WorldWideScience

Sample records for absorber material standard

  1. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  2. Filtration: Novel Absorber Evaluation Club aims at standardized testing

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the past few years a number of novel absorber materials, both organic and inorganic, have appeared on the market - some claiming to achieve very large decontamination factors for metal ions, including those having radioactive isotopes. Several of these materials have been tested by individual companies in the nuclear industry and some have shown promise as decontaminants for radioactive waste streams. Unfortunately, the results obtained for the treatment of a particular waste stream cannot be applied directly to the many and diverse waste streams generated throughout the nuclear industry. A unified and standardized testing programme making use of available expertise is necessary to provide a fair and meaningful comparison. In November 1988, representatives of the United Kingdom nuclear industry agreed to form the Novel Absorber Evaluation Club to assess absorber materials and to undertake the necessary work to identify the extent and rate of adsorption of radionuclides by such materials from a set of typical reference waste streams. (author)

  3. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  4. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  5. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  6. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  7. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  8. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  9. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  10. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  11. Characterization of shock-absorbing material for packages

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    2007-01-01

    Since 2001 Brazil has been participating in a regional effort with other Latin American countries which operate research reactors to improve its capability in the management of spent fuel elements from these reactors. One of the options considered is the long-term dry storage of the spent fuel in a dual purpose cask, i.e., a package for the transport and storage of radioactive material. In the scope of an IAEA-sponsored project, a cask was designed and a half-scale model for test was built. The cask consists of a sturdy cylindrical body provided with internal cavity to accommodate a basket holding the spent fuel elements, a double lid system, and external impact limiters. The cask is provided with top and bottom impact limiters, which are structures made of an external stainless steel skin and an energy-absorbing filling material. The filling material chosen was the wood composite denominated Oriented Strand Board (OSB), which is an engineered, mat-formed panel product made of strands, flakes or wafers sliced from small diameter, round wood logs and bonded with a binder under heat and pressure. The characterization of this material was carried in the scope of the cask project at the CDTN's laboratories. The tests conducted were the quasi-static compression, impact, shear-bending and edgewise shear tests. The compression, shear-bending and edgewise shear tests were carried out in a standard compression test machine and the impact test at a drop test tower equipped with a sturdy base and a drop weight. The main parameters of the material, like the Young and shear moduli, as well as the static and dynamic stress-strain curves and the specific energy absorbed, were determined during the test campaign. (author)

  12. Characterization of shock-absorbing material for packages

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio Pimenta [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: mouraor@cdtn.br

    2007-07-01

    Since 2001 Brazil has been participating in a regional effort with other Latin American countries which operate research reactors to improve its capability in the management of spent fuel elements from these reactors. One of the options considered is the long-term dry storage of the spent fuel in a dual purpose cask, i.e., a package for the transport and storage of radioactive material. In the scope of an IAEA-sponsored project, a cask was designed and a half-scale model for test was built. The cask consists of a sturdy cylindrical body provided with internal cavity to accommodate a basket holding the spent fuel elements, a double lid system, and external impact limiters. The cask is provided with top and bottom impact limiters, which are structures made of an external stainless steel skin and an energy-absorbing filling material. The filling material chosen was the wood composite denominated Oriented Strand Board (OSB), which is an engineered, mat-formed panel product made of strands, flakes or wafers sliced from small diameter, round wood logs and bonded with a binder under heat and pressure. The characterization of this material was carried in the scope of the cask project at the CDTN's laboratories. The tests conducted were the quasi-static compression, impact, shear-bending and edgewise shear tests. The compression, shear-bending and edgewise shear tests were carried out in a standard compression test machine and the impact test at a drop test tower equipped with a sturdy base and a drop weight. The main parameters of the material, like the Young and shear moduli, as well as the static and dynamic stress-strain curves and the specific energy absorbed, were determined during the test campaign. (author)

  13. A high absorbance material for solar collectors' applications

    International Nuclear Information System (INIS)

    Oliva, A I; Maldonado, R D; Díaz, E A; Montalvo, A I

    2013-01-01

    In this work, we proposed a low cost material to be used as an excellent absorber for solar collectors, to increase its thermal efficiency by the high capacity to absorb solar radiation. The material, known as 'smoke black' (soot) can be obtained by the incomplete combustion of organic materials, such as the oxygen-acetylene, paraffin, or candles. A comparative analysis between the optical properties (reflectance, absorbance, and emissivity) measured on three covered copper surfaces (without paint, with a commercial matte black paint, and with smoke black) shows amazing optical results for the smoke black. Reflectance values of the smoke black applied over copper surfaces improves 56 times the values obtained from commercial black paints. High values of emissivity (E=0.9988) were measured on the surface covered with smoke black by spectrophotometry in the UV-VIS range, which represents about 7% of increment as compared with the value obtained for commercial black paints (E=0.938). The proposed high absorbance material can be easily applied on any kind of surfaces at low cost.

  14. Standard practice for qualification and acceptance of boron based metallic neutron absorbers for nuclear criticality control for dry cask storage systems and transportation packaging

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides procedures for qualification and acceptance of neutron absorber materials used to provide criticality control by absorbing thermal neutrons in systems designed for nuclear fuel storage, transportation, or both. 1.2 This practice is limited to neutron absorber materials consisting of metal alloys, metal matrix composites (MMCs), and cermets, clad or unclad, containing the neutron absorber boron-10 (10B). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  16. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  17. Intercomparison of standards of absorbed dose between the USSR and the UK

    Science.gov (United States)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  18. Development of Coatings for Radar Absorbing Materials at X-band

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  19. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  20. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  1. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    International Nuclear Information System (INIS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-01-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K_u, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  2. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Teber, Ahmet, E-mail: aht10003@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States); Unver, Ibrahim, E-mail: iunver@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Kavas, Huseyin, E-mail: huseyin.kavas@medeniyet.edu.tr [Department of Physics, Istanbul Medeniyet University, Istanbul 34000 (Turkey); Aktas, Bekir, E-mail: aktas@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Bansal, Rajeev, E-mail: rajeev@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2016-05-15

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K{sub u}, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  3. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  4. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  5. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  6. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  7. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  8. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  9. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks

    International Nuclear Information System (INIS)

    Neumann, Martin; Wille, Frank

    2011-01-01

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  10. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  11. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  12. Development and mastering of production of dysprosium hafnate as absorbing material for control rods of promising thermal neutron reactors

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Risovany, V.D.; Muraleva, E.M.; Sokolov, V.F.

    2011-01-01

    The main advantages of dysprosium hafnate as an absorbing material for LWR control rods are the following: -) unlimited radiation resistance; - two absorbing components, Dy and Hf, increasing physical efficiency of the material compared to Dy 2 O 3 -TiO 2 and alloy 80% Ag - 15% In - 5% Cd; -) variability of physical efficiency by changing a composition, but maintaining other performance characteristics of the material; -) high process-ability due to the absence of phase transients and single-phase structure (solid solution); -) production of high density pellets. Lab-scale mastering of dysprosium hafnate pellets production showed a possibility of material synthesis using a solid-phase method, as well as of dysprosium hafnate pellets production by cold pressing and subsequent sintering. Within a whole range of examined compositions (23 mol% - 75 mol% Dy 2 O 3 ), a single-phase material with a highly radiation resistant fluorite-like structure was produced. Experiments on cold pressing and sintering of pellets confirmed a possibility of producing high quality dysprosium hafnate pellets from synthesized powder. A pilot batch of dysprosium hafnate pellets with standard sizes was produced. The standard sizes corresponded to the absorbing elements of the WWER-1000 control rods and met the main requirements to the absorbing element columns. The pilot batch size was approximately 6 kg. Acceptance testing of the pilot batch of dysprosium hafnate pellets was conducted, fulfillment of the requirements of technical conditions was checked and preirradiation properties of the pellets were examined. High quality of the produced pellets was confirmed, thus, demonstrating a real possibility of producing large batches of the dysprosium hafnate pellets. The next step is the production of test absorbing elements and cluster assemblies for the WWER-1000 control rods with their further installation for pilot operation at one of the Russian nuclear power plants

  13. Effect of different absorbing materials on the performance of basin solar still under Libyan climate conditions

    International Nuclear Information System (INIS)

    Shuia, Essaied M.; El-Agouz, Elsayed A.

    2013-01-01

    This experimental study deals with a single-basin solar still using various absorbing materials with and without black painting. Different types of absorbing materials with and without black painting were used to enhance the solar still productivity through improvement in absorptivity. These materials are steel and aluminum with and without black painting and rubber. Two identical solar stills were manufactured using locally available materials. All the results were compared together to reach the best absorbing materials with and without painting that can be used for solar still. it was found that the rubber absorber has the highest water collection during daytime, followed by the black painted steel absorber, then by black painted aluminum absorber and steel without painting absorber. The average enhancement in the daily productivity was about 50% for the rubber absorber compared with the black painted aluminum absorber and about 43% for the rubber absorber compared with the black painted steel absorber.(author)

  14. Characterization of rich in calcium materials using X-ray selective absorbers

    International Nuclear Information System (INIS)

    Guereca, G.; Ruvalcaba, J.L.

    2004-01-01

    For Particle Induced X-ray Emission Spectroscopy (PIXE) and X-ray Fluorescence Technique (FRX), the analysis of materials rich in one or two elements may present some difficulties due to high counting rates and saturation effects in X-ray detectors. In this case, it is possible to use selective absorbers in order to reduce the intensity of the major elements with low attenuation for the X-rays of other elements of the material. Using selective absorbers, the detection limits and the sensitivity are increased. For rich Ca materials (shells, bone, teeth and stucco, for instance), the high intensity of Ca X-rays interferes with the detection of lighter and heavier elements. Cl, Ar and Ag compounds are good candidates for Ca selective absorbers, but only Ag and Ar may have a practical absorber thickness. A selective absorber for Ca X-rays using a combination of thin Ag films and a flux of Ar and He was tested at the external beam setup of the Tandem Pelletron Accelerator for PIXE measurements. The improvement on elements detection on bone and colored stucco is shown. (Author) 8 refs., 2 tabs., 8 figs

  15. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  16. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.; Hartman, Katy; Brandt, Riley E.; Polizzotti, Alex; Yang, Chuanxi; Moriarty, Tom; Gradečak, Silvija; Gordon, Roy G.; Buonassisi, Tonio

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.

  17. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  18. Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data

    Science.gov (United States)

    Downie, John D.

    1998-01-01

    If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.

  19. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Boas, J.F.; Van der Gaast, H.

    1998-05-01

    The arrangements for the maintenance of the Australian standards for 60 Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90 Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90 Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90 Sr is confirmed. The usefulness of 90 Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau

  20. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    Science.gov (United States)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  1. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  2. Excellent solar energy absorbing and retaining fabric material. Chikunetsu hoon sen'i sozai

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, T. (Unitika Ltd., Osaka (Japan). Central Research Lab.)

    1993-11-10

    Carbides of group IV transition metals such as ZrC, which are used as solar energy selective absorption film for solar energy collectors, has characteristics of absorbing light with a high energy of 0.6eV or more and of converting it to heat when exposed to light, and of not absorbing but reflecting light with a low energy of less than 0.6eV. By using ZrC as fabric materials, therefore, portable and durable heat absorbing and retaining materials can be produced. The authors have developed a solar energy absorbing and retaining fabric material, 'Solar [alpha]' (registered trade mark), which absorbs visible and near infrared rays and converts them to heat, and reflects heat from a human body and confines it. The use of Solar [alpha] has been found in various fields such as clothing as a new material for winter-sportswear, slacks, coats, and swimming suits. In this report, the heat absorbing and retaining mechanisms, basic properties of Solar [alpha], and the results of wearing tests are described. 12 refs., 6 figs., 3 tabs.

  3. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1989-08-01

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  4. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  5. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  6. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline

    Directory of Open Access Journals (Sweden)

    Luiza de Castro Folgueras

    2007-03-01

    Full Text Available It is a known fact that the adequate combination of components and experimental conditions may produce materials with specific requirements. This study presents the effect of carbon fiber fabric impregnation with polyaniline conducting polymer aiming at the radar absorbing material processing. The experiments consider the sample preparation with one and two impregnations. The prepared samples were evaluated by reflectivity measurements, in the frequency range of 8-12 GHz and scanning electron microscopy analyses. The correlation of the results shows that the quantity of impregnated material influences the performance of the processed microwave absorber. This study shows that the proposed experimental route provides flexible absorbers with absorption values of the incident radiation close to 87%.

  7. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    Daures, J.; Ostrowsky, A.; Chauvenet, B.

    2002-01-01

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  8. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  9. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  10. The design of a calorimetric standard of ionising radiation absorbed dose

    International Nuclear Information System (INIS)

    Huntley, R.B.

    1981-05-01

    The design of a calorimetric working standard of ionising radiation absorbed dose is discussed. A brief history of the appropriate quantities and units of measurement is given. Detailed design considerations follow a summary of the relevant literature. The methods to be used to relate results to national standards of measurement are indicated, including the need for various correction factors. A status report is given on the construction and testing program

  11. Super water-absorbing new material from chitosan, EDTA and urea.

    Science.gov (United States)

    Narayanan, Abathodharanan; Dhamodharan, Raghavachari

    2015-12-10

    A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  13. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  14. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO

    Energy Technology Data Exchange (ETDEWEB)

    Cajko, Frantisek; Secansky, Michal; Chrebet, Tomas; Zajac, Radoslav; Darilek, Petr [VUJE, a.s., Trnava (Slovakia)

    2016-09-15

    Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B{sub 4}C, EuB{sub 6} and ReB{sub 2}) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.

  15. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  16. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    Science.gov (United States)

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material. Copyright © 2015. Published by Elsevier B.V.

  17. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    —laser diffraction particle size analysis, and it allows an easy and reliable measurement of the absorbency of superabsorbent polymers. It is shown in detail how both the definition of the exposure liquid and the definition of the system of SAP particles can be selected so that absorbency can be experimentally...... so that the properties of concrete with superabsorbent polymers can be better controlled in practice. In this paper, a technique that can be potentially used as a standard method is developed. The method is based on a measurement technique validated through an international standard procedure...

  18. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  19. Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK's Initial Operational Response (IOR.

    Directory of Open Access Journals (Sweden)

    Nick Kassouf

    Full Text Available The UK's Initial Operational Response (IOR is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method ("rinse-wipe-rinse" for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants.

  20. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  1. The development of national quality performance standards for disposable absorbent products for adult incontinence.

    Science.gov (United States)

    Muller, Nancy; McInnis, Elaine

    2013-09-01

    Disposable absorbent products are widely used in inpatient care settings and in the community to manage adult urinary and fecal incontinence, but few product standards exist to help guide their production or optimal use. Increasing costs and reduced revenues have caused a number of states to evaluate absorbent product use among persons who receive care at home with the assistance of the Medicaid Waiver Program, further increasing concerns about the lack of product performance standards. To address these issues, the National Association For Continence (NAFC) formed a council of experts and key stakeholders with the objective of establishing national, independent quality performance standards for disposable absorbent products provided by states to Waiver Program recipients. The Council consisted of representatives from five purposefully selected states, technical directors from six nonwoven product manufacturers, an officer of the nonwoven manufactures trade association, a delegate from an academic nursing program and professional societies, a family caregiver, and a patient representative. Following a consensus method and guidelines for use, nine specific recommendations were developed, posted for public comment, and further refined. Final recommendations for product performance assessment include: rewet rate (a measure of a product's ability to withstand multiple incontinent episodes between changes), rate of acquisition (a measure of the speed at which urine is drawn away from the skin by a product, product retention capacity (a measure of a product's capacity to hold fluid without rewetting the skin), sizing options, absorbency levels, product safety, closure technology, breathable zones (a measure of the air permeability across a textile-like fabric at a controlled differential pressure), and elasticity. The Council also set values for and recommended four quantifiable parameters, and the testing methodology associated with each, to help consumers and states

  2. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  3. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  4. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  5. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  6. A state-of-the-art report on the development of B{sub 4}C materials as neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choong Hwan; Kim, Sun Jae; Park, Jee Yun; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    Boron of 10 atomic weight is one of the best neutron absorbing elements. Among the boron compounds, B{sub 4}C and its composites exhibit excellent material properties. Those materials absorb thermal and fast neutrons, are thermally and chemically very stable, and are very strong in mechanical properties. By neutron irradiation B-10 transforms into Li releasing one He atom. This He release causes swelling, cracking and fragmentation of B{sub 4}C bulks and results in degradation of the materials. The essence of technical developments of B{sub 4}C-based neutron absorbers is the minimization of the effects of He release, and this can be realized through microstructural optimizations of grain and porosity distributions. While pure B{sub 4}C is very difficult in sintering, new neutron absorbing materials of B{sub 4}C-cermets are being developed. B{sub 4}C-cermets are composite materials in which B{sub 4}C powders are dispersed in the metal matrix of Al or Cu. Those materials show easiness in sintering, mechanical forming, and B{sub 4}C content controlling. Neutron absorbing and shielding materials play an important role for the safety of reactor operations and environmental protections. Those materials are being used as monolithic pellets for control rods, burnable poison fuel rods, rack materials for spent fuel storages, shielding materials for shipping casks, and especially for shielding plates for liquid metal reactors. 37 figs., 12 tabs., 41 refs. (Author).

  7. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  8. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material.

    Science.gov (United States)

    Kim, Jaehwan; Lee, Joong-Kuen

    2002-09-01

    The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. A piezoelectric smart panel is basically a plate structure on which piezoelectric patches with electrical shunt circuits are mounted and sound-absorbing material is bonded on the surface of the structure. Sound-absorbing material can absorb the sound transmitted at the midfrequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonance frequencies, piezoelectric damping using the measured electrical impedance model is adopted. A resonant shunt circuit for piezoelectric shunt damping is composed of resistor and inductor in series, and they are determined by maximizing the dissipated energy through the circuit. The transmitted noise-reduction performance of smart panels is tested in an acoustic tunnel. The tunnel is a square cross-sectional tube and a loudspeaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. When an absorbing material is bonded on a single plate, a remarkable transmitted noise reduction in the midfrequency region is observed except for the fundamental resonance frequency of the plate. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive absorbing material and piezoelectric shunt damping is a promising technology for noise reduction over a broadband of frequencies.

  9. Liver Regeneration After Portal Vein Embolization Using Absorbable and Permanent Embolization Materials in a Rabbit Model

    NARCIS (Netherlands)

    van den Esschert, Jacomina W.; van Lienden, Krijn P.; Alles, Lindy K.; van Wijk, Albert C.; Heger, Michal; Roelofs, Joris J.; van Gulik, Thomas M.

    2012-01-01

    Objective: To compare the safety and hypertrophy response after portal vein embolization (PVE) using 2 absorbable and 3 permanent embolization materials. Background: Portal vein embolization is used to increase future remnant liver volume preoperatively. Application of temporary, absorbable

  10. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  11. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  12. Summary of the CERN Workshop on Materials for Collimators and Beam Absorbers

    CERN Document Server

    Schmidt, R; Bertarelli, A; Ferrari, A; Weterings, W; Mokhov, N V

    2008-01-01

    The main focus of the workshop was on collimators and beam absorbers for (mainly) High Energy Hadron Accelerators, with the energy stored in the beams far above damage limit. The objective was to better understand the technological limits imposed by mechanisms related to beam impact on materials. The idea to organise this workshop came up during the High Intensity High Brightness Hadron Beams, ICFA-HB2006 in Japan [1]. The workshop was organised 3-5 September 2007 at CERN, with about 60 participants, including 20 from outside CERN. About 30 presentations were given [2]. The event was driven by the LHC challenge, with more than 360 MJoule stored in each proton beam. The entire beam or its fraction will interact with LHC collimators and beam absorbers, and with the LHC beam dump blocks. Collimators and beam absorbers are also of the interest for other labs and accelerators: - CERN: for the CNGS target, for SPS beam absorbers (extraction protection) and collimators for protecting the transfer line between SPS an...

  13. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments.

    Science.gov (United States)

    Wang, Juan; Smith, Christopher E; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-03-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions.

  14. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  15. Standard examination stage for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Hess, J.W.; Frandsen, G.B.

    1980-01-01

    A Standard Examination Stage (SES) has been designed, fabricated, and tested for use in the Fuel and Materials Examination Facility (FMEF) at the Hanford Reservation near Richland, WA. The SES will perform multiple functions in a variety of nuclear fuel, absorber, and blanket pin handling, positioning, and examination operations in 11 of 22 work stations in the FMEF Nondestructive Examination (NDE) cell. Preprogrammable, automated, closed loop computer control provides precision positioning in the X, Y and Z directions and in pin rotational positioning. Modular construction of both the mechanical hardware and the electrical and control system has been used to facilitate in-cell maintainability

  16. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in...

  17. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  18. Materials for Consideration in Standardized Canister Design Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  19. Decontamination of skin exposed to nanocarriers using an absorbent textile material and PEG-12 dimethicone

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Knorr, F; Baier, G; Landfester, K; Frazier, L; Gefeller, H; Wunderlich, U; Gross, I; Rühl, E

    2014-01-01

    The removal of noxious particulate contaminants such as pollutants derived from particle-to-gas conversions from exposed skin is essential to avoid the permeation of potentially harmful substances into deeper skin layers via the stratum corneum or the skin appendages and their dispersion throughout the circulatory system. This study is aimed at evaluating the efficacy of using the silicone glycol polymer PEG-12 dimethicone and an absorbent textile material to remove fluorescing hydroxyethyl starch nanocapsules implemented as model contaminants from exposed porcine ear skin. Using laser scanning microscopy, it could be shown that while the application and subsequent removal of the absorbent textile material alone did not result in sufficient decontamination, the combined application with PEG-12 dimethicone almost completely eliminated the nanocapsules from the surface of the skin. By acting as a wetting agent, PEG-12 dimethicone enabled the transfer of the nanocapsules into a liquid phase which was taken up by the absorbent textile material. Only traces of fluorescence remained detectable in several skin furrows and follicular orifices, suggesting that the repeated implementation of the procedure may be necessary to achieve total skin surface decontamination. (letter)

  20. Review of Mid- to High-Temperature Solar Selective Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C. E.

    2002-07-01

    This report describes the concentrating solar power (CSP) systems using solar absorbers to convert concentrated sunlight to thermal electric power. It is possible to achieve solar absorber surfaces for efficient photothermal conversion having high solar absorptance (a) for solar radiation and a low thermal emittance (e) at the operational temperature. A low reflectance (?'' 0) at wavelengths (?) 3 mm and a high reflectance (?'' 1) at l 3 mm characterize spectrally selective surfaces. The operational temperature ranges of these materials for solar applications can be categorized as low temperature (T< 100 C), mid-temperature (100 C< T< 400 C), and high-temperature (T> 400 C). High- and mid-temperature applications are needed for CSP applications. For CSP applications, the ideal spectrally selective surface would be low-cost and easy to manufacture, chemically and thermally stable in air at elevated operating temperatures (T= 500 C), and have a solar absorptance= 0.98 and a thermal emittance= 0.05 at 500 C.

  1. The Potential of Coconut Shell Powder (CSP) and Coconut Shell Activated Carbon (CSAC) Composites as Electromagnetic Interference (EMI) Absorbing Material

    International Nuclear Information System (INIS)

    Siti Nurbazilah Abdul Jabal; Seok, Y.B.; Hoon, W.F.

    2016-01-01

    Agriculture waste is potentially useful as an alternative material to absorb and attenuate electromagnetic interference (EMI). This research highlights the use of coconut shell powder (CSP) and coconut shell activated carbon (CSAC) as raw materials with epoxy resin and amine hardener composite to absorb microwave signals over frequency of 1 - 8 GHz. In order to investigate the suitability of these raw materials as EMI absorbing material, carbon composition of the raw materials is determined through CHNS Elemental Analysis. The surface morphology of the raw materials in term of porosity is investigated by using TM3000 Scanning Electron Microscope (SEM). The complex permittivity of the composites is determined by using high temperature dielectric probe in conjunction with Network Analyzer. From the result, the Carbon% of CSP and CSAC is 46.70 % and 84.28 % respectively. In term of surface morphology, the surface porosity of CSP and CSAC is in the range of 2 μm and 1 μm respectively. For the dielectric properties, the dielectric constant and the dielectric loss factor for CSP and CSAC is 4.5767 and 64.8307 and 1.2144 and 13.8296 respectively. The materials more potentially useful as substitute materials for electromagnetic interference (EMI) absorbing are discussed. (author)

  2. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    Science.gov (United States)

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and

  3. Parametric study on the performance of automotive MR shock absorbers

    Science.gov (United States)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  4. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks; Rechnerische Simulation des mechanischen Verhaltens von holzgefuellten Stossdaempfern von Transportbehaeltern fuer radioaktive Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Martin; Wille, Frank [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  5. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  6. Use of borosilicate-glass raschig rings as a neutron absorber in solutions of fissile material-ANSI/ANS-8.5-1996

    International Nuclear Information System (INIS)

    Rothe, R.E.; Ketzlach, N.; Finch, D.R.

    1996-01-01

    American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.5 is one of several standards prepared by the ANS Standards Committee to provide guidance to enhance criticality safety in the handling, storage, and processing of fissionable materials. American National Standard ANSI/ANS-8.5-1996 provides this guidance for one type of boron-loaded glass in one type of geometry (cylindrical rings) for use with fissile solutions. Recorded use of such fixed neutron absorbers for criticality control of fissile solutions dates back to 1958, but some less-well-documented applications were recorded as early as the mid-1940's. The first solid efforts to collect recommendations derived from experience and technology were begun in 1965. Over the next 6 yr additional experiments were performed, and supporting data for the proposed standard were gathered. The first standard on this safety matter was issued in 1971. It was reaffirmed in 1979 with only minor changes and a slight expansion of the coverage. The standard was last revised in 1986

  7. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  8. Cold tests of HOM absorber material for the ARIEL eLINAC at TRIUMF

    International Nuclear Information System (INIS)

    Kolb, P.; Laxdal, R.E.; Zvyagintsev, V.; Chao, Y.C.; Amini, B.

    2014-01-01

    At TRIUMF development of a 50 MeV electron accelerator is well under way. Five 1.3 GHz, superconducting 9-cell cavities will accelerate 10 mA electrons to a production target to produce rare isotopes. Each cavity will provide 10 MV accelerating voltage. Plans to upgrade the accelerator in the future to a small ring with ERL capabilities requires that the shunt impedance of the dipole higher order modes to be less than 10MΩ . The design of the accelerator incorporates beam line absorbers to reduce the shunt impedance of potentially dangerous dipole modes. The performance of the absorber is dependant on its electrical conductivity at the operational temperature. Measurements of the electrical conductivity in RF fields of a sample of the proposed beam line absorber material at room temperature and at its operational temperature will be presented for frequencies between 1.3 and 2.4 GHz

  9. Cold tests of HOM absorber material for the ARIEL eLINAC at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, P., E-mail: kolb@triumf.ca [TRIUMF, Canada' s National Laboratory for Particle and Nuclear Physics, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3 (Canada); University of British Columbia, Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, B.C., Canada V6T 1Z1 (Canada); Laxdal, R.E., E-mail: lax@triumf.ca [TRIUMF, Canada' s National Laboratory for Particle and Nuclear Physics, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3 (Canada); Zvyagintsev, V.; Chao, Y.C. [TRIUMF, Canada' s National Laboratory for Particle and Nuclear Physics, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3 (Canada); Amini, B. [TRIUMF, Canada' s National Laboratory for Particle and Nuclear Physics, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3 (Canada); University of British Columbia, Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, B.C., Canada V6T 1Z1 (Canada)

    2014-01-11

    At TRIUMF development of a 50 MeV electron accelerator is well under way. Five 1.3 GHz, superconducting 9-cell cavities will accelerate 10 mA electrons to a production target to produce rare isotopes. Each cavity will provide 10 MV accelerating voltage. Plans to upgrade the accelerator in the future to a small ring with ERL capabilities requires that the shunt impedance of the dipole higher order modes to be less than 10MΩ . The design of the accelerator incorporates beam line absorbers to reduce the shunt impedance of potentially dangerous dipole modes. The performance of the absorber is dependant on its electrical conductivity at the operational temperature. Measurements of the electrical conductivity in RF fields of a sample of the proposed beam line absorber material at room temperature and at its operational temperature will be presented for frequencies between 1.3 and 2.4 GHz.

  10. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  11. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Berlyand, V.; Bregadze, Y.; Korostin, S.

    2003-09-01

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  12. A numerical analysis of aspects of absorbed dose in the vicinity of the interface of different materials

    Energy Technology Data Exchange (ETDEWEB)

    Tada, J [Tsukuba Univ., (Japan); Hirayama, H [National Lab. High Enregy Phys. (Japan); Katoh, K [Ibaraki Pref. Univ. Health Sci., (Japan)

    1997-12-31

    In the measurement and/or evaluation of the absorbed dose where the charged particle distribution is far from equilibrium, knowledge on the microscopic spatial distribution of the charged particle fluence is important. Spatial distribution of secondary electrons in the vicinity of an interface of materials and the values of the absorbed dose in these regions are investigated with a monte-Carlo simulation code EGS 4. There were experiments on spatial variation of the absorbed dose in the vicinity of an interface of materials. However, the behaviour of secondary electrons were discussed only broadly and qualitatively. In this study, behaviour of the secondary electrons was analysed to clarify contribution of ruling interactions to generate secondary electrons, and influence of the interface on the energy spectra of secondary electrons. 11 figs.

  13. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    International Nuclear Information System (INIS)

    Lee, Youn Suk; Park, Insik; Choi, Hong Yeol

    2014-01-01

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability

  14. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  15. Status of air kerma and absorbed dose standards in India

    International Nuclear Information System (INIS)

    Vijayam, M.; Ramanathan, G.; Patki, V.S.; Soman, A.T.; Shigwan, J.B.; Vinatha, S.P.; Jadhavgaonkar, P.S.; Kadam, V.D.; Shaha, V.V.; Abani, M.C.

    2002-01-01

    -rays, chambers of the type Exradin A2, NE 2571, NE2577, Victoreen 415 B, Victoreen 415, Exradin A3 and NE 2581 are maintained. These chambers have been calibrated against the primary standards and have been used in the international intercomparison experiments. The future programme of development of standards include i) Development of graphite/water calorimeters as absorbed dose standards, ii) Establishment of extrapolation chamber as primary standard for absorbed dose for beta and soft x-ray beams and iii) Development of energy-independent plastic scintillators as reference standard for low energy low activity brachytherapy sources. (author)

  16. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  17. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for {sup 60}Co {gamma} rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Bregadze, Y.; Korostin, S. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2003-09-15

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  18. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  19. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  20. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  1. Characterization of standard reference material 2944, Bi-ion-doped glass, spectral correction standard for red fluorescence

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Smith, Melody V.; Anderson, Jeffrey R.; Kramer, Gary W.

    2013-01-01

    Standard Reference Material (SRM) 2944 is a cuvette-shaped, Bi-ion-doped glass, recommended for optimal use for relative spectral correction of emission from 590 nm to 805 nm and day-to-day performance verification of steady-state fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum were explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy and temperature coefficient of fluorescence intensity. The expanded uncertainties (k=2) in the certified spectrum are about 4% around the nominal peak maximum at 704 nm and increase to about 6% at the wings, using an excitation wavelength of 515 nm. -- Highlights: ► The fluorescence emission spectrum of SRM 2944 was determined for spectral correction. ► This Bi-ion-doped glass has been certified in the fluorescence region from 530 nm to 830 nm. ► Fluorescence properties of the glass were determined, e.g., anisotropy, lifetime. ► SRM 2944 is photostable under common visible lamp excitation, when UV light is not present

  2. Standard Guide for Selection of Test Methods for Interlayer Materials for Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide summarizes the standard test methods available for determining physical and mechanical characteristics of interlayer materials used in multi-ply aerospace transparent enclosures. 1.2 Interlayer materials are used to laminate glass-to-glass, glass-to-plastic, and plastic-to-plastic. Interlayer materials are basically transparent adhesives with high-quality optical properties. They can also serve as an energy absorbing medium, a fail-safe membrane to contain cockpit pressure and to prevent entry of impact debris; a strain insulator to accommodate different thermal expansion rates of members being laminated and as an adherent to prevent spalling of inner surface ply material fragments. The relative importance of an interlayer characteristic will be a function of the prime use it serves in its particular application. 1.3 This guide, as a summary of various methods in Section 2, is intended to facilitate the selection of tests that can be applied to interlayer materials. 1.4 The test methods list...

  3. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  4. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  5. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    Science.gov (United States)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  6. Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region

    International Nuclear Information System (INIS)

    Das, Sukanta; Chandra Nayak, Ganesh; Sahu, S.K.; Oraon, Ramesh

    2015-01-01

    This work explored the microwave absorption capability of Graphene Oxide and Graphene Oxide coated with FeCoB for stealth technology. Epoxy based microwave absorbing materials were prepared with 30% loading of Graphene Oxide, FeCoB alloy and Graphene Oxide coated with FeCoB. Graphene Oxide and FeCoB were synthesized by Hummer's and Co-precipitation methods, respectively. The filler particles were characterized by FESEM, XRD and Vibrating Sample Magnetometer techniques. Permittivity, permeability and reflection loss values of the composite absorbers were measured with vector network analyzer which showed a reflection loss value of −7.86 dB, at 10.72 GHz, for single layered Graphene Oxide/Epoxy based microwave absorbers which can be correlated to the absorption of about 83.97% of the incident microwave energy. Reflection loss value of FeCoB/Epoxy based microwave absorber showed −13.30 dB at 11.67 GHz, which corresponded to maximum absorption of 93.8%. However, reflection loss values of Graphene Oxide coated with FeCoB/Epoxy based single-layer absorber increased to −22.24 dB at 12.4 GHz which corresponds to an absorption of 99% of the incident microwave energy. - Highlights: • FeCoB coated Graphene Oxide (GO) was synthesized by co-precipitation method. • GO, FeCoB and GO@FeCoB based microwave absorbers were developed with Epoxy matrix. • GO and FeCoB/Epoxy absorbers showed −7.86 & −13.30 dB reflection loss, respectively. • Maximum Reflection loss of −22.24 dB was achieved with GO@FeCoB/Epoxy absorber

  7. The provision of national standards of absorbed dose for radiation processing. The role of NPL in the United Kingdom

    International Nuclear Information System (INIS)

    Ellis, S.C.

    1981-01-01

    The system of national and international standardization is examined, particularly with respect to the problems of standardizing high absorbed dose measurements required in processing with photons from cobalt-60 and electrons. The need for development of primary standards specifically dedicated to this application versus the possibility of extrapolation from standards in use at lower dose levels is considered together with means for dissemination and intercomparison. The present status of standards at NPL and the future programme are outlined. (author)

  8. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  9. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  10. The Effects of Water-Absorbent Materials on Water Supply for Tree Planting in the Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Gholam Reza Davarpanah Davarpanah

    2005-03-01

    Full Text Available Numerous studies have so far been focused on increasing irrigation efficiency through such measures as soil moisture retention and soil moisture capacity as well as improving soil physical conditions. In this study, surface runoff reduction, deep penetration of rain water, and use of rain water at irrigation sites with the help of water absorbent chemicals were investigated as measures of supplying for tree water demand and also of reducing drought effects. The absorbent material was purchased from Iran Polymer Research Center. The experimental design included three independent experiments in a completely randomized block design (CRBD with 5 treatments (0, 50, 100, 150 and 200 gr. of the absorbent material and three replications. The tree species used in the experiments were Amygdalus sp., Vitis vinifera, and Pistacia vera. There were 5 experimental units with 4 trees planted 3×3 meters apart. Appropriate amounts of the test material (absorbent were mixed with soil. Three characters of survival including: growth diameter, height, and canopy cover were recorded 4 times a year over two consecutive years. Mstat-c statistical software was used in the statistical analysis (Factor option. Results showed that the tree species had significant differences in their survival due to their genetic and physiological characteristics, so that the species of Vitis vinifera and Pistacia vera recorded the minimum and maximum survival values, respectively. Data collection within the present study is suggested to be continued and similar studies with light and sandy textured soils under greenhouse conditions are needed in order to gain more accurate information on these effects.

  11. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  12. 15 CFR 230.3 - New Standard Reference Materials.

    Science.gov (United States)

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE STANDARD REFERENCE MATERIALS STANDARD REFERENCE MATERIALS General Information § 230.3 New Standard Reference Materials. When new SRM's... scientific and trade journals. ...

  13. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    Science.gov (United States)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  14. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  15. Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material

    Science.gov (United States)

    Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra

    2018-03-01

    Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.

  16. The 1998 calibration of Australian secondary standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Van der Gaast, H.

    1998-10-01

    New calibration factors are reported for several of the ionization chambers maintained at the Australian Radiation Laboratory (ARL) and at the Australian Nuclear Science and Technology Organisation (ANSTO) as Australian secondary standards of exposure/air kerma and absorbed dose at 60 Co. These calibration factors supplement or replace the calibration factors given in earlier reports. Updated 90 Sr reference source data are given for the ARL chambers, and for two of the ANSTO chambers. These results confirm the stability of the secondary standards. A re-calibration of the ANSTO reference electrometer is reported. This was carried out using an improved method, which is fully described

  17. EM wave propagation analysis in plasma covered radar absorbing material

    CERN Document Server

    Singh, Hema; Rawat, Harish Singh

    2017-01-01

    This book focuses on EM propagation characteristics within multilayered plasma-dielectric-metallic media. The method used for analysis is impedance transformation method. Plasma covered radar absorbing material is approximated as a multi-layered dielectric medium. The plasma is considered to be bounded homogeneous/inhomogeneous medium. The reflection coefficient and hence return loss is analytically derived. The role of plasma parameters, such as electron density, collision frequency, plasma thickness, and plasma density profile in the absorption behavior of multi-layered plasma-RAM structure is described. This book provides a clearer picture of EM propagation within plasma. The reader will get an insight of plasma parameters that play significant role in deciding the absorption characteristics of plasma covered surfaces.

  18. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  19. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  20. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    Science.gov (United States)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT

  1. Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Kessler, C.; Burns, D.T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. (authors)

  2. Solar-absorbing metamaterial microencapsulation of phase change materials for thermo-regulating textiles

    Directory of Open Access Journals (Sweden)

    William Tong

    2015-04-01

    Full Text Available This paper presents a novel concept for designing solar-absorbing metamaterial microcapsules of phase change materials (PCMs integrated with thermo-regulating smart textiles intended for coats or garments, especially for wear in space or cold weather on earth. The metamaterial is a periodically nanostructured metal-dielectric-metal thin film and can acquire surface plasmons to trap or absorb solar energy at subwavelength scales. This kind of metamaterial microencapsulation is not only able to take advantage of latent heat that can be stored or released from the PCMs over a tunable temperature range, but also has other advantages over conventional polymer microencapsulation of PCMs, such as enhanced thermal conductivity, improved flame-retardant capabilities, and usage as an extra solar power resource. The thermal analysis for this kind of microencapsulation has been done and can be used as a guideline for designing integrated thermo-regulating smart textiles in the future. These metamaterial microcapsules may open up new routes to enhancing thermo-regulating textiles with novel properties and added value.

  3. Gas-phase absorbents for trapping radioactive iodine and iodine compounds

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This standard covers granular absorbents (activated carbon, mineral base, polymer, etc.) for use in air and gas treatment systems. The absorbents are used in both thin-bed absorber cells and deep-bed systems. The standard includes docuent list, technical requirements, quality assurance requirements, and preparation for delivery. Test and sampling procedures are given

  4. Electronic bandstructure of the ZnTe absorber material

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Daniel [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Schmidt, Heidemarie [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2009-07-01

    Due to its large absorption coefficient, zinc telluride proved to be useful for the production of high-efficiency multi-junction solar cells. Nowadays ZnTe with a mixture of zincblende and wurtzite phases is fabricated by thin film growth techniques. The optical properties of both phases have been extensively studied by ab initio density functional methods. Here we focus on the question whether the effective electron and hole mass in ZnTe are small enough to meet the high-efficiency expectation of the ZnTe absorber material in solar cells and present direction dependent effective mass and Luttinger and Luttinger-like parameters of cubic and wurtzite ZnTe, respectively. Making use of the transferability of ionic model potential parameters and the experimentally known transition energies of different II-VI compounds ZnX (X=O,S,Se,Te), we obtained one single set of cationic model parameters for the Zn atom. The calculations have been performed by means of the empirical pseudopotential method using a simple empty core model potential.

  5. Standards on the permanence of recording materials

    Science.gov (United States)

    Adelstein, Peter Z.

    1996-02-01

    The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tape has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.

  6. New absorbent acoustic materials from plastic bottle remnants

    Directory of Open Access Journals (Sweden)

    del Rey, R.

    2011-12-01

    Full Text Available In the building acoustics field usually fibrous materials are used as sound absorbing materials. Nowadays polyester fiber is one of the most used but the pure chip of polyester has a problem. Polyester is obtained of petroleum and its price was increasing last years. This paper, presents an alternative polyester wool which obtained by PET treatment (recycle of plastic bottle’s. Absorption coefficient values at normal incidence measured in reverberation chamber were compared (new wool obtained by PET method and materials obtained from pure chip of polyester.Furthermore, this paper propound a empiric model that describe the acoustic performance of this new wool. The results have been good. The pure fiber has been replaced by recycle fiber in its manufacture process.

    En el ámbito de acústica de la edificación es común el uso de materiales fibrosos como materiales absorbentes acústicos. Uno de estos materiales cada vez más utilizado es la lana de poliéster. Un problema que presenta el chip virgen de poliéster es que se obtiene del petróleo, cuyo precio no hace más que incrementarse en los últimos años. En este trabajo se presenta una lana de poliéster alternativa, obtenida mediante el tratamiento del PET, a través del conveniente ciclo de reciclado de botellas de plástico. Se comparan valores del coeficiente de absorción; en incidencia normal y en cámara reverberante de los materiales elaborados a partir de chip virgen y de las nuevas lanas obtenidas del PET. Además, se propone un modelo empírico de comportamiento acústico de estas nuevas lanas. Los resultados obtenidos han sido favorables, la fibra virgen ya ha sido sustituida por fibra reciclada en su proceso de fabricación.

  7. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    International Nuclear Information System (INIS)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-01-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance. - Highlights: • Development variety of radar absorbing materials especially at high gigahertz frequencies. • Best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. • Important parameters need to be taken into consideration to obtain stronger absorption and better performances.

  8. Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in {sup 60}Co gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Kessler, C.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Berlyand, A. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2010-02-15

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. (authors)

  9. Ni-Al Alloys as Alternative EUV Mask Absorber

    Directory of Open Access Journals (Sweden)

    Vu Luong

    2018-03-01

    Full Text Available Extreme ultraviolet (EUV lithography is being industrialized as the next candidate printing technique for high-volume manufacturing of scaled down integrated circuits. At mask level, the combination of EUV light at oblique incidence, absorber thickness, and non-uniform mirror reflectance through incidence angle, creates photomask-induced imaging aberrations, known as mask 3D (M3D effects. A possible mitigation for the M3D effects in the EUV binary intensity mask (BIM, is to use mask absorber materials with high extinction coefficient κ and refractive coefficient n close to unity. We propose nickel aluminide alloys as a candidate BIM absorber material, and characterize them versus a set of specifications that a novel EUV mask absorber must meet. The nickel aluminide samples have reduced crystallinity as compared to metallic nickel, and form a passivating surface oxide layer in neutral solutions. Composition and density profile are investigated to estimate the optical constants, which are then validated with EUV reflectometry. An oxidation-induced Al L2 absorption edge shift is observed, which significantly impacts the value of n at 13.5 nm wavelength and moves it closer to unity. The measured optical constants are incorporated in an accurate mask model for rigorous simulations. The M3D imaging impact of the nickel aluminide alloy mask absorbers, which predict significant M3D reduction in comparison to reference absorber materials. In this paper, we present an extensive experimental methodology flow to evaluate candidate mask absorber materials.

  10. 7 CFR 1717.605 - Design standards, plans and specifications, construction standards, and RUS accepted materials.

    Science.gov (United States)

    2010-01-01

    ..., construction standards, and RUS accepted materials. 1717.605 Section 1717.605 Agriculture Regulations of the... standards, plans and specifications, construction standards, and RUS accepted materials. All borrowers... system design, construction standards, and the use of RUS accepted materials. Borrowers must comply with...

  11. Scanning tunneling spectroscopy on the chalcopyrite solar cell absorber material Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Saez-Araoz, Rodrigo; Lux-Steiner, Martha [Freie Universitaet Berlin (Germany); Sadewasser, Sascha; Ennaoui, Ahmed; Kaufmann, Christian; Kropp, Timo; Lauermann, Iver; Muenchenberg, Tim; Schock, Hans-Werner; Streicher, Ferdinand [Hahn- Meitner-Institut Berlin (Germany)

    2007-07-01

    Cu(In,Ga)Se{sub 2}-based thin film solar cells have reached efficiencies close to 20%. Nevertheless, little is known about electronic transport and carrier recombination in this material on a microscopic scale. Especially grain boundaries in these polycrystalline materials are considered to play an important role in the performance of these solar cells. We applied scanning tunneling microscopy and spectroscopy to gain more insight in the electronic microstructure of the material. Our results point to lateral electronic inhomogeneities on the absorber surface and to an enhanced density of states at grain boundaries. The influence of charging effects is discussed.

  12. Competitive light absorbers in photoactive dental resin-based materials.

    Science.gov (United States)

    Hadis, Mohammed A; Shortall, Adrian C; Palin, William M

    2012-08-01

    The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. GLM three-way analysis of variance revealed significant differences (pphotoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (presins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. Although some photoinitiators such as TPO may be a more esthetic alternative to CQ, they may actually cause significant color contamination when

  13. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  14. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    Science.gov (United States)

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  15. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  16. Neutron absorbers, and the production method

    International Nuclear Information System (INIS)

    Kayano, Hideo; Yajima, Seishi; Oono, Hironori.

    1979-01-01

    Purpose: To integrally sinter a metal powder and a metal network material thereby to obtain a material having a high neutron absorbing function, an excellent corrosion resistance and an excellent oxidation resistance. Method: An element having a high neutron absorbing function, such as Gd, or a compound thereof and a powder of a metal having excellent corrosion resistance, oxidation resistance and ductility, such as Fe, Cr or the like are uniformly mixed with each other. In a case where a substance having a neutron absorbing function is a hydroxide an organic complex or the like, it is formed into a gel-like substance and mixed uniformly with the metal powder, the gel-like substance being pasted, and covered on the surface of the metal powder and dried. Then, the mixture or the dry coated material is extended and the metal network material having excellent corrosion resistance, oxidation resistance and ductility is covered or interposed or between at least one layer of upper, intermediate or lower layers of said laminated material, and thereafter is subjected to cold or hot rolling, and then sintered and furthermore rolled, if necessary, the thus treated material being burned in vacuum or a non-oxidizing atmosphere. (Kamimura, M.)

  17. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  18. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  19. Characterization of an absorbed dose standard in water through ionometric methods

    International Nuclear Information System (INIS)

    Vargas V, M.X.

    2003-01-01

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, D agua . The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of D agua . Finally, since the proposed standard of D agua is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of D agua , in Chapter 4 the characteristics of the Picker C/9 unit, the ionization chamber type

  20. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  1. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  2. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  3. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  4. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  5. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  6. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  7. Electromagnetic behavior of radar absorbing materials based on Ca hexaferrite modified with Co-Ti ions and doped with La

    Directory of Open Access Journals (Sweden)

    Valdirene Aparecida da Silva

    2009-06-01

    Full Text Available Radar Absorbing Materials (RAM are compounds that absorb incidental electromagnetic radiation in tuned frequencies and dissipate it as heat. Its preparation involves the adequate processing of polymeric matrices filled with compounds that act as radar absorbing centers in the microwave range. This work shows the electromagnetic evaluation of RAM based on CoTi and La doped Ca hexaferrite. Vibrating Sample Magnetization analyses show that ion substitution promoted low values for the parameters of saturation magnetization (123.65 Am2/kg and coercive field (0.07 T indicating ferrite softening. RAM samples obtained using different hexaferrite concentrations (40-80 per cent, w/w show variations in complex permeability and permittivity parameters and also in the performance of incidental radiation attenuation. Microwave attenuation values between 40 and 98 per cent were obtained.

  8. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  9. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valdirene Aparecida [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Folgueras, Luiza de Castro; Candido, Geraldo Mauricio; Paula, Adriano Luiz de; Rezende, Mirabel Cerqueira, E-mail: mirabelmcr@iae.cta.br [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Div. de Materiais; Costa, Michelle Leali [Universidade Estadual Paulista Julio de Mesquita Filho (DMT/UNESP), Guaratingueta, SP (Brazil). Dept. de Materiais e Tecnologia

    2013-07-01

    Nanostructured polymer composites have opened up new perspectives for multifunctional materials. In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical and electrical performance in composites with aerospace application. The combination of epoxy resin with multi walled carbon nanotubes results in a new functional material with enhanced electromagnetic properties. The objective of this work was the processing of radar absorbing materials based on formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach this objective the adequate concentration of CNTs in the resin matrix was determined. The processed structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated with low additive concentrations (author)

  10. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  11. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  12. Thoron exhalation rate monitor with absorber

    International Nuclear Information System (INIS)

    Xiao Detao; Zhao Guizhi

    2003-01-01

    A measurement method of thoron exhalation rate is developed based on the characteristic of thorium C' which emits a α particle with higher energy than those of α particles released from radon and radon progenies. The principles of discriminating radon and realizing thoron exhalation rate measurement on the material surface with absorber, the passive and integrated thoron exhalation rate monitor studied, and its calibration coefficient determination method are introduced. The effectiveness of mitigating thoron exhalation rate of wall surface by depressurization inside wall and thoron exhalation rates on some materials surfaces were measured by using the studied monitors. The calibration coefficient of the studied monitor is R=0.246 cm -2 ·(kBq·m -3 ·h) -1 . The lower limit of detection is LLD=18.4 mBq·m -2 ·s -1 when the sampling period is 7 days and the standard deviation of background track densities of the adopted CR-39 SSNTD is s T =1.6 cm -2

  13. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  14. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  15. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  16. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  17. Determination of caffeine, theobromine, and theophylline in standard reference material 2384, baking chocolate, using reversed-phase liquid chromatography.

    Science.gov (United States)

    Thomas, Jeanice Brown; Yen, James H; Schantz, Michele M; Porter, Barbara J; Sharpless, Katherine E

    2004-06-02

    A rapid and selective isocratic reversed-phase liquid chromatographic method has been developed at the National Institute of Standards and Technology to simultaneously measure caffeine, theobromine, and theophylline in a food-matrix standard reference material (SRM) 2384, Baking Chocolate. The method uses isocratic elution with a mobile phase composition (volume fractions) of 10% acetronitrile/90% water (pH adjusted to 2.5 using acetic acid) at a flow rate of 1.5 mL/min with ultraviolet absorbance detection (274 nm). Total elution time for these analytes is less than 15 min. Concentration levels of caffeine, theobromine, and theophylline were measured in single 1-g samples taken from each of eight bars of chocolate over an eight-day period. Samples were defatted with hexane, and beta-hydroxyethyltheophylline was added as the internal standard. The repeatability for the caffeine, theobromine, and theophylline measurements was 5.1, 2.3, and 1.9%, respectively. The limit of quantitation for all analytes was theobromine, and theophylline in SRM 2384.

  18. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  19. Synthesis of Novel UV Absorbers Bisindolylmethanes and Investigation of Their Applications on Cotton-Based Textile Materials

    Directory of Open Access Journals (Sweden)

    Hikmet Nil Ergindemir

    2016-06-01

    Full Text Available Nowadays modified textiles, especially UV-protective, antibacterial and antimicrobial ones, have become the focus of great interest. In this study, several new UV absorbers, bis(indolylmethane derivatives, were synthesized and grafted onto polyvinyl alcohol polymer (PVA. Their application properties on cotton-based textile materials were determined; the UV protection factor values of the modified fabrics were measured (UPF; and the antibacterial features of the fabrics were tested.

  20. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  1. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  2. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    International Nuclear Information System (INIS)

    Kang, A Ram; Ahn, Sung Min; Lee, In Ja

    2017-01-01

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied

  3. 14 CFR 29.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  4. A black body absorber from vertically aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  5. Managing the materials of tomorrow through nomenclature standardization

    International Nuclear Information System (INIS)

    Garstka, R.M.; Kowalchick, D.P.

    1993-01-01

    Virginia Power's nuclear materials management organization has developed a new system to improve material visibility, accessibility, and useability in order to optimize inventory utilization. At a previous American Nuclear Society conference, the completion of the Material Nomenclature Standardization Project and the benefits realized through this effort were reported. This paper reports on new avenues that have been taken and the trials and successes experienced as a by-product of nomenclature standardization. New programs have been established to overcome problems of the past, gain control of inventory growth, and promote stock material utilization. At Virginia Power, the materials management organization is continually challenged to take the next step, strive to set and attain higher goals, and look beyond the status quo for now approaches to improved efficiency. As the standards program came to an end, we saw that our open-quotes first stepclose quotes was a big one. Standardization and computerized sorting solved the inability to retrieve parts without manufacturer's part numbers but also opened up new challenges. Building new systems and processes to make management of the inventory more effective was envisioned as an opportunity

  6. 14 CFR 27.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  7. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  8. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

    Directory of Open Access Journals (Sweden)

    Kiyoung Kim

    2018-06-01

    Full Text Available High-density spent fuel (SF storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others. Keywords: Blister, Criticality, METAMIC, Neutron Absorber, Neutron Attenuation Test, Scanning Electron Microscope

  9. Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study

    Directory of Open Access Journals (Sweden)

    Abdullahi Lawal

    Full Text Available Antimony telluride (Sb2Te3, a layered semiconductor material, is considered a promising absorbing material for a high-performance optoelectronic device within broadband wavelengths because of remarkable features like strong optical absorbance and the narrow direct band gap. In this work, based on the first-principles approach, we investigate in detail the structural, electronic and optical properties of the hexagonal Sb2Te3 compound. The structural and electronic properties were computed using the first-principles approach, treating exchange–correlation potential with generalized gradient approximation (GGA within density functional theory (DFT. Furthermore, for accurate prediction of the band gap, we go beyond DFT and calculated band structure using GW correction. The optical properties, namely, imaginary and real parts of complex dielectric function, absorption coefficient, refractive index, reflectivity, extinction coefficient, electron energy loss function and optical conductivity are performed by quasi-particle many-body perturbation theory (MBPT via Bethe-Salpeter equation (BSE. The computed structural parameters are in good agreement with available experimental data. The obtained quasi-particle (GW correction band structure show the semiconducting character of Sb2Te3 material with a direct band gap Eg of 0.221 eV, in agreement with previously reported value (Eg = 0.210 eV while the projected density of states indicates (PDOS that the p-orbital of Sb and Te atoms are responsible for material properties near the Fermi level. To our knowledge, our first reported calculations of optical properties, with the inclusion of electron-hole effects are consistent with available experimental measurements. Consistencies of our findings with experimental data validate the effectiveness of electron-hole interaction for theoretical investigation of optical properties. Keywords: DFT, Quasi-particle many-body perturbation theory, Bethe

  10. High-volume use of self-cementing spray dry absorber material for structural applications

    Science.gov (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  11. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...... conductivity and how to use it in optical design. We demonstrate a tunable THz perfect absorber, which consists of continuous graphene various structured graphene metamaterials above a metal mirror. Changing the Fermi level from 0 eV to 0.5 eV allows for drastic changes in absorbance from less than 0.1 to 1...

  12. Standard test method for galling resistance of material couples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a laboratory test that ranks the galling resistance of material couples using a quantitative measure. Bare metals, alloys, nonmetallic materials, coatings, and surface modified materials may be evaluated by this test method. 1.2 This test method is not designed for evaluating the galling resistance of material couples sliding under lubricated conditions, because galling usually will not occur under lubricated sliding conditions using this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  14. Choose of standard materials in the method of β-testing new materials' mass thickness

    International Nuclear Information System (INIS)

    Chen Zhong

    2007-01-01

    To make sure of the standard mass thickness in beta radials testing mass thickness, this paper calculate using M. C. method and get the result of the relations between the beta radials' transmission rate of different energies and mass thickness in different materials. This result prove that in method of beta test mass thickness choosing materials whose elements are close as standard materials are viable. (authors)

  15. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  16. Thin films of copper antimony sulfide: A photovoltaic absorber material

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas-Acosta, R.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Shaji, S. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450 (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León (Mexico)

    2015-01-15

    Highlights: • CuSbS{sub 2} thin films were prepared by heating Sb{sub 2}S{sub 3}/Cu layers. • Analyzed the structure, composition, optical, and electrical properties. • PV structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag were formed at different conditions. • The PV parameters (J{sub sc}, V{sub oc}, and FF) were evaluated from the J–V characteristics. • J{sub sc}: 0.52–3.20 mA/cm{sup 2}, V{sub oc}:187–323 mV, FF: 0.27–0.48 were obtained. - Abstract: In this work, we report preparation and characterization of CuSbS{sub 2} thin films by heating glass/Sb{sub 2}S{sub 3}/Cu layers and their use as absorber material in photovoltaic structures: glass/SnO{sub 2}:F/n-CdS/p-CuSbS{sub 2}/C/Ag. The Sb{sub 2}S{sub 3} thin films of 600 nm were prepared by chemical bath deposition on which copper thin films of 50 nm were thermally evaporated, and the glass/Sb{sub 2}S{sub 3}/Cu multilayers were heated in vacuum at different temperatures. X-ray diffraction analysis showed the formation of orthorhombic CuSbS{sub 2} after heating the precursor layers. Studies on identification and chemical state of the elements were done using X-ray photoelectron spectroscopy. The optical band gap of the CuSbS{sub 2} thin films was 1.55 eV and the thin films were photoconductive. The photovoltaic parameters of the devices using CuSbS{sub 2} as absorber and CdS as window layer were evaluated from the J–V curves, yielding J{sub sc}, V{sub oc}, and FF values in the range of 0.52–3.20 mA/cm{sup 2}, 187–323 mV, and 0.27–0.48, respectively, under illumination of AM1.5 radiation.

  17. Device for absorbing seismic effects on buildings

    International Nuclear Information System (INIS)

    Xercavins, Pierre; Pompei, Michel.

    1979-01-01

    Device for absorbing seismic effects. The construction or structure to be protected rests on its foundations through at least one footing formed of a stack of metal plates interlinked by layers of adhesive material, over at least a part of their extent, this material being an elastomer that can distort, characterized in that at least part of the area of some metal plates works in association with components which are able to absorb at least some of the energy resulting from friction during the relative movements of the metal plates against the distortion of the elastomer [fr

  18. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments

    OpenAIRE

    Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-01-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according ...

  19. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    International Nuclear Information System (INIS)

    Toni, M.P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-01-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d 0 = 1 cm, D w , 1 cm, is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure D w , 1 cm due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under 'wall-less air chamber' conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of D w , 1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on D w , 1 cm is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125 I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant 1 cm, traceable to the D w , 1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on 1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature. (authors)

  20. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  1. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    Science.gov (United States)

    Allisy-Roberts, P. J.; Kessler, C.; Burns, D. T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  3. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  4. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  5. Newly developed standard reference materials for organic contaminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    Poster, D.; Kucklick, J.; Schantz, M.; Porter, B.; Wise, S. [National Inst. of Stand. and Technol., Gaithersburg, MD (USA). Center for Anal. Chem.

    2004-09-15

    The National Institute of Standards and Technology (NIST) has issued a number of Standard Reference Materials (SRM) for specified analytes. The SRMs are biota and biological related materials, sediments and particle related SRMs. The certified compounds for analysis are polychlorinated biphenyls (PCB), polycylic aromatic hydrocarbons (PAH) and their nitro-analogues, chlorinated pesticides, methylmercury, organic tin compounds, fatty acids, polybrominated biphenyl ethers (PBDE). The authors report on origin of materials and analytic methods. (uke)

  6. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1991-01-01

    This patent describes a nuclear reactor core. It comprises a first group of fuel rods containing fissionable material and being free of burnable absorber material; and a second group of fuel rods containing fissionable material and first and second burnable absorber material; the first burnable absorber material being a boron-bearing material which does not contain erbium and the second burnable absorber material being an erbium material; the first and second burnable absorber materials being in the form of an outer coating on the fissionable material, the outer coating being composed of an inner layer of one of the boron-bearing material which does not contain erbium and the erbium material and an outer layer of the other of the boron-bearing material which does not contain erbium and the erbium material

  7. COMPARISON OF ABSORBABLE EXTRA LONG TERM POLY HYDROXY BUTYRATE SUTURE VS NON ABSORBABLE (POLYPROPYLENE SUTURE FOR ABDOMINAL WALL CLOSURE

    Directory of Open Access Journals (Sweden)

    Mallikarjun

    2015-07-01

    Full Text Available PURPOSE: The aim of study is to compare Continuous technique with non - absorbable sutures, Interrupted technique with non - absorbable sutures and Continuous technique with slowly absorbable sutures Focusing mainly on incidence of incisional hernias, burst abdomen, wound infections, chronic wound pain, suture sinus, stitch granuloma, time for rectus closure. METHODOLOGY : Study was conducted for a period of one year on 271 randomized patients with primary elective midline laparotomy in our hospital . patients are divided into group I includes 102 patients with continuous technique using non absorbable polypropylene, group II includes 91 patients with interrupted technique using non absorbable polypropylene and group III includes 78 patients with continuous slowly absorbable polyhydroxybutyrate. RESULTS: No significant difference observed in incidence of wound infections and burst abdomen in all the 3 groups but relatively higher incidence of wound infections in noted our hospital. Incidence of stich granuloma suture sinus and chronic wound pain is more with interrupted technique than continuous technique and are more with non - absor bable suture material. CONCLUSION: Incidence of incisional hernias, suture complications like suture sinus, stitch granuloma can be more effectively reduced with slowly absorbable continuous sutures.

  8. Hafnium as a prospective absorber for VVER-1000 reactors of Ukraine

    International Nuclear Information System (INIS)

    Afanas'ev, A.A.; Konotop, Yu.F.; Odejchuk, N.L.

    2000-01-01

    Nuclear-physical parameters of hafnium having in mind its use as an absorber, are considered. Technical aspects of Hf production are exposed. Use of B 4 C/Hf absorber is twice cheaper than a standard one

  9. Intercomparison ot the PTB and LMRI standards in beta dosimetry

    International Nuclear Information System (INIS)

    Hillion, P.; Simoen, J.P.; Boehm, J.

    1976-12-01

    To set up national standard measuring devices for verifying the unit of the quantity 'absorbed dose rate in soft tissue' at different depths for β-radiation, extrapolation chambers have been developed at the PTB and LMRI. They are constructed of nearly tissue equivalent materials and connected to measuring devices of highest metrological quality. A comparison of these standards has been carried out using two β-ray sources of 90 Sr + 90 Y, one from each laboratory. Absorbed dose rates between 0,5 Gy h -1 and 1.3 Gy -1 have been determined. The overall uncertainties of the absorbed dose rates in tissue are 1.8%. The part of the uncertainty due to systematic uncertainties of corrections unique for each laboratory amounts to 0.8% for the LMRI and 0.7% for the PTB. The ratios of the corresponding absorbed dose rates measured at the PTB and at the LMRI differ by 0.2% to 0.7%. On the average, the LMRI values are 0.4% samller than the PTB values. The agreement is felt to be very satisfactory. (orig.) [de

  10. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical properties. It showed that flexibility and thermal stability of composite were enhanced. No significant effect of mechanical properties was therefore observed. The thermal stability of composite was stable up to 300°C. The adsorption experiment on water and vegetable oil capacity was performed. The enhancement on adsorption was due to the existence of eggshell in bacterial cellulose composite. It exhibited the potential to be a good candidate for absorbent material in active packaging.

  11. Load testing of neutron absorbent materials by using neutron radiographic pictures

    International Nuclear Information System (INIS)

    Bayon, G.; Laporte, A.

    1986-06-01

    By using standards whose characteristics are known, quantitative measurement of the neutronographic negatives density, makes possible the estimation of a neutrophagic constituent proportion in each point of a given material. This presentation describes the methodology, the automatic equipment developed at Saclay and the method performance characteristics applied to mass-produced components

  12. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro

    2017-01-01

    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  13. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  14. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Volkers, K.J.

    1979-01-01

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  15. OrbusNeich fully absorbable coronary stent platform incorporating dual partitioned coatings.

    Science.gov (United States)

    Cottone, Robert J; Thatcher, G Lawrence; Parker, Sherry P; Hanks, Laurence; Kujawa, David A; Rowland, Stephen M; Costa, Marco; Schwartz, Robert S; Onuma, Yoshinobu

    2009-12-15

    The field of stent based tissue engineering continues to revolutionise modern medicine by designing novel materials to restore vascular tissue function. Accordingly, the following discussion examines a novel, absorbable, polymeric scaffold engineered in combination with dual therapeutic coating, enabling locally administered temporary scaffolding in the coronary arteries for long term vascular patency and repair. This coronary stent platform consists of an absorbable polymeric material stent structure that incorporates a dual partitioned coating, by means of pro-healing EPC (endothelial progenitor cell) capture technology allowing for rapid endothelial coverage, and an absorbable polymer matrix with sustained elution of sirolimus, a drug controlling neointimal proliferation. This paper provides a brief overview of the various innovations developed by OrbusNeich to create this fully absorbable coronary device platform.

  16. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  17. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes [Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800 (Turkey); Okyay, Ali K. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 (Turkey)

    2014-07-15

    Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectric properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.

  18. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  19. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  20. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  1. Structural investigation and microwave characteristics of (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Manaf, Azwar [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Indonesia of University (Indonesia); Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id [Center for Technology of Nuclear Industry Material, National Nuclear Energy Agency (Indonesia)

    2014-03-24

    Synthesis and characterization of (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} absorbing material by mechanical alloying process has been performed. The absorbing material was prepared by oxide materials, namely BaCO{sub 3}, La{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, and MnCO{sub 3}. The mixture was milled for 10 h and then sintered at a temperature of 1000 ° C for 10 h. The refinement results of x-ray diffraction pattern of lanthanum manganite substituted with barium showed that the sample consisted of two phases, namely, La{sub 0.9125}MnO{sub 3} phase which has a structure monoclinic (I12/a1) with lattice parameters a = 5.527(1) Å, b = 5.572(1) Å and c = 7.810(1) Å, α = γ = 90° and β = 89.88(5)°, the unit cell volume of V = 240.57(8) Å{sup 3}, and the atomic density of ρ = 6.238 gr.cm{sup −3}. The microstructure analyses showed that the particle shapes was polygonal with the varied particle sizes of 1 ∼ 3 μm distributed homogeneously on the surface of the samples. The results of the electromagnetic wave absorption curve analysis by using a vector network analyzer (VNA) showed that the sample can absorb microwaves in the frequency range of 8-15 GHz with a very wide absorption bandwidth. It indicates that the as prepared absorber presents potential absorbing property in X and Ku-band. We concluded that the (Ba{sub 0.2}La{sub 0.8})Fe{sub 0.2}Mn{sub 0.4}Ti{sub 0.4}O{sub 3} material can be applied as a candidate absorber material of microwaves or electromagnetic wave.

  2. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  3. Performance evaluation of working standard NE2581 in comparison with reference standard NE2561 in the determination of absorbed dose to water using IAEA, HPA, NACP, AAPM, NCRP and ICRU protocols

    International Nuclear Information System (INIS)

    Dolah, M.T.; Supian Samat; Taiman Kadni

    2001-01-01

    The aim of this study was to evaluate the performance of NE 2581 in comparison with NE 2561 in the determination of the absorbed dose to water in a γ-ray beam using IAEA, HPA, NACP, AAPM, NCRP and ICRU protocols. 13 exposures of the γ-ray beams were used. This number of exposures yielded 26 chamber rate readings for NE 2581 (N=13) and for NE 2561 (N=13). From the 13 NE 2581 readings, 78 absorbed dose to water values were calculated for the IAEA (N=13), HPA (N=13), NACP (N=13), AAPM (N=13), NCRP (N=13) and ICRU (N=13) protocols. Similarly, from the 13 NE 2561 readings, 78 absorbed dose to water values were calculated for IAEA (N=13), HPA (N=13), NACP (N=13), AAPM (N=13), NCRP (N=13) and ICRU (N=13) protocols. From these 156 (=78 x 2) absorbed dose to water values, 78 percentage deviations between the NE 2581 and NE 2561 results were calculated for IAEA (N=13), HPA (N=13), NACP (N=13), AAPM (N=13), NCRP (N=13) and ICRU (N=13) protocols. For a single protocol, the mean μ and standard error σ+s+e of the percentage deviations (N=13) were calculated. results obtained in terms of [protocol, μ ± σ se ] were [IAEA,1.55 ± 0.12], [HPA, 0.98 ± 0.12], [NACP, 1.93 ± 0.12], [AAPM, -0.06 ± 0.12], [NCRP, 0.97 ± 0.12], [ICRU, 0.97 ± 0.12]. It can be seen that the range of percentage deviations is from -0.06 to 1.93. As the quoted IAEA acceptable limit of deviation is ± 3.0%, it was concluded that the working standard NE 2581 chamber has shown acceptable performance. In addition, the use of the AAPM protocol has enable NE 2581 to show a performance that is very similar like NE 2561. (Author)

  4. Characterization of load dependent creep behavior in medically relevant absorbable polymers.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Bui, Hieu; Hong, Danny

    2014-01-01

    While synthetic absorbable polymers have a substantial history of use in medical devices, their use is expanding and becoming more prevalent for devices where long term loading and structural support is required. In addition, there is evidence that current absorbable medical devices may experience permanent deformations, warping (out of plane twisting), and geometric changes in vivo. For clinical indications with long term loading or structural support requirements, understanding the material's viscoelastic properties becomes increasingly important whereas these properties have not been used historically as preclinical indications of performance or design considerations. In this study we measured the static creep, creep recovery and cyclic creep responses of common medically relevant absorbable materials (i.e., poly(l-lactide, PLLA) and poly(l-co-glycolide, PLGA) over a range of physiologically relevant loading magnitudes. The results indicate that both PLLA and PLGA exhibit creep behavior and failure at loads significantly less than the yield or ultimate properties of the material and that significant material specific responses to loading exist. In addition, we identified a strong correlation between the extent of creep in the material and its crystallinity. Results of the study provide new information on the creep behavior of PLLA and PLGA and support the use of viscoelastic properties of absorbable polymers as part of the material selection process. © 2013 Published by Elsevier Ltd.

  5. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  6. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D

    2013-01-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  7. Absorbing device for stationary arrangement in the lattice of a boiling water reactor

    International Nuclear Information System (INIS)

    Fredin, B.; Nylund, O.

    1980-01-01

    The invention refers to an absorbing device for stationary arrangement in the lattice of a BWR in a gap between two bundles of vertical fuel rods. It consists of at least one absorbing plate containing burnable absorbing material. Both lateral surfaces of this plate are directed to one surface each of the bundles mentioned above. According to the invention the absorbing material is contained in channels formed by welding together two adjacent sheet elements, at least one of which being corrugated. The welds will be made at the points where to tops of the waves touch the other sheet element. (orig.) [de

  8. Generalized pin factor methodology for LWR reload cores with discrete burnable absorbers

    International Nuclear Information System (INIS)

    Hah, C.J.; Hideki Matsumoto; Toshikazu Ida; Lee, C.; Chao, Y.A.

    2005-01-01

    Discrete burnable absorbers are used to suppress excess reactivity as well as peak pin power in an assembly. After the burn-out of absorption material, discrete burnable absorbers are usually removed from assembly guide tubes for the next cycle. For that case, the pin factors with discrete burnable absorbers cannot be used since the assembly configuration is physically changed. The pin factors without discrete burnable absorbers also have noticeable deviation from the actual case because they do not take into account the history effect due to the residence of discrete burnable absorbers for the previous cycle. In this paper, the generalized pin factor (GPF) method is developed to accurately predict pin powers by considering the history effect. The method uses a second-order polynomial function to approximate the history effect which builds up during the residence of burnable absorber material and employs a linear approximation to simulate the decay of the history effect after discrete burnable absorbers are removed. The verification results from Westinghouse Vantage- 5H assemblies with WABAs showed that pin power errors were significantly reduced by using the GPF. (authors)

  9. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  10. 10 CFR 440.21 - Weatherization materials standards and energy audit procedures.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Weatherization materials standards and energy audit... FOR LOW-INCOME PERSONS § 440.21 Weatherization materials standards and energy audit procedures. (a...) of this section describes the performance and quality standards for renewable energy systems...

  11. Long-term effects of neutron absorber and fuel matrix corrosion on criticality

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Proposed waste package designs will require the addition of neutron absorbing material to prevent the possibility of a sustained chain reaction occurring in the fuel in the event of water intrusion. Due to the low corrosion rates of the fuel matrix and the Zircaloy cladding, there is a possibility that the neutron absorbing material will corrode and leak from the waste container long before the subsequent release of fuel matrix material. An analysis of the release of fuel matrix and neutron absorber material based on a probabilistic model was conducted and the results were used to prepare input to KENO-V, an neutron criticality code. The results demonstrate that, in the presence of water, the computed values of k eff exceeded the maximum of 0.95 for an extended period of time

  12. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  13. Transformation method for the MIRD absorbed fractions as applied to various physiques

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi

    1978-01-01

    This study concerns with the transformation method of the MIRD absorbed fraction (AF) to the AF corresponding to an individual having the dimensions different from those of the MIRD standard man. The absorbed dose of a target organ T from a source organs S, received by the administration of a radiopharmaceutical agent is expressed with the equilibrium absorbed dose constant, the cumulative activity in the S, and the specific absorbed fraction (SAF). It is dealt only with how the MIRD SAF data can be modified for estimating individual SAF values. The SAF for individuals is given for penetrating and non-penetrating radiations. In case of the penetrating radiation, the SAF is given from the corresponding MIRD SAF by using a transformation coefficient for the MIRD SAF, when the MIRD standard man is transfigured to a corresponding phantom of an individual by the scale factors selected separately for the head section, trunk section and leg section of the MIRD standard man. The obtained results were compared with the ORNL results, and showed good agreement. (Kato, T.)

  14. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    Science.gov (United States)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Catalog of NBS standard reference materials, 1975--76 edition. Special pub

    International Nuclear Information System (INIS)

    Seward, R.W.

    1975-06-01

    This Catalog lists and describes the Standard Reference Materials (SRM's), Research Materials (RM's), and General Materials (GM's) currently distributed by the National Bureau of Standards, as well as many of the materials currently in preparation. SRM's are used to calibrate measurement systems and to provide a central basis for uniformity and accuracy of measurement. The unit and quantity, the type, and the certified characterization are listed for each SRM, as well as directions for ordering. The RM's are not certified, but are issued to meet the needs of scientists engaged in materials research. RM's are issued with a 'Report of Investigation', the sole authority of which is the author of the report. The GM's are standardized by some agency other than NBS. NBS acts only as a distribution point and does not participate in the standardization of these materials. Announcements of new and renewal SRM's, RM's and GM's are made in the semi-annual supplements of this Catalog, SRM Price List, and in scientific and trade journals

  16. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  17. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Birney, K.R.; Pitner, A.L.; Basmajian, J.A.

    1980-04-01

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  18. Design and testing of a shock absorber for a type I container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.; Jais, M.

    1994-01-01

    A simple method of designing a shock absorber to protect a type B cast-iron container is developed. The results of deformation tests of the structural material (steel pipes) used for the shock absorber are presented. The accelerations and strains measured during the 9m drop tests of the container with the shock absorber are compared with the theoretical results of the calculations for the shock absorber design. ((orig.))

  19. Standard Reference Development of nuclear material for Tensile and Hardness Test Properties

    International Nuclear Information System (INIS)

    Choo, Y. S.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Baik, S. J.; Chun, Y. B.; Kim, K. H.; Hong, K. P.; Ryu, W. S.

    2007-12-01

    Standard reference is a official approved data such a coefficient of physics, approved material properties, and etc., which should be analyzed and evaluated by scientific method to acquire official approval for accuracy and credibility of measured data and information. So it could be used broadly and continuously by various fields of nation and society. It is classified to effective standard reference, verified standard reference, and certified standard reference. There are sixteen fields in designated standard references such a physical chemistry field, material field, metal field, and the others. The standard reference of neutron irradiated nuclear structural material is classified to metal field. This report summarized the whole processes about data collection, data production, data evaluation and the suggestion of details evaluation technical standard for tensile and hardness properties, which were achieved by carry out the project 'nuclear material standard reference development' as a result

  20. Standard Reference Development of nuclear material for Tensile and Hardness Test Properties

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Y. S.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Baik, S. J.; Chun, Y. B.; Kim, K. H.; Hong, K. P.; Ryu, W. S

    2007-12-15

    Standard reference is a official approved data such a coefficient of physics, approved material properties, and etc., which should be analyzed and evaluated by scientific method to acquire official approval for accuracy and credibility of measured data and information. So it could be used broadly and continuously by various fields of nation and society. It is classified to effective standard reference, verified standard reference, and certified standard reference. There are sixteen fields in designated standard references such a physical chemistry field, material field, metal field, and the others. The standard reference of neutron irradiated nuclear structural material is classified to metal field. This report summarized the whole processes about data collection, data production, data evaluation and the suggestion of details evaluation technical standard for tensile and hardness properties, which were achieved by carry out the project 'nuclear material standard reference development' as a result.

  1. Intercomparison of the PTB and LMRI standards in beta dosimetry

    International Nuclear Information System (INIS)

    Boehm, J.; Hillion, P.; Simoen, J.P.

    1976-01-01

    To set up national standard measuring devices for verifying the unit of the quantity 'absorbed dose rate in soft tissue' at different depths for β-radiation, extrapolation chambers have been developed at the PTB and LMRI. They are constructed of nearly tissue equivalent materials and connected to measuring devices of highest metrological quality. A comparison of these standards has been carried out using two β-ray emitters of 90 Sr+ 90 Y, one from each laboratory. Absorbed dose rates between 0.5 Gy h -1 and 1.3 Gy h -1 have been determined. The overall uncertainties of the absorbed dose rates in tissue are 1.8%. The part of the uncertainty due to systematic uncertainties of corrections, assumed to be carried out independently by each laboratory, amounts to 0.8% for the LMRI and 0.7% for the PTB. The ratios of the corresponding absorbed dose rates measured at the PTB and at the LMRI differ by 0.2% to 0.7%. On the average, the LMRI values are 0.4% smaller than the PTB values. The agreement is felt to be very satisfactory

  2. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  3. Measurement of absorbed doses near metal and dental material interfaces irradiated by x- and gamma-ray therapy beams

    International Nuclear Information System (INIS)

    Farahani, M.; Eichmiller, F.C.; McLaughlin, W.L.

    1990-01-01

    Soft-tissue damage adjacent to dental restorations is a deleterious side effect of radiation therapy associated with low-energy electron scatter from dental materials of high electron density. This study was designed to investigate the enhancement of dose to soft tissue (or water) close to high electron-density materials and to measure the detailed lateral and depth-dose profiles in soft-tissue-simulating polymer adjacent to planar interfaces of several higher atomic-number materials: 18-carat gold dental casting alloy; Ag-Hg dental amalgam alloy; Ni-Cr dental casting alloy; and natural human tooth structure. Results indicate that the dose-enhancement in 'tissue' is as great as a factor of 2 on the backscatter side adjacent to gold and a factor of 1.2 adjacent to tooth tissue, but is insignificant on the forward-scatter side because of the predominant effect of attenuation by the high-density, high atomic-number absorbing material. (author)

  4. Absorber rod driving into a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Elter, C.; Schmitt, H.; Schoening, J.

    1987-01-01

    The absorber rod consists of a hollow cylinder which has a layer of absorber material applied on its inside circumferential surface. The absorber rod is held via a guide sleeve, which is supported centrally in a hole in the side reflector. The guidance within the sleeve is provided by flanges on the hollow cylinder. The movement of the hollow cylinder is carried out hydraulically or pneumatically. A flow of cooling gas is used for cooling, which is passed through the inner central areas of the hollow cylinder and the guide sleeve. (DG) [de

  5. Radioactive materials packaging standards and regulations: Making sense of it all

    International Nuclear Information System (INIS)

    Pope, R.B.; Rawl, R.R.

    1989-01-01

    Numerous regulations and standards, both national and international, apply to the packaging and transportation of radioactive material. These are legal and technical prerequisites to practically every action that a designer or user of a radioactive material transportation package will perform. The identity and applicability of these requirements and the bodies that formulate them are also not readily understood. This paper addresses the roles that various international bodies play in developing and implementing the various regulations and standards. It uses the US regulatory and standards-making bodies to illustrate how international requirements feed the domestic control of packaging and transport. It explains the scope and interactions between domestic and international regulatory and standards agencies and summarizes the status and major standards activities at the international level. The overview provided by this paper will be valuable to designers and users of radioactive material packages for better understanding and use of both standards and regulations, and for complying with regulatory requirements in the radioactive materials transportation field. 11 refs., 2 figs

  6. Job Grading Standard for Materials Expediter WG-6705.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade nonsupervisory jobs involved in routing and expediting the movement of parts, end items, supplies, and materials within production and repair facilities to meet priority needs. The work requires knowledge of material characteristics, uses, condition, industrial production shop procedures, shop layout, and internal…

  7. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  8. RackSaver neutron absorbing device development and testing

    International Nuclear Information System (INIS)

    Lambert, R.; O'Leary, P.; Roberts, P.

    1996-01-01

    Siemens Power Corporation (SPC), in cooperation with the Electric Power Research Institute (EPRI), has developed the RackSaver neutron absorbing insert. The RackSaver insert can be installed onto spent nuclear fuel assemblies to replace deteriorating Boraflex neutron absorbing material installed in some spent-fuel storage racks. This paper describes results of a development and in-pool demonstration program performed to support potential utilization of the RackSaver neutron absorbing insert by affected utilities. The program objective was to advance the RackSaver concept into a field-demonstrated product. This objective was accomplished through three phases: design, licensing and criticality evaluations, and demonstration testing

  9. Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers

    Science.gov (United States)

    Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou

    2018-05-01

    This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.

  10. Report on investigations and studies on development of materials for hydrogen absorbing alloys; Suiso kyuzo gokin no zairyo no kaihatsu ni kansuru chosa kenkyu hokokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This paper describes investigations and studies on hydrogen absorbing alloy materials and the technologies to utilize them. In the investigations and studies, literatures were collected and put into order, questionnaire surveys were performed and analyzed, lecture meetings and panel discussions were held, and the discussion results were summarized. In the present status of developing hydrogen absorbing alloys, the current status of and problems in developing such hydrogen absorbing alloys as Ti-based, Mg-based, and rare earth-based alloys were put into order. Discussions were given on prospects of possibilities of developing new alloys, making them amorphous, and putting them into mass production. In the current status of developing the utilizing technologies, such technologies as hydrogen storage systems and heat pumps were put into order and discussed. With regard to problems in hydrogen absorbing alloys, discussions were given on alloy weight, pulverization, activation, heat conductivity, and alloy costs. In discussing the safety, discussions were given on the safety and compliance with related laws and regulations relative to hydrogen transportation using a great amount of hydrogen absorbing alloys, their storage, and heat storage systems. In addition, questionnaire surveys were carried out with an objective to identify the status of developing hydrogen absorbing alloys and needs from the industries. (NEDO)

  11. Determination of trace elements in standard reference materials by the ko-standardization method

    International Nuclear Information System (INIS)

    Smodis, B.; Jacimovic, R.; Stegnar, P.; Jovanovic, S.

    1990-01-01

    The k o -standardization method is suitable for routine multielement determinations by reactor neutron activation analysis (NAA). Investigation of NIST standard reference materials SRM 1571 Orchard Leaves, SRM 1572 Citrus leaves, and SRM 1573 Tomato Leaves showed the systematic error of 12 certified elements determined to be less than 8%. Thirty-four elements were determined in NIST proposed SRM 1515 Apple Leaves

  12. Federal Standard: Beneficial Use of Dredged Material

    Science.gov (United States)

    The purpose of this document is to provide national guidance that explains the role of the Federal Standard in implementing beneficial uses of dredged material from U.S. Army Corps of Engineers’ new and maintenance navigation projects.

  13. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  14. Liquid carbon dioxide absorbents, methods of using the same, and related system

    Science.gov (United States)

    Perry, Robert James; Soloveichik, Grigorii Lev; Rubinsztajn, Malgorzata Iwona; O'Brien, Michael Joseph; Lewis, Larry Neil; Lam, Tunchiao Hubert; Kniajanski, Sergei; Hancu, Dan

    2018-05-01

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  15. Standard reference materials analysis for MINT Radiocarbon Laboratory

    International Nuclear Information System (INIS)

    Noraishah Othman; Kamisah Alias; Nasasni Nasrul

    2004-01-01

    As a follow-up to the setting up of the MINT Radiocarbon Dating facility. an exercise on the IAEA standard reference materials was carried out. Radiocarbon laboratories frequently used these 8 natural samples to verify their systems. The materials were either pretreated or analysed directly to determine the activity of 14 C isotopes of the five samples expressed in % Modern (pMC) terms and to make recommendations on further use of these materials. We present the results of the five materials and discuss the analyses that were undertaken. (Author)

  16. Modelling the cost-effectiveness of impact-absorbing flooring in Swedish residential care facilities.

    Science.gov (United States)

    Ryen, Linda; Svensson, Mikael

    2016-06-01

    Fall-related injuries among the elderly, specifically hip fractures, cause significant morbidity and mortality as well as imposing a substantial financial cost on the health care system. Impact-absorbing flooring has been advocated as an effective method for preventing hip fractures resulting from falls. This study identifies the cost-effectiveness of impact-absorbing flooring compared to standard flooring in residential care facilities for the elderly in a Swedish setting. An incremental cost-effectiveness analysis was performed comparing impact-absorbing flooring to standard flooring using a Markov decision model. A societal perspective was adopted and incremental costs were compared to incremental gains in quality-adjusted life years (QALYs). Data on costs, probability transitions and health-related quality of life measures were retrieved from the published literature and from Swedish register data. Probabilistic sensitivity analysis was performed through a Monte Carlo simulation. The base-case analysis indicates that the impact-absorbing flooring reduces costs and increases QALYs. When allowing for uncertainty we find that 60% of the simulations indicate that impact-absorbing flooring is cost-saving compared to standard flooring and an additional 20% that it has a cost per QALY below a commonly used threshold value : Using a modelling approach, we find that impact-absorbing flooring is a dominant strategy at the societal level considering that it can save resources and improve health in a vulnerable population. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  17. Determination of Absorbed Dose to Water for Leksell Gamma Knife Unit

    International Nuclear Information System (INIS)

    Hrsak, H.

    2013-01-01

    Because of geometry of photon beams in Leksell Gamma Knife Unit (LGK), there are several technical problems in applying standard protocols for determination of absorbed dose to water (Dw). Currently, Dw in LGK unit, measured at the center of spherical plastic phantom, is used for dose calculation in LGK radiosurgery. Treatment planning software (LGP TPS) accepts this value as a measurement in water and since plastic phantom has higher electron density than water, this leads to systematic errors in dose calculation. To reduce these errors, a photon attenuation correction (PAC) method was applied. For that purpose, measurements of absorbed dose in a center of three different plastic phantoms with 16 cm diameter (ABS - acrylonitrile butadiene styrene, PMMA - polymethyl metacrylate, PMMA + teflon - polytetrafluoroethylene 5 mm shell) were made with ionization chamber (Semiflex, PTW Freiburg). For measured dose values, PAC to water was applied based on electron density (ED) and equivalent water depths (EWD) of the plastic phantoms. The relation between CT number and ED was determined by measuring CT number of standard CT to ED phantom (CIRS Model 062 Phantom). Absorbed dose in plastic phantoms was 2.5 % lower than calculated dose in water for ABS phantom and more than 5.5 % lower for PMMA and PMMA+teflon phantom. Calculated dose in water showed more consistent values for all three phantoms (max. difference 2.6 %). EWD for human cranial bones and brain has value close to the EWD of ABS phantom, which makes this phantom most suitable for dose measurements in clinical application. In LGK radiosurgery determination of errors related to the difference of phantom materials should not be neglected and measured dose should be corrected before usage for patient treatment dose calculation.(author)

  18. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.

    Science.gov (United States)

    Noe, D A; Voto, S J; Hoffmann, M S; Askew, M J; Gradisar, I A

    1993-01-01

    The capacity of the calcaneal heel pad, with and without augmentation by a polymeric shock absorbing material (Sorbothane 0050), to attenuate heel strike impulses has been studied using five fresh human cadaveric lower leg specimens. The specimens, instrumented with an accelerometer, were suspended and impacted with a hammer; a steel rod was similarly suspended and impacted. The calcaneal heel pad attenuated the peak accelerations by 80%. Attenuations of up to 93% were achieved by the shock absorbing material when tested against the steel rod; however, when tested in series with the calcaneal heel pad, the reduction in peak acceleration due to the shock absorbing material dropped to 18%. Any evaluation of the effectiveness of shock absorbing shoe materials must take into account their mechanical interaction with the body.

  19. Study of diluting and absorber materials to control the reactivity during a postulated core meltdown accident in generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, Kamila

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic points of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author)

  20. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, K.

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [fr

  1. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  2. A one bath chemo-enzymatic process for preparation of absorbent cotton

    Directory of Open Access Journals (Sweden)

    A.S.M. Raja

    2016-09-01

    Full Text Available Cotton is the raw material for preparation of absorbent cotton. Raw cotton has to be subjected to scouring and bleaching processes for making it absorbent by removing the naturally present wax, protein and minerals in the fibre. The scouring is done at 115 °C using alkali followed by bleaching at boiling condition using alkaline hydrogen peroxide solution. The effluent coming out of such processes contains high COD and BOD values. Due to the stringent environmental regulation and great awareness among the public about environment, worldwide attempts have been made to develop green and sustainable chemical processing of materials. Based on the above, in the present study efforts have been made to develop an eco-friendly one bath preparatory process for the production of absorbent cotton using chemo-enzymatic formulation. The result indicated that absorbent cotton produced using the developed process fulfilled the required performance properties as per pharmacopoeia in comparable with the conventional process made one.

  3. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  4. Liquid carbon dioxide absorbents, methods of using the same, and related systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan

    2016-09-13

    A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.

  5. An overview of the development, testing, and application of composite absorbers

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.

    1995-02-01

    Although inorganic exchangers offer many advantages for removing selected elements from radioactive waste streams, few of these materials are suitable for use in packed-bed columns. We review various adaptations of inorganic exchangers for use in columns, which include granular forms of the intrinsic absorbers, absorber compounds supported on other materials, and composite absorbers that use organic or inorganic binders. An organic binding polymer of polyacrylonitrile (PAN), developed at the Czech Technical University, has been demonstrated to offer advantages. We describe general methods for preparing inorganic exchange materials, which then are incorporated into PAN-based composites. Such PAN composites have been used to remove selected radionuclides from a variety of liquid waste streams. Sixteen different PAN composites were prepared for testing at Los Alamos National Laboratory (LANL) as part of an evaluation of potential partitioning agents for remediating the liquid waste in underground storage tanks at the Hanford site near Richland, Washington. Our collaboration with LANL is expected to continue for another 2 years

  6. An overview of the development, testing, and application of composite absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Sebesta, F. [Czech Technical Univ., Brehova (Czech Republic); John, J. [Los Alamos National Lab., NM (United States)

    1995-02-01

    Although inorganic exchangers offer many advantages for removing selected elements from radioactive waste streams, few of these materials are suitable for use in packed-bed columns. We review various adaptations of inorganic exchangers for use in columns, which include granular forms of the intrinsic absorbers, absorber compounds supported on other materials, and composite absorbers that use organic or inorganic binders. An organic binding polymer of polyacrylonitrile (PAN), developed at the Czech Technical University, has been demonstrated to offer advantages. We describe general methods for preparing inorganic exchange materials, which then are incorporated into PAN-based composites. Such PAN composites have been used to remove selected radionuclides from a variety of liquid waste streams. Sixteen different PAN composites were prepared for testing at Los Alamos National Laboratory (LANL) as part of an evaluation of potential partitioning agents for remediating the liquid waste in underground storage tanks at the Hanford site near Richland, Washington. Our collaboration with LANL is expected to continue for another 2 years.

  7. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  8. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  9. Improvement of wettability and absorbancy of textile using atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Ghimire, Bhagirath; Subedi, Deepak Prasad; Khanal, Raju

    2017-08-01

    In this study, cotton textile samples, commonly used in making quilt covers were subjected to atmospheric pressure dielectric barrier discharge treatment to study their surface wettability and absorbancy. Samples were treated in the discharge using a rotatory mechanism and the effects of plasma treatment were examined by contact angle measurement and weight measurement. Air plasma treatment was successful in incorporating hydrophilic functional groups on the textile surface due to which wettability as well as absorbancy immediately after the treatment were highly improved. Effects of plasma treatment started to appear only after 20 cycles (9 mins) and got saturated after 24 cycles (10.8 mins) of treatment. The contact angle reduced from 137 ° (untreated sample) to a value less than 30 ° while absorbancy increased by more than two times as compared to untreated sample. Also, the aging behavior of the plasma treated samples were studied for about a week after plasma treatment. It was observed that the induced oxygen containing groups re-oriented into the bulk of the material during their storage in the environment due to which initial properties of the samples recovered gradually. Our results indicate that low temperature plasma can be successfully applied to modify the properties of textiles and textile industries could utilize this by standardization.

  10. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  11. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  12. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  13. Electromagnetic and microwave absorbing properties of hollow ...

    Indian Academy of Sciences (India)

    bandwidth below −10 dB and minimum RL decrease with increasing thickness of HCNSs/paraffin composites. Keywords. Nanomaterials; nanospheres; CVD; electric; magnetic; microwave absorption properties. 1. Introduction. In recent years, microwave absorbing materials have attracted considerable attention because it ...

  14. An absorbent for an application to a package for a liquid radioactive isotope for medical usage

    International Nuclear Information System (INIS)

    Bang, K.S.; Lim, S.P.; Lee, J.C.; Seo, K.S.; Han, H.S.

    2004-01-01

    A radioactive isotope has to be safely transport from the producing center to the consuming center. The shipping package to safely transport the radioactive isotope should be able to withstand the prescribed conditions by law. In the field of nuclear medicine, the radioactive isotope is used in a liquid or capsule form. A Type A package, which is to transport liquid radioactive materials, shall be provided with a containment system composed of primary inner and secondary outer containment components or shall be provided with sufficient absorbent material to absorb twice the volume of the liquid contents. Hospitals prefer to use not only convenient but also re-usable packages. To apply an absorbent material to the Type A package, that is to transport liquid radioactive isotope, the free absorbency of the absorbents was estimated. In the case of a liquid with NaOH 0.4%, the free absorbency of the melanine form was the most superior at 91 g/g. In the case of a liquid with Na 0.9%, the free absorbency of the melanine form was the most excellent at 88 g/g also

  15. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  16. Radioactive material package test standards and performance requirements - public perception

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Rawl, R.R.

    1992-01-01

    This paper addresses issues related to the public perception of the regulatory test standards and performance requirements for packaging and transporting radioactive material. Specifically, it addresses the adequacy of the package performance standards and testing for Type B packages, which are those packages designed for transporting the most hazardous quantities and forms of radioactive material. Type B packages are designed to withstand accident conditions in transport. To improve public perception, the public needs to better understand: (a) the regulatory standards and requirements themselves, (b) the extensive history underlying their development, and (c) the soundness of the technical foundation. The public needs to be fully informed on studies, tests, and analyses that have been carried out worldwide and form the basis of the regulatory standards and requirements. This paper provides specific information aimed at improving the public perception of packages test standards

  17. Neutron absorber qualification and acceptance testing from the designer's perspective

    International Nuclear Information System (INIS)

    Bracey, W.; Chiocca, R.

    2004-01-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3σ. The original and current bases for the reduced 10 B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and process controls

  18. A reflective-backing-free metamaterial absorber with broadband response

    Directory of Open Access Journals (Sweden)

    Cuilian Xu

    2017-06-01

    Full Text Available In this paper, we propose a polarization-independent and broadband perfect infrared (IR metamaterial absorber (MA without reflective backing. The proposed absorber is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones which can absorb 80% EM wave from 50.70 to 81.87THz, while transmit 80% EM wave from 0 to 37.71THz. With the decreasing of frequency, the transmissivity increases, which is close to 100% from 0 to 5THz. We can broaden the absorption bandwidth of the MA by cascading multi-layers truncated cones. Furthermore, the proposed IR MA promises to be one desirable stealth material for radar-IR compatibility.

  19. Reflection and Refraction of Light in Absorbing Media

    Science.gov (United States)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  20. Technical bases for criticality safety standards

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1980-01-01

    An American National Standard implies a consensus of those substantially concerned with its scope and provisions. The technical basis, or foundation, on which the consensus rests, must in turn, be firmly established and documented for public review. The technical bases are discussed and reviewed of several standards in different stages of completion and acceptance: ANSI/ANS-8.12, 1978, Nuclear Criticality Control and Safety of Homogeneous Plutonium - Uranium Mixtures Outside Reactors (Approved July 17, 1978); ANS-815, Nuclear Criticality Control of Special Actinide Elements (Draft No. 5 of newly proposed standard); ANS-8.14, Use of Solutions of Neutron Absorbers for Criticality Control (Draft No. 4 of newly proposed standard); ANS-8.5 (Revision of N16.4, 1971), Use of Borosilicate-Glass Raschig Rings as a Neutron Absorber in Solutions of Fissile Material (Draft No. 5 as a result of prescribed five-year review and update of old standard). In each of the preceding, the newly proposed (or revised) limits are based on the extension of experimental data via well established calculations, or by means of independent calculations with adequate margins for uncertainties. The four cases serve to illustrate the insight of the work group members in the establishment of the technical bases for the limits and the level of activity required on their part in the preparation of ANSI Standards. A time span of from four up to seven years has not been uncommon for the preparation, review, and acceptance of an ANSI Standard. 8 figures. 7 tables

  1. Perpetual pavement – absorbing stress and functional maintenance

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2017-03-01

    Full Text Available Perpetual Pavement combines the well documented smoothness and safety advantages of asphalt with an advanced, multi-layer paving design process, that with routine maintenance, extends the useful life of a roadway. Perpetual provides long lasting road and smoothness for the construction purposes. This study has the design key points of perpetual pavement based on the idea of life cycle, which has a new direction for the new highway construction, reconstruction and expansion. First, the structure of long life pavement design is studied to analyze the effect of stress absorbing layer. Second, researches on stress absorbing layer from the aspects of raw materials, mix proportion are implemented. Third, the design index of stress absorbing layer is determined by the shear strength test. The results show that the design idea of composite perpetual pavement can be realized by reasonable design of the stress absorbing layer and carrying out the surface functional maintenance can ensure the pavement to avoid structural damage in the operation stage.

  2. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  3. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    Science.gov (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  4. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  5. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  6. Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application

    Science.gov (United States)

    Zulpadrianto, Z.; Yohandri, Y.; Putra, A.

    2018-04-01

    The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.

  7. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  8. Standardized methods to verify absorbed dose in irradiated food for insect control. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants

  9. 16 CFR 1207.4 - Recommended standards for materials of manufacture.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Recommended standards for materials of manufacture. 1207.4 Section 1207.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... materials of manufacture. (a) General. The materials used in swimming pool slides should be compatible with...

  10. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  11. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  12. Apparatus and method for the measurement of neutron moderating or absorbing properties of objects

    International Nuclear Information System (INIS)

    Untermyer, S.I.

    1981-01-01

    An apparatus and method for measuring the neutron moderating or absorbing properties of objects or materials is disclosed in which a fast neutron source cooperates with a neutron absorbing material which reduces the energy of the fast neutrons by inelastic scattering so that they can be readily thermalized by a moderator. A thermal neutron detector is disposed adjacent the material and serves to detect thermal neutrons emitted by a moderator placed to receive and thermalize the reduced energy neutrons. A material whose absorption is to be measured is placed between a moderator and the detector

  13. Halogens determination in vegetable NBS standard reference materials

    International Nuclear Information System (INIS)

    Stella, R.; Genova, N.; Di Casa, M.

    1977-01-01

    Levels of all four halogens in Orchard Leaves, Pine Needles and Tomato Leaves NBS reference standards were determined. For fluorine a spiking isotope dilution method was used followed by HF absorption on glass beads. Instrumental nuclear activation analysis was adopted for chlorine and bromine determination. Radiochemical separation by a distillation procedure was necessary for iodine nuclear activation analysis after irradiation. Activation parameters of Cl, Br and I are reported. Results of five determinations for each halogen in Orchard Leaves, Pine Needles and Tomato Leaves NBS Standard Materials and Standard deviations of the mean are reported. (T.I.)

  14. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  15. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  16. The containment and an absorbent evaluation for a package for a liquid radioactive isotope

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Hwang, C. S.; Kim, H. J.; Seo, K. S

    2005-03-01

    Radioactive isotopes must be safely transported from the production centre to the point of use. The shipping package to safely transport radioactive isotopes should be able to withstand the conditions prescribed by law. A type a package, which is used to transport liquid radioactive materials, should have a containment system comprising a primary inner and a secondary outer containment or it should be provided with a sufficiently absorbent material to absorb twice the volume of the liquid contents. Accordingly, an absorbent material for use in a Type A package to transport a liquid radioactive isotope was estimated. To estimate the integrity of containment, the leakage tests for a containment system for a Type A package for domestic and abroad expert were conducted.

  17. Thermal Evaluation of Storage Rack with an Advanced Neutron Absorber during Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Jae; Kim, Mi-Jin; Sohn, Dong-Seong [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The storage capacity of the domestic wet storage site is expected to reach saturation from Hanbit in 2024 to Sin-wolseong in 2038 and accordingly management alternatives are urgently taken. Since installation of the dense rack is considered in the short term, it is necessary to urgently develop an advanced neutron absorber which can be applied to a spent nuclear fuel storage facility. Neutron absorber is the material for controlling the reactivity. A material which has excellent thermal neutron absorption ability, high strength and corrosion resistance must be selected as the neutron absorber. Existing neutron absorbers are made of boron which has a good thermal absorption ability such as BORAL and METAMIC. However, possible problems have been reported in using the boron-based neutron absorber for wet storage facility. Gadolinium is known to have higher neutron absorption cross-section than that of boron. And the strength of duplex stainless steel is about 1.5 times higher than stainless steel 304 which has been frequently used as a structural material. Therefore, duplex stainless steel which contains gadolinium is in consideration as an advanced neutron absorber. Temperature distribution is shown in figure 4. In pool bottom region near the inlet shows a relatively low tendency and heat generated from the fuel assemblies is transmitted to the pool upper region by the vertical flow. Also, temperature gradient appear in rack structures for the axial direction and temperature is uniformly distributed in the pool upper region. Table 1 presents the calculated results. The maximum temperature is 306.63K and does not exceed the 333.15K (60℃). The maximum temperature of the neutron absorber is 306.48K.

  18. Selective solar absorber coating research at the CSIR (South Africa)

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-05-01

    Full Text Available A sol-gel technique has been established at a laboratory scale for low cost production of high efficient selective solar absorbers comprising a composite material of nano-structured carbon in a nickel oxide matrix. In order for these materials...

  19. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  20. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  1. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  2. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  3. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  4. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori; Ikoma, Toshiyuki; Tanaka, Junzo

    2011-01-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm -3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  5. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    Science.gov (United States)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  6. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  7. Nuclear microprobe analysis of the standard reference materials

    International Nuclear Information System (INIS)

    Jaksic, M.; Fazinic, S.; Bogdanovic, I.; Tadic, T.

    2002-01-01

    Most of the presently existing Standard Reference Materials (SRM) for nuclear analytical methods are certified for the analyzed mass of the order of few hundred mg. Typical mass of sample which is analyzed by PIXE or XRF methods is very often below 1 mg. By the development of focused proton or x-ray beams, masses which can be typically analyzed go down to μg or even ng level. It is difficult to make biological or environmental SRMs which can give desired homogeneity at such low scale. However, use of fundamental parameter quantitative evaluation procedures (absolute method), minimize needs for SRMs. In PIXE and micro PIXE setup at our Institute, fundamental parameter approach is used. For exact calibration of the quantitative analysis procedure just one standard sample is needed. In our case glass standards which showed homogeneity down to micron scale were used. Of course, it is desirable to use SRMs for quality assurance, and therefore need for homogenous materials can be justified even for micro PIXE method. In this presentation, brief overview of PIXE setup calibration is given, along with some recent results of tests of several SRMs

  8. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Kulwinder Singh, E-mail: ksmann6268@gmail.com [Department of Applied Sciences, Punjab Technical University, Kapurthala 144601 (India); Department of Physics, D.A.V. College, Bathinda 151001, Punjab (India); Heer, Manmohan Singh [Department of Physics, Kanya Maha Vidyalaya, Jalandhar 144001 (India); Rani, Asha [Department of Applied Sciences, Ferozpur College of Engineering and Technology, Ferozshah, Ferozpur 142052 (India)

    2015-10-11

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μ{sub m}); half value layer (HVL); tenth value layer (TVL); effective atomic number (Z{sub eff}), electron density (N{sub el}), effective atomic weight (A{sub eff}) and buildup factor. For gamma rays, the accurate measurements of μ{sub m} (cm{sup 2} g{sup −1}) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μ{sub m}. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μ{sub m} of six low-Z (10materials (cement-black; cement-white; clay; red-mud; lime-stone and plaster of paris) at gamma-ray energies 661.66 keV, 1173.24 keV and 1332.50 keV. A computer program (GRIC2-toolkit) was designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of μ{sub m} was observed for all absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays. - Highlights: • Optimum thickness value is 0.5 mfp for low-Z absorbers in energy range 662–1332 keV. • For accurate measurement of μ{sub m} absorber's thickness should be ≤optimum thickness. • GRIC2-toolkit is useful for γ-ray shielding analysis of composite materials.

  9. On criteria for examining analysis quality with standard reference material

    International Nuclear Information System (INIS)

    Yang Huating

    1997-01-01

    The advantages and disadvantages and applicability of some criteria for examining analysis quality with standard reference material are discussed. The combination of the uncertainties of the instrument examined and the reference material should be determined on the basis of specific situations. Without the data of the instrument's uncertainty, it would be applicable to substitute the standard deviation multiplied by certain times for the uncertainty. The result of the examining should not result in more error reported in routine measurements than it really is. Over strict examining should also be avoided

  10. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  11. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2017-11-01

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.

  12. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions

  13. Sodium antimony sulfide (NaSbS2: Turning an unexpected impurity into a promising, environmentally friendly novel solar absorber material

    Directory of Open Access Journals (Sweden)

    Siti Utari Rahayu

    2016-11-01

    Full Text Available We present a novel absorber material—NaSbS2—for solar cells. NaSbS2 is formed as an unexpected byproduct in the chemical synthesis of Sb2S3. However, NaSbS2 has many attractive features for a solar material. Here single phase NaSbS2 nanoparticles were synthesized through solution processing. NaSbS2 semiconductor-sensitized solar cells were demonstrated for the first time. The best cell yielded Jsc = 10.76 mA/cm2, Voc = 0.44 V, FF = 48.6%, and efficiency η = 2.30% under 1 sun. At the reduced 0.1 sun, the η increased to 3.18%—a respectable η for a new solar material.

  14. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  15. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.

  16. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  17. Determination of polybrominated diphenyl ethers in environmental standard reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Heather M.; Schantz, Michele M.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States); Keller, Jennifer M.; Kucklick, John R. [National Institute of Standards and Technology, Analytical Chemistry Division, Hollings Marine Laboratory, Charleston, SC (United States); Leigh, Stefan D. [National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, MD (United States)

    2007-04-15

    Standard reference materials (SRMs) are valuable tools in developing and validating analytical methods to improve quality assurance standards. The National Institute of Standards and Technology (NIST) has a long history of providing environmental SRMs with certified concentrations of organic and inorganic contaminants. Here we report on new certified and reference concentrations for 27 polybrominated diphenyl ether (PBDE) congeners in seven different SRMs: cod-liver oil, whale blubber, fish tissue (two materials), mussel tissue and sediment (two materials). PBDEs were measured in these SRMs, with the lowest concentrations measured in mussel tissue (SRM 1974b) and the highest in sediment collected from the New York/New Jersey Waterway (SRM 1944). Comparing the relative PBDE congener concentrations within the samples, we found the biota SRMs contained primarily tetrabrominated and pentabrominated diphenyl ethers, whereas the sediment SRMs contained primarily decabromodiphenyl ether (BDE 209). The cod-liver oil (SRM 1588b) and whale blubber (SRM 1945) materials were also found to contain measurable concentrations of two methoxylated PBDEs (MeO-BDEs). Certified and reference concentrations are reported for 12 PBDE congeners measured in the biota SRMs and reference values are available for two MeO-BDEs. Results from a sediment interlaboratory comparison PBDE exercise are available for the two sediment SRMs (1941b and 1944). (orig.)

  18. A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Iqbal

    2014-01-01

    Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.

  19. Development of an innovative solar absorber

    Science.gov (United States)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  20. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    International Nuclear Information System (INIS)

    Williams, R.W.; Gaffney, A.M.; Kristo, M.J.; Hutcheon, I.D.

    2009-01-01

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the 230 Th- 234 U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial 230 Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U 3 O 8 ) may be assumed with confidence. We present here 230 Th- 234 U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history

  1. Value assignment of nutrient concentrations in five standard reference materials and six reference materials.

    Science.gov (United States)

    Sharpless, K E; Gill, L M

    2000-01-01

    A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of

  2. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  3. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  4. Achieving Innovation and Affordability Through Standardization of Materials Development and Testing

    Science.gov (United States)

    Bray, M. H.; Zook, L. M.; Raley, R. E.; Chapman, C.

    2011-01-01

    The successful expansion of development, innovation, and production within the aeronautics industry during the 20th century was facilitated by collaboration of government agencies with the commercial aviation companies. One of the initial products conceived from the collaboration was the ANC-5 Bulletin, first published in 1937. The ANC-5 Bulletin had intended to standardize the requirements of various government agencies in the design of aircraft structure. The national space policy shift in priority for NASA with an emphasis on transferring the travel to low earth orbit to commercial space providers highlights an opportunity and a need for the national and global space industries. The same collaboration and standardization that is documented and maintained by the industry within MIL-HDBK-5 (MMPDS-01) and MIL-HBDK-17 (nonmetallic mechanical properties) can also be exploited to standardize the thermal performance properties, processing methods, test methods, and analytical methods for use in aircraft and spacecraft design and associated propulsion systems. In addition to the definition of thermal performance description and standardization, the standardization for test methods and analysis for extreme environments (high temperature, cryogenics, deep space radiation, etc) would also be highly valuable to the industry. Its subsequent revisions and conversion to MIL-HDBK-5 and then MMPDS-01 established and then expanded to contain standardized mechanical property design values and other related design information for metallic materials used in aircraft, missiles, and space vehicles. It also includes guidance on standardization of composition, processing, and analytical methods for presentation and inclusion into the handbook. This standardization enabled an expansion of the technologies to provide efficiency and reliability to the consumers. It can be established that many individual programs within the government agencies have been overcome with development costs

  5. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  6. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  7. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  8. Design and testing of a shock absorber for a type 1 container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.

    1993-01-01

    A shock-absorber will be required for a rad. waste 'Konrad' type 1 container made of ductile cast iron whenever it will be used as a type B container according to the IAEA-Regulations for the Safe Transport of Radioactive materials. The shock-absorber has to protect the type B container during shipping such as to withstand the accident scenarios that are covered by the IAEA-Regulation tests without substantial loss of its shielding and tightness functions. The designation as type 1 container originates from German regulations for the intermediate storage site Gorleben and the final depository Konrad-mine. These regulations call for the limits on outside dimensions of 1700 mm in length, 1600 mm in width and 1450 mm in height as well as for a limit of 20 Mg on total weight without shock-absorber. The relatively simple design method for the shock-absorber has been validated by the test results. It can be extended to other materials and designs for shock-absorbers if reliable force-displacement-diagrams are available for the structural elements from which the absorbed energy and the displacements can be calculated by integration. In order to account for the dynamic effects, the better approximation of the true duration of the impact would be helpful. The present limit of 0.5 R p0,2 on the nominal stresses should be discussed because the large number of tests on containers made of ductile cast iron that have been performed up to now have shown a substantial level of conservatism on this respect. The sharply tapered pipes on edge Kl of the shock-absorbers should be replaced by pipe bends. This will result in smaller accelerations and in an even higher level of protection of the container than effected by the tested shock-absorber

  9. Historical Evolution of NASA Standard Materials Testing with Hypergolic Propellants and Ammonia (NASA Standard 6001 Test 15)

    Science.gov (United States)

    Greene, Benjamin; McClure, Mark B.

    2012-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.

  10. Comparison of iron and tungsten absorber structures for an analog hadron calorimeter

    International Nuclear Information System (INIS)

    Guenter, Clemens

    2015-05-01

    Future electron-positron-collider experiments will require unprecedented jet-energy resolution to complete their physics programs. This can only be achieved with novel approaches to calorimetry. One of these novel approaches is the Particle Flow Algorithm, which uses the best suited sub-detector to measure the energy of the particles produced by the electronpositron collision. The CALICE Collaboration evaluates different read-out technologies for Particle Flow Calorimeters. This thesis describes the comparison of two different absorber materials, iron and tungsten, for the CALICE Analog Hadron Calorimeter. It is described how test-beam data, that have been recorded in the range from 2 GeV to 10 GeV with the Analog Hadron Calorimeter are calibrated, and how samples are selected containing showers from just one particle type. The data are then compared to simulations, and the remaining disagreement between data and simulation is discussed. The validated simulations are then used to decompose the showers into different fractions. These fractions are compared for the two absorber materials to understand the impact of the absorber material choice on the calorimeter performance.

  11. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.

    1989-01-01

    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  12. Design considerations for application of metallic honeycomb as an energy absorber

    International Nuclear Information System (INIS)

    Lee, W.H.; Roemer, R.E.

    1980-01-01

    Design for postulated accidents in nuclear power plants often requires mitigation of impact to safety-related structures. Plastically designed, energy absorbing mechanisms are often used in the design of such mitigating structures. Metallic honeycomb is the most efficient, practical, energy-absorbing material currently in use. Recent tests indicate that its use in this application, however, presents some unique design and fabrication problems. The paper presents the results of static and dynamic crush tests concerned with the effect of impact velocity, material properties, cell density, loading configuration, and overall pad geometry. Specific design recommendations are made in each area, and suggestions are provided to improve fabrication techniques and minimize subsequent problems

  13. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...

  14. Elastic, Frictional, Strength and Dynamic Characteristics of the Bell Shape Shock Absorbers Made of MR Wire Material

    Science.gov (United States)

    Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.

    2018-01-01

    The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.

  15. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  16. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  17. Neutron absorber qualification and acceptance testing from the designer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bracey, W. [Transnuclear, Inc, Hawthorne, NY (United States); Chiocca, R. [Cogema Logistics, St. Quentin en Yvelines (France)

    2004-07-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3{sigma}. The original and current bases for the reduced {sup 10}B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and

  18. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R W; Gaffney, A M; Kristo, M J; Hutcheon, I D

    2009-05-28

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.

  19. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  20. Dispersion-Type Absorbing Materials for the Control Organs of Thermal Reactors; Absorbants du Type a Dispersion pour les Organes de Commande des Reacteurs a Neutrons Thermiques; Pogloshchayushchie materialy dispersionnogo tipa dlya organov regulirovaniya teplovykh reaktorov; Absorbentes de Tipo Dispersion para los Organos de Mando de los Reactores Termicos

    Energy Technology Data Exchange (ETDEWEB)

    Nosov, V. I.; Ponomarjov-Stepnoj, H. H.; Portnoj, K. I.; Savel' ev, E. G.

    1964-06-15

    The paper gives the results of a study of the physical characteristics of NIMONIC-type absorbing alloys with oxides of rare-earth elements dispersed in them (gadolinium, samarium, europium etc. ). The paper discusses changes in absorbing capacity in relation to the composition of the material, describes the mechanical and thermophysical properties of the absorbing materials as a function of the concentration of absorber introduced into the alloy and, finally, gives the results of a study of the effect of radiation on the properties of the materials. It is shown that absorbing alloys with oxides of rare-earth elements dispersed in the metallic matrix possess considerable absorbing capacity for relatively small amounts of absorber in the alloy (5 to 10%). When oxides of rare-earth elements are added, NIMONIC-type alloys have relatively high resistance and thermophysical characteristics (o{sub B}, E, {lambda}) at high temperatures for absorber concentrations up to about 10%. Dispersion materials of this type have satisfactory radiation stability in a radiation field of about 3 x 10{sup 20}n/cm{sup 2} at high temperature. (author) [French] Les auteurs exposent les resultats de recherches sur les caracteristiques physiques des alliages absorbants du type nimonik, contenant des terres rares dispersees dans leur masse (gadolinium, samarium, europium, etc.). Ils examinent les variations de la capacite d'absorption selon la composition du materiau; on donne des indications sur les caracteristiques mecaniques et thermophysiques des absorbants en fonction de la concentration de Tabsorbeur incorpore dans l 'alliage ainsi que les resultats d 'une etude relative a l 'influence de l'irradiation sur ces caracteristiques. Ils montrent que les alliages absorbants contenant des oxydes de terres rares disperses dans une matrice metallique ont une capacite d'absorption importante pour une teneur de l'alliage relativement faible en'matieres absorbantes (environ 5 a 10%). Les alliages du

  1. Synthesis of hemicellulose-acrylic acid graft copolymer super water absorbent resin by ultrasonic irradiation technology

    Directory of Open Access Journals (Sweden)

    Fangfang LIU

    2015-12-01

    Full Text Available The hemicellulose super water absorbent resin is prepared by using ultrasonic irradiation technology, with the waste liquid produced during the preparation of viscose fiber which contains a large amount of hemicellulose as raw material, acrylic acid as graft monomer, N,N’-methylene bis acrylamide (NMBA as cross linking agent, and (NH42S2O8-NaHSO3 as the redox initiation system. The synthesis conditions, structure and water absorption ability of resin are discussed. The results indicate that water absorbency of the resin is 311 g/g, the tap water absorbency is 102 g/g, the normal saline absorbency is 55 g/g, and the artificial urine absorbency is 31 g/g under the optimal synthesis conditions, so the resin has great water absorption rate and water retaining capacity. The FT-IR and SEM analysis shows that the resin with honeycomb network structure is prepared. The successfully synthesized of the resin means that the hemicellulose waste liquid can be highly effectively recycled, and it provides a kind of new raw material for the synthesis of super water absorbent resin.

  2. 76 FR 43631 - Revision of the Materiality to Patentability Standard for the Duty To Disclose Information in...

    Science.gov (United States)

    2011-07-21

    ... 0651-AC58 Revision of the Materiality to Patentability Standard for the Duty To Disclose Information in... revise the standard for materiality for the duty to disclose information in patent applications and... revise the materiality standard for the duty to disclose to match the materiality standard, as defined in...

  3. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  4. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    Hortman, M.T.; Mcmurtry, C.H.; Naum, R.G.; Owens, D.P.

    1980-01-01

    A neutron absorbing article, preferably in long, thin, flat form , suitable for but not necessarily limited to use in storage racks for spent nuclear fuel at locations between volumes of such stored fuel, to absorb neutrons from said spent fuel and prevent uncontrolled nuclear reaction of the spent fuel material, is composed of finely divided boron carbide particles and a solid, irreversibly cured phenolic polymer, forming a continuous matrix about the boron carbide particles, in such proportions that at least 6% of b10 from the boron carbide content is present therein. The described articles withstand thermal cycling from repeated spent fuel insertions and removals, withstand radiation from said spent nuclear fuel over long periods of time without losing desirable neutron absorbing and physical properties, are sufficiently chemically inert to water so as to retain neutron absorbing properties if brought into contact with it, are not galvanically corrodible and are sufficiently flexible so as to withstand operational basis earthquake and safe shutdown earthquake seismic events, without loss of neutron absorbing capability and other desirable properties, when installed in storage racks for spent nuclear fuel. The disclosure also relates to a plurality of such neutron absorbing articles in a storage rack for spent nuclear fuel and to a method for the manufacture of the articles

  5. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  6. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  7. [Absorbable coronary stents. New promising technology].

    Science.gov (United States)

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  8. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  9. Laser Beam Melting of Alumina: Effect of Absorber Additions

    Science.gov (United States)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  10. Performance of fast-absorbable suture and histo-glue in closing incisions in Brown trout

    DEFF Research Database (Denmark)

    Jepsen, Niels; Larsen, Martin Hage; Aarestrup, Kim

    2017-01-01

    , growth, tag expulsion rate and incision healing was compared among three groups of dummy transmitter-tagged wild brown trout Salmo trutta where incisions were closed with two types of suture material (absorbable vs. fast absorbable) and Histo-glue. The tagged fish were kept in semi-natural ponds for 20...

  11. Modelling transport of waste material leachate in soils in support of environmental standards

    NARCIS (Netherlands)

    van Eijkeren JCH; Aalbers TG; de Wilde PGM

    1992-01-01

    In the Netherlands a process of defining environmental standards is going on. These standards serve to protect the environment at the one hand, and to stimulate the reuse of rest-materials, e.g. ash from blast-furnaces, as building materials at the other hand. In order to come to an environmental

  12. Consensus values for NIST biological and environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Roelandts, I.; Gladney, E.S.

    1998-01-01

    The National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards or NBS) has produced numerous Standard Reference Materials (SRM) for use in biological and environmental analytical chemistry. The value listed on the ''NIST Certificate of Analysis'' is the present best estimate of the ''true'' concentration of that element and is not expected to deviate from that concentration by more than the stated uncertainty. However, NIST does not certify the elemental concentration of every constituent and the number of elements reported in the NIST programs tends to be limited.Numerous analysts have published concentration data on these reference materials. Major journals in analytical chemistry, books, proceedings and ''technical reports'' have been surveyed to collect these available literature values. A standard statistical approach has been employed to evaluate the compiled data. Our methodology has been developed in a series of previous papers. Some subjective criteria are first used to reject aberrant data. Following these eliminations, an initial arithmetic mean and standard deviation (S.D.) are computed from remaining data for each element. All data now outside two S.D. from the initial mean are dropped and a second mean and S.D. recalculated. These final means and associated S.D. are reported as ''consensus values'' in our tables. (orig.)

  13. Lightweight aluminum shock absorbers; Leichtbau-Stossdaempfer aus Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Kusche, R. [Serienentwicklung, ThyssenKrupp Bilstein GmbH, Ennepetal (Germany)

    2004-12-01

    One way in which the automotive industry is striving to reduce costs and environmental impact is by continuously lowering the fuel consumption of vehicles. To achieve this objective, lightweight materials are increasingly being used in automotive design. Increasing demands are also being made on shock absorber suppliers to reduce weight. (orig.)

  14. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study.

    Science.gov (United States)

    Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M

    2017-09-01

    The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.

  15. The Effect of a Vibration Absorber on the Damping Properties of Alpine Skis

    Directory of Open Access Journals (Sweden)

    Stefan Schwanitz

    2018-02-01

    Full Text Available Coupled bending-torsion vibrations at the shovel are a severe problem when running an alpine ski at high velocities on hard or icy slopes. Thus, a major goal for ski manufacturers is to dampen vibrations through a proper multi-material design and/or additional absorbers. The aim of this study was to examine the effectiveness of a particular vibration absorber on a commercial slalom ski through a series of laboratory tests as well as a subjective field evaluation. Therefore, two identical pairs of ski were used and the absorber was deactivated on one pair. Laboratory tests revealed reductions of 5% to 49% of bending vibrations on skis with activated absorber. Subjective evaluation by 6 subjects suggested minor differences in the mean of the evaluated criteria turnablity, edge grip, steering behavior and stability towards a better performance of the skis with activated absorber. Subjects were able to identify the absorber mode with a success rate of 61.1%.

  16. Development of standardized methods to verify absorbed dose of irradiated fresh and dried fruits, tree nuts in trade

    International Nuclear Information System (INIS)

    Siddiqui, A.K.; Amin, M.R.; Chowdhury, N.A.; Begum, F.; Mollah, A.S.; Mollah, R.A.; Chowdhury, A.H.

    2001-01-01

    Investigations were carried out on standardization of desired process control parameters such as dose distribution in trade containers, container standardization and development of 'label' dosimeters. A prototype 'label' dose indicators Sterins for threshold doses of 125 Gy and 300 Gy was studied. Dose distribution was studied using fresh fruits and tree nuts in trade and standardized containers with varying product densities. The distribution of absorbed doses was measured by Fricke, Gammachrome YR, clear Polymethylmethacrylate (PMMA), EthanolChlorobenzene (ECB) and Sterin 300. These values are given as Dmax/Dmin ratios in relation to product bulk densities. It was observed that bulk densities varied greatly among different products depending on the types of fruits, containers and pattern of loading which also affected dose distribution. Dmax/Dmin obtained by proper dose mapping could be kept low by arranging proper irradiation conditions which ensured uniform dose distribution. Prototype 'label' dose indicators like Sterins and clear PMMA were used for dose mapping along with the standard primary and secondary dosimeters. Sterins and clear PMMA were also studied for their dosimetric properties, particularly for use in label dosimetry. Sterins 125 and 300 evaluated visually showed their integrity at their threshold doses. The word NOT on Sterin 125 eclipsed after 115 Gy and on Sterin 300 after 270 Gy dose. Clear PMMA samples of 410 mm thickness irradiated at 200-1000 Gy showed linear response and had postirradiation stability for over a month storage at normal temperatures (21-35 deg. C) and humidities. These could be investigated further for developing as 'label' dosimeters in insect control quarantine treatment. Other low dose indicators studied such as coloured perspex, dye solutions were not found useful at quarantine dose levels. Further investigations are required for developing a 'label' dosimeter for commercial use. (author)

  17. Mathematical Model of a Shim Valve of a Monotube Shock Absorber

    Directory of Open Access Journals (Sweden)

    Paulius Skačkauskas

    2016-12-01

    Full Text Available In the work, a mathematical model of a shim valve, used in monotube shock absorbers, designed to determine the deformations of the shims which form during the exploitation of the shock absorbers, is presented. The characteristic of the damping force formed by the shock absorber depends on the deformations. In the designed model, the amount, geometric dimensions, arrangement and the material properties of the shims are evaluated, and the contact forces, which form between the shims, are determined. The described model of the shim valve is presented in the environment of the software package MATLAB/Simulink, the analysis of the designed model is done using the software package ANSYS 15.0.

  18. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  19. Standard test method for dynamic tear testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This test method covers the dynamic tear (DT) test using specimens that are 3/16 in. to 5/8 in. (5 mm to 16 mm) inclusive in thickness. 1.2 This test method is applicable to materials with a minimum thickness of 3/16 in. (5 mm). 1.3 The pressed-knife procedure described for sharpening the notch tip generally limits this test method to materials with a hardness level less than 36 HRC. Note 1—The designation 36 HRC is a Rockwell hardness number of 36 on Rockwell C scale as defined in Test Methods E 18. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Science.gov (United States)

    2012-04-18

    ... Equipment for Material Handling Construction Standard; Correction and Technical Amendment AGENCY... AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart H--Materials Handling, Storage, Use, and Disposal 0 1... amendment. SUMMARY: OSHA is correcting its sling standard for construction titled ``Rigging Equipment for...

  1. Study of the Metrological Characteristics of the FBX Dosimeter in the Photon Beam using a Secondary Standard

    International Nuclear Information System (INIS)

    Moussous, O.; Yahiche, K.; Medjadj, T.

    2008-01-01

    The metrological characteristics of the dosimetric system containing 0.20 m M ferrous ammonium sulphate, 5.0 m M benzoic acid and 0.20 m M xyelenol orange in 0.05 N sulphuric acid. (FBX dosimeter) was investigated. The wavelength and absorbance linearity calibration of the spectrophotometer were checked using NBS Standard Reference Material. The molar absorption coefficient ε of the dosimeter solution was determined using carefully prepared standard solution. The G-value for the ferric-xylenol orange complex when this dosimeter is exposed in air to gamma radiation was determined using a secondary standard (ionization chamber). The dosimetric solutions could be stored for about 2 weeks before irradiations and up to 2 days after irradiations without any significant error in dose estimations. The linearity of the absorbed dose with the increases in absorbance of the dosimeter solution has been checked. For this purpose, the dosimeter solutions were irradiated to a series of different absorbed doses (3 to 11 Gy). The quality data, as judged from the correlation coefficient, demonstrate that the curve is linear in the range investigated. The stability and reproducibility of response are such that this system should be used to measure the low doses. The reproducibility allowed us to determine the lower detection limit of the FBX dosimeter, which is around 5 Gy

  2. Crush Can Behaviour as an Energy Absorber in a Frontal Impact

    International Nuclear Information System (INIS)

    Bhuyan, Atanu; Ganilova, Olga

    2012-01-01

    The work presented is devoted to the investigation of a state-of-the-art technological solution for the design of a crush-can characterized by optimal energy absorbing properties. The work is focused on the theoretical background of the square tubes, circular tubes and inverbucktube performance under impact with the purpose of design of a novel optimized structure. The main system under consideration is based on the patent US 2008/0185851 A1 and includes a base flange with elongated crush boxes and back straps for stabilization of the crush boxes with the purpose of improvement of the energy-absorbing functionality. The modelling of this system is carried out applying both a theoretical approach and finite element analysis concentrating on the energy absorbing abilities of the crumple zones. The optimization process is validated under dynamic and quasi-static loading conditions whilst considering various modes of deformation and stress distribution along the tubular components. Energy absorbing behaviour of the crush-cans is studied concentrating on their geometrical properties and their diamond or concertina modes of deformation. Moreover, structures made of different materials, steel, aluminium and polymer composites are considered for the material effect analysis and optimization through their combination. Optimization of the crush-can behaviour is done within the limits of the frontal impact scenario with the purpose of improvement of the structural performance in the Euro NCAP tests.

  3. Crush Can Behaviour as an Energy Absorber in a Frontal Impact

    Science.gov (United States)

    Bhuyan, Atanu; Ganilova, Olga

    2012-08-01

    The work presented is devoted to the investigation of a state-of-the-art technological solution for the design of a crush-can characterized by optimal energy absorbing properties. The work is focused on the theoretical background of the square tubes, circular tubes and inverbucktube performance under impact with the purpose of design of a novel optimized structure. The main system under consideration is based on the patent US 2008/0185851 A1 and includes a base flange with elongated crush boxes and back straps for stabilization of the crush boxes with the purpose of improvement of the energy-absorbing functionality. The modelling of this system is carried out applying both a theoretical approach and finite element analysis concentrating on the energy absorbing abilities of the crumple zones. The optimization process is validated under dynamic and quasi-static loading conditions whilst considering various modes of deformation and stress distribution along the tubular components. Energy absorbing behaviour of the crush-cans is studied concentrating on their geometrical properties and their diamond or concertina modes of deformation. Moreover, structures made of different materials, steel, aluminium and polymer composites are considered for the material effect analysis and optimization through their combination. Optimization of the crush-can behaviour is done within the limits of the frontal impact scenario with the purpose of improvement of the structural performance in the Euro NCAP tests.

  4. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. Characterization of the NIST shellfish Standard Reference Material 4358

    International Nuclear Information System (INIS)

    Nour, S.; Inn, K.G.W.; Filliben, J.; Gaast van der, H.; Men, L.C.; Calmet, D.; Altzitzoglou, T.; Povinec, P.; Takata, Y.; Wisdom, M.

    2013-01-01

    A new shellfish Standard Reference Material 4358 was developed by the National Institute of Standards and Technology through an international interlaboratory comparison that involved twelve laboratories-participants from nine countries. The results from the participants were statistically evaluated, and the most robust certified values were based on the median of laboratories’ reported means and the uncertainties derived using the bootstrap method. Massic activity certified values were established for fourteen radionuclides, five activity ratios, and informational massic activity values for eight more radionuclides and two activity ratios. (author)

  6. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  7. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  8. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  9. A comparison of Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation.

    Science.gov (United States)

    Shortt, K R; Huntley, R B; Kotler, L H; Boas, J F; Webb, D V

    2006-06-01

    Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation have been compared using transfer standard ionization chambers of types NE 2561 and NE 2611A. Whilst the primary standards of air kerma are similar, both being thick-walled graphite cavity chambers but employing different methods to evaluate the Awall correction, the primary standards of absorbed dose to water are quite different. The Australian standard is based on measurements made with a graphite calorimeter, whereas the Canadian standard uses a sealed water calorimeter. The comparison result, expressed as a ratio of calibration coefficients R=N(ARPANSA)/N(NRC), is 1.0006 with a combined standard uncertainty of 0.35% for the air kerma standards and 1.0052 with a combined standard uncertainty of 0.47% for the absorbed dose to water standards. This demonstrates the agreement of the Australian and Canadian radiation dosimetry standards. The results are also consistent with independent comparisons of each laboratory with the BIPM reference standards. A 'trilateral' analysis confirms the present determination of the relationship between the standards, within the 0.09% random component of the combined standard uncertainty for the three comparisons.

  10. The influence of mammographic X-ray spectra on absorbed energy distribution in breast: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Tzanakos, G.; Panayiotakis, G.

    2005-01-01

    A mathematical model, based on Monte Carlo simulation, is proposed for deriving absorbed energy and dose distribution in mammography utilizing a mathematical water-like phantom. The model was validated for its accuracy against experimental and published data. The main factor discriminating absorbed energy distribution characteristics among different mammographic techniques was considered the X-ray spectrum. The absorbed energy distribution inside the phantom was investigated via percentage depth dose and isodose curves. The influence of the factors affecting X-ray spectrum (tube voltage, anode material, filter material and thickness) on absorbed energy distribution was examined. The hardness of the beam, due to increase of tube voltage or filtration, was found to be the major factor affecting absorbed energy distribution inside the phantom. In general, Mo and W anode systems demonstrated superior dosimetric characteristics against those of W-Mo or Rh. The model presented can be used for estimating absolute and relative breast dose values and their spatial distributions

  11. On the high-temperature desulfurization of coal gas: The development of a regenerable absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Van Yperen, Renee

    1994-05-18

    There is actually no solid absorbent based on bulk metal oxides available that meets the conditions for application in high-temperature desulfurization processes. This research was aimed to develop an absorbent that fulfills all the specifications for employment in hot-gas clean up. Chapter 2 deals with the development of amorphous aluminium phosphate as a support material. The influence of the preparation conditions onto the specific surface area, pore structure, thermal and chemical stability, and acidity of amorphous aluminium phosphate was investigated. The application of iron oxide onto amorphous aluminium phosphate by means of deposition-precipitation from a homogeneous solution is discussed in chapter 3. The influence of amorphous aluminium phosphate onto the stability, activity, and capacity of the iron oxide is described in detail. Chapter 4 surveys the activity and capacity of several active materials in the absorption of hydrogen sulphide. It is shown that the most promising active material is a mixture of iron oxide and molybdenum oxide. In chapter 5 the properties of iron-molybdenum mixed oxide absorbents are discussed. The effect of the iron to molybdenum ratio onto the formation of iron-(III)-sulphates and the stability of the molybdenum compound is examined. Chapter 6 deals with the preparation of iron-molybdenum mixed oxide absorbents by means of impregnation of modified pre-shaped alumina support bodies. In chapter 7 the effect of the hydrogen and carbon monoxide concentration and in chapter 8 the effect of the water concentration in the coal gas on the activity and the capacity of the iron-molybdenum mixed oxide absorbents is described. Regeneration of the loaded absorbents is an important part of the desulfurization process, dealt with in chapter 9. A number of regeneration procedures have been tested. (Abstract Truncated)

  12. {sup 10}B areal density: A novel approach for design and fabrication of B{sub 4}C/6061Al neutron absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuli [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wenxian, E-mail: wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hongsheng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Peng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-04-15

    In this paper, a novel approach to evaluate the neutron shielding performance of a boron-containing neutron absorbing material was proposed for the first time through the establishment of a direct relationship between {sup 10}B areal density ({sup 10}BAD) of the material and its neutron absorption ratio. It is found when the {sup 10}BAD of a material is greater than 0.034 g/cm{sup 2}, the material will achieve a good neutron shielding performance. Based on this proposed approach, B{sub 4}C/6061Al composite plates with different B{sub 4}C content (10 wt%, 20 wt%, 30 wt%) were successfully fabricated using vacuum hot pressing followed by hot-extrusion. The characteristics of the B{sub 4}C/Al interface were studied in details using transmission electron microscopy (TEM), and the effects of B{sub 4}C particle content on microstructure and mechanical properties of the Al matrix were investigated. Through current studies, B{sub 4}C/6061Al composite plates possessing good neutron shielding performance and tensile strength are found to be able to be fabricated using either 20 wt% of B{sub 4}C content with a plate thickness of 4.5 mm or 30 wt% B{sub 4}C content with a plate thickness of 3 mm. - Graphical abstract: In this paper, a novel approach to evaluate the neutron shielding ability of a boron-containing neutron shielding material was proposed for the first time through the establishment of a direct relationship between {sup 10}B area density ({sup 10}BAD) of the material and its neutron shielding ratio. - Highlights: •{sup 10}BAD was proposed to evaluate the boron-containing neutron absorber material’s neutron shielding performance. •The direct relationship between the {sup 10}BAD and neutron shielding performance was firstly established. •TEM analysis of the composites reveals that an amorphous layer exists at the Al/B{sub 4}C interface. •Suitable B{sub 4}C contents and thickness for the fabrication of B{sub 4}C/6061A1 NAC plate were given in the

  13. Concentration of uranium on TiO-PAN and NaTiO-PAN composite absorbers

    International Nuclear Information System (INIS)

    Motl, Alois; Sebesta, Ferdinand; John, Jan; Spendlikova, Irena; Nemec, Mojmir

    2013-01-01

    finely divided inorganic absorbers. The general procedure for the preparation of the resulting inorganic-organic composite absorbers enables preparation of suitably grained composite absorbers. The contents of active component may reach up to 90% (W/W) in dry residue. The aim of this study was to verify possibility of extraction of uranium with TiO-PAN and NaTiO-PAN composite absorbers, to compare properties of these two absorbers and to conclude whether they are prospective for uranium collection from surface and/or waste waters. Hydrated titanium oxide (TiO) and sodium titanate (NaTiO) -the active components of the composite materials-were prepared from industrial intermediate from production of titanium white. Standard procedure was used to prepare the TiO-PAN and NaTiO-PAN composite absorbers. In the experiments, distilled and tap water were used to compare the influence of the water hardness. pH of the effluent was also measured during the process. The results showed that practical sorption capacity (10% break-through) from tap water containing 2.3 μg U.mL -1 measured at flow rate of 100 BV.h -1 was ∼ 4.6 mg and ∼1.5 mg of uranium per ml of swollen TiO-PAN and NaTiO-PAN absorber, respectively. The maximum flow rates are 60 BV.h -1 and 60-100 BV.h -1 for TiO-PAN and NaTiO-PAN absorbers, respectively, depending on the concentration of uranium (2.3-230 mg U.L -1 ). Elution of uranium and regeneration of the absorber may be accomplished by 0.1 mol.L -1 or stronger solutions of hydrochloric acid for both the absorbers. Hence, TiO-PAN and NaTiO-PAN composite absorbers were proved to be applicable for extraction of uranium from aqueous solutions. With respect to the measured practical sorption capacity, TiO-PAN composite absorber is more suitable for the uranium collection from surface and/or waste water. (author)

  14. Contribution to the development of a primary standard for high energy neutron beams

    International Nuclear Information System (INIS)

    Mancaux, M.

    1983-12-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutrontherapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chambers' calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans. The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3% lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  15. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  16. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  17. ENAA of iodine in standard reference material lyophilized human urine

    International Nuclear Information System (INIS)

    Zhang Yongbao; Wang Ke; Wang Ganfeng

    1997-01-01

    The contents of iodine in two kinds of standard reference materials lyophilized human urine are determined by ENAA. The sensitivity of this method is ten times higher than that of TNAA, and the relative standard deviations of ten measurements are 2.9% and 3.3%, respectively. Two certificated reference samples are used for verification of the analysis. The analytical results are in agreement with the recommended values, and the relative error is less than 3%

  18. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  19. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  20. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  1. The simulation calculation of acoustics energy transfer through the material structure

    Directory of Open Access Journals (Sweden)

    Zvolenský Peter

    2016-01-01

    Full Text Available The paper deals with the modification of the rail passenger coach floor design aimed at improvement of sound reduction index. Refurbishing was performed by using a new acoustic material with a filamentary microstructure. The materials proposed in research were compared by simulation calculation of acoustic energy transfer trough porous microstructure of filamentary material, and the effect of material porosity on sound reduction index and sound absorption coefficient were observed. This proposed filamentary material can be used in the railway bed structure, too. High degree of noise absorbing, resistance to climate conditions, low specific mass, enable to choose a system of low anti-noise barriers having similar properties as standard high anti-noise walls..

  2. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  3. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    Science.gov (United States)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination

  4. Comparison of some aqueous chemical dosimeters for absorbed doses of less than 1000 rads. [Benzoic--salicylic acid, terephtalic--2-hydroxyterephtabe acid, ferrous sulfate--benzoic acid--xylenol orange, and standard Fricke dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R W [Australian Atomic Energy Commission Research Establishment, Lucas Heights; Barker, N T; Sangster, D F

    1978-01-01

    This report gives the results of an investigation into the relative merits of the systems: benzoic-salicylic acid, terephthalic-2-hydroxyterephthalic acid, the more recent ferrous sulphate-benzoic acid-xylenol orange (FBX), and the standard Fricke dosimeter, for the measurement of absorbed doses under identical irradiation conditions, in the range 10 to 1000 rads.

  5. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  6. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  7. Spectrophotometric Evaluation of Polyetheretherketone (PEEK as a Core Material and a Comparison with Gold Standard Core Materials

    Directory of Open Access Journals (Sweden)

    Bogna Stawarczyk

    2016-06-01

    Full Text Available This study investigated the colorimetric properties of different veneering materials on core materials. Standardized specimens (10 mm × 10 mm × 1.5 mm reflecting four core (polyetheretherketone (PEEK, zirconia (ZrO2, cobalt–chromium–molybdenum alloy (CoCrMo, and titanium oxide (TiO2; thickness: 1.5 mm and veneering materials (VITA Mark II, IPS e.max CAD, LAVA Ultimate and VITA Enamic, all in shade A3; thickness: 0.5, 1.0, 1.5 and 2 mm, respectively were fabricated. Specimens were superimposed to assemblies, and the color was determined with a spectrophotometer (CieLab-System or a chair-side color measurement device (VITA EasyShade, respectively. Data were analyzed using three-, two-, and one-way ANOVA, a Chi2-test, and a Wilson approach (p < 0.05. The measurements with EasyShade showed A2 for VITA Mark II, A3.5 for VITA Enamic, B2 for LAVA Ultimate, and B3 for IPS e.max CAD. LabE-values showed significant differences between the tested veneering materials (p < 0.001. CieLab-System and VITA EasyShade parameters of the different assemblies showed a significant impact of core (p < 0.001, veneering material (p < 0.001, and thickness of the veneering material (p < 0.001. PEEK as core material showed comparable outcomes as compared to ZrO2 and CoCrMo, with respect to CieLab-System parameters for each veneering material. The relative frequency of the measured VITA EasyShade parameters regarding PEEK cores also showed comparable results as compared to the gold standard CoCrMo, regardless of the veneering material used.

  8. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  9. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  10. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  11. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers. For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.

  12. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    Science.gov (United States)

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  13. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Shock absorbing evaluation of the rigid polyurethane foam and styrofoam applied to a small transportation package

    International Nuclear Information System (INIS)

    Seo, K.S.; Lee, J.C.; Bang, K.S.; Han, H.S.; Chung, S.H.; Choi, B.I.; Ha, J.H.

    2004-01-01

    The package design objectives for the drop condition are to maintain the integrity of the structural material by reducing the impact force. There are two kinds of the shock absorbing materials such as rigid polyurethane foam (PU) and Styrofoam (EPS: Expanded Poly Styrene). These materials are generally used in small transportation packages. The stress-strain curves were obtained by the compression tests until the PU and EPS reached their lock-up strain. This paper describes that, in the case of a small transportation package of a cylindrical shape, the shock absorbing effects were evaluated by utilizing the compression properties of the PU and EPS foam

  15. Innovative energy absorbing devices based on composite tubes

    Science.gov (United States)

    Tiwari, Chandrashekhar

    Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and

  16. Approach for domestic preparation of standard material (LSD spike) for isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Ishikawa, Fumitaka; Sumi, Mika; Chiba, Masahiko; Suzuki, Toru; Abe, Tomoyuki; Kuno, Yusuke

    2008-01-01

    The accountancy analysis of the nuclear fuel material at Plutonium Fuel Development Center of JAEA is performed by isotope dilution mass spectrometry (IDMS; Isotope Dilution Mass Spectrometry). IDMS requires the standard material called LSD spike (Large Size Dried spike) which is indispensable for the accountancy in the facilities where the nuclear fuel materials are handled. Although the LSD spike and Pu source material have been supplied from foreign countries, the transportation for such materials has been getting more difficult recently. This difficulty may affect the operation of nuclear facilities in the future. Therefore, research and development of the domestic LSD spike and base material has been performed at JAEA. Certification for such standard nuclear materials including spikes produced in Japan is being studied. This report presents the current status and the future plan for the technological development. (author)

  17. Determination of multielement in optical waveguide and standard reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kobayashi, K.; Kudo, K.

    1979-01-01

    Trace amounts of transition elements (Co, Cr, Cu, Fe, Mn and V) and other seven elements in optical waveguide samples were determined by INAA. The contents of impurities in ultre-pure materials are less than those of high-purity materials and of G.R. grade. The increase of contamination of trace transition elements and iridium from furnace or crucible are observed in the production of optical glass fibers. Up to seventeen elements were determined in five NBS biological standard reference materials: Oyster Tissue: SRM-1566, Brewers Yeast: SRM-1569, Spinach: SRM-1570, Orchard Leaves: SRM-1571 and Tuna Fish, and in four Japanese biological standard reference materials: Tea Leaves B and C, Pepperbush and Shark Meat. The analytical results in NBS and Japanese standard reference materials are in good agreement with published values and certified values by NBS. (author)

  18. Development of CIGS2 solar cells with lower absorber thickness

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Rd., Cocoa, FL 32922 (United States); Moutinho, Helio [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2009-09-15

    The availability and cost of materials, especially of indium can be a limiting factor as chalcopyrite based thin-film solar cells advance in their commercialization. The required amounts of metals can be lowered by using thinner films. When the thickness of the film decreases, there is possibility of remaining only in the small grain region because the coalescence of grains does not have an opportunity to enhance the grain size to the maximum. Solar cell performance in smaller grain chalcopyrite absorber deteriorates due to larger fraction of grain boundaries. Efforts are being made to reduce the thickness while maintaining the comparable performance. This work presents a study of preparation, morphology and other material properties of CIGS2 absorber layers with decreasing thicknesses up to 1.2 {mu}m and its correlation with the device performance. Encouraging results were obtained demonstrating that reasonable solar cell efficiencies (>10%) can be achieved even for thinner CIGS2 thin-film solar cells. (author)

  19. Moth wing scales slightly increase the absorbance of bat echolocation calls.

    Directory of Open Access Journals (Sweden)

    Jinyao Zeng

    Full Text Available Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.

  20. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    International Nuclear Information System (INIS)

    Svitra, Z.V.; Bowen, S.M.; Marsh, S.F.

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions

  1. Development of the NBS beryllium isotopic standard reference material

    International Nuclear Information System (INIS)

    Inn, K.G.W; Fassett, J.D.; Coursey, B.M.; Walker, R.L.; Raman, S.

    1987-01-01

    The National Bureau of Standards, in conjunction with the Oak Ridge National Laboratory and the Accelerator Mass Spectrometry community, is in the process of developing a beryllium isotopic solution Standard Reference Material. The master 10 Be/ 9 Be solution was characterized isotopically by resonance-ionization and secondary-ion mass-spectrometric-based techniques, and radioactivity measurements were by liquid scintillation counting. The master solution was gravimetrically diluted with 9 Be to a final 10 Be/ 9 Be atomic ratio of 3 x 10 -11 . The preliminary data indicate a half life for 10 Be of 1.3 million years, and AMS measurements are within 10% of the known beryllium isotopic ratio

  2. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  3. Interaction of Electromagnetic Waves with Two-Dimensional Metal Covered with Radar Absorbing Material and Plasma

    International Nuclear Information System (INIS)

    Lan Chaohui; Hu Xiwei; Jiang Zhonghe

    2008-01-01

    A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; c. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases. (low temperature plasma)

  4. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  5. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  6. The estimation of the control rods absorber burn-up during the VVER-1000 operation

    Energy Technology Data Exchange (ETDEWEB)

    Bolshagin, Sergey N.; Gorodkov, Sergey S.; Sukhino-Khomenko, Evgeniya A. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2013-09-15

    The isotopic composition of the control rods absorber changes under the neutron flux influence, so the control rods efficiency can decrease. In the VVER-1000 control rods boron carbide and dysprosium titanate are used as absorbing materials. In boric part the efficiency decreases due to the {sup 10}B isotope burn-up. Dysprosium isotopes turn into other absorbing isotopes, so the absorbing properties of dysprosium part decrease to a lesser degree. Also the control rod's shells may be deformed as a consequence of boron carbide radiation swelling. This fact should be considered in substantiation of control rods durability. For the estimation of the control rods absorber burn-up two models are developed: VVER-1000 3-D fuel assembly with control rods partially immersed (imitation of the control rods operation in the working group) and VVER-1000 3-D fuel assembly with control rods, located at the upper limit switch (imitation of the control rods operation in groups of the emergency shutdown system). (orig.)

  7. The standardization of data relational mode in the materials database for nuclear power engineering

    International Nuclear Information System (INIS)

    Wang Xinxuan

    1996-01-01

    A relational database needs standard data relation ships. The data relation ships include hierarchical structures and repeat set records. Code database is created and the relational database is created between spare parts and materials and properties of the materials. The data relation ships which are not standard are eliminated and all the relation modes are made to meet the demands of the 3NF (Third Norm Form)

  8. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    International Nuclear Information System (INIS)

    Méjean, Chloé; Pometcu, Laura; Benzerga, Ratiba; Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu; Pouliguen, Philippe

    2017-01-01

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S 11 coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S 11 of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  10. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    Energy Technology Data Exchange (ETDEWEB)

    Méjean, Chloé; Pometcu, Laura [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Pouliguen, Philippe [Département Recherche et Innovation Scientifique de la Direction Générale de l’Armement, 7-9 rue des Mathurins, 92221 Bagneux (France)

    2017-06-15

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S{sub 11} coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S{sub 11} of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  11. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  12. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Science.gov (United States)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the

  13. Determination of sampling constants in NBS geochemical standard reference materials

    International Nuclear Information System (INIS)

    Filby, R.H.; Bragg, A.E.; Grimm, C.A.

    1986-01-01

    Recently Filby et al. showed that, for several elements, National Bureau of Standards (NBS) Fly Ash standard reference material (SRM) 1633a was a suitable reference material for microanalysis (sample weights 2 , and the mean sample weight, W vector, K/sub s/ = (S/sub s/%) 2 W vector, could not be determined from these data because it was not possible to quantitate other sources of error in the experimental variances. K/sub s/ values for certified elements in geochemical SRMs provide important homogeneity information for microanalysis. For mineralogically homogeneous SRMs (i.e., small K/sub s/ values for associated elements) such as the proposed clays, it is necessary to determine K/sub s/ by analysis of very small sample aliquots to maximize the subsampling variance relative to other sources of error. This source of error and the blank correction for the sample container can be eliminated by determining K/sub s/ from radionuclide activities of weighed subsamples of a preirradiated SRM

  14. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers

    International Nuclear Information System (INIS)

    Wang Yonggang; Wen Xiaoming; Tang Jau; Chen, Hou Ren; Hsieh, Wen Feng

    2011-01-01

    We demonstrated that graphene oxide material could be used as a highly efficient saturable absorber for the Q-switched Nd:GdVO 4 laser. A novel and low-cost graphene oxide (GO) absorber was fabricated by a vertical evaporation technique and high viscosity of polyvinyl alcohol (PVA) aqueous solution. A piece of GO/PVA absorber, a piece of round quartz, and an output coupler mirror were combined to be a sandwich structure passive component. Using such a structure, 104 ns pulses and 1.22 W average output power were obtained with the maximum pulse energy at 2 µJ and a slope efficiency of 17%.

  15. Standard Test Method for Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the measurement of solar transmittance (terrestrial) of materials in sheet form by using a pyranometer, an enclosure, and the sun as the energy source. 1.2 This test method also allows measurement of solar transmittance at angles other than normal incidence. 1.3 This test method is applicable to sheet materials that are transparent, translucent, textured, or patterned. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  18. Use of CAE-Systems at Evaluation of Shock Absorbers for Metallurgical Equipment

    Directory of Open Access Journals (Sweden)

    Artiukh Viktor

    2016-01-01

    Full Text Available Work presents results of strength calculations of absorber elastic element that were done by CAE-system and standard method of calculating. It is shown, that use of FEM software allows studying thoroughly the distribution of appropriate stresses on surfaces of elastic element.

  19. Q-Switched Operation with Carbon-Based Saturable Absorbers in a Nd:YLF Laser

    Directory of Open Access Journals (Sweden)

    Rosa Weigand

    2015-09-01

    Full Text Available We have numerically studied the influence of the absorption modulation depth of carbon-based saturable absorbers (graphene and carbon nanotubes (CNTs on the Q-switched regime of a diode-pumped Nd:YLF laser. A short-length cavity was used with an end mirror on which CNTs or mono- or bi-layer graphene were deposited, forming a saturable absorber mirror (SAM. Using a standard model, the generated energy per pulse was calculated, as well as the pulse duration and repetition rate. The results show that absorbers with higher modulation depths, i.e., graphene, deliver higher energy pulses at lower repetition rates. However, the pulse duration did not have a monotonic behavior and reaches a minimum for a given low value of the modulation depth typical of CNTs.

  20. Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the screening of ablative materials to determine the relative thermal insulation effectiveness when tested as a flat panel in an environment of a steady flow of hot gas provided by an oxyacetylene burner. 1.2 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  1. Standard Guide for Packaging Materials for Foods to Be Irradiated

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

  2. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1979-01-01

    A ''plastic-like'' supporting material impregnated with a neutron-absorbing agent that is suitable for ''lining'' the inner surfaces of fissile-material storage containers was fabricated. The material consists, by weight, of 50% food-grade borax, 25% coal tar, and 25% epoxy resin. It costs much less than commercially available materials, can absorb enough neutrons to isolate units of fissile material, and possesses such structural qualities as flexibility and machinability. Properties and performance of the material are discussed

  3. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  4. Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials

    International Nuclear Information System (INIS)

    Ting, Tzu-Hao; Chiang, Chih-Chia; Lin, Po-Chuan; Lin, Chia-Huei

    2013-01-01

    An optimised composite sample was prepared using two dielectric materials manganese dioxide (MnO 2 ) and multi-wall carbon nanotubes (MWNTs) in an epoxy-resin matrix. Structural characterisations of both the synthesised manganese dioxide (MnO 2 ) and the multi-wall carbon nanotubes (MWNTs) were performed by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave absorption properties of dielectric composites with different weight fractions of MnO 2 were investigated by measuring the complex permittivity, the complex permeability and the reflection loss in the 2–18 and 18–40 GHz microwave frequency ranges using the free space method. The complex permittivity varied with the MnO 2 content, and the results show that a high concentration of fillers increased the dielectric constant. Therefore, the appropriate combination of components and experimental conditions can produce materials with specific characteristic for use as wide-band microwave absorbers. - Highlights: ► This paper analyses optimised microwave absorption for MnO 2 /MWNT composites. ► Structural characterisations were performed by using XRD and SEM. ► Increasing MnO 2 content enhances the complex permittivity in MnO 2 /MWNT matrix. ► The reflection loss varies with changes content of MnO 2 for required frequency bands

  5. A simple preparation of calibration curve standards of 134Cs and 137Cs by serial dilution of a standard reference material

    International Nuclear Information System (INIS)

    Labrecque, J.J.; Rosales, P.A.

    1990-01-01

    Two sets of calibration standards for 134 Cs and 137 Cs were prepared by small serial dilution of a natural matrix standard reference material, IAEA-154 whey powder. The first set was intended to screen imported milk powders which were suspected to be contaminated with 134 Cs and 137 Cs. Their concentration ranged from 40 to 400 Bq/kg. The other set of calibration standards was prepared to measure the environmental levels of 137 Cs in commercial Venezuelan milk powders. Their concentration ranged from 3 to 10 Bq/kg of 137 Cs. The accuracy of these calibration curves was checked by IAEA-152 and A-14 milk powders. Their measured values were in good agreement with their certified values. Finally, it is shown that these preparation techniques using serial dilution of a standard reference material were simple, rapid, precise, accurate and cost-effective. (author) 5 refs.; 5 figs.; 3 tabs

  6. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  7. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)

    2004-10-15

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  8. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    International Nuclear Information System (INIS)

    Yoon, Hyun Jin; Kim, Dong Il

    2004-01-01

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  9. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  10. Magnetic graphene enabled tunable microwave absorber via thermal control

    Science.gov (United States)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  11. 48 CFR 9904.411 - Cost accounting standard-accounting for acquisition costs of material.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Cost accounting standard-accounting for acquisition costs of material. 9904.411 Section 9904.411 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND...

  12. Calibration of ionization chambers and determination of the absorbed doses

    International Nuclear Information System (INIS)

    RANDRIANTSEHENO, H.F

    1996-01-01

    In order to further improve the accuracy of dosimetric measurements in radiation therapy, the IAEA and WHO supported the establishment of Secondary Standard Dosimetry Laboratory (SSDLs). These SSDLs bridge the gap between the primary measurement standards and the user of ionizing radiation by providing the latter with calibrations against the SSDLs' secondary standards and by giving technical advice and assistance. However, a properly calibrated dosimeter is just necessary first condition for the determination of the dose. It has been demonstrated that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and that this should not vary by more than a few per cent from described values. [fr

  13. Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application

    Science.gov (United States)

    Das, S.; Sa, K.; Alam, I.; Mahakul, P. C.; Raiguru, J.; Subramanyam, B. V. R. S.; Mahanandia, P.

    2018-05-01

    In this energy crisis era, the urgent calls for clean energy converter realizes the importance of photovoltaic device, which offers the highest probability of delivering a sustainable way of harvesting solar energy. The active absorber layer has its significance towards the performance of photovoltaic device by absorbing solar light and creating electron-hole pair inside layer. Being a direct p-type semiconductor, Cu2ZnSnS4 generally referred as CZTS has emerged as potential absorber towards photovoltaics application in recent decades as it offers the advantage of tunable band gap near optimal region ˜1.45-1.65 eV favorably match the solar spectrum and a high absorption coefficient ˜104 cm-1. The further improvement in the performance of CZTS based photovoltaics has involved the use of carbon nanotubes (CNTs). Semiconductors hybridized with carbonaceous materials (CNTs) have been the center of attraction in the scientific community with beneficial contribution in enhancing optoelectronic properties. The incorporation of CNTs shows effectiveness in charge carrier transfer pathways which ultimately could enhance the photo conversion efficiency (PCE) of photovoltaic device cell (PVC). Here, a facile hydrothermal one-pot synthesis of CZTS nanoparticles and MWCNTs composite towards photovoltaics application is reported. The phase and structural analysis of CZTS nanoparticles as well as CZTS/MWCNTs composite is done by XRD. From FERSEM and TEM (LRTEM & HRTEM) analysis the CZTS nanoparticles decorated over the surface of MWCNTs is confirmed. The optical band gap of CZTS/MWCNTs composite is estimated to be 1.62 eV from UV-Visible spectra.

  14. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  15. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    Science.gov (United States)

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  16. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  17. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  18. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    Science.gov (United States)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  19. Absorbent agents for clean-up of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Waldmann, J.J.

    1993-01-01

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A m B n C p wherein A m is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C 12 -C 24 ) amine which has been double protonized by an aliphatic acid with C 1 -C 18 carbon atoms in which m = 0 to 100% by weight of the composition; B n is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C p is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value

  20. Standard Guide for Testing Materials for Aerospace Plastic Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is intended to summarize the standard test methods available on individual and composite materials utilized in fabrication of aerospace plastic transparent enclosures. As such, it is intended to specifically include transparent thermoplastics, transparent elastomers, and reinforced plastics, whether thermoplastic or thermosetting. 1.2 This guide is intended as an aid in the search for test methods pertinent to Aerospace Plastic Transparent Enclosures. It should be understood that all methods listed may not apply to all enclosures. 1.3 The standards included refer to the properties or aspects listed in Table 1. The properties or aspects are listed in alphabetical order and the descriptions used are intended to facilitate the search. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  1. Damage analysis of ceramic boron absorber materials in boiling water reactors and initial model for an optimum control rod management

    International Nuclear Information System (INIS)

    Schulz, W.

    2000-01-01

    Operating experience has proved so far that BWR control rods cannot be used for the total reactor life time as originally presumed, but instead has to be considered as a consumable article. After only few operating cycles, the mechanism of absorber failure has been shown to be neutron induced boron carbide swelling and stress cracking of the absorber tubes, followed by erosion of the absorber material. In the case that operation of such a control rod is continued in control cells, this can lead to an increase of the local power density distribution in the core and, under certain conditions, can even cause fuel rod damage. A non destructive testing method has been developed called 'UNDERWATER NEUTRON RADIOGRAPHY' applicable for any BWR control rod. 'Lead-control rods' being radiographed are used to evaluate their actual nuclear worth by the help of a special analytical procedure developed and verified by the author. Nuclear worth data plotted against bum up history data will allow to create an 'EMPIRIC MODEL'. This model includes the basic idea of operating control rods of a certain design first in a control position up to a target fluence limited to an amount just below the appearance of control rod washout. Afterwards they have to be moved in a shut down position to work therefor the total remaining holding period. The initial model is applicable to any CR-design as long as sufficient measuring-data and thus data about the nuclear worth are available. The results of these experiences are extrapolated to the whole reactor holding period. After modelling no further measurements of this particular control rod type are necessary in any reactor. The second focal point is to provide an APPROXIMATION EQUATION. By knowing the absorber radius, B 4 C density and absorber enclosure data an engineer will calculate reliably the working life of any control rod design on control position. indicated as maximum allowable neutron fluence margin until absorber wash-out starts. This

  2. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response.

  3. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  4. Standard Versus Simplified Consent Materials for Biobank Participation: Differences in Patient Knowledge and Trial Accrual.

    Science.gov (United States)

    Garrett, Sarah B; Murphy, Marie; Wiley, James; Dohan, Daniel

    2017-12-01

    Replacing standard consent materials with simplified materials is a promising intervention to improve patient comprehension, but there is little evidence on its real-world implementation. We employed a sequential two-arm design to compare the effect of standard versus simplified consent materials on potential donors' understanding of biobank processes and their accrual to an active biobanking program. Participants were female patients of a California breast health clinic. Subjects from the simplified arm answered more items correctly ( p = .064), reported "don't know" for fewer items ( p = .077), and consented to donate to the biobank at higher rates ( p = .025) than those from the standard arm. Replacing an extant consent form with a simplified version is feasible and may benefit patient comprehension and study accrual.

  5. Proceedings of the workshop 'Absorbed dose in water and air'

    International Nuclear Information System (INIS)

    Rapp, Benjamin; Bordy, Jean-Marc; Camacho Caldeira, Margarida Isabela; Sochor, Vladimir; Celarel, Aurelia; Cenusa, Constentin; Cenusa, Ioan; Donois, Marc; Dusciac, Dorin; Iliescu, Elena; Ostrowsky, Aime; Bercea, Sorin; Blideanu, Valentin; Bordy, Jean-Marc; Steurer, Andrea; Tiefenboeck, Wilhelm

    2017-05-01

    The project 'Absorbed dose in water and air' (Absorb) is aimed at sharing and improving the knowledge on the design of Primary Standards (calorimeter, cavity ionization chambers, free air ionization chambers) for 'dose' measurements in radiation therapy and diagnostic, the harmonization of calibration procedures, the determination of uncertainty and harmonization of uncertainty budgets. Within the framework of this project a workshop was organized at the LNE (Laboratoire National de metrologie et d'Essais) in Paris from February, 29 to March, 2 2016. This report is the proceeding of this workshop. It includes a state of the art of two bilateral collaborations, launched to go beyond the framework of Absorb, between CEA LIST (LNE) LNHB and in one hand IFIN-HH (Romania), and in the other hand IST-LPSR-LMRI (Portugal) to build primary cavity ionization chambers for photons emitted by cobalt-60 and Cesium-137. Absorb is a Joint Research Project of the European Metrology Programme for Innovation and Research (EMPIR) which is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

  6. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    International Nuclear Information System (INIS)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-01-01

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows f or surface

  7. A Review: Characteristics of Noise Absorption Material

    Science.gov (United States)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  8. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  9. Multilayer composite material and method for evaporative cooling

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  10. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  11. Preparation of standard hair material and development of analytical methodology

    International Nuclear Information System (INIS)

    Gangadharan, S.; Ganapathi Iyer, S.; Ali, M.M.; Thantry, S.S.; Verma, R.; Arunachalam, J.; Walvekar, A.P.

    1992-01-01

    In 1976 Indian Researchers suggested the possible use of hair as an indicator of environmental exposure and established through a study of country wide student population and general population of the metropolitan city of Bombay that human scalp hair could indeed be an effective first level monitor in a scheme of multilevel monitoring of environmental exposure to inorganic pollutants. It was in this context and in view of the ready availability of large quantities of scalp hair subjected to minimum treatment by chemicals that they proposed to participate in the preparation of a standard material of hair. It was also recognized that measurements of trace element concentrations at very low levels require cross-validation by different analytical techniques, even within the same laboratory. The programme of work that has been carried out since the first meeting of the CRP had been aimed at these two objectives. These objectives include the preparation of standard material of hair and the development of analytical methodologies for determination of elements and species of interest. 1 refs., 3 tabs

  12. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  13. NSC KIPT's experience in production of absorber materials, composites and products for control mechanisms of various nuclear reactor types

    International Nuclear Information System (INIS)

    Odeychuk, N.P.; Zelensky, V.F.; Gurin, V.A.; Konotop, Yu.F.

    2000-01-01

    Data on NSC KIPT developments of absorber composites B 4 C-PyC and B 4 C-SiC are reported. Results of pre-reactor studies and reactor tests of absorber composites developed are given. It is shown that the B 4 C-PyC composites have a high radiation resistance at temperatures up to 1,250 deg C. (author)

  14. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  15. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  16. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  17. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  18. Determination of lateral diffusivity in single pixel X-ray absorbers with implications for position dependent excess broadening

    International Nuclear Information System (INIS)

    Saab, T.; Figueroa-Feliciano, E.; Iyomoto, N.; Herbert, B.D.; Bandler, S.R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.L.; Kilbourne, C.A.; Porter, F.S.; Sadleir, J.

    2006-01-01

    An ideal microcalorimeter is characterized by a constant energy resolution across the sensor's dynamic range. Any dependence of pulse shape on the position within the absorber where an event occurs leads to a degradation in resolution that is linear with event's energy (excess broadening). In this paper we present a numerical simulation that was developed to model the variation in pulse shape with position based on the thermal conductivity within the absorber and between the absorber, sensor, and heat bath, for arbitrarily shaped absorbers and sensors. All the parameters required for the simulation can be measured from actual devices. We describe how the thermal conductivity of the absorber material is determined by comparing the results of this model with data taken from a position sensitive detector in which any position dependent effect is purposely emphasized by constructing a long, narrow absorber that is readout by sensors on both ends. Finally, we present the implications for excess broadening given the measured parameters of our X-ray microcalorimeters

  19. Postirradiation examination of JOYO MK-II control rod (CRM601). Irradiation performance of shroud type absorber pin

    International Nuclear Information System (INIS)

    Tanaka, Kosuke; Kikuchi, Shin; Katsuyama, Kozo; Nagamine, Tsuyoshi; Mitsugi, Takeshi; Uto, Manabu; Tatebe, Kazuaki; Onose, Shoji; Maruyama, Tadashi

    1998-10-01

    This paper describes the results of postirradiation examination and analysis by CORAL code for irradiation performance of CRM601 control rod, which was the 6th reloaded control rod with shroud type absorber pins for use in JOYO MK-II core. The detailed visual examination indicated that there was no cladding breach in absorber pins. However, sodium ingress from the vent tube was observed in four absorber pins among seven pins. While a remarkable oval deformation occurred in cladding tube of helium bonded absorber pins, a little or no diametral change was observed in the absorber pins in which sodium ingress took place. From metallurgical observations and the analysis by CORAL code, it was estimated that the shroud tube installed in helium bonded absorber pins were irradiated at 720degC, and those in sodium bonded absorber pins were irradiated at 420degC. It was confirmed that diametral change of cladding depended on the initial gap between shroud and cladding tube. The results of present investigation indicate that it is desirable to use the materials with low thermal expansion coefficient for shroud tubes, and that sodium bonded absorber pins were advantageous for obtaining long life control rods. (author)

  20. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  1. International laser safety standardization. From the European perspective with an emphasis on materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Schulmeister, K [Div. of Life Sciences, Dept. of Radiation Protection, Oesterreichisches Forschungszentrum Seibersdorf, 2444 Seibersdorf (Austria)

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations (IEC, ISO and EN). (author)

  2. International laser safety standardization. From the European perspective with an emphasis on materials processing

    International Nuclear Information System (INIS)

    Schulmeister, K.

    1997-08-01

    This report reviews international standards relevant to the safety of laser products and laser installations, with an emphasis on the safety of laser materials processing from the European perspective. In the first paragraphs an overview of the international standards organisations, their relative roles and ways of developing new standards is given. In the second part of the report, work currently underway in the respective standards committees is summarised and specific standards dealing with different aspects of laser safety are discussed. An appendix contains a list of standards organised in standards organisations IEC, ISO and EN). (author)

  3. Design and manufacture of radar absorbing wind turbine blades - final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    This report describes the results of a collaborative project between QinetiQ Ltd and NOI (Scotland) Ltd to design and manufacture radar absorbent wind turbine blades. The main objectives were to: use predictive modelling to understand the contribution made by the blade to radar cross section (RCS) of the complete turbine; confirm that the turbine RCS could feasibility be reduced to appropriate levels through the use of radar absorbent material (RAM); and to demonstrate that introduction of stealth technology within current composite sections would allow RAM variants of the blade materials to be manufactured with minimal impact on the structure. The RCS of a turbine was predicted at frequencies at which representative air traffic control (ATC), weather and marine navigation radar systems operate. The material compositions that exist on the blades produced by NOI were studied and methods by which RAM could be introduced to each region were identified. RCS predictions for a blade having RAM over its surface were then repeated. The study showed that it was possible to modify all material regions of the NOI blades to create RAM with little or no degradation in structural properties, thus reducing detection by non-Doppler radar and ATC radars. A full practical demonstration of a stealthy turbine is recommended to allow the benefits of RCS reduction through the use of RAM to be quantified by all stakeholders.

  4. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method

    Science.gov (United States)

    Brajard, J.; Moulin, C.; Thiria, S.

    2008-10-01

    This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.

  5. The actual problems of the standardization of magnetically hard materials and permanent magnets

    International Nuclear Information System (INIS)

    Kurbatov, P.A.; Podolskiy, I.D.

    1998-01-01

    The standardization of industrial products raises their accordance with functional purpose, contributes to technological developments and the elimination of technical barriers in trade. The progress of the world trade necessitates the certification of permanent magnets and their manufacturing methods. According to ISO/IEC recommendations, the certification standards should contain the clear requirements to operation parameters of products, that can be impartially controlled. The testing procedures should be clearly formulated and assure that the results may be reproduced. This calls for creation of a system of interconnected certification standards: the standard for technical characteristics of prospective commercial magnetically hard materials, the standard specifications for permanent magnets, the standards for typical testing procedures and the standards for metrological assurance of measurements. (orig.)

  6. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  7. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    Science.gov (United States)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  8. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  9. MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Murphy, Michael T., E-mail: nnielsen@nmsu.edu [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We describe the Mg II Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 ≤ z ≤ 1.1) galaxies with measurements of Mg II λλ2796, 2803 absorption from their circumgalactic medium within projected distances of 200 kpc from background quasars. In this work, we present 'isolated' galaxies, which are defined as having no spectroscopically identified galaxy within a projected distance of 100 kpc and a line of sight velocity separation of 500 km s{sup –1}. We standardized all galaxy properties to the ΛCDM cosmology and galaxy luminosities, absolute magnitudes, and rest-frame colors to the B- and K-band on the AB system. We present galaxy properties and rest-frame Mg II equivalent width, W{sub r} (2796), versus galaxy redshift. The well-known anti-correlation between W{sub r} (2796) and quasar-galaxy impact parameter, D, is significant to the 8σ level. The mean color of MAGIICAT galaxies is consistent with an Sbc galaxy for all redshifts. We also present B- and K-band luminosity functions for different W{sub r} (2796) and redshift subsamples: 'weak absorbing' [W{sub r} (2796) < 0.3 Å], 'strong absorbing' [W{sub r} (2796) ≥ 0.3 Å], low redshift (z < (z)), and high redshift (z ≥ (z)), where (z) = 0.359 is the median galaxy redshift. Rest-frame color B – K correlates with M{sub K} at the 8σ level for the whole sample but is driven by the strong absorbing, high-redshift subsample (6σ). Using M{sub K} as a proxy for stellar mass and examining the luminosity functions, we infer that in lower stellar mass galaxies, Mg II absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  10. Standard test methods for elevated temperature tension tests of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedure and equipment for the determination of tensile strength, yield strength, elongation, and reduction of area of metallic materials at elevated temperatures. 1.2 Determination of modulus of elasticity and proportional limit are not included. 1.3 Tension tests under conditions of rapid heating or rapid strain rates are not included. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  12. In-vivo evaluation of standard man model absorbed fractions using /sup 99m/Tc-sulfur colloid

    International Nuclear Information System (INIS)

    Jones, J.P.; Wagner, J.; Brill, A.B.

    1976-01-01

    Results are reported from a study performed to check how well the calculated absorbed radiation dose fraction data (S-factors) given in MIRD Pamphlet No. 5 and related reports apply to living patients administered radionuclides. An external target region was defined on the skin of the Snyder-Fisher phantom, anterior to and overlaying the center of the liver. This target was a 5 cm square by 0.089 cm thick slab of LiF, and the S-factors were computed for this target and uniform distributions of /sup 99m/Tc in the liver and spleen. Experimentally, this target was represented by placing thirteen LiF TLD's of the same thickness in a correspondingly positioned 5 cm square area. An experiment performed with the Mr. Adam phantom showed good agreement between the measured (TLD) and calculated (S-factor) doses. In the patient studies, the group of thirteen TLD's was correspondingly positioned, and the measured TLD dose compared to that calculated from the patient cumulated activity and the Snyder-Fisher phantom S-factors. In most cases, these doses agreed to within 30 percent, although larger discrepancies were observed with non-standard sized patients. Based upon these results, it is desirable to make further investigations of this type, especially with lower energy gamma emitters, and the methods of dose and activity measurement used in this study should be useful unless the photon energy is too low, or the source activity changes rapidly with time

  13. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  14. Neutron absorbing article and method for manufacture thereof

    International Nuclear Information System (INIS)

    Forsyth, P.F.; Mcmurtry, C.H.; Naum, R.G.

    1980-01-01

    A composite, neutron absorbing, coated article, suitable for installation in storage racks for spent nuclear fuel and for other neutron absorbing applications, includes a backing member, preferably of flexible material such as woven fiberglass cloth, a synthetic organic polymeric coating or a plurality of such coatings on the backing member, preferably of cured phenolic resin, such as phenol formaldehyde or trimethylolphenol formaldehyde and boron carbide particles held to the backing member by the cured coating or a plurality of such coatings. Also within the invention is a method for the manufacture of the neutron absorbing coated article and the use of such an article. In a preferred method the backing member is first coated on both sides thereof with a filling coating of thermosettable liquid phenolic resin, which is then partially cured to solid state, one side of the backing member is then coated with a mixture of thermosettable liquid resin and finely divided boron carbide particles and the resin is partially cured to solid state, the other side is coated with a similar mixture, larger boron carbide particles are applied to it and the resin is partially cured to solid state, such side of the article is coated with thermosettable liquid phenolic resin, the resin is partially cured to solid state and such resin, including previously applied partially cured resins, is cured to final cross-linked and permanently set form

  15. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  16. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  17. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    Science.gov (United States)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  18. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  19. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  20. Shock Absorbers Multi-Modeling and Suspension Optimization

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2013-05-01

    Full Text Available The standard dampers used by more 90% of vehicles have damping coefficients constant along stroke, so they can’t solve simultaneous all of them, situation solving practically using a relative dampingcoefficient able to made compromise between them. This paper design and simulation testing multi-models of two types of Damp (DSA and VZN. To compare the two types of suspension they are simulated in various road and load conditions. Analysis of simulation results is presente a new VZN shock absorber. This is an invention of the Institute of Mechanics of the Romanian Academy, and patented at European and U.S. [1], [2]. This is Called VZN shock absorber, iscoming from Variable Zeta Necessary acronym, for well moving in all road and load Conditions, Where zeta Represents the relative damping, Which is Adjusted automatically, stepwise, According to the piston positions [3,4,5]. Suspension systems are used in all air and ground transportation to protect that building transportation and cargo transported around against shocks and vibrations induced in the systemfrom the road Modifying damping coefficients (Zeta function piston position, being correlated with vehicle load and road unevenness.

  1. STRESS ANALYSIS PADA STAND SHOCK ABSORBERS SEPEDA MOTOR DENGAN MENGGUNAKAN SOFTWARE INVENTOR 2015

    Directory of Open Access Journals (Sweden)

    Asroni Asroni

    2015-06-01

    Full Text Available Dudukan Peredam Kejut (Stand Shock Absorbers pada sepeda motor ada dua bagian atas dan bawah. Stand Shock Absorbers pada bagian atas terdapat batang poros berguna untuk menyatukan Shock Absorbers dengan rangka. Sementara yang di atas untuk memperkuat garpu agar tetap pada posisinya saat bekerja meredam getaran[1]. Pemodelan Stand Shock Absorbers menggunakan Metode Elemen Hingga dengan pembebanan sebesar 1000 N, 63.135 N ke arah vektor X dan 998.005 N ke arah vektor Y. material yang digunakan Besi Tuang dengan Massa Jenis 7.15 g/cm3, Massa 0.0408248 kg, Luas Area 5182.95 mm2 dan Volume 5709.76 mm3. Analisis tegangan menggunakan Software berbasis elemen hingga Inventor 2015. Hasil simulasi dapat ditarik kesimpulan bahwa Tegangan (Stress yang terbesar (Maksimum Stress terjadi ke arah vektor ZZ dengan nilai 40.3231 MPa, Regangan (Strain yang terbesar (Maksimum Strain terjadi ke arah vektor ZZ dengan nilai 0.000313922 ul dan Perpindahan (Displacement yang terbesar terjadi ke arah vektor Z dengan nilai 0.0195378 mm.

  2. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  3. Photon activation analysis using internal standards: some studies of the analysis of environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Masumoto, K; Yagi, M

    1986-01-01

    The authors report the application of the internal standard method to the simultaneous determination of trace elements in environmental reference materials. The standard soil material used was IAEA CRM Soil-5. The power plant fly ash reference used was NBS SRM-1633a. Fifteen target elements, including As, Ba and Ce, were determined. Internal standards were supplied by six elements, including Na and Mg. Although there were several interfering elements, their effect could be eliminated by utilizing more than one gamma-ray peak and carrying out appropriate corrections. The values determined for most of the target elements were well within the certified range. Measured concentrations were of the orders of 10 to 1000 ..mu..g/g. 6 references, 2 figures, 5 tables.

  4. Guideline for Adopting the Local Reaction Assumption for Porous Absorbers in Terms of Random Incidence Absorption Coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the assumption of local reaction always underestimates the random incidence absorption coefficient and the local reaction models give...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material...

  5. A comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE

    Directory of Open Access Journals (Sweden)

    Kathy Willowson

    2018-06-01

    Full Text Available Objective(s: To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177LuDOTATATE (Lutate for treatment of neuroendocrine tumours (NETs. Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after injection. Planar data were corrected for attenuation using transmission data, and were converted to units of absolute activity via two methods, using either a calibration standard in the field of view or relative to pre-voiding image total counts. Hand drawn regions of interest were used to generate time activity curves and kidney absorbed dose estimates in OLINDA-EXM. Fully quantitative SPECT data were generated using CT-derived corrections for both scatter and attenuation, before correction for dead time and application of a camera specific sensitivity factor to convert data to units of absolute activity. Volumes of interest were defined for kidney using the co-registered x-ray CT, before time activity curves and absorbed dose measures were generated in OLINDA-EXM, both with and without corrections made to the model for patient specific kidney volumes. Quantitative SPECT data were also used to derive dose maps through dose kernel convolution (DKC, which was treated as the gold standard. Results: A total of 50 studies were analysed, corresponding to various cycles of treatment from 21 patients. Planar absorbed dose estimates were consistently higher than SPECT derived estimates by, on average, a factor of 3. Conclusion: Quantitative SPECT is considered the gold standard approach for organ specific dosimetry however often relies on in house software. As such planar methods for estimating absorbed dose are much more widely available, and in particular, are often the only source of reference in previously published data. For the case of Lutate dosimetry, planar

  6. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  7. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    Science.gov (United States)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  8. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer

    International Nuclear Information System (INIS)

    Doraiswamy, A.; Narayan, R.J.; Lippert, T.; Urech, L.; Wokaun, A.; Nagel, M.; Hopp, B.; Dinescu, M.; Modi, R.; Auyeung, R.C.Y.; Chrisey, D.B.

    2006-01-01

    We present a novel laser-based approach for developing tissue engineered constructs and other cell-based assembly's. We have deposited mesoscopic patterns of viable B35 neuroblasts using a soft direct approach of the matrix assisted pulsed laser evaporation direct write (MAPLE DW) process. As a development of the conventional direct write process, an intermediate layer of absorbing triazene polymer is used to provide gentler and efficient transfers. Transferred cells were examined for viability and proliferation and compared with that of as-seeded cells to determine the efficacy of the process. Results suggest that successful transfers can be achieved at lower fluences than usual by the incorporation of the intermediate absorbing layer thus avoiding any damage to cells and other delicate materials. MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions, with extreme versatility in depositing combinations of natural/synthetic, living/non-living, organic/inorganic and hard/soft materials. Our approach offers a gentle and efficient transfer of viable cells which when combined with a variety of matrix materials allows development of constructs and bioactive systems in bioengineering

  9. Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-04-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C/NiO nanocomposite solar energy absorbing surfaces were prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater...

  10. NBS SRM 1569 Brewer's Yeast: Is it an adequate standard reference material for testing a chromium determination in biological materials tion in biological materials

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Volkers, K.J.; Tjioe, P.S.; Kroon, J.J.

    1978-01-01

    Some analytical experiences with NBS SRM 1569 Brewer's Yeast are presented. Against this background the adequacy of this standard reference material for the determination of chromium in biological materials is discussed. Authors have three main objections. Due to its high content of insoluble chromium-containing particles, SRM 1569 is not typical for biological materials, possibly not even for Brewer's Yeast. The chromium level of SRM 1569 is not typical for the chromium levels normally encountered in pure biological materials. The major fraction (69 +- 3 percent) of the chromium is present in a form which is insoluble under the conditions used in Author's analysis. (T.I.)

  11. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    International Nuclear Information System (INIS)

    Bjerke, H.

    2002-01-01

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm 3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of

  12. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    International Nuclear Information System (INIS)

    Delaunay, F.; Gouriou, J.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.; Kapsch, R.P.; Illemann, J.; Krauss, A.

    2012-01-01

    During the Euramet project JRP7 'External Beam Cancer Therapy', PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm * 10 cm and 3 cm * 3 cm while LNE-LNHB used graphite calorimeters in 6MV and 12MV beams for field sizes of 10 cm * 10 cm, 4 cm * 4 cm and 2 cm * 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60 Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60 Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% ( 60 Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm * 10 cm down to 2 cm * 2 cm and for beams of 6 MV to 10 MV. (authors)

  13. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  14. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  15. Preparation of Ag/SiO{sub 2} near-infrared absorbers using the combination of sputtering and spin-coating depositions

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Leo Chau-Kuang, E-mail: lckliau@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Lai, Guo-Bin [Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320, Taiwan (China); Juang, Rei-Cheng; Chang, Bing-Hung [Green Energy and Environmental Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan (China); Yang, Thomas Chun-Kuang [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-03-02

    This study presents the design and fabrication of near-infrared (NIR) absorbers constructed in multilayer structures using Ag and SiO{sub 2} materials. The absorbers, consisting of Ag and SiO{sub 2} films, were fabricated using sputtering and spin-coating approaches, respectively. The fabricated absorbing devices were evaluated using ultraviolet–visible-NIR spectra. Results revealed that the structure of the Ag/SiO{sub 2}/Ag films exhibited an NIR absorbing effect. The absorbing properties were substantially influenced by the fabrication parameters and the thickness of the multilayer films. Furthermore, the NIR absorbing performance improved significantly when the SiO{sub 2} layer was annealed at 300 °C before the deposition of the top Ag film. Additionally, the absorptance of the absorbers was affected by the thickness of the top Ag layer. The long-term stability of the multilayer absorber was tested and verified based on absorptance data analysis. The NIR absorbing performance can be further improved using the optimal device design of the film thickness and by fabricating additional Ag/SiO{sub 2} layers. - Highlights: • Ag/SiO{sub 2} near-infrared absorbers were designed and fabricated. • The absorbing performance was greatly influenced by the fabrication schemes. • The optimal fabrication process of the absorber was obtained. • The long-term stability of the absorber was verified.

  16. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  17. A gold standard method for the evaluation of antibody-based materials functionality: Approach to forced degradation studies.

    Science.gov (United States)

    Coussot, Gaëlle; Le Postollec, Aurélie; Faye, Clément; Dobrijevic, Michel

    2018-04-15

    The scope of this paper is to present a gold standard method to evaluate functional activity of antibody (Ab)-based materials during the different phases of their development, after their exposure to forced degradations or even during routine quality control. Ab-based materials play a central role in the development of diagnostic devices, for example, for screening or therapeutic target characterization, in formulation development, and in novel micro(nano)technology approaches to develop immunosensors useful for the analysis of trace substances in pharmaceutical and food industries, clinical and environmental fields. A very important aspect in diagnostic device development is the construction of its biofunctional surfaces. These Ab surfaces require biocompatibility, homogeneity, stability, specificity and functionality. Thus, this work describes the validation and applications of a unique ligand binding assay to directly perform the quantitative measurement of functional Ab binding sites immobilized on the solid surfaces. The method called Antibody Anti-HorseRadish Peroxidase (A2HRP) method, uses a covalently coated anti-HRP antibody (anti-HRP Ab) and does not need for a secondary Ab during the detection step. The A2HRP method was validated and gave reliable results over a wide range of absorbance values. Analyzed validation criteria were fulfilled as requested by the food and drug administration (FDA) and European Medicines Agency (EMA) guidance for the validation of bioanalytical methods with 1) an accuracy mean value within +15% of the nominal value; 2) the within-assay precision less than 7.1%, and 3) the inter-day variability under 12.1%. With the A2HRP method, it is then possible to quantify from 0.04 × 10 12 to 2.98 × 10 12 functional Ab binding sites immobilized on the solid surfaces. A2HRP method was validated according to FDA and EMA guidance, allowing the creation of a gold standard method to evaluate Ab surfaces for their resistance under

  18. Standard Practice for Use of a Lif Photo-Fluorescent Film Dosimetry System

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the handling, testing, and procedure for using a lithium fluoride (LiF)-based photo-fluorescent film dosimetry system to measure absorbed dose (relative to water) in materials irradiated by photons or electrons. Other alkali halides that may also exhibit photofluorescence (for example, NaCl, NaF, and KCl) are not covered in this practice. Although various alkali halides have been used for dosimetry for years utilizing thermoluminescence, the use of photoluminescence is relatively new. 1.2 This practice applies to photo-fluorescent film dosimeters (referred hereafter as photo-fluorescent dosimeters) that can be used within part or all of the following ranges: 1.2.1 Absorbed dose range of 5 10-2 to 3 102 kGy (1-3). 1.2.2 Absorbed dose rate range of 0.3 to 2 10 4 Gy/s (2-5)). 1.2.3 Radiation energy range for photons of 0.05 to 10 MeV (2). 1.2.4 Radiation energy range for electrons of 0.1 to 10 MeV (2). 1.2.5 Radiation temperature range of -20 to +60°C (6,7). 1.3 This standard doe...

  19. Recommended nuclear criticality safety experiments in support of the safe transportation of fissile material

    International Nuclear Information System (INIS)

    Tollefson, D.A.; Elliott, E.P.; Dyer, H.R.; Thompson, S.A.

    1993-01-01

    Validation of computer codes and nuclear data (cross-section) libraries using benchmark quality critical (or certain subcritical) experiments is an essential part of a nuclear criticality safety evaluation. The validation results establish the credibility of the calculational tools for use in evaluating a particular application. Validation of the calculational tools is addressed in several American National Standards Institute/American Nuclear Society (ANSI/ANS) standards, with ANSI/ANS-8.1 being the most relevant. Documentation of the validation is a required part of all safety analyses involving significant quantities of fissile materials. In the case of transportation of fissile materials, the safety analysis report for packaging (SARP) must contain a thorough discussion of benchmark experiments, detailing how the experiments relate to the significant packaging and contents materials (fissile, moderating, neutron absorbing) within the package. The experiments recommended in this paper are needed to address certain areas related to transportation of unirradiated fissile materials in drum-type containers (packagings) for which current data are inadequate or are lacking

  20. Preparation of dual-layer coated polyester membranes with nuclear tracks and their wave-absorbing property

    International Nuclear Information System (INIS)

    Liu Cunxiong; Hu Lian; Ni Bangfa; Tian Weizhi; Fan Qiwen; Xiao Caijin; Nie Peng; Wang Pingsheng; Zhang Guiying; Huang Donghui

    2010-01-01

    Nanometer materials are of importance in developing electromagnetic-wave-absorbing materials. In this work, 16 μm thick polyester membranes were bombarded by 140 MeV 32 S ions from the HI-13 tandem accelerator to produce latent tracks. The bombarded samples were sensitized by DMF and UV light at 360 nm wavelength, before chemical etching by NaOH solution to develop latent tracks into pores in sizes of nanometers or micrometers in full depth of the membrane. The samples were coated with thin layers of barium ferrite and magnesium fluoride by vacuum evaporation. The reflectivity indices were measured at 2-18 GHz. The results indicate that the modified polyester membrane can effectively absorb 8-18 GHz radar waves.(authors)

  1. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  2. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Gladney, E.S.

    1980-07-01

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  3. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    Science.gov (United States)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  5. Development of international standards for instrumentation used for detection of illicit trafficking of radioactive material

    International Nuclear Information System (INIS)

    Voytchev, M.; Chiaro, P.; Radev, R.

    2006-01-01

    Subcommittee 45 B 'Radiation Protection Instrumentation' of the International Electrotechnical Commission (I.E.C.) is charged with the development of international standards for instrumentation used for monitoring of illicit trafficking of radioactive material through international boarders and territories, as well as inside countries. Currently three I.E.C. standards are in advanced stages of development. They are expected to be approved and published in 2006-2007. The international participation and the main characteristics of the following three standards are discussed and presented: I.E.C. 62327 'Hand-held Instruments for the Detection and Identification of Radionuclides and Additionally for the Indication of Ambient Dose Equivalent Rate from Photon Radiation', I.E.C. 62401 'Alarming Personal Radiation Devices for Detection of Illicit Trafficking of Radioactive Material' and I.E.C. 62244 'Installed Radiation Monitors for the Detection of Radioactive and Special Nuclear Materials at National Borders'

  6. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    International Nuclear Information System (INIS)

    Hernandez-Romano, I; Sanchez-Mondragon, J J; Davila-Rodriguez, J; Delfyett, P J; May-Arrioja, D A

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  7. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standards for arrays of fissile material packages. 71.59 Section 71.59 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE.... The value of the CSI may be zero provided that an unlimited number of packages are subcritical, such...

  8. Quality of Standard Reference Materials for Short Time Activation Analysis

    International Nuclear Information System (INIS)

    Ismail, S.S.; Oberleitner, W.

    2003-01-01

    Some environmental reference materials (CFA-1633 b, IAEA-SL-1, SARM-1,BCR-176, Coal-1635, IAEA-SL-3, BCR-146, and SRAM-5) were analysed by short-time activation analysis. The results show that these materials can be classified in three groups, according to their activities after irradiation. The obtained results were compared in order to create a quality index for determination of short-lived nuclides at high count rates. It was found that Cfta is not a suitable standard for determining very short-lived nuclides (half-lives<1 min) because the activity it produces is 15-fold higher than that SL-3. Biological reference materials, such as SRM-1571, SRM-1573, SRM-1575, SRM-1577, IAEA-392, and IAEA-393, were also investigated by a higher counting efficiency system. The quality of this system and its well-type detector for investigating short-lived nuclides was discussed

  9. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  10. Studies of calorimeter absorbers for CW and pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1975-01-01

    Solid and liquid absorbers, used in calorimeters to measure the power and energy of cw and pulsed CO 2 lasers, have been studied from 9.24 to 10.76 μm (cw) and near 10.588 μm (pulsed). The principal materials used were magnesium oxide, lithium fluoride, polystyrene, polytetrafluorethylene, carbon tetrachloride and kerosene. (U.S.)

  11. Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the measurement of solar photometric transmittance of materials in sheet form. Solar photometric transmittance is measured using a photometer (illuminance meter) in an enclosure with the sun and sky as the source of radiation. The enclosure and method of test is specified in Test Method E 1175 (or Test Method E 1084). 1.2 The purpose of this test method is to specify a photometric sensor to be used with the procedure for measuring the solar photometric transmittance of sheet materials containing inhomogeneities in their optical properties. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Use of cork as absorbent material

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria; D'Alesio, Andrea

    2017-07-01

    Cork is a green and sustainable material. At the end of its useful life, it can be disposed of into the environment without causing any damage. It can be used to improve the acoustics inside environments, as a system for the reduction of reverberation time. Sound absorption systems consist of cork panels mounted at a distance onto a rigid wall. The thickness of the cork panels considered are 1.5 mm and 2.5 mm. While the distances considered from the rigid wall are 3 cm, 5 cm, 10 cm and 15 cm. The absorption coefficient of the samples was measured in the frequency range from 100 Hz to 2,000 Hz with an impedance tube (tube of Kundt). Furthermore, the problems relating to the realization of sound-absorption systems composed of cork panels are also discussed.

  13. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  14. Quantification of the predominant monomeric catechins in baking chocolate standard reference material by LC/APCI-MS.

    Science.gov (United States)

    Nelson, Bryant C; Sharpless, Katherine E

    2003-01-29

    Catechins are polyphenolic plant compounds (flavonoids) that may offer significant health benefits to humans. These benefits stem largely from their anticarcinogenic, antioxidant, and antimutagenic properties. Recent epidemiological studies suggest that the consumption of flavonoid-containing foods is associated with reduced risk of cardiovascular disease. Chocolate is a natural cocoa bean-based product that reportedly contains high levels of monomeric, oligomeric, and polymeric catechins. We have applied solid-liquid extraction and liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometry to the identification and determination of the predominant monomeric catechins, (+)-catechin and (-)-epicatechin, in a baking chocolate Standard Reference Material (NIST Standard Reference Material 2384). (+)-Catechin and (-)-epicatechin are detected and quantified in chocolate extracts on the basis of selected-ion monitoring of their protonated [M + H](+) molecular ions. Tryptophan methyl ester is used as an internal standard. The developed method has the capacity to accurately quantify as little as 0.1 microg/mL (0.01 mg of catechin/g of chocolate) of either catechin in chocolate extracts, and the method has additionally been used to certify (+)-catechin and (-)-epicatechin levels in the baking chocolate Standard Reference Material. This is the first reported use of liquid chromatography/mass spectrometry for the quantitative determination of monomeric catechins in chocolate and the only report certifying monomeric catechin levels in a food-based Standard Reference Material.

  15. Organometal Halide Perovskite Solar Absorbers and Ferroelectric Nanocomposites for Harvesting Solar Energy

    Science.gov (United States)

    Hettiarachchi, Chaminda Lakmal

    Organometal halide perovskite absorbers such as methylammonium lead iodide chloride (CH3NH3PbI3-xClx), have emerged as an exciting new material family for photovoltaics due to its appealing features that include suitable direct bandgap with intense light absorbance, band gap tunability, ultra-fast charge carrier generation, slow electron-hole recombination rates, long electron and hole diffusion lengths, microsecond-long balanced carrier mobilities, and ambipolarity. The standard method of preparing CH3NH3PbI3-xClx perovskite precursors is a tedious process involving multiple synthesis steps and, the chemicals being used (hydroiodic acid and methylamine) are quite expensive. This work describes a novel, single-step, simple, and cost-effective solution approach to prepare CH3NH3PbI3-xClx thin films by the direct reaction of the commercially available CH3NH 3Cl (or MACl) and PbI2. A detailed analysis of the structural and optical properties of CH3NH3PbI3-xCl x thin films deposited by aerosol assisted chemical vapor deposition is presented. Optimum growth conditions have been identified. It is shown that the deposited thin films are highly crystalline with intense optical absorbance. Charge carrier separation of these thin films can be enhanced by establishing a local internal electric field that can reduce electron-hole recombination resulting in increased photo current. The intrinsic ferroelectricity in nanoparticles of Barium Titanate (BaTiO3 -BTO) embedded in the solar absorber can generate such an internal field. A hybrid structure of CH3NH 3PbI3-xClx perovskite and ferroelectric BTO nanocomposite FTO/TiO2/CH3NH3PbI3-xClx : BTO/P3HT/Cu as a new type of photovoltaic device is investigated. Aerosol assisted chemical vapor deposition process that is scalable to large-scale manufacturing was used for the growth of the multilayer structure. TiO 2 and P3HT with additives were used as ETL and HTL respectively. The growth process of the solar absorber layer includes the

  16. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada

    Science.gov (United States)

    Salata, Camila; Gazineu David, Mariano; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-01

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC/D LCR  =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer’s stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe3+) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  17. Materials, Designs and Standards Used in Ski-Boots for Alpine Skiing

    Directory of Open Access Journals (Sweden)

    Matteo Moncalero

    2013-10-01

    Full Text Available This review article reports the recent advances in the study, design and production of ski-boots for alpine skiing. An overview of the different designs and the materials used in ski-boot construction is provided giving particular emphasis to the effect of these parameters on the final performances and on the prevention of injuries. The use of specific materials for ski-boots dedicated to different disciplines (race skiing, mogul skiing, ski-mountaineering etc. has been correlated with the chemical and physical properties of the polymeric materials employed. A review of the scientific literature and the most interesting patents is also presented, correlating the results reported with the performances and industrial production of ski-boots. Suggestions for new studies and the use of advanced materials are also provided. A final section dedicated to the standards involved in ski-boot design completes this review article.

  18. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  19. Dynamic testing of airplane shock-absorbing struts

    Science.gov (United States)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  20. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)