogen or its isotopes are used. In addition, some other purposes are achievable using pellets made from other materials like carbon, aluminium, molybdenum, titanium and so on. In the Large Helical Device (LHD), pellets are used to characterize the transport of impurities. Investigating the ablation clouds of different pellets injected in LHD using spectroscopic measurements may allow to improve our understanding of the physics of the ablation of pellets injected in magnetic fusion devices. A spectroscopic technique based on the emission line intensities and broadening has been previously applied to carbon pellets before its generalization to other pellets. In this paper we illustrate this technique for the case of aluminium pellets. Using data from LHD, it has been shown that line intensities can bring valiant information allowing the characterization of the cloud surrounding the pellet core inside the plasma. For carbon pellets it was mandatory to take into account of radiation absorption effects on some lines. The data investigated here were obtained from LHD where different pellets were injected in the device in the aim of realizing high ion temperature plasmas

  2. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  3. Studying the pelletization of rosseta ilmenite concentrate with coke breeze using molasses and reduction kinetics of produced pellets at 800-1150ºC

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2012-01-01

    Full Text Available Ilmenite ore fine and coke breeze as reduced material which were pelletized with different amounts of molasses were studied in this investigation. The produced pellets at optimum condition were reduced in nitrogen atmosphere at temperature range 800-1150ºC to determine the controlling mechanism. The reduction indicated that the reduction rates increased as the temperature increased and the controlling mechanism of reaction rate is solid-solid reaction.

  4. Process optimization for densification of water hyacinth pellets fuel%水葫芦颗粒燃料成型工艺优化

    Institute of Scientific and Technical Information of China (English)

    张霞; 蔡宗寿; 张得政; 张哲

    2016-01-01

    Water hyacinth has been identified as one of the top worst water weeds over the world. Due to its characteristics of rapid growth rate and broad environmental tolerance, it has widely spread in most waterways in 17 provinces of south areas of China since 1930’s. However, water hyacinth has a strong ability to absorb nitrogen, phosphorus and other harmful heavy metal elements from water, so it has been widely used in the projects of ecological rehabilitation of water bodies in recent years over the world, which has made the problem of resource utilization of water hyacinth more important and urgent than before. Because water hyacinth is high in cellulose and hemicellulose content, it has the potential to be transformed into biomass fuel. Using mechanical force, water hyacinth can be extruded or compressed into biomass pellets, and could be an important way to utilize water hyacinth as an energy source. In the process of biomass densification, different chemical compositions of biomass can result in different compressing process parameters of biomass pellets. As an aquatic plant, the difference in the chemical composition of water hyacinth from other terrestrial plants can result in different compressing process parameters of water hyacinth pellets from other biomass pellets. Among all the compressing process parameters of biomass pellets, compressing force, temperature, moisture content and particle size of material are the 4 important process parameters that greatly influence the quality of biomass pellet fuel. In order to improve the densification quality of pellet fuel made from water hyacinth, the densification process of water hyacinth pellets was experimentally studied by using a compressing apparatus in the laboratory. Firstly, the single-factor tests were carried out, in which the variables were compressing force (1.5, 3.0, 4.5, 6.0 and 7.5 kN), temperature (80, 90, 100, 110 and 120℃), moisture content of material (8%, 10%, 12%, 14% and 16%), and

  5. Analysis of the global production location dynamics in the industrial wood pellet market : an MCDA approach

    NARCIS (Netherlands)

    Smith, T. Pieter; Junginger, H. Martin

    2011-01-01

    Industrial wood pellet demand and international trade have been growing rapidly, requiring producers to build new production facilities. The purpose of this paper is to illustrate the trade-offs of different wood pellet production locations across the world within the next ten years and to improve t

  6. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  7. Plasma performance with multi-shot pellet fueling in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Three to eight hydrogen pellets have been injected into the HL-1M tokamak under ohmically heated plasma condition. The essential features of pellet-fuelled plasma, including the electron density profile and its evolution and the perturbation in the plasma core, have been investigated. The relations of electron density profile with the pellet size, the launching interval and the recycling of the first wall, have been studied. The recycling of the first wall plays an important role in achieving high density discharge. Discharge parameters of ne(0) = 5.3 x 1013cm-3, Wp = 6.0 kJ, τE = 26 ms are obtained under high recycling condition with injection of three smaller pellets (φ 1.0 mm). The pellet ablation cloud image frames were obtained with CCD camera. Brief analyses of the pellet ablation process show that asymmetry ablation and track bending of pellet clouds exist and are the results of stronger ablation in the electron side than in the ion side. The important effect of pellet size and integration on the density turbulence is observed also

  8. Preparation of pellets containing Pothomorphe umbellata extracts by extrusion-spheronization: improvement of 4-nerolidylcatechol photostability

    Directory of Open Access Journals (Sweden)

    César A. de Araújo-Júnior

    2013-02-01

    Full Text Available Pothomorphe umbellata (L. Miq., Piperaceae, has been extensively used in Brazilian folk medicine and it is well known for its strong antioxidant properties. However, its main active constituent, 4-nerolydilcatechol (4-NC, is sensitive to ultraviolet and visible light, which can limit the use of intermediate and final herbal preparations of this species. In the present work, coated multiparticulate solid dosage forms of P. umbellata were obtained with the purpose of increasing the stability of 4-NC. P. umbellata extract was used as a wetting liquid for the preparation of pellets by extrusion-spheronization. Pellets were coated in a fluidized bed by three different polymers (hydroxypropylmethylcellulose (HPMC, polyvynilpirrolidone K-30 (PVP-K30, and polyvinyl alcohol-polyethylene glycol graft-copolymer (PVAPEG. 4-NC photostability was evaluated by an accelerated photostability protocol. Pellets showed a narrow size distribution and low friability. 4-NC photodegradation followed a second order degradation kinetics with similar k values for the percolate, uncoated pellets and HPMC coated pellets. Photoprotection was higher in pellets coated with PVP-K30 and PVA-PEG. PVA-PEG coated pellets with 6 and 9% weight gain resulted in a final concentration of 4-NC approximately cinco times higher than uncoated pellets or liquid extracts, suggesting the potential of this formulation as a multiparticulate solid dosage form for P. umbellata extracts.

  9. Preparation of pellets containing Pothomorphe umbellata extracts by extrusion-spheronization: improvement of 4-nerolidylcatechol photostability

    Directory of Open Access Journals (Sweden)

    César A. de Araújo-Júnior

    2012-01-01

    Full Text Available Pothomorphe umbellata (L. Miq., Piperaceae, has been extensively used in Brazilian folk medicine and it is well known for its strong antioxidant properties. However, its main active constituent, 4-nerolydilcatechol (4-NC, is sensitive to ultraviolet and visible light, which can limit the use of intermediate and final herbal preparations of this species. In the present work, coated multiparticulate solid dosage forms of P. umbellata were obtained with the purpose of increasing the stability of 4-NC. P. umbellata extract was used as a wetting liquid for the preparation of pellets by extrusion-spheronization. Pellets were coated in a fluidized bed by three different polymers (hydroxypropylmethylcellulose (HPMC, polyvynilpirrolidone K-30 (PVP-K30, and polyvinyl alcohol-polyethylene glycol graft-copolymer (PVAPEG. 4-NC photostability was evaluated by an accelerated photostability protocol. Pellets showed a narrow size distribution and low friability. 4-NC photodegradation followed a second order degradation kinetics with similar k values for the percolate, uncoated pellets and HPMC coated pellets. Photoprotection was higher in pellets coated with PVP-K30 and PVA-PEG. PVA-PEG coated pellets with 6 and 9% weight gain resulted in a final concentration of 4-NC approximately cinco times higher than uncoated pellets or liquid extracts, suggesting the potential of this formulation as a multiparticulate solid dosage form for P. umbellata extracts.

  10. A New Four-Barrel Pellet Injection System for the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephen Kirk [ORNL; Foust, Charles R [ORNL; McGill, James M [ORNL; Baylor, Larry R [ORNL; Caughman, John B [ORNL; Fehling, Dan T [ORNL; Harris, Jeffrey H [ORNL; Meitner, Steven J [ORNL; Rasmussen, David A [ORNL; McCarthy, K. J. [EURATOM-CIEMAT, Madrid, Spain; Chamorro, M. [Laboratory Nacional de Fusion, Madrid, Spain; Garcia, R. [Laboratory Nacional de Fusion, Madrid, Spain; Hildago, C. [Laboratory Nacional de Fusion, Madrid, Spain; Medrano, M. [Laboratory Nacional de Fusion, Madrid, Spain; Unamuno, R. [Laboratory Nacional de Fusion, Madrid, Spain

    2011-01-01

    A new pellet injection system for the TJ-II stellarator has been developed/constructed as part of a collaboration between the Oak Ridge National Laboratory (ORNL) and the Centro de Investigaciones Energ ticas, Medioambientales y Tecnol gicas (CIEMAT). ORNL is providing most of the injector hardware and instrumentation, the pellet diagnostics, and the pellet transport tubes; CIEMAT is responsible for the injector stand/interface to the stellarator, cryogenic refrigerator, vacuum pumps/ballast volumes, gas manifolds, remote operations, plasma diagnostics, and data acquisition. The pellet injector design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST). It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation and a combined mechanical punch/propellant valve system for pellet acceleration (speeds ~100 to 1000 m/s). On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those typically used for the MST application are required. The system will initially be equipped with four different pellet sizes, with the gun barrel bores ranging between ~0.5 to 1.0 mm. The new system is almost complete and is described briefly here, highlighting the new features added since the original MST injector was constructed. Also, the future installation on TJ-II is reviewed.

  11. Requirements and solutions for future pellet technology; Krav och loesningar foer framtidens pelletsteknik

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Roennbaeck, Marie; Ryde, Daniel; Laitila, Thomas

    2010-07-01

    Requirements and solutions for future pellet burning technologies Since 2006, sales of pellet burning technologies to the Swedish residential market have fallen. The main reasons for this decrease are: many of the economically favorable easy conversions from oil to pellets have been made; competition from heat pumps; warm winters; a stable electricity price; and the current structure of heating in residential buildings, where electric heating dominates. To change this falling trend pellets need to become more attractive to consumers. This project aimed to analyze the requirements for the next generation of pellets systems and to develop potential solutions, in collaboration with the pellets industry. More specifically, the study looked at consumers' attitudes toward heating choices and different heating through a survey to 2000 house owners across Sweden. The project included a market analysis of Swedish and international technologies and examines the conditions for Swedish pellet burning technology in different markets. In addition, new solutions and developments for Swedish pellets burning technology are described

  12. Feasibility of eliminating premixing for the production of pellets in a rotary processor.

    Science.gov (United States)

    Gu, L; Liew, C V; Soh, J L P; Heng, P W S

    2006-01-01

    This current study aims to explore the feasibility of eliminating the premixing step for making pellets in a rotary processor. Microcrystalline cellulose (MCC) and lactose were used as starting materials. They could be loaded into the rotary processor separately using three different loading configurations (Methods I, II, and III) or as MCC:lactose blend, which was prepared in the separate mixer prior to loading (Method IV). Physical properties of the pellets prepared in Methods I-III were evaluated and compared against those prepared using a premixed blend (Method IV). The effects of loading configuration on pellet quality can be assessed by comparing the pellets prepared in Methods I, II, and III. Physical characterization of pellets included mean size, size distribution, oversized fraction, and shape. No significant difference in pellet properties could be attributed to the effect of premixing. Pellet properties were not significantly affected by the different loading configurations either. This study demonstrated that homogeneous powder blends are not required for the production of pellets in rotary processing. The tumbling action of the powders at the start of rotary processing is sufficient to ensure adequate powder mixing. However, it may be judicious to cofeed the different powders to achieve some preliminary mixing during loading under extreme processing conditions. PMID:16749526

  13. Plasma Density Measurements on Refuelling by Solid Hydrogen Pellets in a Rotating Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, A. H.

    1978-01-01

    The authors used laser interferometry to directly measure the increase in plasma density caused by the ablation of a solid hydrogen pellet situated in a rotating plasma.......The authors used laser interferometry to directly measure the increase in plasma density caused by the ablation of a solid hydrogen pellet situated in a rotating plasma....

  14. Method for the manufacture of nitric acid soluble mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    For the manufacture of nitric acid-soluble mixed oxide fuel pellets with adjustable proportions, the starting powder is ground down to a primary grain size of < 2 μm together with a halogen-free grinding aid and subsequently mixed. The change is then granulated in a rotating chamber, pressed into pellet form and sintered. (orig.)

  15. Validation of an image analysis method for estimating coating thickness on pellets

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, P.;

    2003-01-01

    A digital image analysis method for the estimation of mean pellet size and coating thickness employing optical microscopy was evaluated. The coating thickness was expressed as the difference in mean projected area radius of the uncoated and the coated pellets. The repeatability, the intermediate...

  16. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    International Nuclear Information System (INIS)

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection

  17. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    Energy Technology Data Exchange (ETDEWEB)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

    2008-12-15

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  18. Optimization of hot melt extrusion parameters for sphericity and hardness of polymeric face-cut pellets.

    Science.gov (United States)

    Alshetaili, Abdullah S; Almutairy, Bjad K; Alshahrani, Saad M; Ashour, Eman A; Tiwari, Roshan V; Alshehri, Sultan M; Feng, Xin; Alsulays, Bader B; Majumdar, Soumyajit; Langley, Nigel; Kolter, Karl; Gryczke, Andreas; Martin, Scott T; Repka, Michael A

    2016-11-01

    The aim of this study was to formulate face-cut, melt-extruded pellets, and to optimize hot melt process parameters to obtain maximized sphericity and hardness by utilizing Soluplus(®) as a polymeric carrier and carbamazepine (CBZ) as a model drug. Thermal gravimetric analysis (TGA) was used to detect thermal stability of CBZ. The Box-Behnken design for response surface methodology was developed using three factors, processing temperature ( °C), feeding rate (%), and screw speed (rpm), which resulted in 17 experimental runs. The influence of these factors on pellet sphericity and mechanical characteristics was assessed and evaluated for each experimental run. Pellets with optimal sphericity and mechanical properties were chosen for further characterization. This included differential scanning calorimetry, drug release, hardness friability index (HFI), flowability, bulk density, tapped density, Carr's index, and fourier transform infrared radiation (FTIR) spectroscopy. TGA data showed no drug degradation upon heating to 190 °C. Hot melt extrusion processing conditions were found to have a significant effect on the pellet shape and hardness profile. Pellets with maximum sphericity and hardness exhibited no crystalline peak after extrusion. The rate of drug release was affected mainly by pellet size, where smaller pellets released the drug faster. All optimized formulations were found to be of superior hardness and not friable. The flow properties of optimized pellets were excellent with high bulk and tapped density. PMID:27080252

  19. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N2-H2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  20. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  1. CO2 Absorbing Capacity of MEA

    OpenAIRE

    José I Huertas; Gomez, Martin D.; Nicolas Giraldo; Jessica Garzón

    2015-01-01

    We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac) at several aqueous MEA (β) and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA) at very low β levels, increasing from 447.9±18.1 to 581...

  2. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  3. Design and application of functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2004-01-01

    This paper gives an overview of the research at Institute of Acoustics, Tongji University, on functional absorbers and experience acquired in practical applications over the past three decades. Experiments and analysis of the absorption characteristics of three different geometrical forms of functional absorbers, i.e., panels, cubes and tubes, were conducted with different arrangements. The resulting esthetical effects are illustrated with pictures. Several non-fiber materials are used to compose functional absorbers with advantages both in acoustic properties and in architectural features. Cost effectiveness analysis is also given in order to provide design guidelines.

  4. Mechanical modeling of porous oxide fuel pellet A Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Nukala, Phani K [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL

    2009-10-01

    A poro-elasto-plastic material model has been developed to capture the response of oxide fuels inside the nuclear reactors under operating conditions. Behavior of the oxide fuel and variation in void volume fraction under mechanical loading as predicted by the developed model has been reported in this article. The significant effect of void volume fraction on the overall stress distribution of the fuel pellet has also been described. An important oxide fuel issue that can have significant impact on the fuel performance is the mechanical response of oxide fuel pellet and clad system. Specifically, modeling the thermo-mechanical response of the fuel pellet in terms of its thermal expansion, mechanical deformation, swelling due to void formation and evolution, and the eventual contact of the fuel with the clad is of significant interest in understanding the fuel-clad mechanical interaction (FCMI). These phenomena are nonlinear and coupled since reduction in the fuel-clad gap affects thermal conductivity of the gap, which in turn affects temperature distribution within the fuel and the material properties of the fuel. Consequently, in order to accurately capture fuel-clad gap closure, we need to account for fuel swelling due to generation, retention, and evolution of fission gas in addition to the usual thermal expansion and mechanical deformation. Both fuel chemistry and microstructure also have a significant effect on the nucleation and growth of fission gas bubbles. Fuel-clad gap closure leading to eventual contact of the fuel with the clad introduces significant stresses in the clad, which makes thermo-mechanical response of the clad even more relevant. The overall aim of this test problem is to incorporate the above features in order to accurately capture fuel-clad mechanical interaction. Because of the complex nature of the problem, a series of test problems with increasing multi-physics coupling features, modeling accuracy, and complexity are defined with the

  5. Health Effects of Operators in the Production of Wood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, K.; Arvidsson, H.; Bryngelsson, I.L.; Fedeli, C. [Oerebro Univ. (Sweden). Dept. of Occupational and Environmental Medicine; Eriksson, K. [Univ. Hospital of Umeaa (Sweden). Dept. of Occupational and Environmental Medicine; Andersson, E. [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Occupational and Environmental Medicine

    2006-07-15

    The environmental and energy policy in Sweden is aiming to replace fossil energy with renewable sources such as biofuels, e.g., wood Pellets produced from shavings and sawdust of pine and spruce. Reported health effects in the wood processing industries are airway, eye and skin irritation, reduced lung function as well as eczema. The aim of our study was to investigate the prevalence of airway and skin symptoms and measure lung function in a population of pellet operators in the Swedish wood industry. Additional reported acute effects from the airways, eyes, nose and skin were recorded. From May 2004 until April 2005 50 blue-collar workers from four Swedish pellet-producing industries were investigated. The study included a questionnaire about skin and airway symptoms (n=50), acute effect questionnaire (n=67; 44 individuals) as well as a test of the lung function (spirometry) before and after work shift (n=118; 39 individuals). Acute effects questionnaire and spirometry were done one to three times per participants and for the acute effects the worker had to assess their symptoms in the airways, eyes, nose and skin between 6 and 8 times during a day. The results from the symptom questionnaires were compared with reference data from other Swedish studies and the lung function data with a European reference material. Statistical tests used were chi-2-test for the questionnaire, t-test for lung function before shift compared expected values, and for difference in lung function between before and after work shift mixed models with subjects as a random factor. No statistical significant difference was seen for the skin and airway symptoms in the questionnaire. Reported acute effects were seen especially for eye and nose symptoms (table 1). Spirometry showed significantly higher forced vital capacity (FVC; p=0.0003) and no difference in forced expiratory volume in 1 second (FEV1; p=0.08) before work shift compared to expected values. FVC was 108,1 % and FEV1 was 104

  6. Wood pellet production costs under Austrian and in comparison to Swedish framework conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thek, Gerold [Bios Bioenergiesysteme GmbH, Graz (Austria); Obernberger, Ingwald [Bios Bioenergiesysteme GmbH, Graz (Austria); Graz Univ. of Technology, Inst. for Resource Efficient and Sustainable Systems, Graz (Austria)

    2004-12-01

    Owing to the rapidly increasing importance of pellets as high-quality biomass fuel in Austria and Europe within the last years, many companies, mainly from the wood industry, are thinking of entering this market. The calculation of the production costs before starting a pellet plant is essential for an economic operation. Based on comprehensive investigations within the EU-ALTENER project 'An Integrated European Market for Densified Biomass Fuels', calculations of the pellet production costs loco factory for different framework conditions with basic data based on already realised plants as well as a questionnaire survey of pellet producers in Austria, South Tyrol and Sweden have been performed. The production costs for wood pellets are mainly influenced by the raw material costs and, in the case of using wet raw materials, by the drying costs. Depending on the framework conditions these two parameters can contribute up to one-third of the total pellet production costs. Other important parameters influencing the pellet production costs are the plant utilisation (number of shifts per week) as well as the availability of the plant. For an economic production of wood pellets at least three shifts per day at 5 days per week are necessary. An optimum would be an operation at 7 days per week. A low plant availability also leads to greatly increased pellet production costs. A plant availability of 85-90% should therefore be achieved. The calculations show that a wood pellet production is possible both in small-scale (production rates of some hundred tonnes per year) as well as in large-scale plants (some ten thousand tonnes per year). However, especially for small-scale units it is very important to take care of the specific framework conditions of the producer, because the risk of a non-economic pellet production is considerably higher than for large-scale systems. The direct comparison of typical pellet production costs in Austria and Sweden showed the Swedish

  7. A study of bonding and failure mechanisms in fuel pellets from different biomass resources

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.;

    2011-01-01

    Pelletization of biomass reduces its handling costs, and results in a fuel with a greater structural homogeneity. The aim of the present work was to study the strength and integrity of pellets and relate them to the quality and mechanisms of inter-particular adhesion bonding. The raw materials used....... These were absent in both spruce and straw pellets. Infrared spectroscopy of the fracture surfaces of the straw pellets indicated high concentrations of hydrophobic extractives, that were most likely responsible for their low compression strength, due to presence of a chemical weak boundary layer, limiting...... the adhesion mechanism to van der Waals forces. Electron micrographs indicating interfacial failure mechanisms support these findings. Infrared spectra of the fracture surface of wood pellets, pressed at elevated temperatures, showed no signs of hydrophobic extractives. It has been shown that both temperature...

  8. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings.

    Science.gov (United States)

    Bals, Bryan D; Gunawan, Christa; Moore, Janette; Teymouri, Farzaneh; Dale, Bruce E

    2014-02-01

    Ammonia fiber expansion (AFEX™) pretreatment can be performed at small depots, and the pretreated biomass can then be pelletized and shipped to a centralized refinery. To determine the feasibility of this approach, pelletized AFEX-treated corn stover was hydrolyzed at high (18-36%) solid loadings. Water absorption and retention by the pellets was low compared to unpelletized stover, which allowed enzymatic hydrolysis slurries to remain well mixed without the need for fed-batch addition. Glucose yields of 68% and xylose yields of 65% were obtained with 20 mg enzyme/g glucan and 18% solid loading after 72 h, compared to 61% and 59% for unpelletized corn stover. Pelletization also slightly increased the initial rate of hydrolysis compared to unpelletized biomass. The ease of mixing and high yields obtained suggests that pelletization after AFEX pretreatment could have additional advantages beyond improved logistical handling of biomass.

  9. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.

    Science.gov (United States)

    Hu, Qiang; Yang, Haiping; Yao, Dingding; Zhu, Danchen; Wang, Xianhua; Shao, Jingai; Chen, Hanping

    2016-01-01

    The densification of bio-chars pyrolyzed at different temperatures were investigated to elucidate the effect of temperature on the properties of bio-char pellets and determine the bonding mechanism of pellets. Optimized process conditions were obtained with 128MPa compressive pressure and 35% water addition content. Results showed that both the volume density and compressive strength of bio-char pellets initially decreased and subsequently increased, while the energy consumption increased first and then decreased, with the increase of pyrolysis temperature. The moisture adsorption of bio-char pellets was noticeably lower than raw woody shavings but had elevated than the corresponding char particles. Hydrophilic functional groups, particle size and binder were the main factors that contributed to the cementation of bio-char particles at different temperatures. The result indicated that pyrolysis of woody shavings at 550-650°C and followed by densification was suitable to form bio-char pellets for application as renewable biofuels.

  10. Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder

    International Nuclear Information System (INIS)

    Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.)

  11. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean).

    Science.gov (United States)

    Turner, Andrew; Holmes, Luke

    2011-02-01

    The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region. PMID:21030052

  12. Parametric Study of Pellets for Elemental Analysis with Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Lal, Bansi; Zheng, Hongbo; Yueh, Fang-Yu; Singh, Jagdish P.

    2004-05-01

    The effect of various parameters on the accuracy of the laser-induced breakdown spectroscopy (LIBS) data taken from pellet samples has been investigated. The dependence of the standard deviation of the LIBS data on the amount and nature of the binder used, pressure used to press the powder into a pellet, and the position of the focal spot on the pellet has been investigated. Pellets made from industrially important materials such as silica, alumina, and lime with polyvinyl alcohol, sucrose, and starch as binders have been studied. The results thus obtained are tested by preparation of the calibration curves for Si, Fe, and B in the pellets made from the powder glass batch used as a surrogate for the batch employed for the vitrification of radioactive waste.

  13. Review of off-gasing from wood pellets - a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Staffan [Wood Pellet Association of Canada (Canada)

    2010-02-15

    The issue of off-gassing from pellets was identified following a deadly accident in 2002: exposed to carbon monoxide on entering a cargo hold, one person was killed and two others severely injured. Following that accident, warnings and guidelines were issued to inform persons involved in the transportation of pellets of the potential risk involved. It was then found that the off-gassing issue was not specific to pellets but extends to all wood products. Since 2002 several accidents have occurred which has led to extensive research into this phenomenon, particularly by the Wood Pellet Association of Canada (WPAC) to determine causes and develop prevention measures. In this paper, the WPAC proposes several measures for preventing accidents due to off-gassing from pellets, such as a standardized method for characterization of the off-gassing, the adoption of internationally standardized pictogram warnings and the development of training programs for emergency personnel.

  14. Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; GAO Jia-cheng; WANG Yong; CHANG Xin

    2008-01-01

    Low-temperature sintering(LTS) experiments of UO2 pellets and their results were reported. Moreover, a routine process of LTS for UO2 pellets was primarily established. Being sintered at 1 400 ℃ for 3 h in a partially-oxidative atmosphere, the relative density of the pellet can be up to around 94%. Pellets with such a high density are of benefit for following-up reduction-sintering processes. Orthogonal test indicates that the importance of factors affecting the density decreases in the sequence of partial-oxidative sintering temperature and time, reduction-sintering time and temperature, and sintering atmosphere. It is found that it is helpful to introducing a small amount of water vapor into the sintering atmosphere during the latter stage. It is believed that it is the key factor to raise the O/U ratio of original powder in order to improve the properties of the low-temperature sintered pellets.

  15. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean).

    Science.gov (United States)

    Turner, Andrew; Holmes, Luke

    2011-02-01

    The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region.

  16. Torrefaction of Pelletized Oil Palm Empty Fruit Bunches

    CERN Document Server

    Nyakuma, Bemgba Bevan; Johari, Anwar; Abdullah, Tuan Amran Tuan; Oladokun, Olagoke

    2015-01-01

    The torrefaction of oil palm Empty Fruit Bunch (EFB) briquettes was examined in this study. The results indicate that temperature significantly influenced the mass yield, energy yield and heating value of oil palm empty fruit bunch (OPEFB) briquettes during torrefaction. The solid uniform compact nature of EFB briquettes ensured a slow rate of pyrolysis or devolatization which enhanced torrefaction. The mass yield decreased from 79.70 % to 43.03 %, energy yield from 89.44 % to 64.27 % during torrefaction from 250 {\\deg}C to 300 {\\deg}C. The heating value (HHV) of OPEFB briquettes improved significantly from 17.57 MJ/kg to 26.24 MJ/kg after torrefaction at 300 {\\deg}C for 1 hour. Fundamentally, the study has highlighted the effects of pelletization and torrefaction on solid fuel properties of oil palm EFB briquettes and its potential as a solid fuel for future thermal applications.

  17. Determination of stilbenes in hop pellets from different cultivars.

    Science.gov (United States)

    Jerkovic, Vesna; Callemien, Delphine; Collin, Sonia

    2005-05-18

    About 30% of the polyphenols in wort and beer derive from hop, but little is yet known about their nutritional impact. The recent discovery of trans-resveratrol and piceid isomers in hop opens new doors to understanding beer health benefits. In the present work, resveratrol was quantified by HPLC-APCI-MS/MS in pellets from 9 different cultivars. Concentrations ranging from 4 to 9 mg/kg trans-piceid, from 2 to 6 mg/kg cis-piceid, and up to 1 mg/kg trans-resveratrol were detected. As previously shown for total polyphenols and flavonoids, the lower the alpha-acid content, the higher the total stilbene content. PMID:15884861

  18. Volume Ignition via Time-like Detonation in Pellet Fusion

    CERN Document Server

    Csernai, L P

    2015-01-01

    Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.

  19. Permanent Ocular Injury Following Paintball Pellet Hit: A Medicolegal Case.

    Science.gov (United States)

    Ghazanfari-Nasrabad, Mahdi; Amrollahi-Sharifabadi, Mohammad; Kargar-Bideh, Omidreza; Azizi-Sharifabad, Saeed

    2016-01-01

    Paintball is a ubiquitous recreation, with severe and occasionally irreversible injuries. In this study, a rare medicolegal case of paintball-related closed globe blunt ocular injury was described. An 18-year-old boy who was hit in his right eye by a paintball pellet presented with severe eye pain and blurred vision. Ophthalmologic examinations showed lid edema, conjunctival hyperemia, conjunctival laceration, subconjunctival hemorrhage, corneal edema, anterior vitreous hemorrhage, congested sclera, commotio retinae, vitreous hemorrhage, retinal hemorrhage, macular edema, and macular hole. After maximum medical improvement, the patient who sustained incurable maculopathy and decreased visual acuity was referred to the legal medicine center for appraisal of the impairment. AMA Guides was used to assess the impairment of the functional vision. Despite his monocular visual defect, the patient was rated in the range of mild vision loss namely AMA class 1 with 22 percentage visual system impairment. PMID:26211673

  20. An analysis of Apulian micromammal populations by studying owl's pellets

    Directory of Open Access Journals (Sweden)

    Michele Bux

    2000-09-01

    Full Text Available Abstract The study contains data from 3302 preys found in Barn owl pellets from 15 sites within the Provinces of Foggia and Bari (Apulia, Southern Italy. Eleven micromammal species were identified. Microtus savii and Apodemus sylvaticus were the most frequents preys. No specimen of Clethrionomys glareolus and Apodemus flavicollis were found which is probably due to the habitat typology examined (all thermoxerophilous phytocoenosis. The Sorensen Index showed a high faunistic affinity among all the sites studied and other localities of Apulia. However, by applying the index of biocenotic differences (Renkonen a difference in some localities, in relation to Microtus savii and Insectivores abundance, was found.

  1. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  2. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue;

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  3. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  4. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  5. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping...... of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure....

  6. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  7. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    Science.gov (United States)

    Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu

    2015-11-01

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.

  8. The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Urbahn, J.A.

    1994-05-01

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius.

  9. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    International Nuclear Information System (INIS)

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007–2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass. (letter)

  10. Local strain in cladding tube due to radial pellet cracking

    International Nuclear Information System (INIS)

    A study was made to develop a method for evaluation of the local strain in a cladding tube of the Advanced Thermal Reactor due to radial cracking to a UO2 fuel pellet. Effects of the number of cracks, initial crack width and the friction coefficient of a pellet-clad interface on behaviors of the local strain in a cladding tube were evaluated with a modelized experiment. Analytical evaluation of a membrane strain was also carried out on the basis of a procedure similar to that proposed by J. H. Gittus, Nuclear Engineering and Design 18 (1972) 69-82, in order to follow the experimental results and to extend the model experiment to cladding tube. A Zircaloy-2 ring specimen with inner diameter of 95 mm, height of 25 mm and wall thickness of 5 mm was expanded at room temperature with equally divided peripheral dice of a tool steel set in a specimen. Strains on an external surface of the specimen were measured with 28 wire strain gages with gage length of 0.3 mm. An elastic-plastic analysis was carried out in order to evaluate the membrane hoop strain in the cladding tube on the basis of a simple procedure similar to that proposed by Gittus. The results of analysis showed that the maximum hoop strain occured at a location apart from the dice edge. This was caused by unloading in the crack opening portion. The strain concentration factor obtained from analysis is greater than that obtained from experiment. The difference of concentration factors between analysis and experiment is due to the bending strain. Therefore, the strain concentration factor at the inner surface is evaluated from the experimental concentration factor at the external surface and the analytical concentration factor of a membrane strain. (Auth.)

  11. Directed percolation with an absorbing boundary

    OpenAIRE

    Lauritsen, K. B.; K. Sneppen; Markosova, M.; Jensen, M. H.

    1997-01-01

    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.

  12. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  13. Absorbing Boundary Conditions for Hyperbolic Systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Ehrhardt

    2010-01-01

    This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

  14. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  15. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  16. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  17. Thermal Performance and Operation Limit of Heat Pipe Containing Neutron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Jeong, Yeong Shin; Kim, In Guk; Bang, In Choel [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    Recently, passive safety systems are under development to ensure the core cooling in accidents involving impossible depressurization such as station blackout (SBO). Hydraulic control rod drive mechanisms, passive auxiliary feedwater system (PAFS), Passive autocatalystic recombiner (PAR), and so on are types of passive safety systems to enhance the safety of nuclear power plants. Heat pipe is used in various engineering fields due to its advantages in terms of easy fabrication, high heat transfer rate, and passive heat transfer. Also, the various concepts associated with safety system and heat transfer using the heat pipe were developed in nuclear engineering field.. Thus, our group suggested the hybrid control rod which combines the functions of existing control rod and heat pipe. If there is significant temperature difference between active core and condenser, the hybrid control rod can shutdown the nuclear fission reaction and remove the decay heat from the core to ultimate heat sink. The unique characteristic of the hybrid control rod is the presence of neutron absorber inside the heat pipe. Many previous researchers studied the effect of parameters on the thermal performance of heat pipe. However, the effect of neutron absorber on the thermal performance of heat pipe has not been investigated. Thus, the annular heat pipe which contains B{sub 4}C pellet in the normal heat pipe was prepared and the thermal performance of the annular heat pipe was studied in this study. Hybrid control rod concept was developed as a passive safety system of nuclear power plant to ensure the safety of the reactor at accident condition. The hybrid control rod must contain the neutron absorber for the function as a control rod. So, the effect of neutron absorber on the thermal performance of heat pipe was experimentally investigated in this study. Temperature distributions at evaporator section of annular heat pipe were lower than normal heat pipe due to the larger volume occupied by

  18. A pellet launcher tool optimized for the control of plasma edge instabilities

    International Nuclear Information System (INIS)

    A promising solution to the type-I edge localized mode (ELM) ELM power load problem in ITER is ELM pacing via quasi-continuous injection of cryogenic hydrogen isotope pellets. The feasibility of this approach was demonstrated on ASDEX Upgrade, culminating in successful, quasi-stationary ELM frequency control in radiative H-mode edge scenarios. However, all these experiments were performed by using an injection system developed for particle fuelling launching pellets from the magnetic high field side (HFS) with velocities between 240 and 1000 m/s at a repetition rate (60 Hz) in the range of the intrinsic ELM frequency. It turned out although those pellets were able to control the ELMs their parameters are adversarial for the task of a suitable control tool. Such a pellet based ELM pacing system requires injection of small pellets at high repetition rates but low velocities from the magnetic low field side (LFS) - operational requests absolutely contradictory with a fuelling system. Consequently, our aim was to design and developed a new pellet injection system optimized as a tool for plasma edge and ELM control. The systems pellet source is composed from separated extrusion and storage cryostats. Simultaneous pellet cutting and filling of a gun barrel is performed by a shuttle mechanics allowing alternating launch along two acceleration lines. Acceleration is based on the blower gun principle and capable to combine small pellet sizes, high repetition rates and low pellet velocities. Thus, higher pacing rates become possible while unwanted pellet fuelling can be minimized and furthermore the flexibility of accessible injection geometry is enhanced. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. We report on the results achieved in the test bed campaign and from first injection events in ASDEX Upgrade. Pellet repetition

  19. On the definition of absorbed dose

    Science.gov (United States)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  20. Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines

    Directory of Open Access Journals (Sweden)

    Alok Sarkar

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The present study deals with the utilization of fines generated from comminution process (crushing, grinding and screening of the Run of Mines into value added products i.e. fluxed iron ore pellets. The study comprises to understand the physical and mechanical behavior of five distinguished chemical compositions of green and dried iron ore pellets with respect to a typical Mini Blast furnace (MBF burden data and furnace operating parameter. The maximum basicity of pellets was calculated 2.37 to make slag neutral when blast furnace runs at 100% high ash coke (avg. ash content= 29%. The crushing strength and drop number of various green pellets were measured. Green Crushing Strength was decreased with increasing lime fines. The addition of lime fines as a burnt lime, which has acicular structure creates less plasticity and brittle like fracture occurred. Due to formation of hard CaCO3 layer on the surface, after increasing lime contain crushing strength was increased in the air and oven dry pellets with respect to acid pellet (0% lime fines addition. [How to cite this article: Sarkar, A., Mandal, A.K., and Sinha, O.P. (2013 Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines. International Journal of Science and Engineering, 5(2,9-14. Doi: 10.12777/ijse.5.2.9-14] 

  1. Simple and inexpensive method of wood pellets macro-porosity measurement.

    Science.gov (United States)

    Igathinathane, C; Tumuluru, Jaya Shankar; Sokhansanj, S; Bi, X; Lim, C J; Melin, S; Mohammad, E

    2010-08-01

    A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0+/-2.5% and 35.5+/-2.7%, mean bulk density as 670+/-29 kg m(-3) and 731+/-31 kg m(-3), and classified as "Class-3:Medium" and "Class-3&4:Medium to Low" for loose and tapped fills, respectively. Hausner ratio and Carr's compressibility index classify wood pellets as "freely flowing." The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials. PMID:20371174

  2. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. PMID:25733499

  3. Influence of grinding method and grinding intensity of corn on mill energy consumption and pellet quality

    Directory of Open Access Journals (Sweden)

    Vukmirović Đuro M.

    2016-01-01

    Full Text Available In recent years there is an emerging trend of coarse grinding of cereals in production of poultry feed due to positive influence of coarse particles on poultry digestive system. Influence of grinding method (hammer mill vs. roller mill and grinding intensity of corn (coarseness of grinding on mill specific energy consumption and pellet quality was investigated. By decreasing grinding intensity of corn (coarser grinding, specific energy consumption of both hammer mill and roller mill was significantly decreased (p < 0.05. When comparing similar grinding intensities on hammer mill and roller mill (similar geometric mean diameter or similar particle size distribution, specific energy consumption was higher for the hammer mill. Pellet quality decreased with coarser grinding on hammer mill but, however, this effect was not observed for the roller mill. Generally, pellet quality was better when roller mill was used. It can be concluded that significant energy savings could be achieved by coarser grinding of corn before pelleting and by using roller mill instead of hammer mill. From the aspect of pellet quality, if coarser grinding is applied it is better to use roller mill, concerning that more uniform particle size distribution of corn ground on roller mill probably results in more uniform particle size distribution in pellets and this provides better pellet quality. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  4. Influence of pellet seating on the external ballistic parameters of spring-piston air guns.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Frank, Matthias

    2016-09-01

    In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary. PMID:27448569

  5. Influence of pellet seating on the external ballistic parameters of spring-piston air guns.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Frank, Matthias

    2016-09-01

    In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary.

  6. Does the effect of pelleting depend on the wheat sample when fed to chickens?

    Science.gov (United States)

    Pirgozliev, V; Mirza, M W; Rose, S P

    2016-04-01

    Experimental comparisons of the nutritional value of different wheat cultivars commonly use feeds in meal form even though the large-scale broiler producers use steam pelleted feeds. The aim of this experiment was to examine the effect of steam pelleting on the performance, dietary N-corrected apparent metabolisable energy (AMEn), total tract dry matter retention (DMR), nitrogen retention (NR) and fat digestibility (FD) coefficients, and digestive tract development of broilers fed four different wheat samples in complete diets. Four European wheat samples, with different chemical composition and endosperm characteristics, were used in a broiler experiment. The wheat samples were milled through a 5 mm screen and four basal feeds containing 670 g/kg of each selected wheat sample were mixed. The basal feeds were then split into two batches and one of them was steam pelleted resulting in eight experimental diets. Each diet was fed ad libitum to eight pens of two male Ross 308 broilers from 10 to 24 days of age. Feeding pelleted diets improved (P0.05). Feeding different wheat types and pelleting did not (P>0.05) change the development of the gastrointestinal tract of the birds. The study showed that there were differences between four wheat samples when they were fed in pelleted complete feed, but no differences were observed when fed in mash form complete diets. Research on the interaction between pelleting and wheat chemical and quality characteristics is warranted. PMID:26538484

  7. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

  8. Strength loss in MA-MOX green pellets from radiation damage to binders

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, Paul A. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cannon, W. Roger, E-mail: wrogercannon@gmail.com [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-06-15

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO{sub 2}, 20 wt.% PuO{sub 2}, 3 wt.% AmO{sub 2} and 2 wt.% NpO{sub 2} was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene–acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  9. Strength loss in MA-MOX green pellets from radiation damage to binders

    Science.gov (United States)

    Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  10. Preparation and Evaluation of Pellets Using Acacia and Tragacanth by Extrusion-Spheronization

    Directory of Open Access Journals (Sweden)

    S. Pirmoradi

    2011-12-01

    Full Text Available Background and the purpose of the study: Extrusion-spheronization is an established technique for the production of pellets for pharmaceutical applications. In this study, the feasibility and influence of the incorporation of acacia, by itself and in combination with tragacanth, on the ability of formulations containing 2 model of drugs (ibuprofen and theophylline to form spherical pellets by extrusion-spheronization was investigated.Material and Methods: Formulations containing different ratios of acacia and tragacanth (8:2, 9:1, and 10:0 and different drug concentrations (20%, 40%, and 60% were prepared, on the basis of a 32 full factorial design. Pellet properties, such as aspect ratio, sphericity (image analysis, crushing strength and elastic modulus (mechanical tests, mean dissolution time, and dissolution profiles were evaluated. The effect of particular factors on responses was determined by linear regression analysis.Results: The sphericity, drug release rate, and the mechanical properties of the pellets were affected by the amounts and types of the drugs, and the ratio of the gums. Acacia, relative to tragacanth, produced pellets with higher mechanical strength and a faster drug release rate. Addition of small amounts of tragacanth to ibuprofen formulations resulted in matrix pellets with slow drug release.Conclusion: The results showed that acacia and tragacanth can be used successfully as 2 natural binders in the pellet formulations.

  11. A statistical approach to pellet stack movement during fuel rod ballooning

    International Nuclear Information System (INIS)

    The principal factor which determines the burst strain of a ballooning PWR fuel rod during a postulated loss-of-coolant accident is the magnitude of the circumferential temperature variation around the Zircaloy cladding. It is currently accepted that heat flux asymmetries associated with pellet eccentricity within the ballooning clad are the main source of such temperature variations. This paper presents an analysis of fuel pellet stack configurational changes which may accompany clad ballooning and consequently influence the development of clad azimuthal temperature gradients. The basis of the model rests on the premise that a stack of fuel pellets whose end-faces are not orthogonal to the cylinder axis but which are constrained within the cladding will develop inter-pellet gaps. During ballooning, closure of the gaps results in a lateral movement of the stack and provides a mechanism by which the central pellets are able to maintain unit eccentricity until the clad has ballooned to a diametral strain at which the inter-pellet gaps are closed. To describe the effect on clad deformation of the pellet-clad configuration changes, a statistical approach to stack movement has been coupled to the TAPSWEL code. It is shown that the distribution of burst strains in the MT-3 rods from the in-pile LOCA simulation test can be predicted using geometric parameters measured on archive pellets. The observed variation of the burst strains exhibited by the MT-3 rods is shown to be reasonably consistent with the model prediction based on the pellet stack displacement concept. (author)

  12. Fabrication of Annular Pellet for HANARO Irradiation Test of Dual Cooled Fuel

    International Nuclear Information System (INIS)

    One of the most important components in a Pressurized Water Reactor affecting its safety and economy is a nuclear fuel. The traditional PWR fuel pellet has a shape of cylindrical tablets of about 8 mm in diameter with a chamfer and dishes. A significant reduction in its failure rate has resulted from the improvements in the fuel and cladding quality. Enhanced fuel assembly design allowed appreciable power density increases. However, it is difficult to achieve a significant increase of a power density under the current fuel pin design. An internally and externally cooled annular fuel has been considered seriously as a promising solution for an extended power uprate of a PWR fuel assembly. A dual cooled annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. There must be a lot of considerations in the various fields to introduce an annular internally and externally cooled fuel to commercial PWR reactors. The dimensional changes of the annular fuel pellets during the early irradiation stage are very important, because they have an influence on the size of the gap between the pellet and the inner/outer claddings. In order to gain an insight to how the annular pellets deform, a HANARO irradiation test is planned for annular pellets with 5 different types. The detailed specification of the annular pellet was shown in Table 1. It is noted that Type C has the same pore structure as a commercial PWR pellet. The purpose of this paper is to report on the manufacturing process of an annular fuel pellet for a HANARO irradiation test

  13. Decomposition of oak leaf litter and millipede faecal pellets in soil under temperate mixed oak forest

    Science.gov (United States)

    Tajovský, Karel; Šimek, Miloslav; Háněl, Ladislav; Šantrůčková, Hana; Frouz, Jan

    2015-04-01

    The millipedes Glomeris hexasticha (Diplopoda, Glomerida) were maintained under laboratory conditions and fed on oak leaf litter collected from a mixed oak forest (Abieto-Quercetum) in South Bohemia, Czech Republic. Every fourth day litter was changed and produced faecal pellets were separated and afterwards analysed. Content of organic carbon and C:N ratio lowered in faecal pellets as compared with consumed litter. Changes in content of chemical elements (P, K, Ca, Mg, Na) were recognised as those characteristic for the first stage of degradation of plant material. Samples of faecal pellets and oak leaf litter were then exposed in mesh bags between the F and H layers of forest soil for up to one year, subsequently harvested and analysed. A higher rate of decomposition of exposed litter than that of faecal pellets was found during the first two weeks. After 1-year exposure, the weight of litter was reduced to 51%, while that of pellets to 58% only, although the observed activity of present biotic components (algae, protozoans, nematodes; CO2 production, nitrogenase activity) in faecal pellets was higher as compared with litter. Different micro-morphological changes were observed in exposed litter and in pellets although these materials originated from the same initial sources. Comparing to intact leaf litter, another structural and functional processes occurred in pellets due to the fragmentation of plant material by millipedes. Both laboratory and field experiments showed that the millipede faecal pellets are not only a focal point of biodegradation activity in upper soil layers, but also confirmed that millipede feces undergo a slower decomposition than original leaf litter.

  14. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Twenty-seven fully loaded 137Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 15000C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10-10 kg m-2s-1, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10-12 kg m-2s-1. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137Cs aluminosilicate pellets were 1.29 x 10-16m2s-1, 6.88 x 10-17m2s-1, and 1.35 x 10-17m2s-1, respectively

  15. Obtainment of pellets using the standardized liquid extract of Brosimum gaudichaudii Trécul (Moraceae

    Directory of Open Access Journals (Sweden)

    Omar Paulino Silva Filho

    2015-01-01

    Full Text Available Background : The standardized liquid extract of Brosimum gaudichaudii Trécul is an alternative for the treatment of vitiligo. There is a shortage of solid oral dosage forms developed from standardized extracts of this plant specie. Objective: This study is aimed to obtain pellets with a standardized liquid extract of B. gaudichaudii. Results: The standardized liquid extract of B. gaudichaudii was obtained through maceration and percolation with a 55% ethanol-water solution (v/v. Pellets were obtained through a mixture of extract of 500 g of B. gaudichaudii standardized extract, 500 g of microcrystalline cellulose PH101 and 10 g of hydroxypropyl methylcellulose K100. The pellets obtained presented a homogeneity yield of 92%, aspect ratio of 1.16 ± 0.65, shape fator eR of 0.35 ± 0.09 and Feret diammeter of 0.87 ± 0.27. These pellets were coated with a suspension composed of titanium dioxide, aluminum red lacquer, ethyl cellulose, talc and magnesium stearate. Before the photostability test, the uncoated pellets showed psoralen content equal to 0.13 ± 0.01% and to the 5-MOP was 1.40 ± 0.27%. After exposure to one level (3 J.cm -2 of UVB irradiation the uncoated pellets presented a degradation of 2.16% of psoralen and 8.1% of 5-MOP. After exposure to three levels (10, 20 and 30 J.cm -2 of UVA irradiation the uncoated pellets exhibited photodegradation of 9.78, 17.64, 24.21% of psoralen and 18.95, 23.68, 28.48% for 5-MOP. The coated pellets where unaffected after photostability test. Conclusion: Pellets were obtained with the standardized liquid extract of B. gaudichaudii and coating is a technological alternative to ensure the stability of the formula.

  16. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  17. Ultrathin flexible dual band terahertz absorber

    Science.gov (United States)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  18. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  19. Properties of sintered amethyst pellets as thermoluminescent dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, F.D.G.; Oliveira, M.L.; Cecatti, Sonia G.P.; Caldas, Linda V.E. E-mail: lcaldas@net.ipen.br

    2003-01-01

    The main dosimetric characteristics of amethyst, Brazilian natural semi-precious stone, were investigated in this work, in order to verify the possibility of its use for gamma-radiation detection using the thermoluminescent (TL) technique. The samples were tested in X- and gamma-radiation beams, and their TL glow curves, dependences of the response on the absorbed dose and radiation energy, and the response reproducibility were investigated. The preliminary results show the usefulness of this material in dosimetry for radiation processing.

  20. Electrical properties of CZTS pellets made from microwave-processed powder

    Science.gov (United States)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.

    2015-06-01

    Electrical properties of the kesterite copper zinc tin sulphide (CZTS) pellets in the temperature range from 300 K to 500 K are reported. The pellets are p-type with thermoelectric power (TEP) of + 175 µV/K. Electrical conductivity (σ) increases with the temperatures and is found to be due to thermionic emission (TE) over grain boundary (GB) barriers with activation energy of 170 meV. CZTS pellets are made from micropowders synthesized by microwave irradiation of precursor solution. Formation of kesterite CZTS is confirmed by X-ray diffraction (XRD) and Raman spectroscopy. Scanning Electron Microscope (SEM) shows that powder is micron sized spherical particles.

  1. Programmed laser beams for optimum production of fusion reactions in fuel pellets

    International Nuclear Information System (INIS)

    The invention refers to a thermonuclear reactor in which a pellet of mixed deuterium and tritium, surrounded by a breeding blanket of swirling molten lithium, is ignited by a laser pulse. The invention consists in the use of three pulses: the first of about 1 to 2 J serves to vaporize the pellet and weakly ionize the resultant gas; the second of 200 to 400 J is directed by reflectors below the pellet so as to confine the plasma in a pyramidal shape with lower density at the bottom; and the final pulse, with an energy of about 105 J, produces fusion. (N.D.H.)

  2. Twenty barrel in situ pipe gun type solid hydrogen pellet injector for the Large Helical Device

    OpenAIRE

    SAKAMOTO, Ryuichi; MOTOJIMA, Gen; Hayashi, Hiromi; Inoue, Tomoyuki; Ito, Yasuhiko; Ogawa, Hideki; Takami, Shigeyuki; Yokota, Mitsuhiro; Yamada, Hiroshi

    2013-01-01

    A 20 barrel solid hydrogen pellet injector, which is able to inject 20 cylindrical pellets with a diameter and length of between 3.0 and 3.8 mm at the velocity of 1200 m/s, has been developed for the purpose of direct core fueling in LHD (Large Helical Device). The in situ pipe gun concept with the use of compact cryo-coolers enables stable operation as a fundamental facility in plasma experiments. The combination of the two types of pellet injection timing control modes, i.e., pre-programing...

  3. Evaluation of the nutritive value of broiler and broiler parent stock litters after pelleting for ruminants

    OpenAIRE

    Tawadchai Suppadit

    2010-01-01

    Samples of poultry litter were collected in January-February 2009; 30 each from broiler and from broiler parent stock houses in the different parts of Thailand. The bedding material was rice hull. Both types of litter were pelleted as feed ingredient and nutritive values were analyzed. Results revealed that total ash (TA), crude protein (CP) and acid detergent fiber(ADF) contents for pelleted broiler litter (PBL) were much lower than those for pelleted broiler parent stock litter (PBPSL)(P0.0...

  4. Quality effects caused by torrefaction of pellets made from Scots pine

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Dahl, Jonas;

    2012-01-01

    The purpose of the study was to investigate the influence of torrefaction on the quality of Scots pine pellets. Pellet samples were torrefied at 230, 250 and 270°C for 1h in nitrogen atmosphere. Higher heating value (HHV) was increased from 18.37MJkg−1 to 24.34MJkg−1. The energy to crush a pellet...... by mechanical compression was determined using a material tester and results showed a rapid decrease before torrefaction temperature reached 250°C. Slightly further decrease was observed when increasing the temperature up to 270°C. The strength loss was confirmed by determining the energy required for grinding...

  5. Rapid Forming Process and Device of Small-size Booster Explosive Pellet

    Institute of Scientific and Technical Information of China (English)

    MA Gui-chun; ZHANG Shu-sheng; ZHANG Jing-lin; ZHI Hai-bo

    2006-01-01

    A rapid forming device for small-size booster explosive pellet is designed. The rationality of explosive processing is analyzed in theory and the realized process is presented. The experimental results show that the device can improve the internal quality of small-size explosive pellet and the obtained pellet has a good density distribution. The presented rapid forming process and device can provide a credible base for the precise testing and application of booster explosive to general weapons, aerospace and aeronautic weapons and nukes.

  6. The Fecal Pellet fraction of biogeochemical particle fluxes to the deep sea

    Science.gov (United States)

    Pilskaln, Cynthia H.; Honjo, Susumu

    1987-03-01

    Fecal pellets produced by suspension-feeding crustacean zooplankton, specifically copepods and euphausids, have frequently been cited as an important mode of large particle transport in the open ocean. The objectives of the present study were to determine the various biogeochemical fluxes provided by pelagic crustacean fecal pellets, to examine such fluxes as a function of depth and variable levels of surface water productivity, and to assess the overall fecal pellet contribution to oceanic particle fluxes as measured with sediment traps. Pellet subsamples were obtained from particulate samples collected at depths between 389 and 5068 m by moored PARFLUX sediment traps deployed for up to 12 months at three tropical-subtropical open ocean localities. The sites were located over the East Hawaii Abyssal Plain (P site), over the Demerara Abyssal Plain (E site), and in the Pacific Panama Basin (PB site). Fecal pellet flux and chemical composition were found to vary significantly on a geographic scale as a function of productivity levels in the surface waters. The total carbonate, organic carbon, opaline silica, and lithogenic fluxes provided by pellets at the oligotrophic P1site were 1-2 orders of magnitude less than that measured at the eutrophic station in Panama Basin. The pellet data show that contrary to previous assumptions, these biogenic aggregates are responsible for no more than 5% of the total mass flux of oceanic particulate material. Despite the fact that at all trap depths, large numbers of intact pellets were collected which displayed minimal effects of dissolution and microbial degradation, fecal pellets contributed an average of only 1-10%, 0.5-5%, 1-3%, and 0.5-4% to the total measured mass fluxes of organic, carbonate, opaline silica, and lithogenic material, respectively. However, the pellets showed elevated C/N ratios (9-14) as well as high organic content (representing up to 50% of the individual pellet weight), suggesting that they constitute an

  7. Use of alanine-silicone pellets for electron paramagnetic resonance gamma dosimetry

    International Nuclear Information System (INIS)

    Silicone is proposed as an alternative binding substance in the production of D-L alanine pellets used in electron paramagnetic resonance (EPR) dosimetry of gamma rays. The dosimeters are manufactured at room temperature, making the production simple. Examination by EPR silicone-alanine pellets irradiated with 60Co gamma rays in the dose range 10 to 10(6) Gy shows that the proposed silicone binder does not affect typical alanine dose-response curves. Thermal stability of the pellets below 40 degrees C is good, but their pre-dose EPR signal amplitude is slightly higher than for nonirradiated alanine

  8. Use of alanine-silicone pellets for electron paramagnetic resonance gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Galindo, S. (Instituto Nacional de Investigaciones Nucleares (Mexico))

    1991-03-01

    Silicone is proposed as an alternative binding substance in the production of D-L alanine pellets used in electron paramagnetic resonance (EPR) dosimetry of gamma rays. The dosimeters are manufactured at room temperature, making the production simple. Examination by EPR silicone-alanine pellets irradiated with 60Co gamma rays in the dose range 10 to 10(6) Gy shows that the proposed silicone binder does not affect typical alanine dose-response curves. Thermal stability of the pellets below 40 degrees C is good, but their pre-dose EPR signal amplitude is slightly higher than for nonirradiated alanine.

  9. A repetitive pellet injection system for steady state fuelling in EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.Z., E-mail: licz@ipp.ac.cn [Institute of Plasma Physics, P.O. Box 1126, Hefei 230031 (China); Hu, J.S.; Chen, Y. [Institute of Plasma Physics, P.O. Box 1126, Hefei 230031 (China); Vinyar, I.V. [PELIN, LLC, 27A, Gzhatskaya, Saint Petersburg 195220 (Russian Federation); Li, J.G. [Institute of Plasma Physics, P.O. Box 1126, Hefei 230031 (China); Lukin, Ya. [PELIN, LLC, 27A, Gzhatskaya, Saint Petersburg 195220 (Russian Federation)

    2014-02-15

    A new hydrogen/deuterium pellet injector has been developed for Experimental Advanced Superconducting Tokamak (EAST). The pellet injector based on a screw extruder is able to fire pellets (∅2 mm × 2 mm; frequency 1–10 Hz and velocity 150–300 m/s) in steady state mode with reliability greater than 95%. An injection line was designed for pumping propellant gas and for diagnostic purpose also. A guide tube for magnetic high-field side (HFS) injection was developed and theoretical calculation has been done. After successful engineering commissioning, the injection system served at EAST 2012 campaign and first experimental results were obtained.

  10. Diametric Tolerance Control of Dual Cooled Annular Fuel Pellet without Inner Surface Grinding

    International Nuclear Information System (INIS)

    A dual cooled fuel consists of internal and external cladding tubes in which annular pellets are stacked and cooling water flows in both internal and external coolant passages. It is recently being reconsidered as a promising option for a power up-rate of a pressurized water reactor fuel assembly because an annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to an increased heat transfer area and a thin pellet thickness. Many technical issues might cause a serious problem to adopt the dual cooled annular fuel to the commercial PWR reactors. One of the most important issues is a heat flux split toward an internal cladding and an external cladding due to the gap conductance asymmetry which results from a preferential expansion of a fuel pellet toward the outside during an irradiation. Gap conductance is directly related to the inner and outer gap thicknesses. Initial gap thicknesses can vary with a pellet's dimensions which are affected by a reactor operation condition. Recently, it is suggested that a fuel rod with a smaller inner gap and a larger outer gap can reduce this gap conductance asymmetry. This approach can be effective only after precise tolerance technology is achieved. Because of an inhomogeneous green density distribution along the compact height, an hour-glassing usually occurred in a sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press. Thus, a sintered pellet usually undergoes a center-less grinding process in order to secure a pellet's specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. The outer diameter tolerance of an annular pellet can be controlled easily similar to that of a conventional cylindrical PWR pellet through a center-less grinding. However, it appears not to be simple in the case of an inner surface grinding. It would be the best way to satisfy the specifications

  11. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  12. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  13. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  14. Broadband plasmonic absorber for photonic integrated circuits

    CERN Document Server

    Xiong, Xiao; Ren, Xi-Feng; Guo, Guang-Can

    2013-01-01

    The loss of surface plasmon polaritons has long been considered as a fatal shortcoming in information transport. Here we propose a plasmonic absorber utilizing this "shortcoming" to absorb the stray light in photonic integrated circuits (PICs). Based on adiabatic mode evolution, its performance is insensitive to incident wavelength with bandwidth larger than 300nm, and robust against surrounding environment and temperature. Besides, the use of metal enables it to be very compact and beneficial to thermal dissipation. With this 40um-long absorber, the absorption efficiency can be over 99.8% at 1550nm, with both the reflectivity and transmittance of incident light reduced to less than 0.1%. Such device may find various applications in PICs, to eliminate the residual strong pump laser or stray light.

  15. Description of a pilot plant to produce a pelleted form from simulated ICPP high-level calcined wastes

    International Nuclear Information System (INIS)

    The pilot plant uses techniques learned in the laboratory to combine calcine with solid and liquid binders to form hard, leach-resistant pellets. The pilot plant is designed to process up to 25 kg/h of calcine and will provide information necessary to verify the operational feasibility of pelletizing calcined waste. Also, information for the design of a possible full-scale pelletizing plant will be obtained. All components of the pelletizing operations are described. The solids feed system consists of two loss-in-weight feeders: one for calcine and one for solid binders. Intimate mixing of the solids is accomplished in a screw mixer-feeder. A metering pump is used to pump liquid binders to the pelletizer through a spray nozzle. A 12.7 mm mesh, vibro screen separator removes oversize pellets, leaving the pelletizer. A 0-6 kW microwave-heated dryer operating at 150 to 2000C removes moisture from the pellets in about 15 minutes. To impart leach resistance, the pellets are heat treated at 800 to 9000C for 1 to 2 hrs in a kiln. Pellets move down through a set of 6 to 8 stacked, rotating trays inside the kiln. Pellets are collected from the heat treater and tested for strength and leach resistance. An off-gas system cools and removes dust present in the off-gas from the pilot plant. 20 figures

  16. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  17. Economic analysis of manufacturing costs of pellet production in the Republic of Ireland using non-woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, A.; McDonnell, K.; Devlin, G.J. [Dublin Univ. College (Ireland). Dept. of Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine; Carroll, J.P.; Finnan, J. [Teagasc Crops Research Centre, Carlow (Ireland)

    2010-07-01

    Pellets are a key technology for increasing the use of biomass in both electricity and heat production. This paper presented an economic analysis of a non-woody biomass pelleting process located in the Republic of Ireland. The establishment, harvest, storage, and drying costs of the feedstock were considered in addition to transportation costs to the processing plant and costs associated with the pelletizing process. Several biomass pellet plant capacities were considered. Results of the study showed that raw materials are the largest cost component of the total pellet production cost. Other major costs included the cost of the pelleting and cooling plant, the straw grinding plant, and personnel costs. The study showed that decreasing production capacity to 6 tons per hour resulted in increases in production costs, while increasing the capacity to 10 tons per hour resulted in a decrease in production costs. Non-woody biomass pellet production compared favorably with fossil fuel energy production processes. 25 refs., 9 tabs.

  18. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs.

    Science.gov (United States)

    Rojas, O J; Vinyeta, E; Stein, H H

    2016-05-01

    An experiment was conducted to determine effects of pelleting, extrusion, and extrusion and pelleting on energy and nutrient digestibility in diets containing low, medium, or high concentrations of fiber. Three diets were formulated: 1) the low-fiber diet contained corn and soybean meal; 2) the medium-fiber diet contained corn, soybean meal, and 25% distillers dried grains with solubles (DDGS); and 3) the high-fiber diet contained corn, soybean meal, 25% DDGS, and 20% soybean hulls. Each diet was divided into 4 batches after mixing. One batch was not further processed and was fed in a meal form, one batch was pelleted at 85°C, one batch was extruded at 115°C using a single-screw extruder, and one batch was extruded at 115°C and then pelleted at 85°C. Thus, 12 different diets were produced. Twenty-four growing pigs (26.5 ± 1.5 kg initial BW) had a T-cannula installed in the distal ileum and were allotted to the 12 diets in a split-plot design with 8 pigs allotted to the low-fiber diets, the medium-fiber diets, and the high-fiber diets, respectively. Diets were fed to the pigs during four 14-d periods. Within each type of diet, the 8 pigs were fed the diets produced using the 4 processing technologies. Therefore, there were 8 replicate pigs per diet. Pigs were adjusted to their diets for 14 d before the experiment was initiated. Each of the four 14-d periods consisted of 5 d for adaptation, 5 d of fecal collection according to the marker to marker approach, and ileal digesta were collected on d 13 and 14. Results indicated that pelleting, extrusion, or extrusion and pelleting improved ( < 0.05) the apparent ileal digestibility of starch and most indispensable AA. In most cases, there were no differences between the pelleted, the extruded, and the extruded and pelleted diets. The apparent total tract digestibility of GE was also improved ( < 0.05) by pelleting and by the combination of extrusion and pelleting. The ME of pelleted diets was greater ( < 0.05) than

  19. The MIRD method of estimating absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  20. PT-symmetric laser-absorber

    OpenAIRE

    Longhi, Stefano

    2010-01-01

    In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\\bf 105}, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time $(\\m...