WorldWideScience

Sample records for absorber bna pellets

  1. Fabrication and characterization of absorber pellets for FFTF irradiation testing

    International Nuclear Information System (INIS)

    Wilson, C.N.; Hollenberg, G.W.

    1981-01-01

    Methods used for characterization of B 4 C powder and fabricated pellets are summarized. Fabrication techniques used at HEDL for absorber test pellets are reviewed and selected powder and pellet characterization data are presented

  2. BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity

    Directory of Open Access Journals (Sweden)

    Xuanpeng Wang

    2017-12-01

    Full Text Available Small peptides secreted to the extracellular matrix control many aspects of the plant’s physiological activities which were identified in Arabidopsis thaliana, called ATSPs. Here, we isolated and characterized the small peptide gene Bna.SP6 from Brassica napus. The BnaC.SP6 promoter was cloned and identified. Promoter deletion analysis suggested that the -447 to -375 and -210 to -135 regions are crucial for the silique septum and pollen expression of BnaC.SP6, respectively. Furthermore, the minimal promoter region of p158 (-210 to -52 was sufficient for driving gene expression specifically in pollen and highly conserved in Brassica species. In addition, BnaA.bZIP1 was predominantly expressed in anthers where BnaC.SP6 was also expressed, and was localized to the nuclei. BnaA.bZIP1 possessed transcriptional activation activity in yeast and protoplast system. It could specifically bind to the C-box in p158 in vitro, and negatively regulate p158 activity in vivo. BnaA.bZIP1 functions as a transcriptional repressor of BnaC.SP6 in pollen activity. These results provide novel insight into the transcriptional regulation of BnaC.SP6 in pollen activity and the pollen/anther-specific promoter regions of BnaC.SP6 may have their potential agricultural application for new male sterility line generation.

  3. Neutron absorber pellets

    International Nuclear Information System (INIS)

    Radford, K.C.

    1983-01-01

    An annular burnable poison pellet of aluminium oxide - boron carbide (Al 2 O 3 - B 4 C) adapted for positioning in the annular space of concentrically disposed zircaloy tubes. Each tubular pellet is fabricated from Al 2 O 3 powders of moderate sintering activity which serves as a matrix for B 4 C medium size particle distribution. Special pellet moisture controls are incorporated in the pellet for moisture stability and the pellet is sintered in the temperature range of 1630 deg to 1650 deg C. This method of fabrication produces a pellet about 2 inch long with a wall thickness of from 0.020 inch to 0.040 inch. Fabricating each pellet to about 70% theoretical density gives an optimum compromise between fabricability, microstructure, strength and moisture absorption. (author)

  4. Leaching Studies on ACR-1000{sup R} Fuel Under Reactor Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sunder, S. [Atomic Energy of Canada Limited, Fuel and Fuel Channel Safety Branch, Chalk River, Ontario, K0J 1J0 (Canada)

    2009-06-15

    ACR-1000{sup R} is the latest nuclear power reactor being developed by AECL. The ACR-1000 fuel uses a modified CANFLEX{sup R} fuel bundle that contains low-enriched uranium and pellets of burnable neutron absorbers (BNA) in a central element. Dysprosium and gadolinium are used as the burnable neutron absorbers and are present as oxides in a 'fully-stabilized' zirconia matrix. The BNA material in the centre element is designed to limit the coolant void reactivity of the reactor core during postulated loss-of-coolant accidents. As part of the ACR-1000 fuel development, the stability of the BNA material under conditions associated with defects of the Zircaloy sheathing of the BNA central element has been investigated. The results of these tests can be used to demonstrate the phase stability and leaching behaviour of the ACR-1000 fuel under reactor operating conditions. The samples were disks, about 3-4 mm thick, obtained from BNA pellets and Candu fuel (natural uranium UO{sub 2}) pellets (the UO{sub 2} measurements provide a reference point). Leaching tests were carried out in light water at 325 deg. C, above the maximum coolant temperature in an ACR-1000 fuel channel during normal operating conditions (319 deg. C). This temperature also bounds the maximum operating temperature for the current Candu reactors (311 deg. C). The initial pH of the solution (measured at room temperature) used in the leaching tests was 10.3. The leach rates were determined by monitoring the amount of metals leached into solutions. Leaching tests were also carried out with BNA pellet samples in the presence of Zr-2.5%Nb pressure tube coupons to determine the effects, if any, of the presence of pressure tube material on leach rates. Other leaching tests with BNA pellet samples and UO{sub 2} pellets were conducted at 80 deg. C to study the effects of temperature on the leach rates. The temperature of 80 deg. C was selected as representative of typical shutdown temperatures

  5. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  6. Synthesis, growth and characterization of organic nonlinear optical material: N-benzyl-2-methyl-4-nitroaniline (BNA)

    Science.gov (United States)

    Kalaivanan, R.; Srinivasan, K.

    2017-05-01

    Synthesis of the organic nonlinear optical compound N-benzyl-2-methyl-4-nitroaniline (BNA) was carried out in a newer chemical environment using the mixture of benzyl chloride and 2-methl-4-nitroaniline by a preferred laboratory synthesis process. The synthesized BNA compound was separated by column chromatography (CC) with low pressure silica gell using petrollium benzine and purity of the separated resultant product was confirmed by thin layer chromatography (TLC). Further, the material was recrystallized atleast four times in methanol and the highly purified BNA was used for the growth of single crystals from solutions with selected solvents by slow evaporation method at room temperature. Single crystals having natural growth morphology were harvested and their different growth faces were identified by optical goniometry. The grown crystals were subjected to different characterization techniques such as powder x-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and UV-vis-Near IR spectroscopy. Further, the second harmonic generation (SHG) efficiency of the grown BNA crystal was studied by Kurtz and Perry powder technique using Nd:YAG laser as fundamental source and found to be twice that of inorganic standard KDP.

  7. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  8. Standard specification for nuclear-grade aluminum oxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification applies to pellets of aluminum oxide that may be ultimately used in a reactor core, for example, as filler or spacers within fuel, burnable poison, or control rods. In order to distinguish between the subject pellets and “burnable poison” pellets, it is established that the subject pellets are not intended to be used as neutron-absorbing material. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  9. Electrothermal plasma gun as a pellet injector

    International Nuclear Information System (INIS)

    Kincaid, R.W.; Bourham, M.A.

    1994-01-01

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet's energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots

  10. Present status of laser fusion fuel pellet

    International Nuclear Information System (INIS)

    Nakai, Sadao; Mima, Kunioki; Norimatsu, Takayoshi; Takagi, Masaru.

    1986-01-01

    Accompanying the advance of pellet implosion experiment, the data base required for fuel pellet design has been steadily accumulated. The clarification of the physics related to the process of absorbing laser beam, energy transport, the generation of ablative pressure, the hydrodynamic mechanism of implosion, the energy transmission to fuel core and so on progressed, and the design data supported by these results are prepared. Based on the data base like this, the design of fuel pellets taking the optimization of implosion in consideration is carried out. The various fuel pellets designed in this way are tested for their effectiveness by implosion experiment. For this purpose, the high performance measurement of implosion and the high accuracy manufacture of fuel pellets become very important. In this paper, the present state of the research on the method of laser implosion, the example of pellet design and the law of proportion, the manufacturing techniques of the fuel pellets having various structures, the techniques dealing with tritium and so on is summarized, and the direction of future research and development is ascertained. At present, implosion experiment is carried out mostly by hanging a pellet target with a fiber of several μm diameter, but the fiber impairs the symmetry of implosion. The levitation techniques without contact is required. (Kako, I.)

  11. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  12. Lead shot pellets dispersed by hunters: ingested by ducks

    Energy Technology Data Exchange (ETDEWEB)

    Danell, K [Univ. of Umea, Sweden; Andersson, A; Marcstrom, V

    1977-01-01

    Many of the lead pellets shot by waterfowl hunters over shores and waters fall on the feeding grounds of ducks and geese. These pellets, picked up and ingested by the birds, can remain in the gizzard where they are eroded by mechanical and chemical action. In some cases the bird absorbs enough lead to cause lead poisoning. This report describes the incidence of ingested lead shot pellets found in 928 ducks collected in Sweden during hunting season. Pellets were found in both dabbling and diving ducks and were present in birds from six of the eight localities sampled. Usually one or two pellets were found but some ducks contained up to 62 pellets. As the incidence of ingested pellets in the present study is approximately the same as that found in North America, where the annual duck loss due to lead poisoning is estimated to be 2 to 3 percent of the population, it may be assumed that lead poisoning is a mortality factor for Swedish ducks also.

  13. Cloning and expression study of BnaLCR78 in Brassica napus

    International Nuclear Information System (INIS)

    Zhuang, L.; Ze, L. Y.; Cheng, W. Y.

    2016-01-01

    BnaLCR78 genes of three types of rape were cloned in rape (Brassica napus), and encoded protein structure was analyzed, the Results showed that the protein had a conserved coding domain which was analogues among LCR family of Arabidopsis. The expression patterns of genes of three types of rape in varying tissues and in specific same tissues were analyzed using quantitative method. The Results showed that their expression patterns differ from that of former research in Brassica napus, which may result from the difference of sampling time. We speculated that the gene might be involved in transpiration and transportation and distribution of nutrient, oil content in seed. (author)

  14. Characteristics Buton Natural Asphalt-Rubber (BNA-R) on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Science.gov (United States)

    Wahjuningsih, Nurul; Pranowo Hadiwardoyo, Sigit; Jachrizal Sumabrata, R.

    2018-03-01

    The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  15. Characteristics Buton Natural Asphalt-Rubber (BNA-R on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Wahjuningsih Nurul

    2018-01-01

    Full Text Available The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  16. Development and mastering of production of dysprosium hafnate as absorbing material for control rods of promising thermal neutron reactors

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Risovany, V.D.; Muraleva, E.M.; Sokolov, V.F.

    2011-01-01

    The main advantages of dysprosium hafnate as an absorbing material for LWR control rods are the following: -) unlimited radiation resistance; - two absorbing components, Dy and Hf, increasing physical efficiency of the material compared to Dy 2 O 3 -TiO 2 and alloy 80% Ag - 15% In - 5% Cd; -) variability of physical efficiency by changing a composition, but maintaining other performance characteristics of the material; -) high process-ability due to the absence of phase transients and single-phase structure (solid solution); -) production of high density pellets. Lab-scale mastering of dysprosium hafnate pellets production showed a possibility of material synthesis using a solid-phase method, as well as of dysprosium hafnate pellets production by cold pressing and subsequent sintering. Within a whole range of examined compositions (23 mol% - 75 mol% Dy 2 O 3 ), a single-phase material with a highly radiation resistant fluorite-like structure was produced. Experiments on cold pressing and sintering of pellets confirmed a possibility of producing high quality dysprosium hafnate pellets from synthesized powder. A pilot batch of dysprosium hafnate pellets with standard sizes was produced. The standard sizes corresponded to the absorbing elements of the WWER-1000 control rods and met the main requirements to the absorbing element columns. The pilot batch size was approximately 6 kg. Acceptance testing of the pilot batch of dysprosium hafnate pellets was conducted, fulfillment of the requirements of technical conditions was checked and preirradiation properties of the pellets were examined. High quality of the produced pellets was confirmed, thus, demonstrating a real possibility of producing large batches of the dysprosium hafnate pellets. The next step is the production of test absorbing elements and cluster assemblies for the WWER-1000 control rods with their further installation for pilot operation at one of the Russian nuclear power plants

  17. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Birney, K.R.; Pitner, A.L.; Basmajian, J.A.

    1980-04-01

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  18. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    International Nuclear Information System (INIS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-01-01

    Graphical abstract: Densification of HfO 2 –Y 2 O 3 micro-beads by Spark Plasma Sintering High density pellets with homogenous distribution of Hf and Y serve as neutron absorbers. - Abstract: Dense yttrium–stabilised hafnia pellets (91.35 wt.% HfO 2 and 8.65 wt.% Y 2 O 3 ) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the “external gelation” sol–gel technique. This technique allows a preparation of HfO 2 –Y 2 O 3 beads with homogenous yttria–hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels

  19. Shock implosion of a small homogeneous pellet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Y.; Mishkin, E.A.; Alejaldre, C.

    1985-10-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.

  20. Shock implosion of a small homogeneous pellet

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Mishkin, E.A.; Alejaldre, C.

    1985-01-01

    A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front

  1. Full-scale Milling Tests of Wood Pellets for Combustion in a Suspension-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Masche, Marvin; Puig Arnavat, Maria; Wadenbäck, Johan

    The size reduction of pelletized wood is crucial in suspension-fired power plants, and hence its milling characteristics are of interest to optimize the milling and combustion process. The objective of the study was to compare the size and shape of pellets disintegrated in hot water with that from......), and analyzing the comminuted particle shape and particle size distribution (PSD). Large-scale pellet comminution produced finer and wider PSDs than pellet disintegration in hot water, but only slightly altered the particle shape. The mill pressure loss, absorbed mill power, and hence SGEC depended on the pellet...

  2. Evaluation of the in pile performance of boron containing fuel pellets

    International Nuclear Information System (INIS)

    Jeong, Gwanyoon; Sohn, Dongseong

    2012-01-01

    The world rare earth resource are heavily concentrated in certain area and if these natural resources are weaponized by a country, we may confront serious difficulty because rare earth element gadolinium(Gd) is used as burnable poison material in some nuclear power plants (NPP) in Korea. Gd is used as a neutron absorbing material in Gd 2 O 3 form and mixed with UO 2 When boron is used as burnable poison in nuclear fuel, in fuel pellets. The burnable poison mixed in the fuel pellets is called integral burnable absorber (BA) design which differentiates it from the old separate BA design. In the old separate BA design, boron(B) was used in borosilicate glass (PYREX) form and placed in guide tubes. With the development of the concern over the availability of rare earth material Gd, B is considered as a candidate material replacing Gd for the case when the rare earth material is weaponized. However the idea for new boron BA design is integral type because the integral type BA design has several benefits over the separate BA design, such as reduction of radioactive waste, more positions for BA location, etc. 10 B absorbs a neutron and produces helium by the following reaction: 10 B + n → 7 Li + 4 He The helium produced by the nuclear reaction may cause the increase of rod internal pressure and change the gap conductivity if the significant amount of helium gas is released to the gap between the pellet and the cladding. Thus, it is necessary to investigate the in-pile behaviors of B containing pellet. However, few experiment have been carried out so far on the behavior of in-pile produced helium in UO 2 fuel pellets, especially for the cases boron compound is mixed with UO 2 In this paper, we will evaluate the production and the release of helium depending on fuel. 10 B concentration in the fuel

  3. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    Science.gov (United States)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  4. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  5. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)

  6. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  7. Lead pellet retention time and associated toxicity in northern bobwhite quail (Colinus virginianus).

    Science.gov (United States)

    Kerr, Richard; Holladay, Steven; Jarrett, Timothy; Selcer, Barbara; Meldrum, Blair; Williams, Susan; Tannenbaum, Lawrence; Holladay, Jeremy; Williams, Jamie; Gogal, Robert

    2010-12-01

    Birds are exposed to Pb by oral ingestion of spent Pb shot as grit. A paucity of data exists for retention and clearance of these particles in the bird gastrointestinal tract. In the current study, northern bobwhite quail (Colinus virginianus) were orally gavaged with 1, 5, or 10 Pb shot pellets, of 2-mm diameter, and radiographically followed over time. Blood Pb levels and other measures of toxicity were collected, to correlate with pellet retention. Quail dosed with either 5 or 10 pellets exhibited morbidity between weeks 1 and 2 and were removed from further study. Most of the Pb pellets were absorbed or excreted within 14 d of gavage, independent of dose. Pellet size in the ventriculus decreased over time in radiographs, suggesting dissolution caused by the acidic pH. Birds dosed with one pellet showed mean blood Pb levels that exceeded 1,300 µg/dl at week 1, further supporting dissolution in the gastrointestinal tract. Limited signs of toxicity were seen in the one-pellet birds; however, plasma δ-aminolevulinic acid dehydratase (d-ALAD) activity was persistently depressed, suggesting possible impaired hematological function. © 2010 SETAC.

  8. Raw materials for pellets; Rohstoffe fuer Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, H.

    2008-01-15

    In order to keep the pellet prices stable, producers look for new raw materials. Sawdust as a former basis also competes with the manufacturers of chip boards and paper. Three classes of quality are discussed by the pellet manufacturers: (a) the DINplus pellet as a premium segment for which high-quality sawdust are used; (b) a wood pellet from natural wood with varying quality for the utilization in larger plants with filters; (c) the inexpensive industrial wood pellet which deviates from the DINplus commodity regarding to the ingredients and form and could be fired in larger power stations.

  9. Table-top pellet injector (TATOP) for impurity pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Kocsis, Gábor; Kovács, Ádám; Németh, József [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Ploeckl, Bernhard [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • A portable pellet injector for solid state pellets was designed. • Aims to study ELM triggering potential of impurity pellets. • Aims for multi-machine comparison of pellet–plasma interaction. • Max. pellet speed: 450 m/s, max. rate: 25 Hz. • Pellet size: 0.5–1.5 mm (diameter). - Abstract: A table-top pellet injector (TATOP) has been designed to fulfill the following scientific aims: to study the ELM triggering potential of impurity pellets, and to make pellet injection experiments comparable over several fusion machines. The TATOP is based on a centrifugal accelerator therefore the complete system is run in vacuum, ensuring the compatibility with fusion devices. The injector is able to launch any solid material (stable at room temperature) in form of balls with a diameter in the 0.5–1.5 mm range. The device hosts three individual pellet tanks that can contain e.g. pellets of different materials, and the user can select from those without opening the vacuum chamber. A key element of the accelerator is a two-stage stop cylinder that reduces the spatial scatter of pellets exiting the acceleration arm below 6°, enabling the efficient collection of all fired pellets. The injector has a maximum launch speed of 450 m/s. The launching of pellets can be done individually by providing TTL triggers for the injector, giving a high level of freedom for the experimenter when designing pellet trains. However, the (temporary) firing rate cannot be larger than 25 Hz. TATOP characterization was done in a test bed; however, the project is still in progress and before application at a fusion oriented experiment.

  10. Determination Of Simulated Pellet To Pellet Gap Using Neutron Radiography

    International Nuclear Information System (INIS)

    Kusnowo, A.

    1996-01-01

    The defect on the irradiated fuel element could be detected using neutron radiography. The defect could occurred in pellet to pellet gap, cladding, or even cladding to pellet gap. An investigations has been performed to detect pellet to pellet gap defect that might occur in an irradiated fuel element. An Al foil of 0,1; 0,2; 0,3; und 0,4 mm was inserted between pellets to simulate various pellet to pellet gap. The neutron radiography used had power of 700 kW. The result showed that this simulation represented well enough problems that irradiated fuel element may experience

  11. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  12. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece.

    Science.gov (United States)

    Karapanagioti, H K; Endo, S; Ogata, Y; Takada, H

    2011-02-01

    Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Pellet dimension checker

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1980-01-01

    A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)

  14. PELLETS AND PELLETIZATION: EMERGING TRENDS IN THE PHARMA INDUSTRY.

    Science.gov (United States)

    Zaman, Muhammad; Saeed-Ul-Hassan, Syed; Sarfraz, Rai Muhammad; Batool, Nighat; Qureshi, Muhammad Junaid; Akram, Muhammad Abdullah; Munir, Saiqa; Danish, Zeeshan

    2016-11-01

    The present time is considered as an era of advancements in drug delivery systems. Different novel approaches are under investigation that range from uniparticulate to multi particulate system, macro to micro and nano particulate systems. Pelletization is one of the novel drug delivery technique that provides an effective way to deliver the drug in modified pattern. It is advantageous in providing site specific delivery of the drug. Drugs with unpleasant taste, poor bioavailability and short biological half-life can be delivered efficiently through pellets. Their reduced size makes them more valuable as compared to the conventional drug deliv- ery system. Different techniques are used to fabricate the pellets such as extrusion and spheronization, hot melt extrusion, powder layering, suspension or solution layering, freeze pelletization and pelletization by direct compression method. Various natural polymers including xanthan gum, guar gum, tragacanth and gum acacia, semisynthetic polymers like cellulose derivatives, synthetic polymers like derivatives of acrylamides, can be used in pellets formulation. Information provided in this review is collected from various national and intemational research articles, review articles and literature available in the books. The purpose of the current review is to discuss pellets, their characterizations, different techniques of pelletization and the polymers with potential of being suitable for pellets formulation.

  15. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    Science.gov (United States)

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  16. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    Full Text Available This study evaluated the fermentation profile of orange bagasse ensiled with three levels of dry matter (DM using citrus pulp pellets as a moisture-absorbing additive. Thirty experimental silos (3 treatments, 5 storage times, 2 replicates were prepared using 25-liter plastic buckets containing orange bagasse and three levels of pelleted citrus pulp (0, 6% and 20% as additive. A completely randomized design with repeated measures over time was used. The periods of anaerobic storage were 3, 7, 14, 28 and 56 days. Natural orange bagasse contained 13.9% DM, which increased to 19.1% and 25.5% with the inclusion of 6% and 20% citrus pulp pellets, respectively. The apparent density was inversely correlated with DM content and a higher level of compaction (982 kg/m3 was observed in the mass ensiled with the lowest DM level (13.9%. Additionally, lower compaction (910 kg/m3 was found in the mass ensiled with the additive. The chemical composition of the mass ensiled with or without citrus pulp pellets did not differ significantly in terms of protein, ether extract, neutral detergent fiber, lignin or in vitro DM digestibility (P≥0.05, as expected. Thus, it was possible to analyze only the effect of the inclusion of citrus pulp pellets on the increase in DM content. The inclusion of 20% of the additive reduced (P<0.01 losses due to effluent (98% less and gas production (81% less compared to the control treatment at the end of the anaerobic storage period. In this treatment, a higher (P≤0.05 log number of lactic acid bacteria (4.61 log CFU/g was also observed compared to the other treatments, indicating that the increase in DM favored the growth of these bacteria. In addition, the low yeast count (about 1 log CFU/g sample and the pH below 4.0, which were probably due to the production of lactic and acetic acids, show that the orange bagasse is rich in fermentable soluble carbohydrates and is indicated for ensiling. In conclusion, orange bagasse can be

  17. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  18. The pellet handbook: the production and thermal utilisation of pellets

    National Research Council Canada - National Science Library

    Obernberger, Ingwald; Thek, Gerold

    2010-01-01

    ...: - International overview of standards for pellets - Evaluation of raw materials and raw material potentials - Quality and properties of pellets - Technical evaluation of the pellet production process...

  19. Pellet-press-to-sintering-boat nuclear fuel pellet loading system

    International Nuclear Information System (INIS)

    Bucher, G.D.

    1988-01-01

    This patent describes a system for loading nuclear fuel pellets into a sintering boat from a pellet press which ejects newly made the pellets from a pellet press die table surface. The system consists of: (a) a bowl having an inner surface, a longitudinal axis, an open and generally circular top of larger diameter, and an open and generally circular bottom of smaller diameter; (b) means for supporting the bowl in a generally upright position such that the bowl is rotatable about its longitudinal axis; (c) means for receiving the ejected pellets proximate the die table surface of the pellet press and for discharging the received pellets into the bowl at a location proximate the inner surface towards the top of the bowl with a pellet velocity having a horizontal component which is generally tangent to the inner surface of the bowl proximate the location; (d) means for rotating the bowl about the longitudinal axis such that the bowl proximate the location has a velocity generally equal, in magnitude and direction, to the horizontal component of the pellet velocity at the location; and (e) means for moving the sintering boat generally horizontally beneath and proximate the bottom of the bowl

  20. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa

    2016-01-01

    The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press (...

  1. PELLET: a computer routine for modeling pellet fueling in tokamak plasmas

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Iskra, M.A.; Howe, H.C.; Attenberger, S.E.

    1979-01-01

    Recent experimental results of frozen hydrogenic pellet injection into hot tokamak plasmas and substantial agreement with theoretical predictions have led to a much greater interest in pellets as a means of refueling plasmas. The computer routine PELLET has been developed and used as an aid in assessing pellet ablation models and the effects of pellets on plasma behavior. PELLET provides particle source profiles under various options for the ablation model and can be coupled either to a fluid transport code or to a brief routine which supplies the required input parameters

  2. Opportunities for Pellet Trade - Towards a Single European Pellet Market

    International Nuclear Information System (INIS)

    Pigaht, Maurice; Janssen, Rainer; Rutz, Dominik; Boehm, Thorsten; Vasen, Norbert; Vegas, Laura; Karapanagiotis, Nicolas

    2006-01-01

    The potential for Pellets trade in Europe was researched and assessed. Such trade is of key importance for the development of a European pellet market of sufficient supply, demand, price and quality standards. Three target markets were taken as case studies for the trade assessment: Greece, Spain and Italy. All three markets stand to profit greatly from international trade. For these markets, pellet imports could supply the basis for the development of a domestic boiler market. At the same time, pellet exports would allow the planning of larger pellet production plants. Whilst these additional costs amount to some 10-20% of the Pellets price, they are financially acceptable, especially for new markets and 'peaks' in the demand/supply of established markets

  3. Fish pelleting

    African Journals Online (AJOL)

    PUBLICATIONS1

    fish meal pelletizing machine utilized 4kg of ingredients to produce 3.77kg pellets at an effi- ciency of .... Design and fabrication of fish meal pellet processing machine ... 53 ... horsepower for effective torque application on .... two edges were tacked with a spot weld to hold ... then welded on to the shaft making sure that the.

  4. The US pellet market

    International Nuclear Information System (INIS)

    Elliot, S.

    2007-01-01

    Bear Mountain is the largest producer of pellets, firelogs, animal beddings, and barbecue pellets in Western United States. The company's branded products are sold directly to more than 400 retail dealers. This presentation included a series of graphs depicting Bear Mountain's USA pellet sales in tons from 2002 to 2007; truckloads to various distribution areas; pellet stoves and insert units shipped from 1998 to 2006; and hearth appliance shipments from 1998 to 2006. It was noted that in the United States, 98 per cent of the pellets sold come in 40 pound bags and are delivered to retailers by truck. Space is needed for inventory purposes, as each customer may use 2 to 4 tons. The pellets are used in small ash capacity room heaters. The pellet producers buy sawdust from area mills. It was noted that the soft housing market combined with competition for pulp and paper has pinched the supply of pellets. Pellets were in short supply in the west coast during the winter of 2006-2007 and in eastern United States during the winters of 2004-2005 and 2005-2006, indicating that summer production of pellets is required in order to meet winter demand. The key demand factors for pellets include stove sales; pellet pricing; pricing of other fuels; and, weather. The key supply factors for pellets include availability of sawdust; logistics; competition; and cost. The greatest challenge facing pellet producers is the high cost of freight. It was concluded that 2008 will be another year of uncertainty for pellet producers, due to the abundant supply of pellets in the east and midwest, and stabilized alternative fuel pricing. tabs., figs

  5. Production and ejection of solid hydrogen-isotope pellet (single pellet)

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Koichi; Miura, Yukitoshi; Ishibori, Ikuo

    1986-03-01

    The pneumatic gun type pellet injector (single pellet) has been constructed, which is basic type used at ORNL. The pellet in the carrier is 1.65 mm in diameter and 1.65 mm in length, and another is 1 mmD x 1 mmL. Hydrogen pellet velocity of about 900 m/s was observed at propellant gas (He) pressure of 14 kg/cm 2 . In the injection experiment into a plasma, typical velocity is 714 ∼ 833 m/s. These values are 80 ∼ 95 % of velocity calculated from the ideal gun model. The ejected pellet size is 71 ∼ 90 % of the hole size in the carrier disk (1.65 mmD x 1.65 mmL) and 46 ∼ 56 % (1 mmD x 1 mmL). The spread in the pellet trajectories is about 26 mm in diameter at a plasma center. (author)

  6. Effect of ablatant composition on the ablation of a fuelling pellet

    International Nuclear Information System (INIS)

    Chang, C.T.; Thomsen, K.; Piret, S.

    1988-01-01

    The single species neutral-shielding model for the ablation of a hydrogenic pellet is extended by considering the ablatant as a mixture of four species: molecular and atomic hydrogen, protons and electrons. Compared with the results of the frozen flow, (i.e. the single species molecular hydrogen gas model), results of the analysis showed that the presence of dissociation and ionization effects caused a marked difference of the ablatant state. The attenuations of the incoming electron energy and energy flux, however, are very much similar irrespective of whether the ablated flow is in a frozen or an equilibrium state. The scaling law of the pellet ablation rate with respect to the plasma state of Te, ne and the pellet radius remains the same; the ablation rate is reduced by approximately 15%. To examine the possible existence of a spherical shell around the pellet where most of the incoming electron energy is absorbed, acodmparison is made between the local electron collisional mean free path and the electron Larmor radius. A critical field at the ionization radius is evaluated. An effective spherical energyabsorbing region exists when the local field strength is below the critical value. For a plasma state of low Te and ne, (where the ablatant is hardly ionized), and for one near the thermonuclear condition (where a highly dense ablatant exists near the pellet), the effective energy absorption region is nearly spherical. 20 refs. (author)

  7. Axially alignable nuclear fuel pellets

    International Nuclear Information System (INIS)

    Johansson, E.B.; Klahn, D.H.; Marlowe, M.O.

    1978-01-01

    An axially alignable nuclear fuel pellet of the type stacked in end-to-end relationship within a tubular cladding is described. Fuel cladding failures can occur at pellet interface locations due to mechanical interaction between misaligned fuel pellets and the cladding. Mechanical interaction between the cladding and the fuel pellets loads the cladding and causes increased cladding stresses. Nuclear fuel pellets are provided with an end structure that increases plastic deformation of the pellets at the interface between pellets so that lower alignment forces are required to straighten axially misaligned pellets. Plastic deformation of the pellet ends results in less interactions beween the cladding and the fuel pellets and significantly lowers cladding stresses. The geometry of pellets constructed according to the invention also reduces alignment forces required to straighten fuel pellets that are tilted within the cladding. Plastic deformation of the pellets at the pellet interfaces is increased by providing pellets with at least one end face having a centrally-disposed raised area of convex shape so that the mean temperature and shear stress of the contact area is higher than that of prior art pellets

  8. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  9. 46 CFR 148.04-21 - Coconut meal pellets (also known as copra pellets).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Coconut meal pellets (also known as copra pellets). 148.04-21 Section 148.04-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... § 148.04-21 Coconut meal pellets (also known as copra pellets). (a) Coconut meal pellets; (1) Must...

  10. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Ichige, Hisashi; Kizu, Kaname; Iwahashi, Takaaki; Honda, Masao

    2001-03-01

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam 3 /s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  11. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  12. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  13. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  14. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.

    1995-01-01

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament

  15. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.

  16. Assessment of erbium as candidate burnable absorber for future PWR operaning cycles: A neutronic and fabrication study

    International Nuclear Information System (INIS)

    Asou, M.; Dehaudt, P.; Porta, J.

    1995-01-01

    Erbium begins to play a role in the control of PWR core reactivity. Generally speaking, burnable absorbers were only used to establish fresh core equilibrium. In France, since the possibility of extending irradiation cycles by 12 to 18 months, then up to 24 and 30 months, has been envisaged, there is renewed interest in burnable absorbers. The fabrication of PWR pellets has been investigated, providing high density and a good erbium homogeneity. The pellets characteristics were consistent with the specifications of PWR fuel. However, with the present process, the grain size remains small. Studies in progress now shows that erbium is not only a valuable alternative to gadolinium, for long fuel cycles (≥18 months) but also a new fuel concept. (orig.)

  17. Nuclear fuel pellet inspection system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Beatty, J.M.; Kugler, R.W.

    1992-01-01

    At least one axially extending linear portion of the peripheral surface of the pellet is optically sensed, a set of digital values representative of the pellet surface is generated, and the set is compared to a predetermined standard. Groups of adjacent locations on the surface of the pellet having values greater or less than the predetermined standard are identified, and the pellet is rejected, when a flawed area exceeds a predetermined size. During inspection, the pellet is moved axially through an inspection station by parallel support rolls, spaced by a distance less than the pellet diameter. The rolls are rotated upward and outward from each other, rotating the pellet, and chain dogs are positioned between the spaced rolls for engaging a pellet and moving it along the rolls. The pellet is rejected if its peripheral surface area is too great, and a reference pellet may be used. (author)

  18. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.

    Science.gov (United States)

    Xu, Min; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-01-15

    This study explored the application of 400-DS dissolution apparatus 7 for individual pellet dissolution methodology by a design of experiment approach and compared its capability with that of the USP dissolution apparatus 1 and 2 for differentiating the coat quality of sustained release pellets. Drug loaded pellets were prepared by extrusion-spheronization from powder blends comprising 50%, w/w metformin, 25%, w/w microcrystalline cellulose and 25%, w/w lactose, and then coated with ethyl cellulose to produce sustained release pellets with 8% and 10%, w/w coat weight gains. Various pellet properties were investigated, including cumulative drug release behaviours of ensemble and individual pellets. When USP dissolution apparatus 1 and 2 were used for drug release study of the sustained release pellets prepared, floating and clumping of pellets were observed and confounded the release profiles of the ensemble pellets. Hence, the release profiles obtained did not characterize the actual drug release from individual pellet and the applicability of USP dissolution apparatus 1 and 2 to evaluate the coat quality of sustained release pellets was limited. The cumulative release profile of individual pellet using the 400-DS dissolution apparatus 7 was found to be more precise at distinguishing differences in the applied coat quality. The dip speed and dip interval of the reciprocating holder were critical operational parameters of 400-DS dissolution apparatus 7 that affected the drug release rate of a sustained release pellet during the individual dissolution study. The individual dissolution methodology using the 400-DS dissolution apparatus 7 is a promising technique to evaluate the individual pellet coat quality without the influence of confounding factors such as pellet floating and clumping observed during drug release test with dissolution apparatus 1 and 2, as well as to facilitate the elucidation of the actual drug release mechanism conferred by the applied sustained

  19. PBX/TFTR pellet program PPPL

    International Nuclear Information System (INIS)

    Schmidt, G.

    1986-01-01

    Goals, current results and plans for pellet injection work for the PBX and TFTR programs are outlined. The present PBX injector is a prototype for ORNL 4 pellet condensing injectors. It has demonstrated that pellet injection on PBX can be used to increase overall density and alter the density profile. Future PBX operation requires reliable operation in deuterium and tritium, multiple pellet capability and ability to vary the size of pellets. These goals will require the construction of a new injector similar to the TFTR DPI system. It has also been demonstrated that pellets can efficiently fuel TFTR, producing a clean, high density plasma. Issues which are still outstanding include isotope exchange effects, use of different pellet sizes, optimization of pellet density perturbations and pellet penetration at high beam power

  20. Pellet transfer apparatus and method

    International Nuclear Information System (INIS)

    DiGrande, J.T.; Huggins, T.B. Sr.; Lambert, D.V.; Roberts, E.

    1991-01-01

    This patent describes a pellet inspection system having a station for inspecting a predetermined parameter of a pellet. It comprises means for aligning and guiding pellets in a first row to be advanced along a linear path past the pellet inspecting station and in a second row previously advanced along the linear path past the pellet inspecting station; and a transfer mechanism operable for engaging at least one of the pellets in each of the first and second rows and moving from an initial position through a forward stroke to advance the first and second rows of pellets along the liner path such that the inspecting station can inspect the preselected parameter of the pellets in the first row as they are advanced successively , the transfer mechanism being operable for disengaging the pellets and moving through a return stroke relative to the stationary advanced first and second rows of pellets back to the initial position

  1. Pelletizing and combustion of wood from thinning; Pelletering och foerbraenning av gallringsvirke

    Energy Technology Data Exchange (ETDEWEB)

    Oerberg, Haakan; Thyrel, Mikael; Kalen, Gunnar; Larsson, Sylvia

    2007-12-14

    This work has been done in order to find new raw material sources for an expanding pellet industry, combined with finding a use for a forest product that has no market today. The raw material has been forest from early thinning in two typical stands in Vaesterbotten. The purpose has been to evaluate this material as a raw material for producing pellets. Two typical stands have been chosen. One stand with only pine trees and one mixed stand dominated by birch. The soil of these stands was poor. Half of the trees were delimbed by harvest and half of the trees were not delimbed. This formed four different assortments that were handled in the study. After harvesting the assortments were transported to an asphalt area to be stored. Half of the material was stored during one summer and half of the material was stored during one year and one summer. The different assortments were upgraded to pellets and test combusted in the research plant BTC at the Swedish University of Agricultural Sciences, in Umeaa. The upgrading process contains of the following steps: 1.Chipping by a mobile chipper. 2.Low temperature drying (85 deg C). 3. Coarse shredding ({phi}15 mm). 4. Fine shredding ({phi}4-6 mm) and 5. Pelletizing (Die: {phi}8). Samples for fuel analysis were taken during the chipping. Analyses shows that the net calorific value for delimbed assortments are about 0,3 MJ/kg DM higher than for limbed assortments. Pellets made of the assortments Mixed limbed and Pine limbed has shown a net calorific value comparable to stem wood pellets. Pellets made of Birch delimbed show a net calorific value 0,4 MJ/kg DM lower than stem wood pellets. Analyses show that ash contents of the assortment Mixed delimbed was 1 %-unit higher compared to stem wood pellets. The assortment Pine delimbed and Birch delimbed has showed an ash contents comparable with stem wood pellets. The ash melting characteristics can reduce the value of a raw material. Low ash melting temperature for a fuel might cause

  2. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  3. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Dazen, J.R.; Denero, J.V.

    1976-01-01

    A nuclear fuel pellet loading machine is described including an inclined rack mounted on a base and having parallel spaced grooves on its upper surface arranged to support fuel rods. A fuel pellet tray is adapted to be placed on a table spaced from the rack, the tray having columns of fuel pellets which are in alignment with the open ends of fuel rods located in the rack grooves. A transition plate is mounted between the fuel rod rack and the fuel pellet tray to receive and guide the pellets into the open ends of the fuel rods. The pellets are pushed into the fuel rods by a number of mechanical fingers mounted on a motor operated block which is moved along the pellet tray length by a drive screw driven by the motor. To facilitate movement of the pellets in the fuel rods the rack is mounted on a number of spaced vibrators which vibrate the fuel rods during fuel pellet insertion. A pellet sensing device movable into an end of each fuel rod indicates to an operator when each rod has been charged with the correct number of pellets

  4. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  5. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available Stem rot caused by Sclerotinia sclerotiorum in many important dicotyledonous crops, including oilseed rape (Brassica napus, is one of the most devastating fungal diseases and imposes huge yield loss each year worldwide. Currently, breeding for Sclerotinia resistance in B. napus, as in other crops, can only rely on germplasms with quantitative resistance genes. Thus, the identification of quantitative trait locus (QTL for S. sclerotiorum resistance/tolerance in this crop holds immediate promise for the genetic improvement of the disease resistance. In this study, ten QTLs for stem resistance (SR at the mature plant stage and three QTLs for leaf resistance (LR at the seedling stage in multiple environments were mapped on nine linkage groups (LGs of a whole genome map for B. napus constructed with SSR markers. Two major QTLs, LRA9 on LG A9 and SRC6 on LG C6, were repeatedly detected across all environments and explained 8.54-15.86% and 29.01%-32.61% of the phenotypic variations, respectively. Genotypes containing resistant SRC6 or LRA9 allele showed a significant reduction in disease lesion after pathogen infection. Comparative mapping with Arabidopsis and data mining from previous gene profiling experiments identified that the Arabidopsis homologous gene of IGMT5 (At1g76790 was related to the SRC6 locus. Four copies of the IGMT5 gene in B. napus were isolated through homologous cloning, among which, only BnaC.IGMT5.a showed a polymorphism between parental lines and can be associated with the SRC6. Furthermore, two parental lines exhibited a differential expression pattern of the BnaC.IGMT5.a gene in responding to pathogen inoculation. Thus, our data suggested that BnaC.IGMT5.a was very likely a candidate gene of this major resistance QTL.

  6. Technology and distribution of pellets. Experience about the European network on wood pellets

    International Nuclear Information System (INIS)

    Rapp, S.W.

    1999-01-01

    Wood pellets might become the most important alternative to fossil fuels in the near future. As a bio-fuel it has the following characteristics: heat value, min 4.7 kWh/kg; ash fraction less than 1.0 vol. %; humidity less than 10 vol. %; diameter (rod shaped) min 6 mm and volumetric weight about 650 kg/m 3 . About 2.1 t pellets substitute 1000 l fuel oil. Sweden and Austria have more than 15 year experience in using wood pellets, followed by Germany. They are an environmentally friendly alternative for private houses, for district heating plants and especially suitable for densely built-up and inhabited areas. Having high energy density they can be transported to the areas with high energy requirements. Among their advantages are: low humidity, easy transport and storage, can be produced by renewable raw materials and provide new local jobs, fit for renewable energy systems with closed cycle. Disadvantages include: relatively more expensive for private houses compared to oil and gas and necessity of two times larger storage space than oil. Wood pellets are produced by all kind of paper waste and wood wastes from industry. They are especially suitable for small boiler plants and the oil burner can be replaced by a pellet burner in the same boiler. The leading producer of wood pellets is Sweden, of pellet stoves - USA. Pellet stoves, pellet burners and pellet boilers both for private houses and for heating plants are manufactured also in Sweden, Denmark,Finland, Germany, Austria and Ireland

  7. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  8. Review of pellet fueling

    International Nuclear Information System (INIS)

    Turnbull, R.J.

    1978-01-01

    Fusion reactors based on the Tokamak concept (possibly mirrors, too) will require a low energy method of fueling. Refueling by using solid pellets of hydrogen isotopes appears to be the most promising low energy technique. The main issue in assessing the feasibility of pellet fueling is the ability of the pellet to penetrate into the central region of the reactor. A review is presented of the various theories predicting the lifetime of the pellet and their regions of applicability. Among the phenomena considered are neutral ablation of the solid, ionized ablation of the solid, shielding of the pellet by neutral molecules and electrons and ions, flow of the ablation cloud, distortion of the magnetic field by the flow of an ionized ablation cloud, and charging and electrostatic shielding of the pellet. A brief summary of results of experiments done by the University of Illinois-Oak Ridge and Riso groups is presented. The results of these experiments indicate that, at least at the low temperatures and densities used, a neutral ablation-neutral shielding model is correct. Finally, since all indications are that in order for pellet fueling to be successful, high velocity pellets will be needed, a brief discussion of possible acceleration techniques is presented

  9. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  10. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  11. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  12. Multi-shot type pellet injection device

    International Nuclear Information System (INIS)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-01-01

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.)

  13. Multi-shot type pellet injection device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masaki; Uchikawa, Takashi; Kuribayashi, Shitomi.

    1988-07-27

    Purpose: To inject pellets at high speed without melting or sublimating not-injected pellets even at a long pellet injection interval. Constitution: In the conventional multi-shot pellet injection device, the pellet injection interval is set depending on the plasma retention time. However, as the pellet injection interval is increased, not-injected pellets are melted or sublimated due to the introduced heat of acceleration gases supplied from an acceleration gas introduction pipe to give an effect on the dimensional shape of the pellets. In view of the above, a plurality of pellet forming and injection portions each comprising a carrier, an injection pipe and a holder are disposed independently of each other and pellets are formed and injected independently to thereby prevent the thermal effects of the acceleration gases. (Kamimura, M.).

  14. Pellet imaging techniques on ASDEX

    International Nuclear Information System (INIS)

    Wurden, G.A.; Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W.

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D α D β , and D γ spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 x 10 17 cm -3 or higher in the regions of strongest light emission. A spatially resolved array of D α detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs

  15. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  16. Nuclear fuel pellet collating system and method

    International Nuclear Information System (INIS)

    Rieben, S.L.; Kugler, R.W.; Scherpenberg, J.J.; Wiersema, D.T.

    1990-01-01

    This patent describes a method of collating nuclear fuel pellets. It comprises: supporting a plurality of pellet supply trays and a plurality of pellet storage trays at a tray positioning station. Each of the supply trays containing in at least one row thereon a plurality of nuclear fuel pellets of an enrichment different from the enrichment pellets on at least some other of the supply trays; transferring one pellet supply tray from the tray positioning station and disposing the same at an input station of a pellet collating line; transferring one pellet storage tray from the tray positioning station and disposing the same at an output station of the pellet collating line; sweeping pellets in the at least one row thereof from the one pellet supply tray onto a work station of the pellet collating line located between the input and output stations thereof; measuring a desired length of pellets in the at least one row on the work station and separating the measured desired length of pellets from the remaining pellets, if any, in the row thereof; sweeping the remaining pellets, if any, in the row from the work station back onto the one pellet supply tray; transferring the one pellet supply tray and remaining pellets, if any, back to the tray positioning station; sweeping the measured desired length of pellets from the work station onto the one pellet storage tray; and transferring the one pellet storage tray and measured desired length of pellets back to the tray positioning station

  17. Second jet workshop on pellet injection: pellet fueling program in the United States. Summary

    International Nuclear Information System (INIS)

    Milora, S.L.

    1983-01-01

    S. Milora described the US programme on pellet injection. It has four parts: (1) a confinement experimental program; (2) pellet injector development; (3) theoretical support; and (4) tritium pellet study for TFTR

  18. Influences of sodium carbonate on physicochemical properties of lansoprazole in designed multiple coating pellets.

    Science.gov (United States)

    He, Wei; Yang, Min; Fan, Jun Hong; Feng, Cai Xia; Zhang, Su Juan; Wang, Jin Xu; Guan, Pei Pei; Wu, Wei

    2010-09-01

    Lansoprazole (LSP), a proton-pump inhibitor, belongs to class II drug. It is especially instable to heat, light, and acidic media, indicating that fabrication of a formulation stabilizing the drug is difficult. The addition of alkaline stabilizer is the most powerful method to protect the drug in solid formulations under detrimental environment. The purpose of the study was to characterize the designed multiple coating pellets of LSP containing an alkaline stabilizer (sodium carbonate) and assess the effect of the stabilizer on the physicochemical properties of the drug. The coated pellets were prepared by layer-layer film coating with a fluid-bed coater. In vitro release and acid-resistance studies were carried out in simulated gastric fluid and simulated intestinal fluid, respectively. Furthermore, the moisture-uptake test was performed to evaluate the influence of sodium carbonate on the drug stability. The results indicate that the drug exists in the amorphous state or small (nanometer size) particles without crystallization even after storage at 40°C/75% for 5 months. The addition of sodium carbonate to the pellet protects the drug from degradation in simulated gastric fluid in a dose-dependent manner. The moisture absorbed into the pellets has a detrimental effect on the drug stability. The extent of drug degradation is directly correlated with the content of moisture absorption. In conclusion, these results suggest that the presence of sodium carbonate influence the physicochemical properties of LSP, and the designed multiple coating pellets enhance the drug stability.

  19. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  20. Mitigation of end flux peaking in CANDU fuel bundles using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, D.; Chan, P.K., E-mail: dylan.pierce@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Shen, W. [Canadian Nuclear Safety Commission, Ottawa ON, (Canada)

    2015-07-01

    End flux peaking (EFP) is a phenomenon where a region of elevated neutron flux occurs between two adjoining fuel bundles. These peaks lead to an increase in fission rate and therefore greater heat generation. It is known that addition of neutron absorbers into fuel bundles can help mitigate EFP, yet implementation in Canada Deuterium Uranium (CANDU) type reactors using natural uranium fuel has not been pursued. Monte Carlo N-Particle code (MCNP) 6.1 was used to simulate the addition of a small amount of neutron absorbers strategically within the fuel pellets. This paper will present some preliminary results collected thus far. (author)

  1. Wood pellets in a power plant - mixed combustion of coal and wood pellets

    International Nuclear Information System (INIS)

    Nupponen, M.

    2001-01-01

    The author reviews in his presentation the development of Turku Energia, the organization of the company, the key figures of the company in 2000, as well as the purchase of energy in 2000. He also presents the purchase of basic heat load, the energy production plants of the company, the sales of heat in 2000, the emissions of the plants, and the fuel consumption of the plants in 2000. The operating experiences of the plants are also presented. The experiences gained in Turku Energia on mixed combustion of coal and wood pellets show that the mixing ratios, used at the plants, have no effect on the burning properties of the boiler, and the use of wood pellets with coal reduce the SO 2 and NO x emissions slightly. Simultaneously the CO 2 share of the wood pellets is removed from the emissions calculations. Several positive effects were observed, including the disappearance of the coal smell of the bunker, positive publicity of the utilization of wood pellets, and the subsidies for utilization of indigenous fuels in power generation. The problems seen include the tendency of wood pellets to arc the silos, especially when the pellets include high quantities of dust, and the loading of the trucks and the pneumatic unloading of the trucks break the pellets. Additionally the wood pellets bounce on the conveyor so they drop easily from the conveyor, the screw conveyors designed for conveying grain are too weak and they get stuck easily, and static electricity is easily generated in the plastic pipe used as the discharge pipe for wood pellet (sparkling tendency). This disadvantage has been overcome by using metal net and grounding

  2. Fuelling study of CANDU reactors using neutron absorber poisoned fuel

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Chan, P.K.; Bonin, H.W., E-mail: s25815@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    A comparative fuelling study is conducted to determine the potential gain in operating margin for CANDU reactors incurred by implementing a change to the design of the conventional 37-element natural uranium (NU) fuel. The change involves insertion of minute quantities of neutron absorbers, Gd{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, into the fuel pellets. The Reactor Fuelling Simulation Program (RFSP) is used to conduct core-following simulations, for the regular 37-element NU fuel, which is to be used as control for comparison. Preliminary results are presented for fuelling with the regular 37-element NU fuel, which indicate constraints on fuelling that may be relaxed with addition of neutron absorbers. (author)

  3. Microstructure and kinetics evolution in MgH{sub 2}–TiO{sub 2} pellets after hydrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mirabile Gattia, D., E-mail: daniele.mirabile@enea.it; Di Girolamo, G.; Montone, A.

    2014-12-05

    Highlights: • MgH{sub 2} was ball milled with TiO{sub 2} anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH{sub 2} powder with 5 wt.% TiO{sub 2} was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H{sub 2} absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction.

  4. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B.; Schmidt, G.L.

    1992-01-01

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  5. Pellets standard on the way

    International Nuclear Information System (INIS)

    Laeng, H.-P.

    2001-01-01

    This short article introduces the Swiss standard that has been adapted from the German standard for heating pellets made of untreated wood. The various requirements placed on the materials used in the manufacture of the pellets and their influence on the pollution emissions produced by boilers and ovens using the pellets as a heating fuel are listed. Further points in the standard referring to declarations to be made by the manufacturer, size and specific weight of the pellets and instructions for the storage and burning of the pellets are discussed

  6. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  7. Pellet injection in WVIIA

    International Nuclear Information System (INIS)

    Renner, H.; Wuersohing, E.; Weller, A.; Jaeckel, H.; Hartfuss, H.; Hacker, H.; Ringler, H.; Buechl, K.

    1986-01-01

    The results of pellet injection experiments in the Wendelstein VII A stellarator are presented. The injector was a single shot pneumatic gun using deuterium pellets. Experiments were carried out in both ECRH and NI plasmas. Data is shown for plasma density, energy confinement, penetration depth and pellet ablation. Results are compared to a neutral gas shielding model

  8. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Kee, R.W.; Denero, J.V.

    1975-01-01

    An apparatus for loading nuclear fuel pellets on trays for transfer in a system is described. A conveyor supplies pellets from a source to a loading station. When the pellets reach a predetermined position at the loading station, a manual or automatically operated arm pushes the pellets into slots on a tray and this process is repeated until pellet sensing switches detect that the tray is full. Thereupon, the tray is lowered onto a belt or other type conveyor and transferred to other apparatus in the system, such as a furnace for sintering, and in some cases, reduction of UO 2 . 2 to UO 2 . The pellets are retained on the tray and subsequently loaded directly into fuel rods to be used in the reactor core. (auth)

  9. Fuel rod pellet loading head

    International Nuclear Information System (INIS)

    Howell, T.E.

    1975-01-01

    An assembly for loading nuclear fuel pellets into a fuel rod comprising a loading head for feeding pellets into the open end of the rod is described. The pellets rest in a perforated substantially V-shaped seat through which air may be drawn for removal of chips and dust. The rod is held in place in an adjustable notched locator which permits alignment with the pellets

  10. Wood pellets : a worldwide fuel commodity

    International Nuclear Information System (INIS)

    Melin, S.

    2005-01-01

    Aspects of the wood pellet industry were discussed in this PowerPoint presentation. Details of wood pellets specifications were presented, and the wood pellet manufacturing process was outlined. An overview of research and development activities for wood pellets was presented, and issues concerning quality control were discussed. A chart of the effective calorific value of various fuels was provided. Data for wood pellet mill production in Canada, the United States and the European Union were provided, and various markets for Canadian wood pellets were evaluated. Residential sales as well as Canadian overseas exports were reviewed. Production revenues for British Columbia and Alberta were provided. Wood pellet heat and electricity production were discussed with reference to prefabricated boilers, stoves and fireplaces. Consumption rates, greenhouse gas (GHG) emissions, and fuel ratios for wood pellets and fossil fuels were compared. Price regulating policies for electricity and fossil fuels have prevented the domestic expansion of the wood pellet industry. There are currently no incentives for advanced biomass combustion to enter British Columbia markets, and this has led to the export of wood pellets. It was concluded that climate change mitigation policies will be a driving force behind market expansion for wood pellets. tabs., figs

  11. Quality wood chips - an alternative to pellets; Alternative zu Pellets. Qualischnitzel

    Energy Technology Data Exchange (ETDEWEB)

    Keel, A.

    2008-07-01

    This article takes a look at a new wood-chip product that features wood-chips that are dryer than traditional ones. The new 'quality chips' are also of a calibrated size and are supplied dust-free. Their low water content permits their use in the same areas as wood pellets, where, especially in summer, low water-content is important. The increasing use of pellets and the growing shortages of clean sawdust and shavings for their production is commented on, as is the use of forestry wastes in pellet production. The new wood-chip product is further discussed as being a direct alternative to pellets. The low 'grey energy' content for tree-felling, hacking, transport and the drying of the chips is quoted as being less than 5% of the energy in the chippings.

  12. Review: study of single-pellet injection experiments and development of pellet injector in JFT-2M

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Miura, Yukitoshi; Hasegawa, Kouichi; Sengoku, Seio

    1987-10-01

    The single pellet injector developed for JFT-2M and the improvement of plasma characteristics in the auxiliary-heated discharges by single-pellet injection are reviewed for the period 1982 - 1986. The pellet injector is a pneumatic type and the designed pellet size is 1.65 mmD x 1.65 mmL and 1 mmD x 1 mmL. The hydrogen, deuterium and mixed (H 2 + D 2 ) pellets can be produced with good reproducibility. Maximum pellet velocity is about 970 m/s (pellet is deuterium and propellant gas is hydrogen). In the pellet injection experiments into auxiliary-heated (NB, ICRF) divertor or limiter discharges, the plasma confinement time is improved by a factor of 1.4 - 1.7 compared with the confinement time in the Ohmic discharges. The achieved confinement time is longer than that on the high confinement mode (H-mode) in gas fueled discharges, although the phenomena are transient. (author)

  13. Pellet injection into ASDEX upgrade plasmas

    International Nuclear Information System (INIS)

    Lang, P.T.; Zohm, H.; Buechl, K.; Fuchs, J.C.; Gehre, O.; Gruber, O.; Lang, R.S.; Mertens, V.; Neuhauser, J.; Salzmann, H.

    1996-04-01

    This work comprises results obtained using the new centrifuge injection system for the two first years of pellet injection experiments at Asdex Upgrade until the end of the 1995 experimental campaign. The main aim of the pellet injection investigation is to develop scenarios allowing for a more flexible plasma density control means of injection of cryogenic solid hydrogen pellets. Efforts have been made to develop scenarios allowing more flexible plasma density control by injecting cryogenic solid hydrogen pellets. While the injection of pellets during ohmic discharges was found to be most efficient and also improves the plasma performance, increasing the auxiliary heating power causes a detoriation of the pellet fuelling efficiency. A further strong reduction of the pellet fuelling efficiency by an additional process was observed for the more reactor-relevant conditions of shallow particle deposition during H-mode phases. With injection during type I ELMy H-mode phases, each pellet was found to trigger the release of an ELM and therefore cause particle losses mainly from the edge region. In the type I ELMy H-mode, only sufficient pellet penetration allowed noticeable, persistent particle deposition in the plasma by the pellets. Applying adequate pellet injection conditions and favourable scenarios using combined pellet/gas puff refuelling, significant density ramp-up to densities exceeding the empirical Greenwald limit by up to a factor of two was achieved even for strongly heated H-mode plasmas. (orig.)

  14. Pelletizing using forest fuels and Salix as raw materials. A study of the pelletizing properties; Pelletering med skogsbraensle och Salix som raavara. En undersoekning av pelleterbarheten

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Lars; Oesterberg, Stefan [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-08-01

    Three common forest fuels: light thinning material, cull tree and logging residues as well as energy forest fuel (Salix) has been used as fuel pellet materials. Logging residues and Salix were stacked for approximately 6 and 10 months respectively. Parameters varied for each raw material have been the moisture content and the press length of the die. These parameters have been changed to obtain best possible quality, mainly concerning mechanical durability. Pellets were also produced from bark free shavings in order to use as a reference in this study. Physical as well as chemical properties have been compared. It was comparatively easy to press logging residues and Salix into durable pellets and, even with larger press length, the production of pellets was higher than it was for the other raw materials. The density was equal for all pellets while the mechanical durability was better for all tested raw materials compared with the reference material. The fact that all raw materials besides the reference material contains bark which has an improving effect on the degree of hardness. The quality properties were mainly about the same or better for pellets made of light thinning material and cull tree respectively, compared with the reference pellets. However, the ash content was approximately twice as high compared with the reference pellets. The pellets made of logging residues and Salix respectively were of very good quality concerning duration and density but the ash content was approximately 10 times higher than in the reference pellets. Additionally, the nitrogen content was 6-9 times higher compared with the reference pellets.

  15. Initial deuterium pellet experiments on FTU

    International Nuclear Information System (INIS)

    Snipes, J.A.

    1993-01-01

    Initial experiments have been performed with the Single Pellet INjector (SPIN) on FTU. SPIN is a two-stage cryogenic deuterium pellet injector capable of injection,a pellets with velocities up to 2.5 km/s. The nominal pellet mass for these experiments was approximately 1 x 10 20 atoms. These initial pellet experiments concentrated on studying pellet penetration under a variety of plasma conditions to compare with code predictions and to examine toroidal particle transport. The principal diagnostics used were two fast (∼1 μsec) photomultiplier tubes at nearly opposite toroidal locations with H α (D α ) interference filters (λ = 656 nm), a microwave cavity for pellet mass and velocity, a vertical array of soft x ray diodes without filters looking down onto the pellet, a DCN interferometer for electron density profiles, and a Michelson ECE system for electron temperature profiles. The time integral of the absolutely calibrated fast H α signal appears to give reasonable agreement with the expected pellet mass. Toroidal transport of deuterium ions from the pellet to nearly the opposite side of the tokamak agrees with calculated thermal deuterium velocities near the plasma edge. Comparison of the experimental results with code calculations using the Neutral Gas Shielding model show good agreement for the post-pellet electron temperature and density profiles and the H α profiles in some cases. Calculated penetration distances agree within 20%

  16. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  17. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Kupschus, P.; Bailey, W.; Gadeberg, M.; Hedley, L.; Twyman, P.; Szabo, T.; Evans, D.

    1987-01-01

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  18. Reciprocating pellet press

    Science.gov (United States)

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  19. Manufacture, delivery and marketing of wood pellets

    International Nuclear Information System (INIS)

    Huhtanen, T.

    2001-01-01

    Wood pellet is a cheap fuel, the use of which can easily bee automated. Pellet heating can be carried out with a stoker or a pellet burner, which can be mounted to oil and solid fuels boiler or to solid fuel boilers. Vapo Oy delivers wood pellet to farms and detached houses via Agrimarket stores. Vapo Oy delivers pellets to large real estates, municipalities, industry, greenhouses and power plants directly as bulk. The pellets are delivered either by trailers or lorries equipped with fan-operated unloaders. The use of wood pellets is a suitable fuel especially for real estates, the boiler output of which is 20 - 1000 kW. Vapo Oy manufactures wood pellets of cutter chips, grinding dust and sawdust. The raw material for Ilomantsi pellet plant is purchased from the province of North Karelia. The capacity of pelletizing plant is 45 000 t of pellets per year, half of which is exported mainly to Sweden and Denmark

  20. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  1. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  2. Numerical analysis of the influence of the fuel pellet shape on the pellet-cladding contact condition

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Denis, Alicia C.; Soba, Alejandro

    2004-01-01

    One of the problems of greater concern in nuclear fuels operation is that of pellet-cladding interaction (PCI), since it may be cause of fuel failure. In unfailed claddings, the occurrence of contact with the pellet is generally evidenced by a typical deformation pattern known as bamboo effect. In the present work different pellets' shapes are proposed, all of them with a chamfer next to the top and bottom surfaces. The performance of these pellets design is simulated with a numerical code, DIONISIO, previously developed in this working group, which makes use of the finite elements method. It provides the temperature, stress and strain distribution and the inventory of fission gases by analyzing phenomena like thermal expansion, elasticity, plasticity, creep, irradiation growth, PCI, swelling and densification. The pellets' design tested are grouped into two types: those with a straight chamfer running from the central pellet plane to both extremes (R-type pellets) and those with the chamfer occupying one quarter of the pellet's height leaving a central ring of the standard, cylindrical shape (M-type pellets). Different chamfer depths were numerically tested. It was found that the gap increase associated with the introduction of a deep chamfer is responsible for a significant temperature increment. But chamfers which leave a gap of 110 to 150 μm (assuming a normal fuel element with a gap 90 μm thick) gave place to pellets with an adequate thermal response and, moreover, the disappearance of the bamboo effect or even the appearance of an inverse effect, that is, pellets which make contact with the cladding in the region around its middle plane. (author) [es

  3. Impurity pellet injection experiments at TFTR

    International Nuclear Information System (INIS)

    Marmar, E.S.

    1992-01-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ('lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li + line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li + emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from ∼0.3 to ∼7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper

  4. Introducing wood pellet fuel to the UK

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, R A; Giffard, A

    2001-07-01

    Technical and non-technical issues affecting the introduction of wood pellet-fired heating to the UK were investigated with the aim of helping to establish a wood pellet industry in the UK. The project examined the growth and status of the industry in continental Europe and North America, reviewed relevant UK standards and legislation, identified markets for pellet heating in the UK, organised workshops and seminars to demonstrate pellet burning appliances, carried out a trial pelletisation of a range of biomass fuels, helped to set up demonstration installations of pellet-fired appliances, undertook a promotional campaign for wood pellet fuel and compiled resource directories for pellet fuel and pellet burning appliances in the UK. The work was completed in three phases - review, identification and commercialisation. Project outputs include UK voluntary standards for wood pellet fuel and combustion appliances, and a database of individuals with an interest in wood pellet fuel.

  5. Apparatus for unloading more particularly for nuclear fuel pellets, and to fill tubes with these pellets

    International Nuclear Information System (INIS)

    Fort, C.; Masson, S.

    1985-01-01

    The device allows to discharge the nuclear fuel pellets arranged in trays, and to introduce them to form stacks of pellets of determined length in storage tubes of associated diameter. It comprises a carriage to make the pellets slip from each tray on a guide vibrating bowl to a shute and then on a conveyor which loads the pellets into an intermediate tube to form a stack of the said length. A lift moves the intermediate tube transversally to its length between a loading position and a transfer position. Means allow to move a storage tube bundle to put each tube in its turn face to the transfer position. The stack of pellets contained in the intermediate tube which is in the transfer position is thus sent back to the storage tube facing it. The invention applies to pellets which have been sintered in the trays in inert atmosphere. These pellets have to be stored before several examinations and grinding, and finally loading into the cans to constitute fuel rods. These sintered pellets have a cylindrical shape and the invention spares them hard handling which would damage them [fr

  6. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  7. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  8. Pneumatic pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Hiratsuka, Hajime; Kawasaki, Kouzo.

    1990-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author)

  9. Pneumatic pellet injector for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Hiratsuka, Hajime; Kawasaki, Kouzo

    1990-11-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author).

  10. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  11. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  12. New pellet production and acceleration technologies for high speed pellet injection system 'HIPEL' in large helical device

    International Nuclear Information System (INIS)

    Viniar, I.; Sudo, S.

    1994-12-01

    New technologies of pellet production and acceleration for fueling and diagnostics purposes in large thermonuclear reactors are proposed. The technologies are intended to apply to the multiple-pellet injection system 'HIPEL' for Large Helical Device of NIFS in Japan. The pellet production technology has already been tested in a pipe-gun type pellet injector. It will realize the repeating pellet injection by means of decreasing of the pellet formation time into the pipe-gun barrel. The acceleration technology is based upon a new pump tube operation in two-stage gas gun and also upon a new conception of the allowable pressure acting on a pellet into a barrel. Some preliminary estimations have been made, and principles of a pump tube construction providing for a reliable long term operation in the repeating mode without any troubles from a piston are proposed. (author)

  13. Optimization of bentonite pellet properties

    International Nuclear Information System (INIS)

    Sanden, Torbjoern; Andersson, Linus; Jonsson, Esther; Fritzell, Anni

    2012-01-01

    Document available in extended abstract form only. SKB in Sweden is developing and implementing concepts for the final disposal of spent nuclear fuel. A KBS-3V repository consists of a deposition tunnel with copper canisters containing spent fuel placed in vertical deposition holes. The canisters are embedded in highly compacted bentonite. After emplacement of canisters and bentonite blocks, the tunnels will be backfilled and sealed with an in-situ cast plug at the entrance. The main concept for backfilling the deposition tunnels imply pre compacted blocks of bentonite stacked on a bed of bentonite pellet. The remaining slot between blocks and rock will be filled with bentonite pellets. The work described in this abstract is a part of the ASKAR-project which main goal is to make a system design based on the selected concept for backfilling. Immediately after starting the backfill installation, inflowing water from the rock will come in contact with the pellet filling and thereby influence the characteristics of the pellet filling. The pellet filling helps to increase the average density of the backfill, but one of the most important properties beside this is the water storing capacity which will prevent water from reaching the backfill front where it would disturb and influence the quality of the installation. If water flows through the pellet filling out to the backfilling front, there will be erosion of material which also will affect the quality of the installed backfill. In order to optimize the properties regarding water storing capacity and sensitivity for erosion a number of tests have been made with different pellet types. The tests were made in different scales and with equipment specially designed for the purpose. The performed tests can be divided in four parts: 1. Standard tests (determining water content and density of pellet fillings and individual pellets, compressibility of the pellet fillings and strength of the individual pellets); 2. Erosion

  14. Ranking of lignocellulosic biomass pellets through multicriteria modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.

  15. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo

    1995-01-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author)

  16. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Nuclear Energy Systems Engineering Center

    1995-03-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author).

  17. Pellets - A fuel with a future

    International Nuclear Information System (INIS)

    2004-01-01

    This special brochure presents a series of articles on the topic of wood pellets as a fuel of the future. Dr. Walter Steinmann, director of the Swiss Federal Office of Energy (SFOE) introduces the topic, stressing that the Swiss Confederation and the Cantons are supporting efforts to increase the sustainable use of wood fuels. Further articles take a closer look at pellets and their form. Pellets-fired heating units are introduced as a viable alternative to traditional oil-fired units. Tips are presented on the various ways of storing pellets. Quality-assurance aspects are examined and manufacturers and distributors of wood pellets are listed. A further article takes a closer look at a large Swiss manufacturer of pellets and describes the production process used as well as the logistics necessary for the transportation of raw materials and finished products. The brochure also presents a selection of pellet ovens and heating systems from various manufacturers. A further article illustrates the use of pellets as a means of heating apartment blocks built to the MINERGIE low-energy-consumption standard. In the example quoted, the classic combination of solar energy for the pre-heating of hot water and pellets for the central heating and hot water supply is used. The use of a buried spherical tank to store pellets - and thus the saving of space inside the building - is described in a further article that takes a look at the refurbishment of the heating system in a single-family home. Finally, various contributions presented at the Pellets Forum held in Berne in November 2003 are summarised in a short article

  18. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  19. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  20. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  1. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  2. Automatic pellet density checking machine using vision technique

    International Nuclear Information System (INIS)

    Kumar, Suman; Raju, Y.S.; Raj Kumar, J.V.; Sairam, S.; Sheela; Hemantha Rao, G.V.S.

    2012-01-01

    Uranium di-oxide powder prepared through chemical process is converted to green pellets through the powder metallurgy route of precompaction and final compaction operations. These green pellets are kept in a molybdenum boat, which consists of a molybdenum base and a shroud. The boats are passed through the high temperature sintering furnaces to achieve required density of pellets. At present MIL standard 105 E is followed for measuring density of sintered pellets in the boat. As per AQL 2.5 of MIL standard, five pellets are collected from each boat, which contains approximately 800 nos of pellets. The densities of these collected pellets are measured. If anyone pellet density is less than the required value, the entire boat of pellets are rejected and sent back for dissolution for further processing. An Automatic Pellet Density Checking Machine (APDCM) was developed to salvage the acceptable density pellets from the rejected boat of pellets

  3. Emissions from burning of softwood pellets

    International Nuclear Information System (INIS)

    Olsson, Maria; Kjaellstrand, Jennica

    2004-01-01

    Softwood pellets from three different Swedish manufacturers were burnt in laboratory scale to determine compounds emitted. The emissions were sampled on Tenax cartridges and assessed by gas chromatography and mass spectrometry. No large differences in the emissions from pellets from different manufacturers were observed. The major primary semi-volatile compounds released during flaming burning were 2-methoxyphenols from lignin. The methoxyphenols are of interest due to their antioxidant effect, which may counteract health hazards of aromatic hydrocarbons. Glowing combustion released the carcinogenic benzene as the predominant aromatic compound. However, the benzene emissions were lower than from flaming burning. To relate the results from the laboratory burnings to emissions from pellet burners and pellet stoves, chimney emissions were determined for different burning equipments. The pellet burner emitted benzene as the major aromatic compound, whereas the stove and boiler emitted phenolic antioxidants together with benzene. As the demand for pellets increases, different biomass wastes will be considered as raw materials. Ecological aspects and pollution hazards indicate that wood pellets should be used primarily for residential heating, whereas controlled large-scale combustion should be preferred for pellets made of most other types of biomass waste. (Author)

  4. Pellet-plasma interactions in tokamaks

    DEFF Research Database (Denmark)

    Chang, C.T.

    1991-01-01

    confinement time, offset by the accumulation of impurities at the plasma core is brought into focus. A possible remedy is suggested to diminish the effect of the impurities. Plausible arguments are presented to explain the apparent controversial observations on the propagation of a fast cooling front ahead......The ablation of a refuelling pellet of solid hydrogen isotopes is governed by the plasma state, especially the density and energy distribution of the electrons. On the other hand, the cryogenic pellet gives rise to perturbations of the plasma temperature and density. Based on extensive experimental...... data, the interaction between the pellet and the plasma is reviewed. Among the subjects discussed are the MHD activity, evolution of temperature and density profiles, and the behaviour of impurities following the injection of a pellet (or pellets). The beneficial effect of density peaking on the energy...

  5. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  6. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  7. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.

    2011-01-01

    The aim of the present study was to identify the key factors affecting the pelletizing pressure in biomass pelletization processes. The impact of raw material type, pellet length, temperature, moisture content and particle size on the pressure build up in the press channel of a pellet mill...... act as lubricants, lowering the friction between the biomass and the press channel walls. The effect of moisture content on the pelletizing pressure was dependent on the raw material species. Different particle size fractions, from below 0.5 mm up to 2.8 mm diameter, were tested, and it was shown...

  8. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    Keyvan, S.

    1999-01-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  9. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  10. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  11. SAF line pellet gaging

    International Nuclear Information System (INIS)

    Jedlovec, D.R.; Bowen, W.W.; Brown, R.L.

    1983-10-01

    Automated and remotely controlled pellet inspection operations will be utilized in the Secure Automated Fabrication (SAF) line. A prototypic pellet gage was designed and tested to verify conformance to the functions and requirements for measurement of diameter, surface flaws and weight-per-unit length

  12. Development and problems of pellet markets in Austria

    International Nuclear Information System (INIS)

    Nemestothy, K.P.; Rakos, C.

    2001-01-01

    Wood pellets became into Austrian markets in 1994. Up to then the Austrian industry had manufactured pellet fireplaces for export, but none was sold into Austria, because there were not pellets available in the Austrian markets. In spite of significant problems in the beginning and unfavourable economic conditions (decrease of oil prices) the pellet markets in Austria have increased since 1996 dynamically. Annual pellet deliveries have increased from 15 000 t/a to present 45 000 t/a. Customers and Austrian industry are interested in pellets and they believe in the future. The pellet manufacturing capacity increases continuously. In 1999 the capacity of 12 companies was 120 000 t. In 2003 the annual pellet consumption is estimated to over 100 000 tons and in 2010 about 200 000 tons. Main portion of the pellet manufactures in Austria is also used in the country by detached houses and small real estate houses. The pellet markets for large real estates are developing after the boiler manufacturers have started to produce pellet-fired equipment. The number of pellet-fired devices in 1997, sold to detached houses was 425, and in 2000 the number was 3500

  13. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  14. Nuclear fuel pellet transfer escalator

    International Nuclear Information System (INIS)

    Huggins, T.B. Sr.; Roberts, E.; Edmunds, M.O.

    1991-01-01

    This patent describes a nuclear fuel pellet escalator for loading nuclear fuel pellets into a sintering boat. It comprises a generally horizontally-disposed pellet transfer conveyor for moving pellets in single file fashion from a receiving end to a discharge end thereof, the conveyor being mounted about an axis at its receiving end for pivotal movement to generally vertically move its discharge end toward and away from a sintering boat when placed below the discharge end of the conveyor, the conveyor including an elongated arm swingable vertically about the axis and having an elongated channel recessed below an upper side of the arm and extending between the receiving and discharge ends of the conveyor; a pellet dispensing chute mounted to the arm of the conveyor at the discharge end thereof and extending therebelow such that the chute is carried at the discharge end of the conveyor for generally vertical movement therewith toward and away from the sintering boat

  15. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-01-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  16. Pellets - the advance of refined bioenergy

    International Nuclear Information System (INIS)

    Dahlstroem, J.E.

    1997-01-01

    This conference paper discusses the role of pellets in the use of bioenergy in Sweden. Pellets (P) have many advantages: (1) P are dry and can be stored, (2) P create local jobs, (3) P burn without seriously polluting the environment, (4) P are made from domestic and renewable resources, (5) P have high energy density, (6) P fit well in an energy system adapted to nature, (6) P are an economical alternative, both on a small scale and on a large scale. Pellets are more laborious to use than oil or electricity and require about three times as much storage space as oil. The Swedish pellets manufacturers per 1997 are listed. Locally pellets are most conveniently transported as bulk cargo and delivered to a silo by means of pressurized air. Long-distance transport use train or ship. At present, pellets are most often used in large or medium-sized heat plants, but equipment exists for use from private houses and up to the size of MW. Pellets may become the most important alternative to the fossil fuels which along with electricity today are dominating the small scale market. 1 fig., 1 table

  17. Pellet-plasma interaction studies at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Kocsis, G.; Belonohy, E.; Gal, K.; Kalvin, S.; Veres, G.; Lang, P.T.

    2005-01-01

    Pellets produced from cryogenic hydrogen isotopes are used for efficient plasma refueling. Beyond this 'classical' application, pellets pacing the frequency of Edge Localized Modes (ELMs) turned out to be a suitable technique to mitigate the power load on plasma facing components. Although pellet pacing is already integrated in the toolkit for plasma control, its underlying physics is still poorly understood. For investigations aiming to resolve where and how an ELM is triggered by the pellet imposed local perturbation precise knowledge of the ablation profile is required. This renewed and even boosted the interest to understand the interaction of pellets with the hot ambient plasma. Both the investigation of the pellet ablation and also its impact on the target plasma were highlighted. Dedicated investigations require precise information both in the space and time domain. E. g. it is necessary to determine the localization of the pellet at the moment it triggers the ELM as well as the actual imposed 3D distribution of the pellet cloud and its mass deposition profile. By these means, a spatial distribution can be mapped out for a local perturbation of the plasma sufficient to release ELMs. High resolution ablation profile and pellet path measurements at different pellet parameters (mass and velocity) could also help to understand the mechanism of the ELM triggering. Recently pellet-plasma interaction is intensively investigated both experimentally at ASDEX Upgrade tokamak and theoretically based on the obtained experimental data. To gain detailed information an observation system was developed at ASDEX Upgrade consisting of digital cameras that detect the pellet cloud distribution and photo diodes that measure the time evolution of the light emission. The great variety of possible combinations of different images, timings and wavelength selections makes the detection sophisticated. Combination of triggered fast camera images and photo diode signals also enables us

  18. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.

    Science.gov (United States)

    Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

    2015-01-01

    Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research.

  19. Injection of pellets into the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.

    1993-05-01

    This thesis presents experimental results from the analysis of the ablation process of pellets injected into the TCA tokamak. The determination of scaling laws relating the pellet penetration to the pellet and plasma parameters preceding injection, were used to improve the understanding of the interaction of the pellet with the plasma since a) the pellet and plasma conditions preceding injection were varied over a large range, and b) the estimation of the penetration depth takes into account the influence of striations in the deposition profile. Over 400 pellets with a range of sizes and speeds were injected into a range of plasma parameters in order to create a database from which the scaling laws could be deduced. The ablation characteristics were principally measured with two CCD video cameras, which provided good spatial resolution, and two filtered photomultiplier tubes, which provided good temporal resolution of the light emitted from the pellet ablation cloud. In the text, the traditional methods of analysing these diagnostics are examined with special reference to the presumptions that a) the pellet velocity is constant in the plasma, and b) the light intensity determined from the ablation cloud is proportional to the ablation rate. After successive data reduction from the database, in order to separate the effects of varying different parameters, the main observations were that, a) the pellet penetration varies as the square root of the pellet velocity, b) the scaling laws for the other parameters strongly depend on whether the pellet has sufficient velocity to reach the q=1 rational magnetic surface in the tokamak. (author) 45 refs

  20. Handling of Deuterium Pellets for Plasma Refuelling

    DEFF Research Database (Denmark)

    Jensen, Peter Bjødstrup; Andersen, Verner

    1982-01-01

    The use of a guide tube technique to inject pellets in pellet-plasma experiments is described. The effect of the guide tube on the mass and speed of a slowly moving pellet ( nu approximately 150 m s-1) is negligible. To improve the divergence in trajectories of the pellets on leaving the guide tube...

  1. Capabilities of nitrogen admixed cryogenic deuterium pellets

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, Igor; Sergeev, Vladimir [SPU, Saint-Petersburg (Russian Federation); Lang, Peter; Ploeckl, Bernhard; Cavedon, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP RMI, Budapest (Hungary); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Operation at high core density with high energy confinement - as foreseen in a future fusion reactor like DEMO - is being investigated at ASDEX Upgrade tokamak. The efficiency of pellet fuelling from the high-field side usually increases with increasing injection speed. Due to the fragile nature of the deuterium ice, however, the increment of pellet mass losses and subsequent pellet fragmentations take place when the speed is increased. Studies show, that admixing of a small amount of nitrogen (N{sub 2}) into D{sub 2} gas can be favorable for the mechanical stability of pellets. This might be helpful for deeper pellet penetration. Besides, seeding by N{sub 2} can enhance plasma performance due to both increasing the energy confinement time and reducing the divertor heat load in the envisaged ELMy H-mode plasma scenario. Fuelling efficiency of N{sub 2}-admixed solid D{sub 2} pellets and their nitrogen seeding capabilities were investigated. It was found that both the overall plasma density increase and the measured averaged pellet penetration depth were smaller in case of the admixed (1% mol. in the gas resulting in about 0.8% in the ice) pellet fuelling. Possibility of the N{sub 2}-seeding by admixed pellets was confirmed by CXRS measurements of N{sup 7+} content in plasma.

  2. Wood pellets for stoker burner

    International Nuclear Information System (INIS)

    Nykaenen, S.

    2000-01-01

    The author of this article has had a stoker for several years. Wood chips and sod peat has been used as fuels in the stoker, either separately or mixed. Last winter there occurred problems with the sod peat due to poor quality. Wood pellets, delivered by Vapo Oy were tested in the stoker. The price of the pellets seemed to be a little high 400 FIM/500 kg large sack. If the sack is returned in good condition 50 FIM deposit will be repaid to the customer. However, Vapo Oy informed that the calorific value of wood pellets is three times higher than that of sod peat so it should not be more expensive than sod peat. When testing the wood pellets in the stoker, the silo of the stoker was filled with wood pellets. The adjustments were first left to position used for sod peat. However, after the fire had ignited well, the adjustments had to be decreased. The content of the silo was combusted totally. The combustion of the content of the 400 litter silo took 4 days and 22 hours. Respectively combustion of 400 l silo of good quality sod peat took 2 days. The water temperature with wood pellets remained at 80 deg C, while with sod peat it dropped to 70 deg C. The main disadvantage of peat with small loads is the unhomogenous composition of the peat. The results of this test showed that wood pellets will give better efficiency than peat, especially when using small burner heads. The utilization of them is easier, and the amount of ash formed in combustion is significantly smaller than with peat. Wood pellets are always homogenous and dry if you do not spoil it with unproper storage. Pellets do not require large storages, the storage volume needed being less than a half of the volume needed for sod peat. When using large sacks the amount needed can even be transported at the trunk of a passenger car. Depending on the area to be heated, a large sack is sufficient for heating for 2-3 weeks. Filling of stoker every 2-5 day is not an enormous task

  3. Railgun pellet injection system for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  4. Pellets direct from the forest

    International Nuclear Information System (INIS)

    Keel, A.

    2006-01-01

    This article takes a look at developments in the market for wood pellets and their production from forest wood. The general situation in the booming pellets market is reviewed and the potential of this climate-neutral form of heating is discussed. Figures and prognoses on the use of wood pellets are presented. In particular, the potential for the use of forestry wood supplies to augment the use of wood wastes and sawdust from sawmills is looked at

  5. Description of pelletizing facility

    Energy Technology Data Exchange (ETDEWEB)

    Vojin Cokorilo; Dinko Knezevic; Vladimir Milisavljevic [University of Belgrade, Belgrade (Serbia). Faculty of Mining and Geology

    2006-07-01

    A lot of electrical energy in Serbia was used for heating, mainly for domestics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal present difficulties at each deep mine because of environmental pollution, spontaneous combustion, low price, smaller market etc. To overcome the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, the University of Belgrade designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project. Using a CPM machine Model 7900, a laboratory facility, then a semi-industrial pelletizing facility followed by an industrial facility was set up and produced good quality pellets. The plant comprised a coal fines hopper, conveyor belt, hopper for screw conveyor, screw conveyor, continuous mixer conditioner, binder reservoir, pump and pipelines, pellet mill, product conveyor belt and product hopper. 4 refs., 3 figs., 1 tab.

  6. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    1993-01-01

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  7. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  8. Reduction in degree of absorber-cladding mechanical interaction by shroud tube in control rods for the fast reactor

    International Nuclear Information System (INIS)

    Donomae, Takako; Katsuyama, Kozo; Tachi, Yoshiaki; Maeda, Koji; Yamamoto, Masaya; Soga, Tomonori

    2011-01-01

    Research and development of a long-life control rod for fast reactors is being conducted at Joyo. One of the challenges in developing a long-life control rod is the restraint of absorber-cladding mechanical interaction (ACMI). First, a helium-bonding rod was selected as a control rod for the experimental fast reactor Joyo, which is the first liquid metal fast reactor in Japan. Its lifetime was limited by ACMI, which is induced by the swelling and relocation of B 4 C pellets. To restrain ACMI, a shroud tube was inserted into the gap between the B 4 C pellets and the cladding tube. However, once B 4 C pellets cracked and broke into small fragments, relocation occurred. After this, the narrow gap closed immediately as the degree of B 4 C pellet swelling increased. To solve this problem, the gap was widened during design, and sodium was selected as the bonding material instead of helium to restrain the increase in pellet temperature. Irradiation testing of the modified sodium-bonding control rod confirmed that ACMI would be restrained by the shroud tube regardless of the occurrence of B 4 C pellet relocation. As a result of these improvements, the estimated lifetime of the control rod at Joyo was doubled. In this paper, the results of postirradiation examination are reported. (author)

  9. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  10. Vertical pellet injection in FTU discharges

    International Nuclear Information System (INIS)

    Giovannozzi, E.; Annibaldi, S.V.; Buratti, P.

    2005-01-01

    Central fuelling and pellet enhanced performance modes have been obtained with pellets injected vertically from the high field side on the FTU tokamak. Four phases have been recognized: ablation of the pellets, drifting plasmoids, MHD modes which take the density to the centre of the discharge and finally an anomalous drift which further increases the density peaking. Pellet ablation data have been compared with values from a pellet ablation and deposition code. Comparison between 0.8 and 1.1 MA discharges at a high magnetic field (B T = 7 T) has been carried out: a higher performance has been obtained with the latter due to the higher target density and the larger inversion radius which would increase the effects of m = 1 modes to take the density to the plasma centre

  11. Factors Affecting the Sintering of UO2 Pellets

    International Nuclear Information System (INIS)

    El-Hakim, E.; Afifi, Y.K.

    1999-01-01

    Sintering of UO 2 pellets is affected by many parameters such as; UO 2 powder parameters, the conditions followed for preparing the green UO 2 pellets and the sintering scheme(heating and cooling rate, soaking time and temperature). The aim of this work is to study the effect of some these parameters on the characteristics of the sintered UO 2 pellets were qualified according to the technical specifications of Candu fuel. Pressed green pellets at different pressing force (15 to 50 k N) were sintered at 1650 ±20 degree for two hours to study the effect of pressing force on the sintered pellets characteristics; visual inspection, pellet dimensions, density and shrinkage ratio. Compacted green pellets at a pressing force of 48 k N were sintered at different sintering temperature (1600± 20 degree, 1650 ±20 degree, 1700± 20 degree) for two hours to study the effect of sintering temperature on the sintered pellets characteristics. The effect of the heating rate (200,300 and 400 degree per hour) on the sintered pellets characteristics was also investigated. It was found that the pressing force used to compact the green pellets had an effect on the density of the sintered pellets. Pellets pressed at 15 k N have a density of 10.3 g/cm 3 while, those pressed at 50 k N have a density of 10.6 g/cm 3. It was observed that increasing the heating rate to 400 degree /h lead to cracked pellets

  12. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.W.

    1993-01-01

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  13. Power matching for pellet fusion

    International Nuclear Information System (INIS)

    Martin, R.L.; Arnold, R.C.

    1976-01-01

    The number of beams required for optimum power transfer from a given power source to the surface of a pellet is derived. The result is valid for linear optical systems, hence, for pellet fusion by laser or high energy ion beams. The optimum number of beams turns out to be inconceivably large for any practical system. Practical pellet fusion by lasers or high energy heavy ion beams must thus compromise physical principles in favor of reduced cost and optical complexity

  14. Production of hydrogen, nitrogen and argon pellets with the Moscow-Juelich pellet target

    International Nuclear Information System (INIS)

    Buescher, M.; Boukharov, A.; Semenov, A.; Gerasimov, A.; Chernetsky, V.; Fedorets, P.

    2009-01-01

    Targets of frozen droplets ("pellets") from various liquefiable gases like H 2 , D 2 , N 2 , Ne, Ar, Kr and Xe are very promising for high luminosity experiments with a 4π detector geometry at storage-rings. High effective target densities (> 10 15 atoms/cm 2 ), a small target size (⊘ ≈ 20–30 μm), a low gas load and a narrow pellet beam are the main advantages of such targets. Pioneering work on pellet targets has been made at Uppsala, Sweden. A next generation target has been built at the IKP of FZJ in collaboration with two institutes (ITEP and MPEI) from Moscow, Russia. It is a prototype for the future pellet target at the PANDA experiment at FAIR/HESR (supported by INTAS 06-1000012-8787, 2007/08) and makes use of a new cooling and liquefaction method, based on cryogenic liquids instead of cooling machines. The main advantages of this method are the vibration-free cooling and the possibility for cryogenic jet production from various gases in a wide range of temperatures. Different regimes of pellet production from H 2 , N 2 and Ar have been observed and their parameters have been measured. For the first time, mono-disperse and satellite-free droplet production was achieved for cryogenic liquids from H 2 , N 2 and Ar. (author)

  15. Wood pellets. The cost-effective fuel

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The article is based on an interview with Juhani Hakkarainen of Vapo Oy. Wood pellets are used in Finland primarily to heat buildings such as schools and offices and in the home. They are equally suitable for use in larger installations such as district heating plants and power stations. According to him wood pellets are suitable for use in coal-fired units generating heat, power, and steam. Price-wise, wood pellets are a particularly competitive alternative for small coal-fired plants away from the coast. Price is not the only factor on their side, however. Wood pellets also offer a good environmental profile, as they burn cleanly and generate virtually no dust, an important plus in urban locations. The fact that pellets are a domestically produced fuel is an added benefit, as their price does not fluctuate in the same way that the prices of electricity, oil, coal, and natural gas do. The price of pellets is largely based on direct raw material and labour costs, which are much less subject to ups and downs

  16. Optimization of a multi-parameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Stelte, Wolfgang; Posselt, Dorthe

    2011-01-01

    Pelletization of biomass residues increases the energy density, reduces storage and transportation costs and results in a homogeneous product with well-defined physical properties. However, raw materials for fuel pellet production consist of ligno-cellulosic biomass from various resources...... and error” experiments and personal experience. However in recent years the utilization of single pellet press units for testing the biomass pelletizing properties has attracted more attention. The present study outlines an approach where single pellet press testing is combined with modeling to mimic...... the pelletizing behavior of new types of biomass in a large scale pellet mill. This enables a fast estimation of key process parameters such as optimal press channel length and moisture content. Secondly, the study addresses the question of the origin of the observed relationship between pelletizing pressure...

  17. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  18. Solidification of radioactive waste solutions by pelletization technique

    International Nuclear Information System (INIS)

    Akbar, A.H.; Koester, R.; Rudolph, G.

    1980-04-01

    A possible way of performing the cement fixation of radioactive wastes is the incorporation into cement pellets on a pan pelletizer, followed by embedding the pellets into an inactive cement matrix. This procedure is suitable for various types of waste, particularly for medium level liquid wastes, and can be used both at drum disposal and at in-situ solidification. This report describes some initial studies on the pelletization technique using a laboratory pelletizer. Formation and size of the pellets have been found to be determined by speed, angle, and load of the pan, ratio and mode of addition of the liquid and solid components, ect. Pellets in various compositions have been produced from cement and water or simulated waste solution, in some cases with the addition of bentonite for improving cesium retention. Some mechanical properties of the pellets such as fall height of fresh pellets, development of hardness (crush test), impact and abrasion resistance, have been determined. Some preliminary experiments were done on backfilling the void space between the pellets - about 40 per cent of the bulk volume - with cement grouts of appropriate compositions. (orig.) [de

  19. Linear resonance acceleration of pellets

    International Nuclear Information System (INIS)

    Mills, R.G.

    1978-01-01

    A possible requirement for the acceleration of macroscopic pellets to velocities exceeding 10 4 meters per second implies the development of new apparatus. A satisfactory approach might be the linear resonance accelerator. Such apparatus would require the charging of pellets to very high values not yet demonstrated. The incompatibility of phase stability with radial stability in these machines may require abandoning phase stability and adopting feedback control of the accelerating voltage to accommodate statistical fluctuations in the charge to mass ratio of successive pellets

  20. An advanced cold moderator using solid methane pellets

    International Nuclear Information System (INIS)

    Foster, C.A.; Carpenter, J.M.

    2001-01-01

    This paper reports developments of the pellet formation and transport technologies required for producing a liquid helium or hydrogen cooled methane pellet moderator. The Phase I US DOE SBIR project, already completed, demonstrated the production of 3 mm transparent pellets of frozen methane and ammonia and transport of the pellets into a 40 cc observation cell cooled with liquid helium. The methane pellets, formed at 72 K, stuck together during the loading of the cell. Ammonia pellets did not stick and fell readily under vibration into a packed bed with a 60% fill fraction. A 60% fill fraction should produce a very significant increase in long-wavelength neutron production and advantages in shorter pulse widths as compared to a liquid hydrogen moderator. The work also demonstrated a method of rapidly changing the pellets in the moderator cell. The Phase II project, just now underway, will develop a full-scale pellet source and transport system with a 1.5 L 'moderator' cell. The Phase II effort will also produce an apparatus to sub-cool the methane pellets to below 20 K, which should prevent the methane pellets from sticking together. In addition to results of the phase I experiments, the presentation includes a short video of the pellets, and a description of plans for the Phase II project. (author)

  1. Apparatus for feeding nuclear fuel pellets to a loading tray

    International Nuclear Information System (INIS)

    Huggins, T.B.

    1979-01-01

    Apparatus for feeding nuclear fuel pellets at a uniform predetermined rate between pellet centering and grinding apparatus and a tray for loading pellets into nuclear fuel rod. Pellets discharged from the grinding apparatus are conveyed by a belt to a drive wheel forcing the pellets in engagement with the belt. The pellets under the drive wheel are capable of pushing a line of about 36 pellets onto a pellet dumping mechanism. As the dumping mechanism is actuated to dump the pellets on to a loading tray, the pellets moving toward the mechanism are stopped and the drive wheel is simultaneously lifted off the pellets until the pellet dumping process is completed. (U.K.)

  2. Wood pellets offer a competitive energy option in Sweden

    International Nuclear Information System (INIS)

    2001-01-01

    The market for wood pellets in Sweden grew rapidly during the 1990s and production now stands at around 550,000 tonnes/year. More efficient combustion technology, pellet transportation, pellet storage and pellet delivery have also been developed. The pellets, which are produced by some 25 plants, are used in family houses, large-scale district heating plants, and combined heat and power (CHP) plants. Most of the pellets are made from biomass resources such as forest residues and sawdust and shavings from wood mills. Pellet production, the energy content of saw mill by-products, the current market and its potential for future expansion, the way in which the pellets are used in different combustion systems, the theoretical market potential for wood pellet heating installations in small houses and the Swedish P-certificate system for the certification of pellet stoves and burners are described

  3. A centrifuge CO2 pellet cleaning system

    Science.gov (United States)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  4. Pellet fired appliances. Market survey. 7. rev. ed.; Pelletheizungen. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The market survey under consideration reports on pellet central heating systems and pellet fired appliances. The main chapters of this market survey are concerned to: (1) Information on wood pellets and pellet fired appliances; (2) Information about the interpretation of the market survey; (3) Survey of all compared pellet fired appliances with respect to the nominal power; (4) Price lists of pellet fired appliances and pellet central heating systems; (5) Type sheets of the compared pellet fired appliances and pellet central heating systems. Finally, this brochure contains the addresses of the produces and distribution partners of pellet fired appliances and pellet central heating systems.

  5. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    Science.gov (United States)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  6. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    1989-12-01

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  7. Advanced turbine/CO2 pellet accelerator

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.

    1994-01-01

    An advanced turbine/CO 2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit

  8. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  9. Quality properties of fuel pellets from forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lehtikangas, P.

    1999-07-01

    Nine pellet assortments, made of fresh and stored sawdust, bark and logging residues (a mixture of Norway spruce and Scots pine) were tested directly after production and after 5 months of storage in large bags (volume about 1 m{sup 3} loose pellets) for moisture content, heating value and ash content. Dimensions, bulk density, density of individual pellets and durability were also determined. Moreover, sintering risk and contents of sulphur, chlorine, and lignin of fresh pellets were determined. It is concluded that bark and logging residues are suitable raw materials for pellets production, especially regarding durability and if the ash content is controlled. Pellets density had no effect on its durability, unlike lignin content which was positively correlated. The pellets had higher ash content and lower calorific heating value than the raw materials, probably due to loss of volatiles during drying. In general, the quality changes during storage were not large, but notable. The results showed that storage led to negative effects on durability, especially on pellets made of fresh materials. The average length of pellets was decreased due to breakage during storage. Microbial growth was noticed in some of the pellet assortments. Pellets made out of fresh logging residues were found to be weakest after storage. The tendency to reach the equilibrium with the ambient moisture content should be taken into consideration during production due to the risk of decreasing durability.

  10. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  11. Apparatus and method for loading pellets into fuel rods

    International Nuclear Information System (INIS)

    Widener, W.H.

    1991-01-01

    An apparatus for feeding a column of aligned cylindrical pellets along a longitudinal path of travel and while identifying a pellet of improper size. It comprises guide surface means adapted for supporting a plurality of serially arranged and longitudinally oriented cylindrical pellets, and such that the pellets are adapted to be slidably and longitudinally advanced along the guide surface means to define an advancing column of pellets, and pellet segregation means positioned adjacent one end of the guide surface means for permitting each advancing pellet having a cross-sectional diameter equal to a predetermined minimum diameter to advance thereacross while permitting each advancing pellet having a cross-sectional diameter less than the predetermined minimum diameter to drop to a level below the level of the remaining pellets in the advancing column

  12. Application of EMILAC to pellet injection

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Yamasaki, Takao; Nakamura, Hirone; Hashimoto, Mitsuo; Miya, Kenzo

    1987-01-01

    A new type of electromagnetic accelerator for pellet injection is proposed. Projectile of cylinder shape is accelerated with the repulsive force generated by a combination of two coils, which are different in purpose. And the accelerator is named EMILAC (Electro-Magnetic Inductive Linear Accelerator). In this paper, we investigate the method of applying EMILAC to pellet injection, and calculate the ablation rate of pellet. (author)

  13. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  14. Dissolution test for homogeneity of mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Experiments were performed to determine the relationship between fuel pellet homogeneity and pellet dissolubility. Although, in general, the amount of pellet residue decreased with increased homogeneity, as measured by the pellet figure of merit, the relationship was not absolute. Thus, all pellets with high figure of merit (excellent homogeneity) do not necessarily dissolve completely and all samples that dissolve completely do not necessarily have excellent homogeneity. It was therefore concluded that pellet dissolubility measurements could not be substituted for figure of merit determinations as a measurement of pellet homogeneity. 8 figures, 3 tables

  15. Trapping of pellet cloud radiation in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Miroshinikov, I.V.; Sudo, Shigeru; Namba, C.; Lisitsa, V.S.

    2001-01-01

    The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)

  16. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  17. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture cont...... of the torrefied pellets was higher and the particle size distribution after grinding the pellets was more uniform compared to conventional wood pellets....

  18. Manufacture of Regularly Shaped Sol-Gel Pellets

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  19. Fuel pellets from lodge pole pine first thinnings

    Energy Technology Data Exchange (ETDEWEB)

    Hoegqvist, Olof; Larsson, Sylvia H.; Samuelsson, Robert; Lestander, Torbjoern A. [Swedish Univ. of Agricultural Sciences, Unit of Biomass Technology and Chemistry, Umeaa (Sweden)], e-mail: sylvia.larsson@slu.se

    2012-11-01

    Stemwood and whole trees of lodgepole pine (Pinus contorta Dougl. var. latifolia L.) were evaluated as raw materials for fuel pellets in a pilot scale pelletizing study. Pellet and pelletizing properties were measured and modeled in an experimental design where raw material moisture content (%), die channel length (mm), and storage time (days) were varied. Additionally, ash contents (%), extractive contents (%), and ash melting temperatures (deg C) were analyzed. For both assortments, raw material moisture content was positively correlated to pellet bulk density and durability (range 9-13%, wet base). Both assortments had ash contents below 0.7%, and thus, fulfilled the demands for class A1 pellets.

  20. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Campos, L.L.; Rosa, L.A.R. da.

    1988-07-01

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137 Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO 4 : Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author) [pt

  1. Electron-beam rocket acceleration of hydrogen pellets

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.; Whealton, J.H.

    1992-01-01

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed

  2. Influences on particle shape in underwater pelletizing processes

    Energy Technology Data Exchange (ETDEWEB)

    Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut für Kunststofftechnik, University of Stuttgart (Germany)

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  3. Customized bentonite pellets. Manufacturing, performance and gap filling properties

    Energy Technology Data Exchange (ETDEWEB)

    Marjavaara, P.; Holt, E.; Sjoeblom, V. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-12-15

    The goal of this work was to provide knowledge about how to manufacture customized bentonite pellets and how customized bentonite pellets perform in practice during the nuclear repository construction process. The project was mainly focused on laboratory experimental tests to optimize the pellet filling by customizing the raw materials and pellet manufacturing. Bentonite pellets were made using both extrusion and roller compaction methods. The pellets were intended for use in gaps between compacted bentonite and the rock walls in both buffer deposition holes and tunnel backfilling. Performance of different types of custom-made pellets were evaluated with regard to their ease of manufacturing, density, crush strength, abrasion resistance, water holding capacity, free swelling and also their thermal conductivity. These evaluations were done in both Finland (by VTT) and Canada (by AECL). Over 50 different varieties of pellets were roller-compaction manufactured at AECL in Canada and 20 types of extrusion pellets at VTT in Finland. The parameters that were varied during manufacturing included: bentonite raw material type, water content, pellet sizes, bentonite compaction machine parameters, use of recycled pellets, and addition of two different types of filler (illite or granitic sand) at varying addition percentages. By examining the pellets produced with these methods and materials the performance and behaviour of the bentonite pellets were evaluated in laboratory with selected tests. The work done using extrusion pellets showed that it was possible to manufacture pellets with higher water contents, up to 21 % from MX-80. This water content value was higher than what was typically possible using roller-compaction method in this study. Higher water content values allow closer compatibility with the designed bentonite buffer water content. The extrusion tests also showed that the required production simulation runs could be made successfully with reference type of MX

  4. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi.

    1988-01-01

    Purpose: To prevent pellet destruction due to thermal stresses and reduce the swelling or issue of corrosive gaseous fission products. Method: Raw material powder for nuclear fuel pellets constitute so-called secondary particles in which a plurality of primary particles are coagulated. The degree of coagulation of the secondary particles can be determined as the bulk density of the powder. In view of the above, when pellets are sintered by using a powder mixture comprising a powder having the same constitution and different bulk density from the main raw powder as the sub-raw material powder incorporated to the main raw material powder, the pellet tissue provides such a fine porous structure that fine gaps are present a the periphery of high density secondary particles, since there is a difference in the shrinkage factor (sintering-shrinkage degree) between powders of different secondary particle densities in the course of the sintering. Thus, pellets can be prevented from thermal impact destruction and cause no destructive cracks. (Takahashi, M.)

  5. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  6. Design of in situ dispersible and calcium cross-linked alginate pellets as intestinal-specific drug carrier by melt pelletization technique.

    Science.gov (United States)

    Nurulaini, Harjoh; Wong, Tin Wui

    2011-06-01

    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation. Copyright © 2011 Wiley-Liss, Inc.

  7. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  8. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  9. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  10. Repetitive fueling pellet injection in large helical device

    International Nuclear Information System (INIS)

    Yamada, H.; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S.

    2003-01-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD

  11. Repetitive fueling pellet injection in large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. E-mail: hyamada@lhd.nifs.ac.jp; Sakamoto, R.; Viniar, I.; Oda, Y.; Kikuchi, K.; Lukin, A.; Skoblikov, S.; Umov, A.; Takaura, K.; Onozuka, M.; Kato, S.; Sudo, S

    2003-09-01

    A repetitive pellet injector has been developed for investigation of fueling issues towards the steady-state operation in Large Helical Device (LHD). The goal of this approach is achievement of the plasma operation for longer than 1000 s. A principal technical element of the pellet injector is solidification of hydrogen and extrusion of a solid hydrogen rod through a cryogenic screw extruder cooled by Giffard-McMahon (GM) cryo-coolers. Continuous operation of more than 10000 pellet launches at 10 Hz has been demonstrated. The reliability of pellet launch exceeds 99%. The pellet mass and velocity, the consumption of propellant gas and quality of pellets have been successfully tested to fit the experimental requirement in LHD.

  12. Pelletized waste form demonstration program, October 1980-March 1981

    International Nuclear Information System (INIS)

    Lewis, E.L.; Herbert, R.F. Jr.

    1981-01-01

    During the last six months, performance testing of waste/cement pellets was continued. These evaluations included leachability tests and compressive strength tests of cold soil/cement pellets of various compositions. Fractional leach rates (g/cm 2 /day) after 21 months of testing were, in all cases -5 g/cm 2 /day (Mound Acceptance Value). Based upon these recent data, the pressed waste/cement pellets appeared to be a suitable matrix for the immobilization of low-level transuranic wastes. The installation of the Carver custom pellet press was completed. Plutonium-238 contaminated (< 100 nCi/g) ash/cement pellets were produced at a rate of 360 pellets/hr. Pellets of two different compositions were produced, 50% ash/50% cement and 65% ash/35% cement. The compressive strength of sample pellets was slightly lower than expected. Static MCC-1 leachability testing as well as long-term radiolysis testing of sample pellets are scheduled

  13. Pelletizing properties of torrefied spruce

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    analysis revealed a cohesive failure mechanism due to strong inter-particle bonding in spruce pellets as a resulting from a plastic flow of the amorphous wood polymers, forming solid polymer bridges between adjacent particles. Fracture surfaces of pellets made from torrefied spruce possessed gaps and voids...

  14. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  15. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1983-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dyamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities of up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  16. Pellet fueling development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foster, C.A.; Schuresko, D.D.; Foust, C.R.; Simmons, D.W.; Beard, D.S.

    1986-09-01

    Advanced plasma fueling systems for magnetic confinement devices are being developed at the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets at speeds in the range of 1-2 km/s and higher. Two specific concepts are under development: (1) high-speed pneumatic acceleration; and (2) mechanical (centrifugal) acceleration. Both approaches are being pursued to meet the projected pellet size and delivery rates for major near-term plasma confinement devices, such as the Tokamak Fusion Test Reactor (TFTR), Tore Supra, the Joint European Torus (JET), JT-60, and Doublet III-D (DIII-D), as well as future applications. In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of the 2-km/s range already attained with pneumatic injectors and has embarked on a development program designed to explore the feasibility of fabricating and accelerating tritium pellets. This paper describes these ongoing activities

  17. Current generation by phased injection of pellets

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1983-08-01

    By phasing the injection of frozen pellets into a tokamak plasma, it is possible to generate current. The current occurs when the electron flux to individual members of an array of pellets is asymmetric with respect to the magnetic field. The utility of this method for tokamak reactors, however, is unclear; the current, even though free in a pellet-fueled reactor, may not be large enough to be worth the trouble. Uncertainty as to the utility of this method is, in part, due to uncertainty as to proper modeling of the one-pellet problem

  18. Modelling the role of pellet crack motion in the (r-θ) plane upon pellet-clad interaction in advanced gas reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.A. [Centre for Nuclear Engineering & Department of Materials, Imperial College London, Exhibition Rd., London SW7 2AZ (United Kingdom); Ball, J.A. [EDF Energy, Barnett Way, Gloucester GL4 3RS (United Kingdom); Wenman, M.R., E-mail: m.wenman@imperial.ac.uk [Centre for Nuclear Engineering & Department of Materials, Imperial College London, Exhibition Rd., London SW7 2AZ (United Kingdom)

    2017-04-01

    Highlights: • Finite element modelling of pellet relocation in the (r-θ) plane of nuclear fuel. • ‘Soft’ and ‘hard’ PCI have been predicted in a cracked nuclear fuel pellet. • Stress concentration in the cladding ahead of radial pellet cracks is predicted. • The model is very sensitive to the coefficient of friction and power ramp duration. • The model is less sensitive to the number of cracks assumed. - Abstract: A finite element model of pellet fragment relocation in the r-θ plane of advanced gas-cooled reactor (AGR) fuel is presented under conditions of both ‘hard’ and ‘soft’ pellet-clad interaction. The model was able to predict the additional radial displacement of fuel fragments towards the cladding as well as the stress concentration on the inner surface resulting from the azimuthal motion of pellet fragments. The model was subjected to a severe ramp in power from both full power and after a period of reduced power operation; in the former, the maximum hoop stress in the cladding was found to be increased by a factor of 1.6 as a result of modelling the pellet fragment motion. The pellet-clad interaction was found to be relatively insensitive to the number of radial pellet crack. However, it was very sensitive to both the coefficient of friction used between the clad and pellet fragments and power ramp duration.

  19. Tritium recovery from lithium oxide pellets

    International Nuclear Information System (INIS)

    Bertone, P.C.; Jassby, D.L.

    1984-01-01

    The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid

  20. Suprathermal fusion reactions in laser-imploded D-T pellets. Applicability to pellet diagnosis and necessity of nuclear data

    International Nuclear Information System (INIS)

    Tabaru, Y.; Nakao, Y.; Kudo, K.; Nakashima, H.

    1995-01-01

    The suprathermal fusion reaction is examined on the basis of coupled transport/hydrodynamic calculation. We also calculate the energy spectrum of neutrons bursting from DT pellet. Because of suprathermal fusion and rapid pellet expansion, these neutrons contain fast components whose maximum energy reachs about 40 MeV. The pellet ρR diagnosis by the detection of suprathermal fusion neutrons is discussed. (author)

  1. Influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers fed on wheat-based diets.

    Science.gov (United States)

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2013-06-01

    1. The influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers given wheat-based diets was examined from 10 to 42 d of age. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two pellet diameters (3 and 4.76 mm) and two pellet lengths (3 and 6 mm). From 0 to 9 d of age, all birds were offered a common starter diet pelleted with a 3-mm diameter die and 3-mm length. Broiler grower (d 10 to 21) and finisher (d 22 to 42) diets, based on wheat, were formulated and then subjected to the 4 different treatments. 2. In grower diets, increasing pellet diameter and pellet length reduced the gelatinised starch (GS) content of the diets. In finisher diets, GS content of 3-mm diameter pellets did not change with increasing pellet length but decreased in 4.76-mm diameter pellets. 3. In grower and finisher diets, increments in intact pellet weight, pellet durability index and pellet hardness with increasing pellet length were greater in 3-mm diameter pellets than those with 4.76-mm diameter. 4. Increasing pellet length from 3 to 6 mm increased apparent metabolisable energy values. Neither the interaction nor main effects were significant for the ileal digestibility of nitrogen and starch. 5. During the grower period (d 10 to 21), birds given pellets of 6-mm length had greater body-weight gain than those given 3-mm length pellets. Feeding 6-mm length pellets decreased feed per body-weight gain compared to 3-mm length pellets. During the finisher (d 22 to 42) and whole grow-out (d 10 to 42) periods, while different pellet lengths had no effect on feed per body-weight gain values at 3-mm pellet diameter, increasing the pellet length decreased feed per body-weight gain at 4.76-mm pellet diameter. 6. Increasing pellet diameter and pellet length reduced the relative length of duodenum. Birds given 3-mm diameter pellets had heavier proventriculus compared to

  2. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  3. Development of the centrifugal pellet injector for JT-60U

    International Nuclear Information System (INIS)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D 2 cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10 20 atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. Dα intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  4. Modeling drying of iron ore pellets

    OpenAIRE

    Ljung, Anna-Lena

    2010-01-01

    Iron ore pellets are a highly refined product supplied to the steel making industry for use in blast furnaces or direct reduction processes. The use of pellets offers many advantages such as customer adopted products, transportability and mechanical strength yet the production is time and energy consuming. Being such, there is a natural driving force to enhance the pelletization in order to optimize production and improve quality. The aim with this thesis is to develop numerical models with w...

  5. Sintering of wax for controlling release from pellets.

    Science.gov (United States)

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  6. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    Gettelfinger, G.; Dong, J.; Gernhardt, R.; Kugel, H.; Sichta, P.; Timberlake, J.

    2003-01-01

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  7. Hydrogen Pellet-Rotating Plasma Interaction

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard; Øster, Flemming

    1977-01-01

    Spectroscopic measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. It was found that the light emitted is specific to the pellet material, and that the velocity of the ablated H-atoms is of the order of l0^4 m/s. The investigation was carried out...

  8. Fabrication and characterization of dysprosia and alumina based inert matrix neutron absorbers

    International Nuclear Information System (INIS)

    D Ovidio, C.; Oliber, E.; Leiva, S.; Malachevsky, M. T; Taboada, H

    2009-01-01

    Among the elements of the lanthanides series, dysprosium has interesting nuclear properties. Its high thermal neutron absorption cross-section makes it a good neutron absorber. The best ceramic compound apt for nuclear use is its oxide, the disprosia (Dy 2 O 3 ). In order to fabricate neutron absorbers diluted in an inert matrix, it is relevant to study the preparation of a ceramic compound based on alumina (Al 2 O 3 ) and disprosia. In this work, we characterize a particular composition (44,5wt% Dy 2 O 3 , 55,5wt% Al 2 O 3 ) by determining the geometrical density, microstructure and phase formation. The chosen composition corresponds to the lowest temperature eutectic of the alumina-disprosia system, allowing the sintering to proceed at 1700 oC in air. Comparing the data of the green and sinterized pellets, the relative shrinking is of about 17 %, in the same proportion both for diameter and length. The corresponding volumetric reduction is of about 43 %, indicating an increase of the relative geometric density of ∼ 70 %. X-ray diffraction analysis shows the existence of two phases corresponding to the lower eutectic: Dy 3 Al 5 O 1 2 and Al 2 O 3 . The calculated theoretical density is ∼ 5.2 g/cm3. Consequently, the relative density of the pellets is 92 %, indicating the feasibility for the fabrication of the proposed material. In a near future, samples will be irradiated to evaluate their behavior for nuclear use. [es

  9. Tritium proof-of-principle pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1989-01-01

    The tritium proof-of-principle (TPOP) experiment was built by Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of forming solid tritium pellets and accelerating them to high velocities for fueling future fusion reactors. TPOP used a pneumatic pipe-gun with a 4-mm-i.d. by 1-m-long barrel. Nearly 1500 pellets were fired by the gun during the course of the experiment; about a third of these were tritium or mixtures of deuterium and tritium. The system also contained a cryogenic 3 He separator that reduced the 3 He level to <0.005%. Pure tritium pellets were accelerated to 1400 m/s. Experiments evaluated the effect of cryostat temperature and fill pressure on pellet size, the production of pellets from mixtures of tritium and deuterium, and the effect of aging on pellet integrity. The tritium phase of these experiments was performed at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. About 100 kCi of tritium was processed through the apparatus without incident. 8 refs., 7 figs

  10. Pellet-plasma interaction: Local disturbances caused by pellet ablation in tokamaks

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1989-01-01

    The local disturbance amplitudes caused by ablating pellets in tokamaks are computed in the framework of a magnetohydrodynamic model supplemented by the neutral gas plasma shielding ablation model. The model computes, for a given number of pellet particles locally deposited, the time histories of the ablatant cloud parameters, such as cloud radius, cloud length, electron density, temperature and cloud beta, at a succession of magnetic flux surfaces. The cloud radius thus determined may be fed back into the ablation model, thus adjusting the effect of the shielding cloud on the ablation rate. The model is applied to typical plasma parameter ranges of existing and planned tokamaks. The results show that the ablating pellets may cause massive local disturbances in tokamaks, depending upon the number of particles locally deposited. The peaks of these disturbances are of a spike nature, lasting only a few microseconds (Alfven time-scale). The characteristic decay time of the 'quasi-steady' disturbance values that characterize the after-spike period is of the order of several milliseconds (hydrodynamic time-scale). The peak electron density values may be as high as 10 23 to 10 25 m -3 , with the associated beta peaks exceeding unity. The 'quasi-steady' values of the electron density and the ablatant beta may be of the order of 10 22 to 10 24 m -3 and unity, respectively. Furthermore, the results show the strong dependence of the ablation rate on the dynamic characteristics of the ablatant cloud surrounding the pellet. (author). 25 refs, 6 figs, 2 tabs

  11. Simulation of peeling-ballooning modes with pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Sun, T. T.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  12. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    International Nuclear Information System (INIS)

    Varentsov, Victor L.

    2011-01-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  13. Numerical investigations of the WASA pellet target operation and proposal of a new technique for the PANDA pellet target

    Energy Technology Data Exchange (ETDEWEB)

    Varentsov, Victor L., E-mail: v.varentsov@gsi.de [Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2011-08-01

    The conventional nozzle vibration technique of the hydrogen micro-droplet generation that is supposed to be used for internal pellet target production for the future PANDA experiment at the international FAIR facility in Darmstadtfor is described. The operation of this technique has been investigated by means of detailed computer simulations. Results of calculations for the geometry and operation conditions of the WASA pellet generator are presented and discussed. We have found that for every given pellet size, there is a set of operation parameters where the efficiency of the WASA hydrogen pellet target operation is considerably increased. Moreover, the results of presented computer simulations clearly show that the future PANDA pellet target setup can be realized with the use of much smaller (and cheaper) vacuum pumps than those used at present in the WASA hydrogen pellet target. To qualitatively improve the PANDA hydrogen pellet target performance we have proposed the use of a novel flow focusing method of Ganan-Calvo and Barreto (1997,1999) combined with the use of conventional vacuum injection capillary. Possibilities of this approach for the PANDA pellet target production have been also explored by means of computer simulations. The results of these simulations show that the use of this new approach looks very promising and in particular, there is no need here to use of expensive ultra-pure hydrogen to prevent nozzle clogging or freezing up due to impurities and it will allow simple, fast, smooth and a wide range of change of pellet sizes in accordance with requirements of different experiments at the PANDA detector. In this article we also propose and describe the idea of a new technique to break up a liquid microjet into microdroplets using a process of liquid jet evaporation under pulsed laser beam irradiation. This technique should be experimentally checked before it may be used in the design of the future PANDA pellet target setup.

  14. Pellet injectors for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Combs, S.K.

    1986-01-01

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system

  15. Optimization of backfill pellet properties AASKAR DP2 - Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Linus; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden)

    2012-12-15

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling

  16. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H.

    2000-03-01

    A UO 2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO 2 -Gd 2 O 3 is in the core and UO 2 -Er 2 O 3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO 2 and additives. The open porosity of UO 2 pellet was reduced by only mixing AUC-UO 2 powder with ADU-UO 2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO 2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO 2 -U 3 O 8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U 3 O 8 single crystals were added to UO 2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO 2 -Gd 2 O 3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO 2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  17. A four-pellet pneumatic injection system in the JT-60

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Kondo, Ikuo; Onozuka, Masanori; Shimomura, Tomoyoshi; Iwamoto, Syuichi; Hashiri, Noboru

    1991-01-01

    A four-pellet pneumatic injection system has been developed for plasma fueling of the JT-60. The JT-60 pellet injector is capable of accelerating separately four cylindrical pellets 3.0 mm in diameter x 3.0 mm long for two pellets and 4.0 mm in diameter x 4.0 mm long for the remaining two. The JT-60 pellet injector was installed on the JT-60 tokamak machine at the end of 1988. Obtained pellet velocity was higher than 2300 m/s by propellant gases of up to 100 bar and the pellet fueling efficiency achieved was around 70% for both dimensions of pellets. This paper describes the design, injection operation and performance test results of the JT-60 pellet injector. (orig.)

  18. A four-pellet pneumatic injection system in the JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Kondo, Ikuo (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Onozuka, Masanori; Shimomura, Tomoyoshi; Iwamoto, Syuichi; Hashiri, Noboru (Mitsubishi Heavy Industries Ltd., Kobe (Japan))

    1991-05-01

    A four-pellet pneumatic injection system has been developed for plasma fueling of the JT-60. The JT-60 pellet injector is capable of accelerating separately four cylindrical pellets 3.0 mm in diameter x 3.0 mm long for two pellets and 4.0 mm in diameter x 4.0 mm long for the remaining two. The JT-60 pellet injector was installed on the JT-60 tokamak machine at the end of 1988. Obtained pellet velocity was higher than 2300 m/s by propellant gases of up to 100 bar and the pellet fueling efficiency achieved was around 70% for both dimensions of pellets. This paper describes the design, injection operation and performance test results of the JT-60 pellet injector. (orig.).

  19. Fuel pellet fracture and relocation

    International Nuclear Information System (INIS)

    Walton, L.A.; Husser, D.L.

    1983-01-01

    The model used to describe fuel pellet fracture and relocation is an important feature of a fuel performance computer code. This model becomes especially important if the computer code is principally to be used for the evaluation of pellet clad interaction. The fracture and relocation model being developed for the B and W fuel performance code FUMAC was derived from an extensive data base. Cross sections of irradiated fuel rods were photographically magnified and measured to determine the configuration of the fragments of the fractured fuel pellets. Data, representing a wide range of LWR fuel designs and as-manufactured mechanical configurations, were catalogued and systematically reduced and then correlated as a function of the likely independent variables. These correlations define the key phenomenological behavior patterns which the relocation model must duplicate and indicate which mechanistic approaches are viable explanations of this behavior. The data base covers the burnup range from approximately one to 35 GWd/mtU and linear heat rates from less than 100 to nearly 700 W/Cm. This paper presents the correlated data base and the methods used to derive and interpret it. It was determined from this data base that pellet cracking is initially both power level and burnup dependent but tends to saturate eventually with continued steady irradiation. Fuel pellet relocation was found to be much more extensive than would be deduced from thermal considerations alone. Even at very low burnups fuel fragments were found to move outward until restrained by the cladding. The results also suggest that changes in internal resistance to heat flow within the pellets due to the opening of cracks may be as important as peripheral gap changes to the thermal modeler. The transient response and thermal implications of this model are recommended as primary areas for future investigation

  20. Particle density determination of pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, Fabienne; Temmerman, Michaeel [Centre wallon de Recherches agronomiques, Departement de Genie rural, CRA-W, Chaussee de Namur, 146, B 5030 Gembloux (Belgium); Boehm, Thorsten; Hartmann, Hans [Technologie und Foerderzentrum fuer Nachwachsende Rohstoffe, TFZ, Schulgasse 18, D 94315 Straubing (Germany); Daugbjerg Jensen, Peter [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK 1958 Frederiksberg C (Denmark); Rathbauer, Josef [Bundesanstalt fuer Landtechnik, BLT, Rottenhauer Strasse,1 A 3250 Wieselburg (Austria); Carrasco, Juan; Fernandez, Miguel [Centro de investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense, 22 E 28040 Madrid (Spain)

    2006-11-15

    Several methods and procedures for the determination of particle density of pellets and briquettes were tested and evaluated. Round robin trials were organized involving five European laboratories, which measured the particle densities of 15 pellet and five briquette types. The test included stereometric methods, methods based on liquid displacement (hydrostatic and buoyancy) applying different procedures and one method based on solid displacement. From the results for both pellets and briquettes, it became clear that the application of a method based on either liquid or solid displacement (only tested on pellet samples) leads to an improved reproducibility compared to a stereometric method. For both, pellets and briquettes, the variability of measurements strongly depends on the fuel type itself. For briquettes, the three methods tested based on liquid displacement lead to similar results. A coating of the samples with paraffin did not improve the repeatability and the reproducibility. Determinations with pellets proved to be most reliable when the buoyancy method was applied using a wetting agent to reduce surface tensions without sample coating. This method gave the best values for repeatability and reproducibility, thus less replications are required to reach a given accuracy level. For wood pellets, the method based on solid displacement gave better values of repeatability, however, this instrument was tested at only one laboratory. (author)

  1. Pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Foster, C.A.; Milora, S.L.

    1988-01-01

    Advanced plasma fueling systems for magnetic confinement devices are under development a the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range 1-2 km/s and higher. Recently, ORNL provided pneumataic-based pellet fueling systems for two of the world's largest tokamak experiments, the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). A new versatile centrifuge type injector is being readied at ORNL for use on the Tore Supra tokamak. Also, a new simplified eight-shot injector design has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a Tritium Proof-of-Principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets have already been demonstrated. This paper describes these ongoing activities. 25 refs., 9 figs

  2. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is to be expected for the coming years. Due to an increasing demand for biomass, the traditionally used wood residues from sawmills and pulp...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  3. Development of railgun pellet injector for nuclear fusion fueling

    International Nuclear Information System (INIS)

    Azuma, Kingo; Oda, Yasushi; Onozuka, Masanori.

    1996-01-01

    Recent fusion plasmas have become larger as fusion research progresses. This requires high-velocity solid-hydrogen pellet injection that is the most efficient fueling method. The application of the electro-magnetic railgun system for pellet injection is one of the most feasible technologies for accelerating a pellet to a high speed. The system consists of a pneumatic pre-accelerator for the first acceleration stage and a railgun for the second stage. The railgun is operated by a low voltage discharged from a pulse-forming-network power supply to accelerate a plasma armature between the rail electrodes. The plasma is induced by high-power laser beam irradiation. The highest velocity of a solid-hydrogen pellet obtained using the railgun was 2.6 km/s. This velocity is higher than the maximum pellet velocity of 2.3 km/s achieved by MHI's pneumatic pellet injector. It was also found that the pellet velocity could be controlled easily using railgun pellet injection. (author)

  4. Development of railgun pellet injector for nuclear fusion fueling

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Kingo [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo Takasago Research and Development Center (Japan); Oda, Yasushi; Onozuka, Masanori

    1996-03-01

    Recent fusion plasmas have become larger as fusion research progresses. This requires high-velocity solid-hydrogen pellet injection that is the most efficient fueling method. The application of the electro-magnetic railgun system for pellet injection is one of the most feasible technologies for accelerating a pellet to a high speed. The system consists of a pneumatic pre-accelerator for the first acceleration stage and a railgun for the second stage. The railgun is operated by a low voltage discharged from a pulse-forming-network power supply to accelerate a plasma armature between the rail electrodes. The plasma is induced by high-power laser beam irradiation. The highest velocity of a solid-hydrogen pellet obtained using the railgun was 2.6 km/s. This velocity is higher than the maximum pellet velocity of 2.3 km/s achieved by MHI`s pneumatic pellet injector. It was also found that the pellet velocity could be controlled easily using railgun pellet injection. (author).

  5. Acceleration of solid pellets using a plasma gun

    International Nuclear Information System (INIS)

    Buller, T.L.; Turnbull, R.J.; Kim, K.

    1979-01-01

    The use of solid pellets of hydrogen isotopes to refuel thermonuclear fusion reactors based on the tokamak configuration will require that the pellets be accelerated to high velocities. One possible method of acceleration is to interact a fast plasma from a plasma gun with the pellets. In this paper preliminary results are given on the acceleration of solid pellets with a plasma gun. The plasma-gun requirements for successful acceleration to high velocities are discussed

  6. Backfilling of deposition tunnels: Use of bentonite pellets

    International Nuclear Information System (INIS)

    Dixon, David; Sanden, Torbjoern; Jonsson, Esther; Hansen, Johanna

    2011-02-01

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  7. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  8. On the Drag Effect of a Refuelling Pellet

    DEFF Research Database (Denmark)

    Chang, Tinghong; Michelsen, Poul

    1981-01-01

    A refueling pellet is subjected mainly to two kinds of drags: (1) inertial drag caused by the motion of the pellet relative to the surrounding plasma, and (2) ablation drag caused by an uneven ablation rate of the front and the rear surface of the pellet in an inhomogeneous plasma. Computational ...... results showed that for reasonable combinations of pellet size and injection speed, the drag effect is hardly detectable for plasma conditions prevailing in current large tokamaks....

  9. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  10. Repeating pneumatic pellet injector in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment); Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author).

  11. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi; Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  12. Mox pellet reference material

    International Nuclear Information System (INIS)

    Perolat, J.P.

    1991-01-01

    A first batch of MOX pellets certified in plutonium and uranium has been prepared and characterised in France to meet the needs of laboratories which are engaged upon destructive analysis for safeguards purposes especially in fuel fabrication plants. The pellets sintering has been obtained in a special fabrication to achieve an homogeneity better than 0.1%. The plutonium and uranium characterisation by chemical analysis has been carried out by two laboratories using at least two different methods. 1 fig., 5 refs

  13. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  14. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  15. Experimental study of curved guide tubes for pellet injection

    International Nuclear Information System (INIS)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Milora, S.L.

    1997-01-01

    The use of curved guide tubes for transporting frozen hydrogen pellets offers great flexibility for pellet injection into plasma devices. While this technique has been previously employed, an increased interest in its applicability has been generated with the recent ASDEX Upgrade experimental data for magnetic high-field side (HFS) pellet injection. In these innovative experiments, the pellet penetration appeared to be significantly deeper than for the standard magnetic low-field side injection scheme, along with corresponding greater fueling efficiencies. Thus, some of the major experimental fusion devices are planning experiments with HFS pellet injection. Because of the complex geometries of experimental fusion devices, installations with multiple curved guide tube sections will be required for HFS pellet injection. To more thoroughly understand and document the capability of curved guide tubes, an experimental study is under way at the Oak Ridge National Laboratory (ORNL). In particular, configurations and pellet parameters applicable for the DIII-D tokamak and the International Thermonuclear Experimental Reactor (ITER) were simulated in laboratory experiments. Initial test results with nominal 2.7- and 10-mm-diam deuterium pellets are presented and discussed

  16. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  17. Apparatus for loading fuel pellets in fuel rods

    International Nuclear Information System (INIS)

    Tedesco, R.J.

    1976-01-01

    An apparatus is disclosed for loading fuel pellets into fuel rods for a nuclear reactor including a base supporting a table having grooves therein for holding a multiplicity of pellets. Multiple fuel rods are placed in alignment with grooves in the pellet table and a guide member channels pellets from the table into the corresponding fuel rods. To effect movement of pellets inside the fuel rods without jamming, a number of electromechanical devices mounted on the base have arms connected to the lower surface of the fuel rod table which cyclically imparts a reciprocating arc motion to the table for moving the fuel pellets longitudinally of and inside the fuel rods. These electromechanical devices include a solenoid having a plunger therein connected to a leaf type spring, the arrangement being such that upon energization of the solenoid coil, the leaf spring moves the fuel rod table rearwardly and downwardly, and upon deenergization of the coil, the spring imparts an upward-forward movement to the table which results in physical displacement of fuel pellets in the fuel rods clamped to the table surface. 8 claims, 6 drawing figures

  18. Geometric dimensioning of UO2 pellets for PWR

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.

    1988-01-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pellet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experimental data.(autor) [pt

  19. Measurement of Persistent Organic Pollutants (POPs) in plastic resin pellets from remote islands : Toward establishment of baseline level for International Pellet Watch

    Science.gov (United States)

    Takada, H.; Heskett, M.; Yamashita, R.; Yuyama, M.; Itoh, M.; Geok, Y. B.; Ogata, Y.

    2011-12-01

    Plastic resin pellets collected from remote islands in open oceans (Canary, St. Helena, Cocos, Hawaii, Maui Islands and Barbados) were sorted and yellowing polyethylene (PE) pellets were measured for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and the degradation products (DDTs), and hexachlorocyclohexanes (HCHs) by gas chromatograph equipped with mass spectrometer (GC-MS) and with electron capture detector (GC-ECD). PCBs were detected from all the pellet samples, confirming the global dispersion of PCBs. Median concentrations of PCBs (sum of 13 congeners : CB-66, CB-101, CB-110, CB-118, CB-105, CB-149, CB-153, CB-138, CB-128, CB-187, CB-180, CB-170, CB-206) in the remote island pellets ranged from 0.1 to 10 ng/g-pellet. These were one to three orders of magnitude lower than those observed for pellets from industrialized coastal zones (hundreds ng/g in Los Angeles, Boston, Tokyo; Ogata et al., 2009). Because these remote islands are far (>100 km) from industrialized zones, these concentrations (i.e., 0.1 to 10 ng/g-pellet) can be regarded as global "baseline" level of PCB pollution. Concentrations of DDTs in the remote island pellets ranged from 0.2 to 5.5 ng/g-pellet. At some locations, DDT was dominant over the degradation products (DDE and DDD), suggesting current usage of the pesticides in the islands. HCHs concentrations were 0.4 - 1.8 ng/g-pellet and lower than PCBs and DDTs, except for St. Helena Island at 18.8 ng/g-pellet where the current usage of the pesticides are of concern. The analyses of pellets from the remote islands provided "baseline" level of POPs (PCBs effects of global distillation, pellet samples from remote islands in higher latitude regions are necessary. From the eco-toxicological point of view, the fact that sporadic high concentrations of POPs were detected in some pellet samples from the remote islands is underscored. Some plastic debris which were contaminated in industrialized coastal zones may have rapidly

  20. Repeating pneumatic hydrogen pellet injector for plasma fueling

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.; Foster, C.A.; Schuresko, D.D.

    1985-01-01

    A repeating pneumatic pellet injector has been developed for plasma fueling applications. The repetitive device extends pneumatic injector operation to steady state. The active mechanism consists of an extruder and a gun assembly that are cooled by flowing liquid-helium refrigerant. The extruder provides a continuous supply of solid hydrogen to the gun assembly, where a reciprocating gun barrel forms and chambers cylindrical pellet from the extrusion; pellets are then accelerated with compressed hydrogen gas (pressures up to 125 bar) to velocities -1 have been obtained with 2.1- , 3.4- , and 4.0-mm-diameter pellets. The present apparatus operates at higher firing rates in short bursts; for example, a rate of 6 s -1 for 2 s with the larger pellets. These pellet parameters are in the range applicable for fueling large present-day fusion devices such as the Tokamak Fusion Test Reactor (TFTR). Experimental results are presented, including effects of propellant pressure and barrel length on gun performance

  1. Development of advanced LWR fuel pellet technology

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H

    2000-03-01

    A UO{sub 2} pellet was designed to have a grain size of larger than 12 {mu}m, and a new duplex design that UO{sub 2}-Gd{sub 2}O{sub 3} is in the core and UO{sub 2}-Er{sub 2}O{sub 3} in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO{sub 2} and additives. The open porosity of UO{sub 2} pellet was reduced by only mixing AUC-UO{sub 2} powder with ADU-UO{sub 2} or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO{sub 2} sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO{sub 2}-U{sub 3}O{sub 8} powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U{sub 3}O{sub 8} single crystals were added to UO{sub 2} powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 {mu}m. In UO{sub 2}-Gd{sub 2}O{sub 3} sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO{sub 2} pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  2. Method of manufacturing UO2 pellet

    International Nuclear Information System (INIS)

    Harada, Yuhei; Asami, Yasuji.

    1989-01-01

    The present invention concerns a method of manufacturing UO 2 pellets with less FP gas release and having fine structure for moderating PCMI. At first, oxide nuclear fuel pellets are placed in a sintering furnance and preliminarily sintered in a H 2 gas atmosphere at 1400 - 1600 degC. In this step, sintering is progressed to about 90 % TD, by which closed cells are formed substantially completely. Then, when sintering is further advanced at an identical temperature in a CO 2 gas atmosphere, growth of the crystal grains is advanced at the central portion of the pellets. Then, reductive heat treatment is applied at the identical temperature in a H 2 gas atmosphere. As a result, pellets having a fine double structure with the larger grain size region being in the central portion and smaller grain size region in the outer periphery can be obtained. (I.J.)

  3. Kinetic depletion model for pellet ablation

    International Nuclear Information System (INIS)

    Kuteev, Boris V.

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  4. UO2 pellet and manufacturing method

    International Nuclear Information System (INIS)

    Komada, Kiichi; Nishinaka, Keiji; Adachi, Kazunori; Fujiwara, Shuji.

    1995-01-01

    The present invention concerns an uranium dioxide pellet having a large crystal grain size. The grain size of the pellet is enlarged to increase the distance of an FP gas generated in the crystal grain to reach the grain boundary and, as a result, decrease the releasing speed of the FP gas. A UO 2 powder having a specific surface area of from 5 to 50m 2 /g is used as a starting powder in a step of forming a molding product, and chlorine or a chlorine compound is added in such an amount that the chlorine content in the UO 2 pellet is from 3 to 25ppm, in one of a production step, a molding step or a sintering step for UO 2 powder. With such procedures, a UO 2 pellet having a large crystal grain size can be prepared with good reproducibility. (T.M.)

  5. Development of the pellet injector for JT-60

    International Nuclear Information System (INIS)

    Kawasaki, Kouzo; Hiratsuka, Hajimo; Takatsu, Hideyuki; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Nobuo

    1989-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proved that the device provides high speed hydrogen pellets just as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 1.6 km/sec at 50 bar propellant gas. The device is now in use for JT-60 contributing to plasma study. In this paper the outline of features and performance of the device is presented. (author). 4 refs.; 8 figs

  6. Characteristics of pellet injuries to the orbit.

    Science.gov (United States)

    Kükner, A Sahap; Yilmaz, Turgut; Celebi, Serdal; Karslioğlu, Safak; Alagöz, Gürsoy; Serin, Didem; Acar, M Akif; Ozveren, M Faik

    2009-01-01

    To investigate the features of orbital injuries by pellets fired from the front. Retrospective, 4 cases of pellet injuries. Five orbits of 4 patients who sustained pellet injuries received from the front were reviewed retrospectively. The course of injury and results were assessed. Radiological examinations were reviewed. The patients were evaluated between December 1996 and June 2004. Five orbits of 4 patients sustained injuries caused by pellets fired from an anterior direction. The globe in the injured orbit was intact in 2 cases. Severe loss of vision was also present in these 2 globes due to optic nerve involvement. Final visual acuity was down to no light perception in 4 eyes and limited to light perception in 1 eye. The prognosis of orbital pellet injuries is, unfortunately, poor. A pellet passing through the floor of the orbit often causes double perforation of the globe and, once in the orbital aperture, it travels towards the apex as a result of the conical shape of the orbit and lodges in the optic canal or its entrance, severely damaging the optic nerve. Surgery or other treatments are usually unsuccessful. Even if the globe is intact, vision is usually severely impaired. Copyright 2009 S. Karger AG, Basel.

  7. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  8. Development of repeating pneumatic pellet injector

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Shimomura, T.

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s -1 , chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s -1 , as planned. (author)

  9. Impurity pellet injection experiments at TFTR

    International Nuclear Information System (INIS)

    Marmar, E.S.

    1991-01-01

    Impurity (Li and C) pellet experiments, which began at TFTR in 1989, and are expected to continue at least through 1991, have continued to produce new and significant results. The most significant of these are: (1) improvements in TFTR supershots after wall-conditioning by Li pellet injection; (2) accurate measurements of the pitch angle profiles of the internal magnetic field using the polarization angles of line emission from Li + in the pellet ablation cloud; and (3) initial measurements of pitch angle profiles using the tilt of the LI + emission region of the ablation cloud which is stretched out along the field lines

  10. Particle fueling experiments with a series of pellets in LHD

    Science.gov (United States)

    Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team

    2018-03-01

    Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.

  11. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  12. Investigation of pellet acceleration by an arc heated gas gun

    International Nuclear Information System (INIS)

    Andersen, P.; Andersen, S.A.; Bundgaard, J.; Baekmark, L.; Hansen, B.H.; Jensen, V.O.; Kossek, H.; Michelsen, P.K.; Nordskov, A.; Sass, B.; Soerensen, H.; Weisberg, K.V.

    1987-06-01

    This report describes work on pellet acceleration by means of an arc heated gas gun. The work is a continuation of the work described in RISO-M-2536. The aim of the work is to obtain velocities well above 2 km/s for 3.2 mm diameter deuterium pellets. By means of a cryogenic arc chamber in which the hydrogen propellant is pre-condensed, extruded deutetrium pellets are accelerated up to a maximum velocity of 1.93 km/s. When increasing the energy input to the arc in order to increase the pellet velocity further the heat input to the extrusion/punching pellet loading mechanism was found to be critical: preparation of pellets became difficult and cooling times between shots became inconveniently long. In order to circumvent this problems the concept of a room temperature hydrogen propellant pellet fed arc chamber was proposed. Preliminary results from acceleration of polyurethane pellets with this arc chamber are described as well as the work of developing of feed pellet guns for this chamber. Finally the report describes design consideration for a high pressure propellant pellet fed arc chamber together with preliminary results obtained with a proto-type arc chamber. (author)

  13. Global Wood Pellet Industry and Trade Study 2017

    NARCIS (Netherlands)

    Thrän, D.; Peetz, D.; Schaubach, K.; Mai-Moulin, T.; Junginger, H.M.; Lamers, P.; Visser, L.

    2017-01-01

    The report Global Wood Pellet Industry Market published in 2011 has always been the most downloaded document of IEA Bioenergy Task 40. We have decided to update the report and bring new insights on market trends and trade of the global wood pellets. The global wood pellet market has increased

  14. Preparation and characterization of a self-emulsifying pellet formulation.

    Science.gov (United States)

    Abdalla, Ahmed; Mäder, Karsten

    2007-05-01

    The purpose of the current study is to investigate the feasibility of producing solid self-emulsifying pellets using the extrusion/spheronization technique. Pellets were made from a mixture of C18 partial glycerides, Solutol HS15 and microcrystalline cellulose. Pellets with good physical properties (size, shape, friability) and self-emulsifying properties were produced. The pellets were, in contrast to pellets lacking Solutol, able to transfer a lipophilic dye and a spin probe into the aqueous media. The release kinetics and the microenvironment of the pellets during the release process were assessed using electron spin resonance (ESR) spectroscopy. The ESR results showed that the hydrophobic spin probe was localized mainly in the lipid environment all over the release time. Furthermore, the formulation was capable of accelerating the release of the drug diazepam and achieving a diazepam concentration above its saturation solubility. In conclusion, spherical pellets with low friability and self-emulsifying properties can be produced by the standard extrusion/spheronization technique. The pellets are capable of transfering lipophilic compounds into the aqueous phase and have a high potential to increase the bioavailability of lipophilic drugs.

  15. Automatic control system for uniformly paving iron ore pellets

    Science.gov (United States)

    Wang, Bowen; Qian, Xiaolong

    2014-05-01

    In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.

  16. The wood pellet market in Austria: A structural market model analysis

    International Nuclear Information System (INIS)

    Kristöfel, Christa; Strasser, Christoph; Schmid, Erwin; Morawetz, Ulrich B.

    2016-01-01

    EU bioenergy policies and oil price hikes have resulted in a significant increase of installed pellet boilers for residential heating. Hence, European demand for wood pellets has been growing faster and more steadily than supply leading to rising market prices in recent years. This article presents an econometric analysis of demand and supply of wood pellets in the residential heating sector in Austria, one of the most dynamic markets for residential pellets. Annual and monthly time series data between 2000 and 2014 are used in a two-stage least-squares (2SLS) regression to estimate supply and demand elasticities of wood pellets. In all model specifications, pellets demand is found to be inelastic (from −0.66 to −0.76) and pellets supply unit-elastic (from 1.03 to 1.18). Thus, consumers are highly exposed to price changes resulting from supply shocks. Policies which support investments in pellet boilers will shift the demand of wood pellets and likely leading to higher prices for consumers. - Highlights: • Characterisation of the European pellet market. • A structural market model for wood pellets in Austria. • Estimation of supply and demand price elasticities using a two-stage least-squares (2SLS) regression. • Pellets demand is found to be inelastic and pellets supply unit-elastic in the short run. • Policies stimulating demand will likely increase pellet and sawmill by-product prices.

  17. Preparation and characterization of ceramic neutron absorbers based on dysprosia and gadolinia

    International Nuclear Information System (INIS)

    Burgos, F.; Oliber, E.; Leiva S; Lestani, H.; Malachevsky, M.T.; Taboada, H.; D'Ovidio, C.

    2012-01-01

    Among the elements of the lanthanide series, dysprosium and gadolinium have interesting nuclear properties. Due to their high thermal neutron absorption cross-section they are good neutron absorbers. The only compounds suitable for nuclear use are their oxides, dysprosia (Dy 2 O 3 ) and gadolinia (Gd 2 O 3 ). To fabricate neutron absorbers diluted in an inert matrix, e.g. alumina (Al 2 O 3 ), it is relevant to study the preparation of a ceramic compound based on alumina (Al 2 O 3 ) and dysprosia or gadolinia. In this work, we characterize four different nominal compositions with high contents of gadolinia and dysprosia: (a) (45 wt% Dy 2 O 3 , 55 wt% Al 2 O 3 ), (b) (93 wt% Dy 2 O 3 , 7 wt% Al 2 O 3 ), (c) (50 wt% Gd 2 O 3 , 50 wt% Al 2 O 3 ) and (d) (90 wt% Gd 2 O 3 , 10 wt% Al 2 O 3 ). These compositions were selected as their stoichiometry correspond to the eutectic phases found in the respective phase diagrams, so as to attain sinterization at lower temperatures of approximately 1700 o C in air. The investigated parameters are the geometrical density of the pellets, the microstructure and the phases observed using x-ray diffraction. Contraction of the pellets was obtained by measuring the volumetric change between the green and the sintered samples. It was observed that the relative contraction was the same both in thickness and diameter. We discuss the eutectic phase formation and densification observed for the different compositions (author)

  18. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  19. Pellet injection in the RFP (Reversed Field Pinch)

    Science.gov (United States)

    Wurden, G. A.; Weber, P. G.; Munson, C. P.; Cayton, T. E.; Bunting, C. A.; Carolan, P. G.

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi sub drift approx. 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50 percent were observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D sub alpha light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 microsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta.

  20. Pellet injection in the RFP [Reversed Field Pinch

    International Nuclear Information System (INIS)

    Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.

    1988-01-01

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (ξ/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub α/ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 μsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs

  1. Westinghouse Advanced Doped Pellet - Characteristics and irradiation behavior

    International Nuclear Information System (INIS)

    Backman, K.; Hallstadius, L.; Roennberg, G.

    2009-01-01

    Full text: There are a number of trends in the nuclear power industry, which put additional requirements on the operational flexibility and reliability of nuclear fuel, for example power uprates and longer cycles in order to increase production, higher burnup levels in order to reduce the backend cost of the fuel cycle, and lower goals for activity release from power plant operation. These additional requirements can be addressed by increasing the fuel density, improving the FG retention, improving the PCI resistance and improving the post-failure performance. In order to achieve that, Westinghouse has developed ADOPT (Advanced Doped Pellet Technology) UO 2 fuel containing additions of chromium and aluminium oxides. The additives facilitate pellet densification during sintering, enlarge the pellet grain size, and increase the creep rate. The final manufactured doped pellets reach about 0.5 % higher density within a shorter sintering time and a five times larger grain size compared with standard UO 2 fuel pellets. Fuel rods with ADOPT pellets have been irradiated in several light water reactors (LWRs) since 1999, including two full SVEA Optima2 reloads in 2005. ADOPT pellets has been investigated in pool-side and hot cell Post Irradiation Examinations (PIEs), as well as in a ramp test and a fuel washout test in the Studsvik R2 test reactor. The investigations have identified three areas of improved operational behaviour: Reduced Fission Gas Release (FGR), improved Pellet Cladding Interaction (PCI) performance thanks to increased pellet plasticity and higher resistance against post-failure degradation. The better FGR behaviour of ADOPT has been verified with a pool side FGR gamma measurement performed at 55 MWd/kgU, as well as transient tests in the Studsvik R2 reactor. Creep measurements performed on fresh pellets show that ADOPT has a higher creep rate which is beneficial for the PCI performance. ADOPT has also been part of a high power Halden test (IFA-677). The

  2. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  3. Development of a two-state pellet injector for Heliotron-E

    International Nuclear Information System (INIS)

    Sudo, S.; Baba, T.; Kanno, M.; Saka, S.

    1991-01-01

    This paper reports on a two-stage pellet injector for Heliotron-E that is constructed and tested. The aim is to increase pellet velocity for more flexible density profile control of the Heliotron-E plasma and also to conduct a pellet ablation study using a wider range of pellet velocity. The pellet velocity is limited to ∼1.4 km/s in the current six-pellet injector at Heliotron-E. The fundamental operation is simulated with the Quickgun code. The experimental results generally agree well (within 80 to 90%) with the code calculations. By using a newly developed high-pressure fast valve, a hydrogen pellet velocity of 3.2 km/s has been achieved, without a supportive shell or sabot to protect the pellet, although more tests are needed to confirm whether pellets can reliably be accelerated to this high speed without fracturing. The dependence of the pellet velocity and breech pressure on the pump tube fill pressure is studied. The results show that the fill pressure is an important parameter. The effect of the clearance between the piston and the pump tube wall on the pellet velocity is also investigated. The wear and damage of the piston caused by the compressing propellant gas are investigated. It is shown that changes on the piston surface when hydrogen is used for fill gas are different from the case of helium

  4. Pellet injection and plasma behavior simulation code PEPSI

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Tobita, Kenji; Nishio, Satoshi

    2003-08-01

    Fueling is one of the major issues on design of nuclear fusion reactor and the injection of solid hydrogen pellet to the core plasma is a useful method. On the design of a nuclear fusion reactor, it is necessary to determine requirements on the pellet size, the number of pellets, the injection speed and the injection cycle. PEllet injection and Plasma behavior SImulation code PEPSI has been developed to assess these parameters. PEPSI has two special features: 1) Adopting two numerical pellet models, Parks model and Strauss model, 2) Calculating fusion power and other plasma parameters in combination with a time-dependent one-dimensional transport model. This report describes the numerical models, numerical scheme, sequence of calculation, list of subroutines, list of variables and an example of calculation. (author)

  5. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  6. Measurement of shadowgraph of flying solid-hydrogen pellets

    International Nuclear Information System (INIS)

    Hasegawa, Kouichi; Kasai, Satoshi; Suzuki, Sadaaki; Oda, Yasushi.

    1992-11-01

    The measurement system of shadowgraphs of flying pellets for the high-speed multi-pellet injector is described. Shadowgraphs of pellets ejected repeatedly with 1-5 Hz could be taken with about 100 % probability by using the system, which is composed of a intense pulse-lamp with a video-camera and a timing control system. (author)

  7. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  8. Radiation-induced grafting of styrene on polypropylene pellets

    International Nuclear Information System (INIS)

    Souza, Camila P.; Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    The changes of radiation-induced in polypropylene (PP) pellets exposed to gamma irradiation in inert atmosphere were investigated in correlation with the applied doses (10 and 50 kGy). Also, results from the grafting of styrene onto PP pellets using simultaneous irradiation at the same doses are presented. The grafting reaction was carried out using toluene as solvent, under nitrogen atmosphere and at room temperature. The properties of the irradiated and grafted PP pellets were studied using Melt Flow Index, thermal analysis (TG and DSC), and ATR-IR. The degree of grafting (DOG) for the grafted pellets was gravimetrically determined. The results showed that radiation-induced graft polymerization on pellets were successfully obtained and the influence of dose irradiated did not change the thermal properties in spite of the increase in the MFI and consequently this increase in the viscosity results an decrease the molecular mass. The MFI for grafted pellets was not achievable because the high degree of viscosity of polymer, even arising the test temperature, the polymer was not flow enough. (author)

  9. Physics of inertial confinement pellets

    International Nuclear Information System (INIS)

    Mead, W.C.

    1979-01-01

    An overview of inertial confinement fusion pellet physics is given. A discussion is presented of current estimated ICF driver requirements and a couple of pellet examples. The physics of driver/plasma coupling for two drivers which are being considered, namely a laser driver and a heavy ion accelerator driver, is described. Progress towards inertial confinement fusion that has been made using laser drivers in target experiments to date is discussed

  10. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  11. Decay rate of reindeer pellet-groups

    Directory of Open Access Journals (Sweden)

    Anna Skarin

    2008-06-01

    Full Text Available Counting of animal faecal pellet groups to estimate habitat use and population densities is a well known method in wildlife research. Using pellet-group counts often require knowledge about the decay rate of the faeces. The decay rate of a faecal pellet group may be different depending on e.g. substrate, size of the pellet group and species. Pellet-group decay rates has been estimated for a number of wildlife species but never before for reindeer (Rangifer tarandus. During 2001 to 2005 a field experiment estimating the decay rate of reindeer pellet groups was performed in the Swedish mountains close to Ammarnäs. In total the decay rate of 382 pellet groups in three different habitat types (alpine heath, birch forest and spruce forest was estimated. The slowest decay rate was found in alpine heath and there the pellet groups persisted for at least four years. If decay was assumed to take place only during the bare ground season, the estimated exponential decay rate was -0.027 pellet groups/week in the same habitat. In the forest, the decay was faster and the pellet groups did not persist more than two years. Performing pellet group counts to estimate habitat use in dry habitats, such as alpine heath, I will recommend using the faecal standing crop method. Using this method makes it possible to catch the animals’ general habitat use over several years. Abstract in Swedish / Sammanfattning:Nedbrytningshastighet av renspillningInom viltforskningen har spillningsinventeringar använts under flera årtionden för att uppskatta habitatval och populationstäthet hos olika djurslag. För att kunna använda data från spillningsinventeringar krävs ofta att man vet hur lång tid det tar för spillningen att brytas ner. Nedbrytningshastigheten är olika beroende på marktyp och djurslag. Nedbrytningshastighet på spillning har studerats för bland annat olika typer av hjortdjur, men det har inte studerats på ren (Rangifer tarandus tidigare. I omr

  12. Direct dissolution and supercritical fluid extraction of uranium from UO2 powder, granule, green pellet and sintered pellet

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep; Ramakumar, K.L.

    2009-01-01

    In the present work, direct dissolution and extraction of UO 2 from the solid rejects various stages of fuel fabrication viz. powder granules green pellet and, sintered pellet has been studied. Powder and granules could be easily dissolved in TBP-HNO 3 complex at 50 deg C., whereas in case of green and sintered pellets at elevated temperature at raised to 80 deg C in TBP-HNO 3 complex. With supercritical (SC) CO 2 alone the efficiency was ∼70%. But with SC CO 2 +2.5% TBP, the efficiency was ∼95% for powder and granules, and ∼60% for green and sintered pellets. Nearly complete extraction (∼99%) was achievable for SC CO 2 + 2.5 % TTA in all cases. The method has distinct advantage of elimination of acid usage and minimization of liquid waste generation. (author)

  13. Are owl pellets good estimators of prey abundance?

    Directory of Open Access Journals (Sweden)

    Analia Andrade

    2016-07-01

    Full Text Available Some ecologists have been skeptics about the use of owl pellets to estimate small mammal’s fauna. This is due to the assumptions required by this method: (a that owls hunt at random, and (b that pellets represent a random sample from the environment. We performed statistical analysis to test these assumptions and to assess the effectiveness of Barn owl pellets as a useful estimator of field abundances of its preys. We used samples collected in the arid Extra-Andean Patagonia along an altitudinal environmental gradient from lower Monte ecoregion to upper Patagonian steppe ecoregion, with a mid-elevation ecotone. To test if owls hunt at random, we estimated expected pellet frequency by creating a distribution of random pellets, which we compared with data using a simulated chi-square. To test if pellets represent a random sample from the environment, differences between ecoregions were evaluated by PERMANOVAs with Bray–Curtis dissimilarities. We did not find evidence that owls foraged non-randomly. Therefore, we can assume that the proportions of the small mammal’s species in the diet are representative of the proportions of the species in their communities. Only Monte is different from other ecoregions. The ecotone samples are grouped with those of Patagonian steppes. There are no real differences between localities in the small mammal’s abundances in each of these ecoregions and/or Barn owl pellets cannot detect patterns at a smaller spatial scale. Therefore, we have no evidence to invalidate the use of owl pellets at an ecoregional scale.

  14. Development of repeating pneumatic pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Shimomura, T. (Mitsubishi Heavy Industries Ltd., Kobe (Japan)) (and others)

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s{sup -1}, chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s{sup -1}, as planned. (author).

  15. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Experimental setting for assessing mechanical strength of gas hydrate pellet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.J.; Choi, J.H.; Koh, B.H. [Dongguk Univ., Phil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    Due to the constant increase in global demand for clean energy, natural gas production from stranded medium and small size gas wells has drawn significant interest. Because the ocean transport of natural gas in the form of solid hydrate pellets (NGHP) has been estimated to be economically feasible, several efforts have been made to develop a total NGHP ocean transport chain. The investigation of mechanical strength of solid-form hydrate pellet has been an important task in fully exploiting the benefit of gas hydrate in the perspective of mass transportation and storage. This paper provided the results of a preliminary study regarding the assessment of mechanical properties of the gas hydrate pellet. The preliminary study suggested some of the key issues regarding formation and strength of gas hydrate pellets. Instead of utilizing the gas hydrate pellet, the study focused on a preliminary test setup for developing the ice pellet which was readily applied to the gas hydrate pellet in the future. The paper described the pelletization of ice powder as well as the experimental setup. Several photographs were illustrated, including samples of ice pellets; compression test for ice pellet using air press and load cell; and the initiation of crack in the cross section of an ice pellet. It was found that mechanical strength, especially, compression strength was not significantly affected by different level of press-forming force up to a certain level. 4 refs., 1 tab., 4 figs.

  17. Characteristics of an electron-beam rocket pellet accelerator

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs

  18. Pellet fueling development at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.; Schuresko, D.D.; Combs, S.K.; Lunsford, R.V.

    1982-01-01

    A pellet injector development program has been under way at the Oak Ridge National Laboratory (ORNL) since 1976 with the goals of developing D 2 , T 2 pellet fuel injectors capable of reliable repetitive fueling of reactors and of continued experimentation on contemporary plasma devices. The development has focused primarily on two types of injectors that show promise. One of these injectors is the centrifuge-type injector, which accelerates pellets in a high speed rotating track. The other is the gas or pneumatic gun, which accelerates pellets in a gun barrel using compressed helium of H 2 gas

  19. Geometrical dimensioning of PWR UO2 pellets

    International Nuclear Information System (INIS)

    Silva, A.T.

    1988-08-01

    The finite element structural program SAP-IV is used to calculate UO 2 pellet strains developed under thermal gradients in pressurized water reactors. The applied procedure allows to analyse the influence of various aspects of pelet geometry on cladding strains and can be utilized for the dimensioning of UO 2 pellets. Pellets purchased with flat ends, with dishes pressed into both ends, shouders, and a 45-deg edge chamfer are analysed. The analyse results are compared with experiemtnal data. (author) [pt

  20. Laser driven pellet refuelling for JET (and reactor) uses

    International Nuclear Information System (INIS)

    Spalding, I.J.

    1978-11-01

    Published estimates of pellet sizes and velocities required to refuel JET and post-JET experiments are summarized. Possible advantages and difficulties of accelerating solid, unconstrained hydrogenic (and also jacketed) pellets to these velocities using laser techniques are then discussed. An essential problem to be solved is adequate axial guidance of the pellet during its acceleration, since laser pulse durations of many sound-transit times (in the solid D 2 ) are necessary to avoid shock-heating the pellet. It is shown that Culham's multikilojoule CO 2 TROJAN laser facility is well suited to testing many of the concepts proposed. In particular it is shown that successful verification, and subsequent optimization, of such (novel) techniques would permit single shot tests of contemporary pellet ablation theories by the injection of approximately 1 mm diameter D 2 pellets at velocities 6 cm s -1 into the JET plasma. Means for scaling these techniques to repetition rates of order 10 Hz, and to the 1 cm pellet diameters possibly required in a working Tokamak reactor, are also discussed. (author)

  1. Studies of hydrogen pellet acceleration with fuseless electromagnetic railgun

    International Nuclear Information System (INIS)

    Kim, K.

    1986-01-01

    A fuseless circular-bore electromagnetic railgun specifically designed for injection of high-velocity hydrogen pellets was constructed and tested. Hydrogen pellets were first accelerated to medium velocities (∼ 500 m/s) using a gas gun and then injected into the railgun. Once a pellet entered the railgun, a plasma arc was initiated by electrically breaking down the propellant gas which followed the pellet from the gas gun into the railgun. Utilizing the propulsive force of this plasma arc armature, further acceleration of the hydrogen pellet was achieved. Using a 60 cm long railgun, proof-of-principle experiments were performed on hydrogen pellets, 1.6 mm, in diameter and 2.15 mm in length, producing velocities exceeding 1.5 km/s. Encouraged by this preliminary success, more extensive studies are in progress to further improve the performance and capabilities of the current system

  2. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  3. Building giant plant for pellets; Bygger gigantanlegg for pellets

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Hilde Kari

    2008-07-01

    At Averoey outside of Kristiansund, Norway, one of the biggest pellet factories in the world is going to be built. The Norwegian companies Hafslund and Moere og Romsdal Biobrensel are together making an effort in bio energy. A brief presentation of the planned plant is provided

  4. Portuguese pellets market: Analysis of the production and utilization constrains

    International Nuclear Information System (INIS)

    Monteiro, Eliseu; Mantha, Vishveshwar; Rouboa, Abel

    2012-01-01

    As opposite in Portugal, the wood pellets market is booming in Europe. In this work, possible reasons for this market behavior are foreseen according to the key indicators of biomass availability, costs and legal framework. Two major constrains are found in the Portuguese pellets market: the first one is the lack of an internal consumption, being the market based on exportations. The second one is the shortage of raw material mainly due to the competition with the biomass power plants. Therefore, the combination of the biomass power plants with pellet production plants seems to be the best option for the pellets production in the actual Portuguese scenario. The main constrains for pellets market has been to convince small-scale customers that pellets are a good alternative fuel, mainly due to the investment needed and the strong competition with natural gas. Besides some benefits in the acquisition of new equipment for renewable energy, they are insufficient to cover the huge discrepancy of the investment in pellets heating. However, pellets are already economic interesting for large utilizations. In order cover a large amount of households, additional public support is needed to cover the supplementary costs of the pellets heating systems. - Highlights: ► There is a lack of internal consumption being the pellets market based on exportation. ► The shortage of raw material is mainly due to the biomass power plants. ► Combining pellet plants with biomass power plants seems to be a wise solution. ► The tax benefits of renewable energy equipments are not enough to cover the higher investment. ► Pellets are already economic interesting for large utilizations in the Portuguese scenario.

  5. proximate and ultimate analysis of fuel pellets from oil palm residues

    African Journals Online (AJOL)

    HOD

    Keywords: Oil Palm Residues, Fuel Pellets, Proximate Analysis, Ultimate Analysis. 1. INTRODUCTION ... Pelletizing of this biomass resources into pellets is a way of ensuring a ... demand for pellets [3], and alternative feed-stocks such as palm kernel ... agro-residues, selection of the best pellets has to be made based on ...

  6. Arg156 in the AP2-domain exhibits the highest binding activity among the 20 individuals to the GCC box in BnaERF-B3-hy15, a mutant ERF transcription factor from Brassica napus

    Directory of Open Access Journals (Sweden)

    Jing Zhuang

    2016-10-01

    Full Text Available To develop mutants of the ERF factor with more binding activities to the GCC box, we performed in vitro directed evolution by using DNA shuffling and screened mutants through yeast one-hybrid assay. Here, a series of mutants were obtained and used to reveal key amino acids that induce changes in the DNA binding activity of the BnaERF-B3 protein. With the BnaERF-B3-hy15 as the template, we produced 12 mutants which host individual mutation of potential key residues. We found that amino acid 156 is the key site, and the other 18 mutants host the 18 corresponding individual amino acid residues at site 156. Among the 20 individuals comprising WT (Gly156, Mu3 (Arg156, and 18 mutants with other 18 amino acid residues, Arg156 in the AP2-domain is the amino acid residue with the highest binding activity to the GCC box. The structure of the α-helix in the AP2-domain affects the binding activity. Other residues within AP2-domain modulated binding activity of ERF protein, suggesting that these positions are important for binding activity. Comparison of the mutant and wild-type transcription factors revealed the relationship of protein function and sequence modification. Our result provides a potential useful resource for understanding the trans-activation of ERF proteins.

  7. Modeling Dynamic Fracture of Cryogenic Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Paul [General Atomics, San Diego, CA (United States)

    2016-06-30

    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack

  8. Inspecting fuel pellets for nuclear reactor

    International Nuclear Information System (INIS)

    Wilks, R.S.; Sternheim, E.; Breakey, G.A.; Sturges, R.H.; Taleff, A.; Castner, R.P.

    1982-01-01

    An improved method of controlling the inspection, sorting and classifying of nuclear reactor fuel pellets, including a mechanical handling system and a computer controlled data processing system, is described. Having investigated the diameter, length, surface flaws and weights of the pellets, they are sorted accordingly and the relevant data are stored. (U.K.)

  9. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia.

    Science.gov (United States)

    Nair, Ramkumar B; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-12-01

    Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus, Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0-10.0), agitation rate (100-150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0-4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast-fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L).

  10. Wood pellets and work environment; Traepiller og arbejdsmiljoe

    Energy Technology Data Exchange (ETDEWEB)

    Skov, S.

    2012-07-01

    The project aim was to evaluate the working environment in the production, transport and use of wood pellets. Furthermore, obtained knowledge and guidelines should be disseminated to relevant audiences. The first aim was achieved by making dust measurements at various relevant locations and analyze the results. Several technical problems regarding the measurements occurred during the project. In general, the manual handling of pellets often is a short-term task, which limits the amount of dust that can be collected on the sampling filter. The solution to this problem could be the use of in situ monitoring equipment, however, this technic did not work well for wood dust. Dissemination is mainly done by publishing the findings and guidelines on the webpage www.fyrmedpiller.dk. The result shows that there are widespread dust problems associated with the use and handling of pellets. The result may have been expected in the wood pellet industry, which has been reluctant to support this project. Legislation on the working environment has set a threshold limit for the dust concentration in the air on max 1 mg of dust per cubic meters of air over a working day and in over shorter periods this limit may be doubled. These threshold values were exceeded in many cases. Brief overview: The production of pellets takes place in a very dusty working environment, but the specific pelletizing and bagging processes only produce limited amounts of dust. The dust problems are major in the large warehouses where the handling of the raw material for the pellets increases the dust concentration in the air to levels that by far exceeds the legal threshold values. The work is mainly carried out from the cabin of different machines e.g. loaders and bobcats. It turns out that the average dust concentration in these cabins with filters also exceeds the threshold values. The transports of wood pellets include loading, unloading and delivery of loose pellets, all situations that are critical

  11. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga 2 O 3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  12. Results of hydrogen pellet injection into ISX-B

    International Nuclear Information System (INIS)

    Milora, S.L.; Foster, C.A.; Thomas, C.E.

    1980-09-01

    High speed pellet fueling experiments have been performed on the ISX-B device in a new regime characterized by large global density rise in both ohmic and neutral beam heated discharges. Hydrogen pellets of 1 mm in diameter were injected in the plasma midplane at velocities exceeding 1 km/s. In low temperature ohmic discharges, pellets penetrate beyond the magnetic axis, and in such cases a sharp decrease in ablation is observed as the pellet passes the plasma center. Density increases of approx. 300% have been observed without degrading plasma stability or confinement. Energy confinement time increases in agreement with the empirical scaling tau/sub E/ approx. n/sub e/ and central ion temperature increases as a result of improved ion-electron coupling. Laser-Thomson scattering and radiometer measurements indicate that the pellet interaction with the plasma is adiabatic. Penetration to r/a approx. 0.15 is optimal, in which case large amplitude sawtooth oscillations are observed and the density remains elevated. Gross plasma stability is dependent roughly on the amount of pellet penetration and can be correlated with the expected temporal evolution of the current density profile

  13. Emissions from small scale combustion of pelletized wood fuels

    International Nuclear Information System (INIS)

    Bachs, A.

    1998-01-01

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NO x emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NO x 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  14. Hydrogen pellet injection into Alcator C

    International Nuclear Information System (INIS)

    Greenwald, M.

    1983-09-01

    A four-shot pneumatic pellet injector, based on an ORNL design, has been built and operated on the Alcator C tokamak at MIT. The injector fires four independently-timed frozen hydrogen pellets with velocities in the range 8 x 10 4 - 1 x 10 5 cm/sec. Each contains 6 x 10 19 particles which corresponds to = 2 x 10 14 /cm 3 . The objectives of this experiment are to study pellet fueling and penetration, particle confinement, dependence of energy confinement on density profile and fueling mode, and edge physics and recycling as a function of fueling mode. Typical pre-injection plasmas have had anti n/sub e/ = 2 - 3 x 10 14 , Bt = 80 - 100 kG, Ip = 400 - 500 kA, T/sub e/(0) = 1200 - 1500 ev. A single pellet injected into this plasma will roughly double the electron density. Record plasma densities have been obtained by multiple injections. Line average densities in excess of 8 x 10 14 have been achieved, with highly peaked profiles. Central densities of 1.5 - 2 x 10 15 have been measured

  15. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  16. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    Science.gov (United States)

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  17. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  18. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Barber, G.C.; Baylor, L.R.

    1994-01-01

    Oak Ridge National Laboratory has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for more than 15 years. Recent major applications of the ORNL development program include (1) a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor, (2) a centrifuge pellet injector for the Tore Supra tokamak, and most recently (3) a three-barrel repeating pneumatic injector for the DIII-D tokamak. In addition to applications, ORNL is developing advanced technologies, including high-speed pellet injectors, tritium injectors, and long-pulse pellet feed systems. The high-speed research involves a collaboration between ORNL and ENEA-Frascati in the development of a repeating two-stage light gas gun based on an extrusion-type pellet feed system. Construction of a new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is complete and will replace the pipe gun in the original tritium proof-of-principle experiment. The development of a steady-state feed system in which three standard extruders operate in tandem is under way. These research and development activities are relevant to the International Thermonuclear Experimental Reactor and are briefly described in this paper

  19. Levels of Polychlorinated Bihpenyls (PCBs) in plastic resin pellets collected from selected beaches in Accra and Tema

    International Nuclear Information System (INIS)

    Agbo, I.A.

    2012-01-01

    This research seeks to investigate marine pollution along selected beaches in Accra and Tema in Ghana by measuring the levels of PCBs in plastic resin pellets. The PCB congeners identified included PCB numbers; 28, 52, 101, 105, 153, 156, 138 and 180. PCB numbers was deducted in all sample locations. The mean concentrations values were in the range of 0.4-3.23 μg/kg, 3.43-5.67 μg/kg, 0.33-2.73 μg/kg, 0.13-0.93 μg/kg and 0.13-0.2 μg/kg for PCB-28, 52, 101, 153, 180 respectively. The highest concentration of PCBs recorded in the study was that of PCB numbers 52 (5.67μg/kg), from the independence square beach. Generally, it was observed that the white pellets from most of the beaches absorbed higher levels of PCBs followed by the coloured and fouled pellets (white > coloured > discoloured). However, the coloured pellets from Tema Sakumono Beach retained higher levels of PCBs (10.3μg/kg) than the white pellets. The average concentration of PCB congeners detected ranges between 0.02 μg/kg and 2.25 μg/kg. The percentage distribution of the individual congeners are in the decreasing order of PCB 28 (43%) > PCB 52 (28%) > PCB 101 (11%), > PCB 156 (10%) > PCB 153 (5%), > PCB 180 (2%) > PCB 138 (1%) > PCB 105 (0%). The results also show that the sum total concentration of PCSs from the various sample locations ranged from 6.8 μg/kg to 47 μg/kg, with the highest concentration occurring at the Accra Independence Square Beach and the least concentration at Korle Gonno Beach. The pollution level is in the order of AISB> TSB> TMB> AACB> LB> KGB> (Accra Independence Square Beach > Tema Sakumono Beach > Tema Mighty Beach > Accra Art Center Beach Labadi Beach > Korle Gonno Beach). Results from the INAA for chlorine analysis revealed that coloured pellets had more extracted organochlorine than the fouled and the white pellets (Coloured> Fouled> White). The range of EOCI mean concentration in all samples ranged from 2.24mg/kg to 30.90 mg/kg. The range of EOCI mean

  20. New extruder-based deuterium feed system for centrifuge pellet injection

    International Nuclear Information System (INIS)

    Combs, S.K.; Foust, C.R.

    1997-01-01

    The pellet injection systems for the next-generation fusion devices (such as the International Thermonuclear Experimental Reactor) and future fusion reactors will have to provide deuterium-tritium fueling for much longer pulse lengths (up to ∼1000s) than present applications (typically limited to less than several seconds). Thus, a prototype pellet feed system for centrifuge pellet injection has been developed and used in long-pulse (>100s) tests at the Oak Ridge National Laboratory (ORNL). The new apparatus has two key components: (1) a cryogenic deuterium extruder and (2) an electromagnetic pellet punch mechanism. For maximum testing flexibility, the prototype is equipped with several other active components that allow remote adjustments, including precise positioning of the punch and the capability to index through eight different pellet lengths. The new feed system was designed to mate with an existing centrifuge accelerator facility at ORNL, and experiments in the facility were carried out to document the performance and reliability of the new feed system. With 2.3-mm-diam deuterium pellets and a catenary-shaped accelerator (∼1.2mdiam), the prototype feed system was found to be capable of placing up to ∼90% of the punched pellets in the proper time/space window for pickup and acceleration by the high-speed rotating (∼50Hz) arbor. For these operating parameters, the pellet nominal speed was ∼430m/s, and maximum pellet feed rates of 10 pellets/s and greater were tested. In this article the equipment is briefly described, and the experimental test results are summarized. Also, issues affecting overall pellet delivery efficiency are discussed. copyright 1997 American Institute of Physics

  1. Study of the pelletizing process zirconium oxide and zircon sand

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Paschoal, J.O.A.; Acevedo, M.T.P.

    1990-12-01

    The study of the process to obtain zirconium tetrachloride under development at IPEN, can be divide into two steps: pelletizing and chlorination. Pelletizing is an important step in the overall process as it facilitates greater contact between the particles and permits the production of pellets with dimensional uniformity and mechanical strength. In this paper, the results of the study of pelletizing zirconium oxide and zircon sand are presented. The influence of some variables related to the process and the equipment on the physical characteristics of the pellets are discussed. (author)

  2. Preparation of high density (Th, U)O2 pellets by sol-gel microsphere pelletization and 1300 C air sintering

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1994-01-01

    The fabrication of high density (Th, U)O 2 pellets by the sol-gel microsphere pelletization (SGMP) process was studied. To prepare source ThO 2 -UO 3 microspheres, isopropyl alcohol was substituted for the water in gel and thereafter removed by evacuating and subsequently by heating at 200 C in air. After humidifying the microspheres up to the moisture content ranging 10-21%, they were compacted into a pellet under 150-500 MPa and sintered in air at 1300 C. Even at the relatively low temperature, the maximum density reached 98% TD or higher for the U/(Th+U) ratios of 5-20 mol%. Such high density products survived as firm pellets with a similarly high density of 99% TD during the reduction into (Th, U)O 2 in Ar-4% H 2 at 1300 C. ((orig.))

  3. Solid hydrogen pellet injection into the ORMAK Tokamak

    International Nuclear Information System (INIS)

    Foster, C.A.; Colchin, R.J.; Milora, S.L.; Kim, K.; Turnbull, R.J.

    1977-06-01

    Solid hydrogen spheres were injected into the ORMAK tokamak as a test of pellet refueling for tokamak fusion reactors. Pellets 70 μm and 210 μm in diameter were injected with speeds of 91 m/sec and 100 m/sec, respectively. Each of the 210-μm pellets added about 1% to the number of particles contained in the plasma. Excited neutrals, ablated from these hydrogen spheres, emitted light which was monitored either by a photomultiplier or by a high speed framing camera. From these light signals it was possible to measure pellet lifetimes, ablation rates, and the spatial distribution of hydrogen atoms in the ablation clouds. The average measured lifetime of the 70-μm pellets was 422 μsec, and the 210-μm spheres lasted 880 μsec under bombardment by the plasma. These lifetimes and measured ablation rates are in good agreement with a theoretical model which takes into account shielding of plasma electrons by hydrogen atoms ablated from spherical hydrogen ice

  4. Experiments on Li pellet injection into Heliotron E

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Khlopenkov, K.V.; Kuteev, B.V.; Sudo, S.; Kondo, K.; Zushi, H.; Besshou, S.; Sano, F.; Okada, H.; Mizuuchi, T.; Nagasaki, K.; Obiki, T.; Kurimoto, Y.

    1998-01-01

    Li pellets of large size were injected into electron cyclotron resonance (ECR) heated plasmas and neutral beam injection (NBI) heated plasmas of Heliotron E. The discharge behaviour, pellet ablation and wall conditioning were studied. The electron pressure is doubled after injection into the NBI plasma and remains unchanged in the case of ECR heating. This may be due to the energy exchange between the electrons and thermal ions with the fast ions from the neutral beam. The observed discrepancy between the experimental and modelled ablation rates may be caused by both the plasma cooling due to pellet ablatant and the ablation stimulated by the fast ions in the NBI-heated regime and by the fast electrons in the ECR-heated regime. In preliminary experiments on wall conditioning by Li pellet injection, no improvement of plasma performance after Li pellet injection was observed in the divertor or limiter configuration, with the limiter radii r L =24-25cm. (author)

  5. Preliminary pellet injection experiment in the Gamma 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Eiichirou; Tamano, Teruo; Nakashima, Yousuke; Yoshikawa, Masayuki; Kobayashi, Shinji; Cho, Teruji; Ishii, Kameo; Yatsu, Kiyoshi [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Mase, Atsushi [Advanced Sceince and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka (Japan)

    2000-07-01

    In the GAMMA 10 tandem mirror, pellet injection experiments have been started as a solution for the density limit problem. This is the first pellet injection experiment in open systems. We describe the possibilities of confinement of pellet fueled particles. For that, we measure the number of end loss particles and compare them with pellet fueled ones in various conditions of confining potentials. The deterioration of confining potential with the pellet injection is a fundamental issue. The results show that the ion confining potential recover faster than central electron temperature due to thermal barrier. We also consider the operating space for fueling method. It is demonstrated that the operating space for pellet injection exceeds gas fueled one on hot ion mode plasmas. (author)

  6. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  7. Switzerland's largest wood-pellet factory in Balsthal

    International Nuclear Information System (INIS)

    Stohler, F.

    2004-01-01

    This article describes how a small Swiss electricity utility has broken out of its traditional role in power generation and the distribution of electricity and gone into the production of wood pellets. The pellets, which are made from waste wood (sawdust) available from wood processing companies, are produced on a large scale in one of Europe's largest pellets production facilities. The boom in the use of wood pellets for heating purposes is discussed. The article discusses this unusual approach for a Swiss power utility, which also operates a wood-fired power station and is even involved in an incineration plant for household wastes. The markets being aimed for in Switzerland and in Europe are described, including modern low-energy-consumption housing projects. A further project is described that is to use waste wood available from a large wood processing facility planned in the utility's own region

  8. The new centrifuge high-speed pellet injector for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Lang, P.T.; Andelfinger, C.; Beck, W.; Buchelt, E.; Buechl, K.; Cierpka, P.; Kollotzek, H.; Lang, R.S.; Prausner, G.; Soeldner, F.X.; Ulrich, M.; Weber, G.

    1993-04-01

    We report on the new pellet injection system for refuelling the ASDEX Upgrade tokamak with cubic H 2 or D 2 pellets having alternative side lengths of 1.5, 1.75 and 2.0 mm and optional Ne doping. The system delivers series of about one hundred pellets at a maximum repetition rate of more than 40 Hz. The pellets are accelerated by means of a centrifuge with an optimized straight acceleration arm. This configuration minimizes the compulsive force acting on the pellet during the acceleration process. Since this also minimizes stresses inside the pellet, high velocities - a maximum of 1211 m/s being achieved - are possible without destroying the hydrogen cubes. A special pellet feed-in technique based on a static stop cylinder interrupting the acceleration path successfully reduced the horizontal scattering angle to values of less than ± 4 degrees. Thus, a high efficiency - with more than 90% of the pellets arriving within the acceptance angle - was achieved without using a guide tube. The whole system was found to work very reliably and reproducibly during the whole test operation period, covering about 10 5 pellet shots. The new centrifuge, now integrated into the ASDEX Upgrade setup, has proved to be a reliable unit even for long operation periods thus affording the possibility of quasicontinuous particle refuelling throughout a plasma discharge in ASDEX Upgrade. (orig.)

  9. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    International Nuclear Information System (INIS)

    Puad, E.; Wan Asma, I; Shaharuddin, H.; Mahanim, S.; Rafidah, J.

    2010-01-01

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m 3 . Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  10. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  11. Sintering of wax for controlling release from pellets

    OpenAIRE

    Singh, Reena; Poddar, S. S.; Chivate, Amit

    2007-01-01

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%–20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusio...

  12. Monitoring and data acquisition of the high speed hydrogen pellet in SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Samiran Shanti, E-mail: samiran@ipr.res.in; Mishra, Jyotishankar; Gangradey, Ranjana; Dutta, Pramit; Rastogi, Naveen; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Bairagi, Pawan; Patel, Haresh; Sharma, Hardik

    2016-11-15

    Highlights: • Pellet INjector System with monitoring and data acquisition is described. • A high speed camera was used to view pellet size, and its flight trajectory. • PXI based high speed control system is used data acquisition. • Pellets of length 2–4.8 mm and speed 250–750 m/s were obtained. - Abstract: Injection of solid hydrogen pellets is an efficient way of replenishing the spent fuel in high temperature plasmas. Aiming that, a Single Pellet INjector System (SPINS) is developed at Institute for Plasma Research (IPR), India, to initiate pellet injection related research in SST-1. The pellet injector is controlled by a PXI system based data acquisition and control (DAC) system for pellet formation, precise firing control, data collection and diagnostics. The velocity of high speed moving pellets is estimated by using two sets of light gate diagnostic. Apart from light gate, a fast framing camera is used to measure the pellet size and its speed. The pellet images are captured at a frame rate of ∼200,000 frames per second at (128 × 64) pixel resolution with an exposure time of 1 μs. Using these diagnostic, various cylindrical pellets of length ranging from 2 to 4.8 mm and speed 250–750 m/s were successfully obtained. This paper describes the control and data acquisition system of SPINS, the techniques for measurement of pellet velocity and capturing images of high speed moving pellet.

  13. Investigation on HL-1M pellet shape and cloud structure

    International Nuclear Information System (INIS)

    Zheng Yinjia

    2001-01-01

    When hydrogen multi-pellet flied out from the gun exit and was injected into the HL-1M plasma, the pellet injection and ablation cloud were observed by using a 2D CCD camera SensiCam 360LF. The shape of flight pellet from the gun exit was obtained with the photos taken. The pellet ablation process and the structure of its cloud were analyzed by means of photos with multiple exposure (exp. 100 ns) and long exposure. The experimental setup is described, the results of the pellet injection experiment and characteristic of ablation cloud are presented

  14. Production of pellets for nuclear fuel elements

    International Nuclear Information System (INIS)

    Butler, G.G.

    1982-01-01

    A method for producing nuclear fuel pellets each made up of a central portion and an outer annular portion surrounding the central portion, the two portions differing in composition. Such pellets are termed annular-layered pellets. The method comprises the steps of pressing powdered refractory material which has been granulated to form separately a central portion and an outer annular portion, assembling the portions together, compacting the assembly and sintering the compact. The portions are bonded together during sintering. The difference in composition may include a difference in density or isotopic enrichment as well as a chemical difference. (author)

  15. Wood pellet milling tests in a suspension-fired power plant

    DEFF Research Database (Denmark)

    Masche, Marvin; Puig-Arnavat, Maria; Wadenbäck, Johan

    2018-01-01

    classification (i.e., the classifier cut size) are affected by the internal pellet particle size distribution obtained after pellet disintegration in hot water. Furthermore, optimal conditions for comminuting pellets were identified. The milling behavior was assessed by determining the specific grinding energy...... consumption and the differential mill pressure. The size and shape of comminuted pellets sampled from burner pipes were analyzed by dynamic image analysis and sieve analysis, respectively. The results showed that the internal pellet particle size distribution affected both the milling behavior...... similar. Mill operating changes had a negligible effect on the original elongated wood particle shape. To achieve the desired comminuted product fineness (i.e., the classifier cut size) with lower specific grinding energy consumption, power plant operators need to choose pellets with a finer internal...

  16. The enhanced ASDEX Upgrade pellet centrifuge launcher

    International Nuclear Information System (INIS)

    Plöckl, B.; Lang, P. T.

    2013-01-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios

  17. The enhanced ASDEX Upgrade pellet centrifuge launcher

    Energy Technology Data Exchange (ETDEWEB)

    Plöckl, B.; Lang, P. T. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  18. Co-gasification of pelletized wood residues

    Energy Technology Data Exchange (ETDEWEB)

    Carlos A. Alzate; Farid Chejne; Carlos F. Valdes; Arturo Berrio; Javier De La Cruz; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    A pelletization process was designed which produces cylindrical pellets 8 mm in length and 4 mm in diameter. These ones were manufactured using a blend of Pinus Patula and Cypress sawdust and coal in proportions of 0%, 5%, 10%, 20%, and 30% v/v of coal of rank sub-bituminous extracted from the Nech mine (Amaga-Antioquia). For this procedure, sodium carboxymethyl cellulose (CMC) was used as binder at three different concentrations. The co-gasification experiments were carried out with two kinds of mixtures, the first one was composed of granular coal and pellets of 100% wood and the second one was composed of pulverized wood and granular coal pellets. All samples were co-gasified with steam by using an electrical heated fluidized-bed reactor, operating in batches, at 850{sup o}C. The main components of the gaseous product were H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and N{sub 2} with approximate quantities of 59%, 6.0%, 20%, 5.0%, and 9.0% v/v, respectively, and the higher heating values ranged from between 7.1 and 9.5 MJ/Nm{sup 3}.

  19. Torrefaction of wood pellets: New solutions

    Science.gov (United States)

    Zaichenko, V. M.; Shterenberg, V. Ya.

    2017-10-01

    The current state of the market of conventional and torrefied wood pellets and the trends of its development have been analyzed. The advantages and disadvantages of pellets of both types have been compared with other alternative fuels. The consumer segment in which wood pellets are the most competitive has been determined. The original torrefaction technology using exhaust gas heat from a standard gas engine that was developed at the Joint Institute for High Technologies and the scheme of an experimental unit for the elaboration of the technology have been presented. The scheme of the combined operation of a torrefaction unit and a standard hot water boiler, which makes it possible to utilize the heat of exhaust steam-and-gas products of torrefaction with the simultaneous prevention of emissions of harmful substances into the environment, has been proposed. The required correlation between the capacity of the torrefaction unit and the heating boiler house has been estimated for optimal operation under the conditions of the isolated urban village in a region that is distant from the areas of extraction of traditional fuels and, at the same time, has quite sufficient resources of raw materials for the production of wood pellets.

  20. Blower Gun pellet injection system for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, M., E-mail: mathias.dibon@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Baldzuhn, J.; Beck, M. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Cardella, A. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Köchl, F. [Atominstitut, TU Wien, 1020 Vienna (Austria); Kocsis, G. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Lang, P.T. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Macian-Juan, R. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Ploeckl, B. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Szepesi, T. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Weisbart, W. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • Operational principle of the ASDEX Upgrade Blower Gun. • Guiding tube properties for pellet guiding according to the requirements of W7-X. • Diagnostics for the characterization of the injection system. • Experimental procedure to investigate the performance of the Blower Gun. • Results concerning pellet speeds, mass loss, delivery efficiency and exit angle. - Abstract: Foreseen to perform pellet investigations in the new stellarator W7-X, the former ASDEX Upgrade Blower Gun was revised and revitalized. The systems operational characteristics have been surveyed in a test bed. The gun is designed to launch cylindrical pellets with 2 mm diameter and 2 mm length, produced from frozen deuterium D{sub 2}, hydrogen H{sub 2} or a gas mixture consisting of 50% H{sub 2} and 50% D{sub 2}. Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100–250 m/s. Delivery reliabilities at the launcher exit reach almost unity. The initial pellet mass is reduced to about 50% during the acceleration process. Pellet transfer to the plasma vessel was investigated by a first mock up guiding tube version. Transfer through this S-shaped stainless steel guiding tube (inner diameter 8 mm; length 6 m) containing two 1 m curvature radii was investigated for all pellet types. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 0.1 to 0.6 MPa. For both H{sub 2} and D{sub 2}, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz. About 10% of the mass is eroded while flying through the guiding tube. Pellets exit the guiding tube with an angular spread of less than 14°.

  1. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  2. The unaccountability case of plastic pellet pollution.

    Science.gov (United States)

    Karlsson, Therese M; Arneborg, Lars; Broström, Göran; Almroth, Bethanie Carney; Gipperth, Lena; Hassellöv, Martin

    2018-04-01

    Plastic preproduction pellets are found in environmental samples all over the world and their presence is often linked to spills during production and transportation. To better understand how these pellets end up in the environment we assessed the release of plastic pellets from a polyethylene production site in a case study area on the Swedish west coast. The case study encompasses; field measurements to evaluate the level of pollution and pathways, models and drifters to investigate the potential spread and a revision of the legal framework and the company permits. This case study show that millions of pellets are released from the production site annually but also that there are national and international legal frameworks that if implemented could help prevent these spills. Bearing in mind the negative effects observed by plastic pollution there is an urgent need to increase the responsibility and accountability of these spills. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Wood pellet use in Sweden. A systems approach to the residential sector

    International Nuclear Information System (INIS)

    Vinterbaeck, Johan

    2000-01-01

    This empirically based thesis deals with a biofuel market in a systems context with focus on Sweden. Fuel pellets is a new consumer market for wood products. Initially used mainly by large-scale heating plants, wood pellets expanded into the Swedish residential heating market in the mid 1990s. The overall aim of this work is to provide a deeper understanding of the system for small-scale use of densified wood fuels. The objective was to provide a mapping and logistic analysis of fuel and delivery chains primarily for wood pellets. The description includes both technical as well as economic and organisational aspects. The thesis in particular investigates (i) experience from practical densification operations in the past, (ii) wood pellet retailers in Sweden, (iii) wood pellet consumers in Austria, Sweden and the United States, (iv) imports of wood pellets, and (v) forecasting of pellet consumption and inventory management for wood pellet distributors. Previous international studies revealed that the availability of cheap raw materials for fuel production and the price and availability of the most important competing fuels: coal, oil and natural gas were important factors that have guided production and use of densified wood and bark fuels. A major network of wood pellet distributors was mapped. It was concluded from a survey to these retailers that the Swedish residential market was now firmly in place and that the price of wood pellets was competitive with prices of traditional national fuels. A majority of pellet users in Austria, Sweden and the United States were pleased with pellet heating. One way to improve pellet distribution systems would be to optimise inventory management. An internal model for optimising inventory management, Pell-Sim, was constructed. For Sweden, wood pellets in 1997 represented the second most traded biofuel assortment, with 4.35 PJ or 18% of the total biofuel imports. Contrary to trade with other biofuel assortments, wood pellet trade

  4. Optimization parametric study of the fuel pellet dimensions

    International Nuclear Information System (INIS)

    Mai, L.A.

    1986-01-01

    A method to determine the dimensions of fuel pellets, is presented, obtaining the maximum core reactivity at the end of cycle. Other unit cell parameters, fixed in a given reactor, are considered constants. It is seen that the cycle length is an important parameter in the determinations of the pellet dimensions. The optimal pellet radius is found as an increasing function of the cycle length. All calculation have been performed using the HAMMER code. (Author) [pt

  5. Effects of carbonization conditions on properties of bamboo pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Yan Yu; Xing' e Liu

    2013-01-01

    Bamboo is a biomass material and has great potential as a bio-energy resource of the future in China. Bamboo pellets were successfully manufactured using a laboratory pellet mill in preliminary work. This study was therefore carried out to investigate the effect of carbonization conditions (temperature and time) on properties of bamboo pellets and to evaluate product...

  6. Apparatus for checking the dimensions of nuclear fuel pellets

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1978-01-01

    The description is given of an apparatus for checking the dimensions of pellets comprising a housing, a feeding device near this housing to move a pellet towards the latter and away from it, and a platform with a hole, this platform being fitted to the housing near the feeding system in order to hold the pellet [fr

  7. Computerized x-ray radiographic system for fuel pellet measurements

    International Nuclear Information System (INIS)

    Green, D.R.; Karnesky, R.A.; Bromley, C.

    1977-01-01

    The development and operation of a computerized system for determination of fuel pellet diameters from x-ray radiography is described. Actual fuel pellet diameter measurements made with the system are compared to micrometer measurements on the same pellets, and statistically evaluated. The advantages and limitations of the system are discussed, and recommendations are made for further development

  8. Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system

    Science.gov (United States)

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.

  9. Production and characterization of pellets using Avicel CL611 as spheronization aid.

    Science.gov (United States)

    Puah, Sin Yee; Yap, Hsiu Ni; Chaw, Cheng Shu

    2014-03-01

    The study looked into the feasibility of producing pellet using Avicel CL611 as spheronization aid by the extrusion/spheronization technique. Pellets were formulated to contain either 20% or 40% Avicel CL611 and lactose monohydrate as the other sole ingredient. Water is used as liquid binder. Quality of pellets and extrudates were analyzed for size distribution, shape, surface tensile strength and disintegration profile. More water was needed when higher Avicel CL611 fraction was used during the production of pellets. The pellets of larger size were obtained by increasing the water content. Pellets with aspect ratios of ∼1.1 were produced with high spheronization speed at short residence time. Higher tensile strength was achieved when increasing the water content and the fraction of Avicel CL611 during pellet production. These pellets also took longer time to disintegrate, nonetheless all the pellets disintegrated within 15 min. A positive linear relationship was obtained between the tensile strength and time for pellets to disintegrate. Strong but round pellets that disintegrate rapidly could be produced with Avicel CL611 as spheronization aid using moderately soluble compounds such as lactose.

  10. Microplastic resin pellets on an urban tropical beach in Colombia.

    Science.gov (United States)

    Acosta-Coley, Isabel; Olivero-Verbel, Jesus

    2015-07-01

    Microplastics are a problem in oceans worldwide. The current situation in Latin America is not well known. This paper reports, for the first time, the presence of microplastics on an urban Caribbean beach in Cartagena, Colombia. Pellet samples were collected from a tourist beach over a 5-month period covering both dry and rainy seasons. Pellets were classified by color and their surface analyzed by stereomicroscopy, and some were characterized by infrared spectroscopy. The most abundant pellets were white, presenting virgin surfaces, with few signs of oxidation. This is congruent with a short residence time in the marine environment and primary sources possibly located nearby. The frequency of white pellets did not change with sampling period. Surface features identified in the pellets included cracks, material loss, erosion, adhesion, granulation, color change, and glazed surfaces. Reticulated granular pellets exhibited the greatest degradation, easily generating submicroplastics. Sample composition was mostly polyethylene, followed by polypropylene. This pollution problem must be addressed by responsible authorities to avoid pellet deposition in oceans and on beaches around the world.

  11. Runaway electron generation during plasma shutdown by killer pellet injection

    International Nuclear Information System (INIS)

    Gal, K; Feher, T; Smith, H; Fueloep, T; Helander, P

    2008-01-01

    Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents

  12. Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks

    Science.gov (United States)

    Bosviel, Nicolas; Samulyak, Roman; Parks, Paul

    2017-10-01

    Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.

  13. Recycling process of Mn-Al doped large grain UO2 pellets

    International Nuclear Information System (INIS)

    Nam, Ik Hui; Yang, Jae Ho; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Kim, Keon Sik; Song, Kun Woo

    2010-01-01

    To reduce the fuel cycle costs and the total mass of spent light water reactor (LWR) fuels, it is necessary to extend the fuel discharged burn-up. Research on fuel pellets focuses on increasing the pellet density and grain size to increase the uranium contents and the high burnup safety margins for LWRs. KAERI are developing the large grain UO 2 pellet for the same purpose. Small amount of additives doping technology are used to increase the grain size and the high temperature deformation of UO 2 pellets. Various promising additive candidates had been developed during the last 3 years and the MnO-Al 2 O 3 doped UO 2 fuel pellet is one of the most promising candidates. In a commercial UO 2 fuel pellet manufacturing process, defective UO 2 pellets or scraps are produced and those should be reused. A common recycling method for defective UO 2 pellets or scraps is that they are oxidized in air at about 450 .deg. C to make U 3 O 8 powder and then added to UO 2 powder. In the oxidation of a UO 2 pellet, the oxygen propagates along the grain boundary. The U 3 O 8 formation on the grain boundary causes a spallation of the grains. So, size and shape of U 3 O 8 powder deeply depend on the initial grain size of UO 2 pellets. In the case of Mn-Al doped large grain pellets, the average grain size is about 45μm and about 5 times larger than a typical un-doped UO 2 pellet which has grain size of about 8∼10μm. That big difference in grain size is expected to cause a big difference in recycled U 3 O 8 powder morphology. Addition of U 3 O 8 to UO 2 leads to a drop in the pellet density, impeding a grain growth and the formation of graph- like pore segregates. Such degradation of the UO 2 pellet properties by adding the recycled U 3 O 8 powder depend on the U 3 O 8 powder properties. So, it is necessary to understand the property and its effect on the pellet of the recycled U 3 O 8 . This paper shows a preliminary result about the recycled U 3 O 8 powder which was obtained by

  14. Development of 4-shot pellet injector for JET-2M

    International Nuclear Information System (INIS)

    Noda, O.; Kuribayashi, S.; Uchikawa, T.; Onozuka, M.; Kasaki, S.; Hasegawa, K.

    1987-01-01

    A pneumatic 4 pellet injector has been constructed for JFT-2M. The performance tests have proved high performance and reliability of the injector. The maximum pellet velocity obtained in hydrogen pellet tests is 1.4km sec. The device is now in use for JFT-2M in a place of a previous single pellet injector, contributing to plasma studies. In this paper the outline of features and performance of the device is presented

  15. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  16. Analysis of pellet coating uniformity using a computer scanner.

    Science.gov (United States)

    Šibanc, Rok; Luštrik, Matevž; Dreu, Rok

    2017-11-30

    A fast method for pellet coating uniformity analysis, using a commercial computer scanner was developed. The analysis of the individual particle coating thicknesses was based on using a transparent orange colored coating layer deposited on white pellet cores. Besides the analysis of the coating thickness the information of pellet size and shape was obtained as well. Particle size dependent coating thickness and particle size independent coating variability was calculated by combining the information of coating thickness and pellet size. Decoupling coating thickness variation sources is unique to presented method. For each coating experiment around 10000 pellets were analyzed, giving results with a high statistical confidence. Proposed method was employed for the performance evaluation of classical Wurster and swirl enhanced Wurster coater operated at different gap settings and air flow rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Method for solidification and disposal of radioactive pellet waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki.

    1975-01-01

    Object: To form radioactive waste into pellet, which is impregnated with plastic monomer for polymerization, and then packed into a drum can to have gaps between composites filled with cement, mortar, and molten asphalt, thus increasing water resistance and strength. Structure: Radioactive powdery bodies discharged from a thin film scaraping drier are formed into pellets in the desired shape. The thus pelletized radioactive solid waste is impregnated with a fluid plastic monomer such as styrene monomer and methacrylacidmethyl, and a polymerization accelerator is added thereto for polymerization. As a consequence, a composite pellet of powdery solid waste and plastic may be obtained. This is packed into the drum can container, into which cement paste, cement mortar or molten asphalt are put to fill the space between the plastic pellet composites, thus obtaining a solidified body integral with the drum can. (Taniai, N.)

  18. Small scale pelletizing equipment for agriculture; Smaaskalig pelleteringsanlaeggning foer lantbruket

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (The Swedish Environmental Research Inst. Ltd., Stockholm (Sweden)); Wallin, Mikael (Sweden Powers Chippers AB, Boraas (Sweden))

    2009-06-15

    Refining agricultural raw materials is one way for farmers to increase the value of their products. For example, briquettes or pellets made from straw, reed canary grass or hemp can sell for a higher price than in loose or baled forms. The aim of this project was to develop and build a plant for small-scale production of pellets on the farm. Working together with the farmer, the plant would then be tested and adapted for small-scale production of pellets from straw, reed canary grass and hemp. The project also aimed to investigate and summarise suitable systems and solutions for breaking up bales in preparation for use in the pellets module. A pelleting system has been developed and built as a container module (measuring 6 x 2.80 x 2.50 m) by Sweden Power Chippers (SPC). The container system includes a fuel store with push floor, a grinder, an SPC pellet press (pp150, capacity 150 kg/hour for woodbased material), a conveyor belt and a cooling system. The practical operation of the plant was tested on two Swedish farms: Laattra gaard in Vingaaker and Ek gaard in Vara. The bales were broken up in preparation for pelleting using a straw mill of model Tomahawk 505M. The project has demonstrated that the SPC plant has the capacity to be used for agricultural pelleting of fuels from straw, canary reed grass and hemp. Some modification and continued adjustment of the feed system for the fuel remains to be done in order to optimise and ensure the reliability of the pelleting process. A certain amount of modifications to the plant is required to enable cost-effective transportation between different locations. Tests showed that each batch of fuel was unique, even from the same raw material, and that optimisation of the dies is necessary for each specific case. Training is required to run the plant. The farmers have been able to run the plant themselves, for example, starting up the plant, changing the sieve on the grinder, changing dies etc. In order for such small

  19. New automated pellet/powder assay system

    International Nuclear Information System (INIS)

    Olsen, R.N.

    1975-01-01

    This paper discusses an automated, high precision, pellet/ powder assay system. The system is an active assay system using a small isotopic neutron source and a coincidence detection system. The handling of the pellet powder samples has been automated and a programmable calculator has been integrated into the system to provide control and data analysis. The versatile system can assay uranium or plutonium in either active or passive modes

  20. Existence and lifetime of laser fusion pellets containing tritium

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1979-05-01

    Cryogenic pellets containing significant amounts of solid tritium cannot be maintained in a pure vacuum for longer than (typically) some tens of seconds because radiative cooling at low temperatures is inefficient. The steady state temperatures in typical one- and two-shell pellet designs both in vacuum and with external cooling, as well as the lifetimes of pellets following cooling removal, are calculated

  1. Implementation of an iron ore green pellet on-line size analyser at the QCMC pelletizing plant

    International Nuclear Information System (INIS)

    Bouajila, A.; Boivin, J.-A.; Ouellet, G.; Beaudin, S.

    1999-01-01

    This paper describes work into the design, implementation and performance evaluation of a 3D-image analysis system at the QCMC pelletizing plant. First, the measurement system is reviewed. Second, the ability of the system to achieve reliable, on-line results on a moving conveyor belt is presented and discussed. The problem of segregation caused by disk classification is particularly addressed, as it hinders full size distribution estimation from the top layer. Finally, pelletizing disk controllability is investigated. (author)

  2. Effects of feeding corn silage, pelleted, ensiled, or pelleted and ...

    African Journals Online (AJOL)

    Two experiments were conducted to evaluate the effects of corn silage (CS) and alfalfa (pelleted (AP), haylage (AH), or combination (APH)) on lamb growth and carcass characteristics. The objective of Experiment 1 (Exp. 1) was to compare AH to CS in lamb feedlot diets on lamb growth and carcass characteristics.

  3. Combustion tests with different pellet qualities

    International Nuclear Information System (INIS)

    Bachs, A.; Dahlstroem, J.E.; Persson, Henrik; Tullin, C.

    1999-05-01

    Eight different pellet qualities with the diameters 6, 8 and 10 mm, from eight different producers has been tested in three pellet burners and two pellet stoves. The objective was to investigate how different diameter affect the emissions of CO, OGC and NO x . Previous experience has indicated that the pellet diameter could have significant importance for the combustion. This was not verified in the study. It showed contradictory that the diameter has a minor effect on the combustion result. The study shows that different combustion equipment give different emission. For e g hydrocarbon emissions the difference is a factor 2.2 between the 'best' and the 'worst' equipment fired on full load. The difference increases to 2.7 with lower load. The choice of fuel has a big importance for the quality of the combustion. For hydrocarbons the emissions could in an extreme situation differ with a factor 25 between 'best' and 'worst' fuel. More normally the difference is about a factor of five. Nitrogen oxide emissions are to a major part related to the nitrogen contents in the fuel. The difference between the 'best' and 'worst' fuel is in the range of a factor two. Tests with the same fuel in different equipment gives a variation of 20-30%. The combustion result depends on both the pellet quality and the equipment and there is no fuel that is good in all equipment. The big variation in combustion results shows that there is a big indifference between fuels used for small scale heating Project report from the program: Small scale combustion of biofuels. 2 refs, 15 figs, 5 tabs

  4. Trial production of fuel pellet from Acacia mangium bark waste biomass

    Science.gov (United States)

    Amirta, R.; Anwar, T.; Sudrajat; Yuliansyah; Suwinarti, W.

    2018-04-01

    Fuel pellet is one of the innovation products that can be produced from various sources of biomass such as agricultural residues, forestry and also wood industries including wood bark. Herein this paper, the potential fuel pellet production using Acacia mangium bark that abundant wasted from chip mill industry was studied. Fuel pellet was produced using a modified animal feed pellet press machine equipped with rotating roller-cylinders. The international standards quality of fuel pellet such as ONORM (Austria), SS (Sweden), DIN (Germany), EN (European) and ITEBE (Italy) were used to evaluate the optimum composition of feedstock and additive used. Theresults showed the quality offuel pellet produced were good compared to commercial sawdust pellet. Mixed of Acacia bark (dust) with 10% of tapioca and 20% of glycerol (w/w) was increased the stable form of pellet and the highest heating value to reached 4,383 Kcal/kg (calorific value). Blending of Acacia bark with tapioca and glycerol was positively improved its physical, chemical and combustion properties to met the international standards requirement for export market. Based on this finding, production of fuel pellet from Acacia bark waste biomass was promising to be developed as an alternative substitution of fossil energy in the future.

  5. Recent Developments Concerning Pellet Combustion Technologies - A Review of Austrian Developments

    International Nuclear Information System (INIS)

    Obernberger, I.; Thek, G.

    2006-01-01

    This paper gives an overview of recent developments concerning pellet combustion technologies in Austria. It covers basic information about the Austrian pellet market and market developments in recent years as well as about national framework conditions in Austria with regard to standards for Pellets, pellet furnaces and emission limits. A detailed overview is given of the state-of-the-art of Austrian pellet boiler technology, which is - from a technological point of view - probably the best developed market world-wide. Innovations, which have recently been developed and introduced into the market, are described. The most important innovations are new furnace developments based on CFD (Computational Fluid Dynamics) simulations, flue gas condensation systems for small-scale pellet boilers and multi-fuel concepts, where e.g. firewood and Pellets can be utilised in one boiler. Moreover, emissions from pellet furnaces are discussed and evaluated based on test stand and field measurements. In this respect, a focus is put on fine particulate emissions from pellet boilers. Finally, future developments based on ongoing research projects are described and discussed. The ongoing R and D activities focus on the further reduction of fine particulate emissions by primary and secondary measures, the utilisation of herbaceous biomass fuels and small or micro-scale CHP systems

  6. Nuclear fuel pellets

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1981-01-01

    Increased strength and physical durability in green bodies or pellets formed of particulate nuclear fuel oxides is achieved by inclusion of a fugitive binder which is ammonium bicarbonate, bicarbonate carbomate, carbomate, sesquicarbonate or mixtures thereof. Ammonium oxadate may be included as pore former. (author)

  7. Pneumatic hydrogen pellet injection system for the ISX tokamak

    International Nuclear Information System (INIS)

    Milora, S.L.; Foster, C.A.

    1979-01-01

    We describe the design and operation of the solid hydrogen pellet injection system used in plasma refueling experiments on the ISX tokamak. The gun-type injector operates on the principle of gas dynamic acceleration of cold pellets confined laterally in a tube. The device is cooled by flowing liquid helium refrigerant, and pellets are formed in situ. Room temperature helium gas at moderate pressure is used as the propellant. The prototype device injected single hydrogen pellets into the tokamak discharge at a nominal 330 m/s. The tokamak plasma fuel content was observed to increase by (0.5--1.2) x 10 19 particles subsequent to pellet injection. A simple modification to the existing design has extended the performance to 1000 m/s. At higher propellant operating pressures (28 bars), the muzzle velocity is 20% less than predicted by an idealized constant area expansion process

  8. Proposed high speed pellet injection system 'HIPEL' for Large Helical Device

    International Nuclear Information System (INIS)

    Sudo, S.; Kanno, M.; Kaneko, H.; Saka, S.; Shirai, T.; Baba, T.

    1993-11-01

    From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order to obtain the pellet velocity range of 3 km/s. Based upon the above results, a high speed flexible multiple-pellet injection system 'HIPEL' for LHD is proposed. HIPEL consists of independent (1) 10 two-stage gun barrels and (2) 10 single-stage gun barrels. It has multi purposes such as refueling and flexible density profile control, diagnostics and the other functions. (author)

  9. Adsorption of trace metals to plastic resin pellets in the marine environment

    International Nuclear Information System (INIS)

    Holmes, Luke A.; Turner, Andrew; Thompson, Richard C.

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L −1 of trace metals to 10 g L −1 pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g −1 that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. - Highlights: ► Beached plastic production pellets contain considerable concentrations of trace metals. ► In laboratory experiments trace metals are shown to adsorb to both virgin and beached pellets. ► Metal adsorption is greater on aged pellets. ► Pellets may represent an important vehicle for metal transport in the marine environment. - Trace metals accumulate on plastic resin pellets in the marine environment through adsorption to the polymer and to chemical and biological attritions thereon.

  10. Solid deuterium pellet injection with a two-stage pneumatic gun

    International Nuclear Information System (INIS)

    Reggiori, A.; Riva, G.; Daminelli, G.; Frattolillo, A.; Martinis, L.; Scaramuzzi, F.

    1989-01-01

    Recent results on injection of D 2 pellets, using an improved light gas gun, are reported. In order to overcome the limits imposed by the low mechanical strength of solid hydrogen, a double-piston gun has been developed, in which the pressure pulse can be shaped in different ways, allowing reduction of the maximum acceleration of the pellet. Experiments have been performed with plastic and D 2 pellets. Velocities above 2500 m/s have been obtained with unbroken D 2 pellets

  11. Annual CO-emissions of combined pellet and solar heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas

    2007-01-01

    Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly...

  12. Wood pellet heating plants. Market survey. 4. upd. ed.; Hackschnitzel-Heizung. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Wood pellets from the agriculture and forestry offer an enormous potential for the development of the use of bio energy in the private area as well as in industry and commerce. Within the market survey 'Wood pellet heating systems', the Fachagentur Nachwachsende Rohstoffe e.V. (Guelzow-Pruezen, Federal Republic of Germany) reported on the targets and measures of the Federal Government with respect to the heating with biomass, wood pellets as solid biofuels (standardization of solid biofuels, supply, features, evaluation), wood pellet heating plants, economic considerations, market survey on wood pellet heating plants as well as list of addresses for producers of wood pellet heating plants and suppliers of wood pellets.

  13. Why pellet fuelling of large machines?

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Arguments for pellet fueling as a way to optimize the density profile in large machines with respect to the density limit, the beta limit, energy confinement and requirements for hydrogen and helium pumping are reviewed. It is concluded that pellets can be used as a way to overcome the density limit and enhance energy confinement but there is currently no clear argument for density profile shaping. Pumping requirements are lowered for deep fueling

  14. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This invention provides ceramic processing including sintering schedules which produce annular pellets containing burnable poisons for use in reactor control rods. Typically the powder includes Al 2 O 3 and from 1 to 50 weight percent B 4 C. The Al 2 O 3 and B 4 C, appropriately sized, are milled in a ball mill with liquid to produce a slurry. The slurry is spray dried to produce small spheres of the mixed powder, which is mixed with adequate organic binder and plasticizer and formed into a hollow green body having the shape of a tube. The green body is sintered to produce a ceramic tube from which the pellets are cut. The tube is sintered to size so that the pellets have the required dimensions. It is an important feature of this invention that the powder is formed into the green body by applying isostatic pressure to the powder

  15. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency...

  16. Considerations on the DEMO pellet fuelling system

    Energy Technology Data Exchange (ETDEWEB)

    Lang, P.T., E-mail: peter.lang@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Day, Ch. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Fable, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Igitkhanov, Y. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Köchl, F. [Association EURATOM-Ö AW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Mooney, R. [Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Pegourie, B. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Ploeckl, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Wenninger, R. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); EFDA, Garching (Germany); Zohm, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Considerations are made for a core particle fuelling system covering all DEMO requirements. • Particle deposition beyond the pedestal top is needed to achieve efficient fuelling. • Conventional pellet technology enabling launching from the torus inboard side can be used. • Efforts have been taken for integrating a suitable pellet guiding system into the EU DEMO model. • In addition, further techniques bearing potential for advanced fuelling performance are considered. - Abstract: The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

  17. Considerations on the DEMO pellet fuelling system

    International Nuclear Information System (INIS)

    Lang, P.T.; Day, Ch.; Fable, E.; Igitkhanov, Y.; Köchl, F.; Mooney, R.; Pegourie, B.; Ploeckl, B.; Wenninger, R.; Zohm, H.

    2015-01-01

    Graphical abstract: - Highlights: • Considerations are made for a core particle fuelling system covering all DEMO requirements. • Particle deposition beyond the pedestal top is needed to achieve efficient fuelling. • Conventional pellet technology enabling launching from the torus inboard side can be used. • Efforts have been taken for integrating a suitable pellet guiding system into the EU DEMO model. • In addition, further techniques bearing potential for advanced fuelling performance are considered. - Abstract: The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

  18. Determination of gas residues in uranium dioxide pellets

    International Nuclear Information System (INIS)

    Riella, H.G.

    1978-01-01

    The measurement of low amounts of residual gases, excluding water, in ceramic grade uranium dioxide pellets, using high temperature vacuum extraction technique, is dealt with. The high temperature extraction gas analysis apparatus was designed and assembled for sequential analysis of up to eight uranium dioxide pellets by run. The system consists of three major units, namely outgassing unit, transfer unit and analytical unit. The whole system is evacuated to a final pressure of less then 10 -5 torr. A weighed pellet is transfered into the outgassing unit for subsequent dropping into a Platinum-Rhodium crucible which is heated inductively up to 1600 0 C during 30 minutes. The released gases are imediately transfered from the outgassing to analytical unit passing through a cold trap at -95 0 C to remove water vapor. The gases are transfered to previously calibrated volumetric bulb where the total pressure and temperature are determined. An estimate of the gas content in the pellets at STP condition is obtained from the measured volume, pressure and temperature of the gas mixture by applying ideal gases equation. Analysis to two lots (fourteen samples) of uranium dioxide pellets by the method described here indicated a mean gas content of 0,060cm 3 /g UO 2 . The lower limit of this technique is 0,03cm 3 /g UO 2 (STP). The time required for the analysis of eight pellets is about 9 hours [pt

  19. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  20. Structure change of fuel pellets

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji

    1980-01-01

    The investigation of the broken pieces of fuel rods in Mihama No. 1 reactor was carried out in the Japan Atomic Energy Research Institute, and unexpectedly led to the post-irradiation tests. The investigation group of the Kyoto University Research Institute considers that the pursuit of the causes of accident by the government was insufficient, and the countermeasures are problematical, as the result of having examined various reports. In this study, the white foreign phase and swelling of cladding tubes were investigated, because these are especially important in view of the soundness of the fuel. Besides, the possibility of the oxidation of UO 2 pellets by cooling water was examined. It was found by metallographic test that the featuring phase different from UO 2 structure existed in the central part of pellets remaining in two broken fuel rod pieces. The report of JAERI judged that it is the product of solid phase reaction above a certain threshold temperature. The change of pellet structure observed in the white foreign phase and the swell of a cladding tube was caused by the oxidation of UO 2 pellets by primary coolant. The result of observation of the white foreign phase showed that it had been liquid phase at the time of the formation. From the thermodynamic examination based on oxygen potential, UO 2 is oxidized above 1100 deg C in the atmosphere of primary coolant. The liquid phase of the oxidized phase of UO 2 is formed above 1600 deg C. (Kako, I.)

  1. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  2. Microbiological survey of birds of prey pellets.

    Science.gov (United States)

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Method for distinguishing fuel pellets

    International Nuclear Information System (INIS)

    Sagami, Masaharu; Kurihara, Kunitoshi.

    1978-01-01

    Purpose: To distinguish correctly and efficiently the kind of fuel substance enclosed in a cladding tube. Method: Elements such as manganess 55, copper 65, vanadium 51, zinc 64, scandium 45 and the like, each having a large neutron absorption cross section and discharging gamma rays of inherent bright line spectra are applied to or mixed in fuel pellets of different kinds in uranium enrichment degree, plutonium concentration, burnable poison concentration or the like. These fuel rods are irradiated with neutron beams, and energy spectra of gamma rays discharged upon this occasion are observed to carry out distinguishing of fuel pellets. (Aizawa, K.)

  4. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  5. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  6. Processing requirements for property optimization of Eu2O3-W cermets for fast reactor neutron absorber applications

    International Nuclear Information System (INIS)

    Pasto, A.E.; Tennery, V.J.

    1977-01-01

    Europium sesquioxide is a candidate fast reactor neutron absorber material. It possesses several desirable characteristics for this application, but has a low thermal conductivity. This gives rise to pellet cracking during reactor operation. To increase the thermal conductivity without great sacrifice in nuclear worth, addition of tungsten to Eu 2 O 3 has been evaluated. Synthesis and fabrication techniques described allow preparation of high density compacts of Eu 2 O 3 -15 vol. percent tungsten, possessing favorable thermal conductivity and thermal expansion characteristics

  7. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  8. Neutron and hard x-ray measurements during pellet deposition in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.; Milora, S.L.; Schmidt, G.L.; Schneider, W.; Ramsey, A.

    1986-06-01

    Measurements of neutrons and hard x rays are made with a pair of plastic scintillators during injection of deuterium pellets into deuterium TFTR plasmas. Three cases are investigated. During ohmic heating in plasmas with few runaway electrons, the neutron emission does not increase when a pellet is injected, indicating that strong acceleration of the pellet ions does not occur. In ohmic plasmas with low but detectable levels of runaway electrons, an x-ray burst is observed on a detector near the pellet injector as the pellet ablates, while a detector displaced 126/sup 0/ toroidally from the injector does not measure a synchronous burst. Reduced pellet penetration correlates with the presence of x-ray emission, suggesting that the origin of the burst is bremsstrahlung from runaway electrons that strike the solid pellet. In deuterium beam-heated discharges, an increase in the d-d neutron emission is observed when the pellet ablates. In this case, the increase is due to fusion reactions between beam ions and the high density neutral and plasma cloud produced by ablation of the pellet; this localized density perturbation equilibrates in about 700 ..mu..sec. Analysis of the data indicates that the density propagates without forming a sharp shock front with a rapid initial propagation velocity (greater than or equal to 2 x 10/sup 7/ cm/sec) that subsequently decreases to around 3 x 10/sup 6/ cm/sec. Modelling suggests that the electron heat flux into the pellet cloud is much less than the classical Spitzer value.

  9. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  10. Design of pellet surface grooves for fission gas plenum

    International Nuclear Information System (INIS)

    Carter, T.J.; Jones, L.R.; Macici, N.; Miller, G.C.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMP heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM

  11. Implosion characteristics of deuterium--tritium pellets surrounded by high-density shells

    International Nuclear Information System (INIS)

    Fraley, G.S.

    1976-09-01

    The effect of high-density shells on deuterium-tritium pellets imploded by laser energy deposition or other means is investigated. Attention is centered on the inner parts of the pellet where hydrodynamics is the dominant mechanism. The implosions can then be characterized by a pressure boundary condition. Numerical solutions of the implosions are carried out over a wide range of parameters both for solid pellets and pellets with a central void

  12. A computerised automatic pellet inspection unit for FBTR fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.; Mahule, K.N.; Ghosh, J.K.; Venkatesh, D.

    1984-01-01

    Physical inspection and certification of nuclear reactor fuel element components is an activity demanding utmost imagination and skill in devising accurate measuring systems. There is also need for remote handling, automation, rapid processing and inspection data print out when dealing with reactor fuel material. This report deals with an automatic computerised fuel pellet inspection system that has been developed in Radiometallurgy Division, B.A.R.C. to carry out dimensional and weight measurements on fuel pellets for the Fast Breeder Test Reactor (FBTR) at Kalpakkam near Madras. The system consists of several subsystems each developed especially for a specific purpose and as such items are not available off the shelf from manufacturers in India. If a general approach is adopted towards the report, there are many innovations and ideas that can be used in the automatic inspection of a variety of products in industry. As the system is fairly involved the report does not attempt to deal with detailed description of the equipment. The function of the system is to accept a certain quantity of fuel pellets in a bowl feeder, separate the pellets rejected owing to their exceeding dimensional and weight limits and form columns of accepted pellets. Dimensional and weight limits can be set as required and all inspection data are presented in a printed format. The system processes pellets at the rate of 15 per minute. The entire system can be run by operators with no special skills. The unit is currently in use for the inspection of mixed carbide fuel pellets for FBTR. (author)

  13. Effects of feeding corn silage, pelleted, ensiled, or pelleted and ...

    African Journals Online (AJOL)

    2017-09-14

    Sep 14, 2017 ... However, lambs fed CS gained weight 21.3% faster than lambs fed AH (259 versus 213 ... ground, pelleted alfalfa more closely resembles a concentrate feed in terms of particle size. .... Vitamin E, 44 IU/g .... feed to reach their market weight versus 102.5 kg of feed for the lambs fed alfalfa haylage (P <0.01).

  14. Development of pellet injection systems for ITER

    International Nuclear Information System (INIS)

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application

  15. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  16. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    Science.gov (United States)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  17. Measurements of the nuclear reaction rates and spectral indices along the radius of the fuel pellets of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Bitelli, Ulysses d'Utra; Mura, Luis Felipe L.; Fanaro, Leda C.C.B.

    2009-01-01

    This work presents the measures of the nuclear reaction rates along of the radial direction of the fuel pellet by irradiation and posterior gamma spectrometry of a thin slice of fuel pellet of UO 2 at 4.3% enrichment. From its irradiation the rate of radioactive capture and fission are measures as a function of the radius of the pellet disk using a HPGe detector. Diverse lead collimators of changeable diameters have been used for this purpose. Simulating the fuel pellet in the pin fuel of the IPEN/MB-01 reactor, a thin disk is used, being inserted in the interior of a dismountable fuel rod. This fuel rod is then placed in the central position of the IPEN/MB-01 reactor core and irradiated during 1 hour under a neutron flux of 5.10 8 n/cm 2 s. The nuclear reaction of radioactive capture occurs in the atoms of U- 238 that when absorbs a neutron transmutes into U- 239 of half-life of only 23 minutes. Thus, it is opted for the detection of the Np- 239 , radionuclide derivative of the radioactive decay of the U- 239 and that has a measurable half-life (2.335 days). In gamma spectrometry 11 collimators with different diameters have been used, consequently, the gamma spectrometry is made in function of the diameter (radius) of the irradiated UO 2 fuel pellet disk, thus is possible to get the average value of the counting for each collimator in function of the specific pellet radius. These values are directly proportional to the radioactive capture nuclear reaction rates. The same way the nuclear fission rate occurs in the atoms of the U- 235 that produce different fission products such as Ce- 143 with a yield fission of 5.9% and applying the same procedure the fission nuclear reaction rate is obtained. This work presents some calculated values of nuclear reaction rate of radioactive capture and fission along of the radial direction of the fuel pellet obtained by Monte Carlo methodology using the MCNP-4C code. The relative values obtained are compared with experimental

  18. Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology.

    Science.gov (United States)

    Bose, Anirbandeep; Harjoh, Nurulaini; Pal, Tapan Kumar; Dan, Shubhasis; Wong, Tin Wui

    2016-01-01

    Alginate pellets prepared by the aqueous agglomeration technique experience fast drug dissolution due to the porous pre-formed calcium alginate microstructure. This study investigated in vitro drug release, preclinical and clinical pharmacokinetics relationships of intestinal-specific calcium acetate-alginate pellets against calcium-free and calcium carbonate-alginate pellets. Alginate pellets were prepared by solvent-free melt pelletization instead of aqueous agglomeration technique using chlorpheniramine maleate as model drug. A fast in situ calcium acetate dissolution in pellets resulted in rapid pellet breakup, soluble Ca(2+) crosslinking of alginate fragments and drug dissolution retardation at pH 1.2, which were not found in other pellet types. The preclinical drug absorption rate was lower with calcium acetate loaded than calcium-free alginate pellets. In human subjects, however, the extent and the rate of drug absorption were higher from calcium acetate-loaded pellets than calcium-free alginate pellets. The fine, dispersible and weakly gastric mucoadhesive calcium alginate pellets underwent fast human gastrointestinal transit. They released the drug at a greater rate than calcium-free pellets in the intestine, thereby promoting drug bioavailability. Calcium acetate was required as a disintegrant more than as a crosslinking agent clinically to promote pellet fragmentation, fast gastrointestinal transit and drug release in intestinal medium, and intestinal-specific drug bioavailability.

  19. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.D.

    1979-01-01

    Simulated zirconia type calcined waste is pelletized on a 41-cm dia disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours, the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 /day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  20. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.d.

    1979-01-01

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 . day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  1. Determination of surface energies of hot-melt extruded sugar-starch pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2018-02-01

    Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.

  2. Development of laboratory studies on the off-grassing of wood pellets

    Energy Technology Data Exchange (ETDEWEB)

    Shankar Tumuluru, Jaya; Kuang, X.; Sokhansanj, S.; Lim, C.J.; Bi, T.; Melin, S.

    2010-07-01

    The use of wood pellets as fuel has been steadily increasing, and with it the problem of safe storage. The aim of this study was to determine the effect of storage temperature on the emission of off-gases and on wood pellet properties, such as moisture content, durability and density. Three sealed containers were developed to store and maintain wood pellets at a fixed temperature; they then measured the off-gases concentrations in the containers and analyzed the changes in the wood pellets properties. The containers developed were proved to be efficient in controlling the temperature and could be thus reused for further studies. The results showed that the temperature had an important effect on the wood pellets properties; and in the meantime an important increase in off-gases emissions was observed when the storage temperature was increased. This study successfully correlated emissions of off-gases and modifications in wood pellets properties with storage temperature, these results must be taken into account when designing a wood pellet storage facility.

  3. Plastic pellets on the Caranzalem beach sands, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.

    Postmonsoonal survey of Caranzalem beach, Goa, India indicated the presence of plastic pellets. These pellets varied in shape, size and number, and are considered to be contaminants of marine environment...

  4. Comparison of pellet acceleration model results to experimentally observed penetration depths

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, T., E-mail: szepesi.tamas@gmail.co [KFKI - Research Institute for Particle and Nuclear Physics, EURATOM Association, MTA KFKI-RMKI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Kalvin, S.; Kocsis, G. [KFKI - Research Institute for Particle and Nuclear Physics, EURATOM Association, MTA KFKI-RMKI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Lang, P.T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Senichenkov, I. [Saint Petersburg State Polytechnical University, Polytehnicheskaya 29, 195251 St. Petersburg (Russian Federation)

    2009-06-15

    Cryogenic hydrogen isotope fuelling pellets were observed to undergo strong radial acceleration in the confined plasma. The reason for pellet acceleration is believed to originate from drift effects: the ionised part of pellet cloud is affected by the grad-B drift, therefore, the cloud becomes polarised. The E x B drift then deforms the pellet cloud so that it can no longer follow the original flux bundle - this results in a less efficient shielding on the pellet's HFS region, where the subsequently enhanced ablation pushes the pellet towards LFS, like a rocket. In order to study this effect, a simple and a comprehensive ablation model was developed. Results from both models show quantitatively acceptable agreement with ASDEX-Upgrade experiments concerning trajectory curvature, corresponding to radial acceleration in the range of 10{sup 4}-10{sup 7} m/s{sup 2}.

  5. Fabrication of 0.5-inch diameter FBR mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; McCord, R.B.

    1979-01-01

    Large diameter (0.535 inch) mixed oxide fuel pellets for Fast Breeder Reactor application were successfully fabricated by the cold-press-and-sinter technique. Enriched UO 2 , PuO 2 -UO 2 , and PuO 2 -ThO 2 compositions were fabricated into nominally 90% theoretical density pellets for the UO 2 and PuO 2 -UO 2 compositions, and 88% and 93% T.D. for the PuO 2 -ThO 2 compositions. Some processing adjustments were required to achieve satisfactory pellet quality and density. Furnace heating rate was reduced from 200 to 50 0 C/h for the organic binder burnout cycle for the large, 0.535-inch diameter pellets to eliminate pellet cracking during sintering. Additional preslugging steps and die wall lubrication during pressing were used to eliminate pressing cracks in the PuO 2 -ThO 2 pellets

  6. GLOBAL WOOD PELLET INDUSTRY AND MARKET – CURRENT DEVELOPMENTS AND OUTLOOK

    Energy Technology Data Exchange (ETDEWEB)

    Thrän, Daniela; Peetz, David; Schaubach, Kay; Trømborg, Erik; Pellini, Alessandro; Lamers, Patrick; Hess, J. Richard; Schipfer, Fabian; Hektor, Bo; Olsson, Olle; Bruce, Lena; Stelte, Wolfgang; Proskurina, Svetlana; Heinimo, Jussi; Benedetti, Luca; Mai-Moulin, Thuy; Junginger, Martin; Craggs, Laura; Wild, Michael; Murray, Gordan; Diaz-Chavez, Rocio; Thiermann, Ute; Escobar, F. J.; Goldemberg, J.; Coelho, S. T.

    2017-06-01

    The wood pellet use in the heating and electricity sector has recorded a steady growth in the last years. IEA bioenergy task 40 carried out an update of the situation on the national pellet markets in the most relevant pellet producing countries and the global development as well. Various country specific data is collected and compiled for more than 30 countries, containing updated information about regulatory framework, production, consumption, price trends, quality standards and trade aspects. The analysis confirmed the positive development in terms of production and consumption of wood pellets in almost all countries. In 2015 more than 26 Mt of wood pellets have been produced and consumed worldwide. Technologies and markets become more mature. Increased international pellet trade needs to be supported by adequate frame condition not only for commerce, but also with regard to sustainability issues.

  7. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  8. Validation of a multiparameter model to investigate torrefied biomass pelletization behavior

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    2017-01-01

    The present study aims to apply and validate a simple model describing the forces that are built up along the dies of a pellet press matrix to the pelletization of torrefied biomass. The model combines a theoretical background with the use of a single pellet press to describe the pelletizing...... behavior of torrefied material in an industrial scale pellet mill. Wet torrefaction and dry torrefaction pretreatments are considered in the study. Both torrefaction concepts produce a fuel with enhanced properties including a lower moisture content, higher calorific value, and better friability. The fuel...... and to avoid time consuming as well as expensive trial and error experiments....

  9. Persistent organic pollutants monitoring in marine coastal environment using beached plastic resin pellets and effective risk communication via International Pellet Watch (IPW) as a tool.

    Science.gov (United States)

    Yeo, B. G. M.; Takada, H.; Hosoda, J.

    2014-12-01

    International Pellet Watch (IPW) is an ongoing global monitoring of persistent organic pollutants (POPs) using preproduction plastic resin pellets. These pellets are easily collected and transported allowing the general public worldwide to get involved. Thus, risk communication toward the pellet collectors is a significant part of IPW to ensure continuous effort and interest. The pellet samples were analyzed for polychlorinated biphenyl (PCBs), dichlorodiphenyltrichloroethane and degradation products (DDTs), and hexachlorocyclohexanes (HCHs). Additional pollutants such as polycyclic aromatic hydrocarbons (PAHs) and Hopanes were also analyzed for some samples. Analytical results showed distinct patterns with high concentrations (ban in the late 1980's. Pesticide DDTs instead were found to be higher in developing countries such as Brazil and Vietnam (> 500ng/g-pellet). These countries may still be using DDTs as a vector control mostly to combat malaria. High concentrations of DDTs were also found in Greece, China and Australia (> 100ng/g-pellet) suggesting the possibility of illegal usage as pesticide or anti fouling paint. HCHs concentrations were mostly low due to its low retention in the environment. However, high HCHs concentrations were mostly found in the southern hemisphere. Very high concentration of PAHs in pellet samples can be utilized for early identification of recent oil pollution. High PAHs concentration in Tauranga, New Zealand was found to be caused by local oil spill. Hopanes in pellets can be used for source identification of oil pollution. Global mapping and comparison among IPW data can be used to provide better explanations to IPW volunteers by sorting concentrations into pollution categories. Communication reports are tailor written based on the volunteers familiarity to IPW's issues, educational background, occupation and their potential to further spread awareness. Based on feedbacks, the volunteers were grateful to receive reports of their

  10. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land

  11. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1986-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100 percent basis after pellet sintering. A feeder will deliver the pellets directly to a fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  12. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1985-01-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder will deliver the pellets directly to fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  13. Pellet injection experiments on the TFR Tokamak

    International Nuclear Information System (INIS)

    1987-02-01

    Single pellet injection experiments have been carried out on TFR with the aim to improve the experimental knowledge of ablation physical processes and also to get a better description of the heat and matter transport during and after pellet evaporation. Ablation clouds have been photographed, providing experimental penetration depths in rough agreement with the neutral shielding model. Observation of striations in the cloud has led to an experimental determination of the safety factor profile. Parameters of the plasma in the ablation cloud have been spectroscopically determined. Fast heat transport has been evidenced during pellet evaporation (∼ 100 μs) which exhibits some features of minor or major disruptions (appearance of a m = 1, n = 1 island on the q = 1 surface, bursts of density fluctuations, comparable heat diffusivity, ...). Matter transport takes place on a larger time scale (∼ 10 ms). This long temporal relaxation is well accounted for by the 1D-MAKOKOT computer code without changing the transport coefficients after pellet injection. Heat and matter transport are affected by the presence of the m = 1, n = 1 island on the q = 1 surface

  14. Sintering method for nuclear fuel pellet

    International Nuclear Information System (INIS)

    Omuta, Hirofumi; Nakabayashi, Shigetoshi.

    1997-01-01

    When sintering a compressed nuclear fuel powder in an atmosphere of a mixed gas comprising hydrogen and nitrogen, steams are added to the mixed gas to suppress the nitrogen content in sintered nuclear fuel pellets. In addition, the content of nitrogen impurities in the nuclear fuel pellets can be controlled by controlling the amount of steams to be added to the mixed gas, namely, by controlling the dew point as an index thereof. If the addition amount of steams to the mixed gas is determined by controlling the dew point as an index, the content of nitrogen impurities in the sintered nuclear fuel pellets can be controlled reliably to a specified value of 0.0075% or less. If ammonolyzed gas is used as the mixed gas, a more economical mixed gas can be obtained than in the case of forming mixed gas by mixing the hydrogen gas and the nitrogen gas. (N.H.)

  15. Summary of fueling by pellet injection

    International Nuclear Information System (INIS)

    Stewart, L.D.

    1978-01-01

    Model-based studies were presented which indicated in all cases that shielding will occur, but there was not total agreement in these studies on the mechanism of the shielding. The data from the pellet ablation experiment on ORMAK was explained by considering the plasma electron flux, incident on the pellet surface, to create an ablated neutral cloud which self-consistently attenuates the incident electron flux. The lack of total agreement in the studies comes about when extending this to tokamak reactor plasmas. Various groups contended either that this mechanism would continue to dominate in reactor plasmas, or that it would be modified by a comparable heat flux from alphas, or that it would be modified somewhat by electrostatic shielding because of electron flux induced charge buildup on the pellet, or that it would be modified by ionization of the neutral cloud yielding a plasma cloud shield, or that this same plasma cloud would exclude magnetic field causing deflection of the incident electron flux and therefore additional shielding

  16. Investigation of processes due to deuterium pellets impinging on a rigid wall

    International Nuclear Information System (INIS)

    Thoener, M.

    1982-04-01

    Pellets accelerated with a centrifuge - for refuelling thermonuclear plasmas - ought not to be noticeably deformed, let alone destroyed. This happens if the relative velocity between the pellet and the rotor catching it is too high. This report describes an apparatus for determining the variation in shape of deuterium pellets as a function of the relative velocity. In this method the pellet, produced by extrusion, is electromagnetically accelerated by means of metal carriers from which they are separated and shot at a stationary, rigid wall. The impact of the pellet on the target is recorded in seven pictures by spark cinematography and the impact velocity is measured with light barriers. The critical impact velocity for cylindrical deuterium pellets is found to be 48 m/s. Up to this relative velocity deuterium pellets retain their shape, irrespective of the direction of incidence. (orig.)

  17. Nuclear fuel pellet sintering boat unloading apparatus and method

    International Nuclear Information System (INIS)

    Huggins, T.B.; Widener, W.H.; Klapper, K.K.

    1990-01-01

    This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engaging the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site

  18. Chemisorption of uranium hexa-fluoride on sodium fluoride pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kalburgi, A K; Sanyal, A; Puranik, V D; Bhattacharjee, B [Chemical Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper comprises kinetics of chemical reaction or rather chemisorption of uranium hexafluoride gas on sodium fluoride pellets. The chemisorption is essentially irreversible at room temperature, while the process reverses at high temperature above 280 deg C. This chemisorption process was experimentally conducted in static condition at room temperature and its kinetics was studied. In the experiments, practically pure UF{sub 6} was used and the effects of gas pressure and weight of NaF pellets, were studied. In this heterogenous reaction, in which diffusion through ash layer is followed by chemical reaction, the reaction part is instantaneous and is first order with respect to gas concentration. Since the process of chemisorption is not only pure chemical reaction but also gas diffusion through ash layer, the rate constant depreciates with the percentage loading of UF{sub 6} on NaF pellets. The kinetic equation for the above process has been established for a particular size of NaF pellets and pellet porosity. (author). 5 refs., 3 figs., 3 tabs.

  19. ORNL neutral gas shielding model for pellet-plasma interactions

    International Nuclear Information System (INIS)

    Milora, S.L; Foster, C.A.

    1977-05-01

    A revised neutral molecule ablation model is derived to describe the evaporation of a solid hydrogen pellet in a tokamak plasma. The approach taken is based on the theory of Parks, Turnbull, and Foster who postulate that a cloud of molecular hydrogen surrounding the pellet shields the surface from incoming energetic electrons and, in so doing, regulates the evaporation rate. This treatment differs from an earlier model in that the hydrodynamic behavior of the molecular cloud is treated in a self-consistent manner. Numerical solutions of the fluid dynamic equations, which include the effects of strong electron heating locally in the gas, reveal that the flow of material away from the pellet is initially retarded by the heating and then rapidly accelerated and rarefied. This behavior is more pronounced for higher temperature plasmas and the net effect is that pellet lifetimes are prolonged slightly by including the heating effects. A comparison is made with the results of the recent pellet injection experiments on ORMAK and a simple injection depth scaling law is derived

  20. Pellet injection in a tokamak hot plasma. Theory and experiment

    International Nuclear Information System (INIS)

    Picchiottino, J.M.

    1994-01-01

    The ultimate aim of pellet ablation studies is to predict what the plasma temperature and density profiles are just after a pellet injection. This requires description of the pellet ablation process, the parallel expansion of the ablatant and the fast outward motion of the deposited material since these three phenomena successively occur from the time of pellet injection to the moment when new axisymmetric profiles are reached. Only the two first points have been quantitatively modelled. If the most important processes of ablation physics are identified and although current models reproduce both measured penetrations and averaged characteristics of ablation clouds, some debatable points remain, mainly bearing on the drifts associated with the pellet motion and, consequently, on the effective shielding efficiency of the ionized part of the ablation cloud. During its parallel expansion, the ablated material experiences a strong poloidal rotation which depends on the ratio of the pellet and plasma masses and is due to the total kinetic momentum conservation on each magnetic surface. The fact that this rotation occurs on the same timescale as the outward motion suggests that both phenomena can be linked and that a comprehensive model of the whole fuelling process may emerge from considering the pellet and the plasma as a unique system. (author). 94 refs., 142 figs., 4 annexes

  1. Hybrid pellets: an improved concept for fabrication of nuclear fuel

    International Nuclear Information System (INIS)

    Matthews, R.B.; Hart, P.E.

    1979-09-01

    The feasibility of fabricating fuel pellets using gel-derived microspheres as press feed was evaluated. By using gel-derived microspheres as press feed, the potential exists for eliminating dusty operations like milling, slugging, and granulation, from the pelleting process. The free-flowing character of the spheres should also result in limited dust generation during powder transport and pressing operations. The results of this study clearly demonstrate that fuel pellets can be successfully fabricated on a laboratory scale using UO 2 gel microspheres as press feed. Under moderate sintering conditions, 1,500 0 C for 4 h in Ar-4% H 2 , UO 2 pellets with densities up to 96% TD were fabricated. A range of pellet microstructures and densities were achieved depending on sphere forming and calcining conditions. Based on these results, a set of necessary sphere properties are suggested: O/U less than 2.20, crystallite size less than 500 A, specific surface area greater than 8 m 2 /g, and sphere size 200 and 400 μm. Preliminary attempts to fabricate ThO 2 and ThO 2 -UO 2 pellets using microspheres were unsuccessful because the requisite sphere properties were not achieved. Areas requiring additional development include: demonstration of the process on scaled-up equipment suitable for use in a remote fuel fabrication facility and evaluation of the irradiation performance of pellet fuels from gel-spheres

  2. A competitive market for green pellets; Scenarioanalyse - fungerende pelletsmarked

    Energy Technology Data Exchange (ETDEWEB)

    Lisleboe, Ole; Ingeberg, Kjetil

    2010-09-15

    This report is one of two reports for Enova in the project 'Functional Green Pellet Market'. The main focus of this report is to increase the knowledge of how the green pellet market in Norway adjusts to different policy instruments and discuss the terms for policy design for Enova. Our findings suggest that the green pellet value chain is threefold because of low transportation costs, both for the raw material and the manufactured product. Hence, only a demand side subsidy scheme would increase the domestic consumption of green pellets. Small local integrated value chains could be profitable if they are based on particularly cheap local raw materials. However, such solutions will not be sufficient to establish a competitive market. There will always be a risk that a subsidy scheme only for green pellets would displace other profitable bio energy, and thus have adverse impacts on market efficiency. In this case, a technology neutral subsidy scheme for bio energy would be preferable for market efficiency. The model developed in this project simulates all relevant heating technologies in order to reveal the effect of technology neutral as well as technology discriminating policy instruments. Nevertheless, actual market share rarely equals the economic market potential. Thus, the model allows for different scenarios for actual market penetration for green pellet. (Author)

  3. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  4. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  5. International Trade of Wood Pellets (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  6. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  7. Rare behaviour of a catalyst pellet catalyst dynamics

    NARCIS (Netherlands)

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  8. Wood pellet market and trade: A global perspective

    NARCIS (Netherlands)

    Goh, C.S.; Cocchi, M.; Junginger, H.M.; Marchal, D.; Thrän, D.; Hennig, C.; Heinimo, J.; Nikolaisen, L.; Schouwenberg, P.P.; Bradley, D.; Hess, R.F.; Jacobson, J.; Ovard, L.; Deutmeyer, M.

    2013-01-01

    This perspective provides an overview of wood pellet markets in a number of countries of high signifi cance, together with an inventory of market factors and relevant past or existing policies. In 2010, the estimated global wood pellet production and consumption were close to 14.3 Mt (million

  9. Study on the optimization of the pellet production and on the development of a forest-wood-pellet chain

    OpenAIRE

    Sgarbossa, Andrea

    2015-01-01

    The biomass and biofuels markets have increased substantially in the last two decades, mainly driven by the national and European policy targets on green energy. The same positive trend is registered in particular for wood pellet markets. In comparison with other wooden biofuels (firewood or wood-chips) pellets have a number of positive aspects such as: - regular and optimized shape; - wide range of energetic applications (to produce thermal energy, syngas, electricity); - high so...

  10. Results from recent hydrogen pellet acceleration studies with a 2-m railgun

    International Nuclear Information System (INIS)

    Kim, K.; Zhang, D.J.; King, T.; Haywood, R.; Manns, W.; Venneri, F.

    1989-12-01

    A new 3.2-mm-diameter, two-stage, fuseless, plasma-arc-driven electromagnetic railgun has been designed, constructed, and successfully operated to achieve a record velocity of 2.67 km/s( b ) for 3.2 mmD x 4 mmL solid hydrogen pellet. The first stage of this hydrogen pellet injector is a combination of a hydrogen pellet generator and a gas fun. The second stage is a 2-m-long railgun which serves as a booster accelerator. The gas fun accelerates a frozen hydrogen pellet to a medium velocity and injects it into the railgun through a perforated coupling piece, which also serves a pressure-relieving mechanism. An electrical breakdown of the propellant gas, which has followed the pellet from the gas fun into the railgun, forms a conducting plasma-arc armature immediately behind the pellet allowing for fuseless operation of the railgun. Study of the pressure profile and the behavior of the plasma-arc armature inside the railgun bore led to elimination of spurious arcing, which prevents operation of the railgun at high voltages (and, therefore, at high currents). A timing circuit that can automatically measure the pellet input velocity and allows for accurate control of arc initiation behind the pellet helps prevent pellet disintegration and mistriggering of the arc initiation circuit. Results from the recent cryogenic operation of the two-stage pellet acceleration system are reported. 11 refs., 2 figs., 1 tab

  11. Fabrication of Cr-doped UO2 Fuel Pellet using Liquid Phase Sintering

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Koo, Yang Hyun

    2013-01-01

    An enhancement of the thermal conductivity of a pellet can be obtained by the addition of a higher thermal conductive material in the pellet. In addition, the resistance to the PCI can be increased through a plasticity increase of the pellet. Thermal conductivity of ceramic materials is generally lower than that of metallic materials. The thermal conductivity of uranium oxide which is a typical ceramic material is low as well. The steep temperature gradient in the fuel pellet results from the low thermal conductivity. Therefore, the thermal conductivity improvement of a nuclear fuel pellet can enhance the fuel performance in various aspects. The lower centerline temperature of a fuel pellet affects the enhancement of fuel safety as well as fuel pellet integrity during nuclear reactor operation. Besides, the nuclear reactor power can be uprated due to the higher safety margin. So, many researches to enhance the thermal conductivity of nuclear fuel pellet have been performed in various ways. To improve the thermal conductivity of UO 2 pellet, an appropriate arrangement of the high thermal conductive material in UO 2 matrix is one of the various methods. We intended to control a placement of chromium as the high thermal conductive material. The metallic chromium and chromium oxide were arranged in a grain boundary of UO 2 using a liquid phase sintering method. The liquid phase sintering of Cr-doped UO 2 pellet could be adjusted using a control of an oxygen potential in sintering atmosphere

  12. Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Moldrup, M.; Berge, T.

    2011-01-01

    Recent field studies indicate that dinoflagellates are key degraders of copepod fecal pellets. This study is the first to publish direct evidence of pellet grazing by dinoflagellates. Feeding and growth on copepod fecal pellets were studied for both heterotrophic (4 species) and mixotrophic...... dinoflagellates (Gyrodinium dominans, Gyrodinium spirale, Diplopsalis lenticula, Protoperidinium depressum) studied fed on fecal pellets. Using natural concentrations of dinoflagellates and copepod fecal pellets, average ingestion rates of 0.2 and 0.1 pellets cell−1 d−1 and clearance rates of between 0.2 and 0...

  13. Pellet injection experiments on tokamaks in ASIPP, China

    International Nuclear Information System (INIS)

    Yang, Y.; Bao, Y.; Li, J.; Gu, X.; He, Y.

    1999-01-01

    Pellet Injection has been proven to be an effective method for deep fuelling of fusion devices. Improvements of both the particle confinement and the energy confinement were observed in many experiments. In HT-6M and HT-7 tokamaks, single and multi-pellet experiments are tried, and attractive results are obtained

  14. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  15. A light-gas gun for acceleration of pellets of solid D2

    International Nuclear Information System (INIS)

    Nordskov, A.; Skovgaard, H.; Soerensen, H.; Weisberg, K.V.

    1980-10-01

    A gun has been designed and built to be used for injecting solid D 2 pellets into a small tokamak for pellet-plasma interaction studies. The pellets are formed and accelerated at temperatures close to those of liquid helium. They are propelled with pressurised H 2 -gas; the pressure arises when a quantity of solid H 2 placed in the gun barrel behind the pellet is pulse heated. Pellet velocities up to 240 m/s have been obtained. The directional accuracy is better than 0.2deg and the repetition rate is one firing every five minutes. The pellet volume is 0.6 mm 3 (2 x 10 19 molecules) while the quantity of propeller gas used is around 12 x 10 19 molecules. (author)

  16. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, Santiago; Mayer, J.E.

    1982-01-01

    An analysis is made of the effect of friction and axial forces along the fuel rod in the pellet-cladding mechanical interaction in a commercial reactor under a power-up ramp. The effect of different pellet and rod shapes on their behaviour was also determined. A linear thermoelastic computer program was used in order to obtain the stiffness matrix of a compound structure from the stiffness of its components. Pellet-cladding displacements, localized deformations of the cladding in the interfaces between pellets, as well as pellet and cladding axial deformations were determined for different power axial profiles as well as for pellets with and without dishing and with height/diameter ratios of 1.7, 1 and 0.5. (M.E.L.) [es

  17. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  18. Carbothermal Reduction of Iron Ore in Its Concentrate-Agricultural Waste Pellets

    Directory of Open Access Journals (Sweden)

    Zhulin Liu

    2018-01-01

    Full Text Available Carbon-containing pellets were prepared with the carbonized product of agricultural wastes and iron concentrate, and an experimental study on the direct reduction was carried out. The experimental results demonstrated that carbon-containing pellets could be rapidly reduced at 1200 to 1300°C in 15 minutes, and the proper holding time at high temperature was 15 to 20 min. The degree of reduction gradually increased with temperature rising, and the appropriate temperature of reducing pellets was 1200°C. The weight loss rate and reduction degree of pellets increased with the rise of carbon proportion, and the relatively reasonable mole ratio of carbon to oxygen was 0.9. A higher content of carbon and an appropriate content of volatile matters in biomass char were beneficial to the reduction of pellets. The carbon-containing pellets could be reduced at high speeds in the air, but there was some reoxidization phenomenon.

  19. Pellets for fusion reactor refueling. Annual progress report, January 31, 1977--January 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Progress during the past year has occurred in the following areas. A pellet generator for larger pellets is currently under construction. Alternate pellet generation techniques are under investigation. Progress has been made on the pellet selection and acceleration scheme for the large pellet generator. Work has begun on ablation acceleration for accelerating pellets to very high velocities. In the area of pellet-plasma interactions work has been completed on a transonic flow model and papers have been published dealing with both experimental and theoretical aspects of the problem.

  20. Pellets for fusion reactor refueling. Annual progress report, January 31, 1977--January 31, 1978

    International Nuclear Information System (INIS)

    1978-01-01

    Progress during the past year has occurred in the following areas. A pellet generator for larger pellets is currently under construction. Alternate pellet generation techniques are under investigation. Progress has been made on the pellet selection and acceleration scheme for the large pellet generator. Work has begun on ablation acceleration for accelerating pellets to very high velocities. In the area of pellet-plasma interactions work has been completed on a transonic flow model and papers have been published dealing with both experimental and theoretical aspects of the problem

  1. Process to improve combustion and coalescing characteristics of coal pellets

    Energy Technology Data Exchange (ETDEWEB)

    Ban, T.E.; Marlowe, W.H.

    1980-10-23

    Baking types of coal, which occur mainly in the Midwestern States of the USA, tend to form solid layers when heated to remove tar. In order to prevent this, it is proposed to pulverize the coal, to form small pellets and to coat these pellets. A suitable coating material mentioned here is sodium carbonate. Variants of the coating process are given. The coated pellets are heated.

  2. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  3. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  4. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  5. Remote visual inspection of nuclear fuel pellets with fiber optics and video image processing

    International Nuclear Information System (INIS)

    Moore, F.W.

    1987-01-01

    Westinghouse Hanford Company has designed and constructed a nuclear fuel fabrication process line for the U.S. Department of Energy. This process line includes a system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100% basis after pellet sintering. A feeder delivers the pellets directly to a fiber optic inspection head, which views one pellet surface at a time and images it to a closed-circuit color television camera (CCTV). The output signal of the CCTV is input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator visually examines the images of the pellet surfaces on a high resolution monitor and accepts or rejects the pellets based on visual standards. The operator uses a digitizing tablet to record the location of rejected pellets, which are then automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image

  6. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    Science.gov (United States)

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  7. Pellet injection experiments on tokamaks in ASIPP, China

    International Nuclear Information System (INIS)

    Yang, Y.; Bao, Y.; Li, J.; Gu, X.; He, Y.

    2001-01-01

    Pellet injection has been proved to be an effective method for deep fueling of fusion devices. Improvements of both the particle confinement and the energy confinement were observed in many experiments. In HT-6M and HT-7 tokamaks, single and multi-pellet experiments are tried, and attractive results are obtained. (author)

  8. Biopellets - Quality assurance - prestudy; Kvalitetssaekring av pellets - inledande studie

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, S.E.; Cronholm, L.Aa. [AaF Energikonsult AB, Stockholm (Sweden)

    2000-05-01

    The purpose of this summary is to specify the quality demands imposed by pellet users on the manufacturers of pellets, the testing methods that are used for manufacturing inspection at factories, and the type of acceptance inspection that is conducted at district heating plants and combined heat and power plants. A further task of the study has been to provide advice and guidelines to pellet users on how to carry out their acceptance inspection. During the course of the study, we have contacted and interviewed 8 Swedish users and 7 Swedish producers of pellets and asked them what type of quality control they employ at their heating plants and factories. The study shows that the users impose relatively stringent demands on pellet producers with regard to pellet quality. The parameters checked include energy content, moisture content, ash content, grain size, grain size distribution, the origin of the raw materials, resistance, weight, chemical bonding, sulphur content, chlorine content and analysis of metal content. Most of the above parameters are checked at various intervals, some every other hour or on each delivery and others several times every year. In the case of those users who only have one fuel supplier, we recommend limited acceptance inspection on the assumption that the supplier conducts the inspection that he has undertaken to perform under the terms of his agreement with the users. Users should, however, check the information and at some time during the year visit the pellet producer to make sure that the agreed procedures are being followed. In the case of those users with many different fuel suppliers, we recommend fairly extensive acceptance inspection. Those parameters that should be checked, but at different intervals, are energy content, moisture content, ash content, grain size, grain size distribution, the origin of raw materials, resistance, weight, chemical bonding, sulphur content, chlorine content and analysis of metal content. As a

  9. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Bauer, M.L.; Fisher, P.W.; Qualls, A.L.

    1993-01-01

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  10. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    International Nuclear Information System (INIS)

    Wang, Weiwei; Khanna, Madhu; Dwivedi, Puneet; Abt, Robert

    2015-01-01

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007–2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass. (letter)

  11. Potential greenhouse gas benefits of transatlantic wood pellet trade

    International Nuclear Information System (INIS)

    Dwivedi, Puneet; Khanna, Madhu; Bailis, Robert; Ghilardi, Adrian

    2014-01-01

    Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation’s total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom’s GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade. (paper)

  12. Ranking of biomass pellets by integration of economic, environmental and technical factors

    International Nuclear Information System (INIS)

    Sultana, Arifa; Kumar, Amit

    2012-01-01

    Interest in biomass as a renewable energy source has increased recently in response to a need to reduce greenhouse gas (GHG) emissions. The objective of this study is to develop a multi-criteria assessment model and rank different biomass feedstock-based pellets, in terms of their suitability for use in large heat and power generation plants and show the importance of environmental, economical and technical factors in making decision about different pellets. Five pellet alternatives, each produced from a different sustainable biomass feedstock i.e., wood, straw, switchgrass, alfalfa and poultry litter, are ranked according to eleven criteria, using the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). Both quantitative and qualitative criteria are considered, including environmental, technical and economic factors. Three scenarios, namely base case, environmental and economic, are developed by changing the weight assigned to different criteria. In the base case scenario, equal weights are assigned to each criterion. In the economic and environmental scenarios, more weight is given to the economic and environmental factors, respectively. Based on the PROMETHEE rankings, wood pellets are the best source of energy for all scenarios followed by switchgrass, straw, poultry litter and alfalfa pellets except economic scenario, where straw pellets held higher position than switchgrass pellets. Sensitivity analysis on weights, threshold values, preference function and production cost indicate that the ranking was stable. The ranking in all scenarios remained same when qualitative criteria were omitted from the model; this indicates the stronger influence of quantitative criteria. -- Highlights: ► This study ranks the pellets produced from different biomass feedstocks. ► The ranking of the pellets is based on technical, economical and environmental factors. ► This study uses PROMETHEE method for ranking pellets based on a range of

  13. Preparations of high density (Th,U)O2 pellets

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Ikawa, Katsuichi

    1986-07-01

    Preparations of high density and homogeneous (Th,U)O 2 pellets by a powder metallurgy method were examined. (Th,U)O 2 powders were prepared by calcining coprecipitates of ammonium uranate and thorium hydroxide derived from nitrates and mixed sols, and by calcining mixed oxalates precipitated from nitrates. (Th,U)O 2 pellets were characterized with respect to sinterability, lattice parameter, microstructure, homogeneity and stoichiometry. Sintering atmospheres had a significant effect upon all the properties of the derived pellets. The sinterability of (Th,U)O 2 was most favourable in oxidizing and reducing atmospheres for ThO 2 -rich and UO 2 -rich compositions, respectively, and can be enhanced by presence of water vapour in sintering atmospheres. In addition, highly homogeneous (Th,U)O 2 pellets with 99 % in theoretical density were derived from the sol powders. (author)

  14. Characteristics of post-disruption runaway electrons with impurity pellet injection

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Nakano, Tomohide; Isayama, Akihiko; Asakura, Nobuyuki; Tamai, Hiroshi; Kubo, Hirotaka; Takenaga, Hidenobu; Bakhtiari, Mohammad; Ide, Shunsuke; Kondoh, Takashi; Hatae, Takaki

    2005-01-01

    Characteristics of post-disruption runaway electrons with impurity pellet injection were investigated for the first time using the JT-60U tokamak device. A clear deposition of impurity neon ice pellets was observed in a post-disruption runaway plasma. The pellet ablation was attributed to the energy deposition of relativistic runaway electrons in the pellet. A high normalized electron density was stably obtained with n e bar /n GW ∼2.2. Effects of prompt exhaust of runaway electrons and reduction of runaway plasma current without large amplitude MHD activities were found. One possible explanation for the basic behavior of runaway plasma current is that it follows the balance of avalanche generation of runaway electrons and slowing down predicted by the Andersson-Helander model, including the combined effect of collisional pitch angle scattering and synchrotron radiation. Our results suggested that the impurity pellet injection reduced the energy of runaway electrons in a stepwise manner. (author)

  15. Results of REIMEP '89 UO2 pellet

    International Nuclear Information System (INIS)

    Mayer, K.; Alonso, A.; Bievre, P. de; Lycke, W.; Bolle, W. de; Gallet, M.; Hendrickx, F.

    1991-01-01

    The interest in the safeguards of fissile material focuses on a limited number of compounds which play key roles in the nuclear fuel cycle. Amongst these materials Uranium Dioxide pellets are of considerable importance as they enter the reactors in order to generate energy. In LWR's pellets with an initial 235 U content of about 3 mass % are used, whereas natural or depleted material is applied for the breeding zone in FBR's. The 89/90 round o REIMEP covered Uranium materials with 235 U abundances in the range of natural or depleted material. UO 2 pellets were distributed to 21 laboratories for analysis. The participating laboratories were asked to determine the Uranium content and the isotopic composition of the material. The results reported by the participants are presented as graphs thus giving a picture of the state-of-the-practice

  16. Compliance characteristics of cracked UO2 pellets

    International Nuclear Information System (INIS)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.

    1981-01-01

    The thermally induced cracking of UO 2 fuel pellets causes simultaneous reductions of the bulk (extrinsic) fuel thermal conductivity and elastic moduli to values significantly less than those for solid pellets. The magnitude of these bulk properly reductions was found to be primarily dependent on the amount of crack area in the transverse plane of the fuel. The model described herein uses a simple description of the crack geometry to couple the fuel rod thermal and mechanical behaviors by relating in-reactor data to Hooke's Law and a crack compliance model. Data from the NRC/PNL Halden experiment IFA-432 show that for a typical helium-filled BWR-design rod at 30 kW/m, the effective thermal conductivity and elastic moduli of the cracked fuel are 4/5 and 1/40 of that for solid pellets, respectively

  17. Effects of pellet shape on the fuel failure behavior under a RIA condition

    International Nuclear Information System (INIS)

    Hosokawa, Takanori; Hoshi, Tsutao; Yanagihara, Satoshi; Iwamura, Takamichi; Orita, Yoshihiko.

    1980-10-01

    The two types of fuel rods with different pellet shaped, i.e. flat pellets and dished pellets, were tested in the NSRR to investigate the effects of pellet shapes on the fuel failure behavior under an RIA condition and the results were compared with those of the chamfered pellet fuel rods which are used as the reference rod in the NSRR experiments. In addition, the deformation of pellets due to thermal expansion is calculated by using an FEM computer code. Through the above results, following conclusions are obtained. (1) In the experiments, insignificant differences on the cladding surface temperature responses and the appearance of post-irradiated rods are observed in each type of rods. (2) Evident differences on the deformation of fuel pellets have not appeared in the calculation. (3) In the RIA conditions, it is concluded that the fuel failure behavior and threshold energy might not be affected by pellet shape of which size is in the range of the current LWR's fuel rods. (author)

  18. Requirements and solutions for future pellet technology; Krav och loesningar foer framtidens pelletsteknik

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Roennbaeck, Marie; Ryde, Daniel; Laitila, Thomas

    2010-07-01

    Requirements and solutions for future pellet burning technologies Since 2006, sales of pellet burning technologies to the Swedish residential market have fallen. The main reasons for this decrease are: many of the economically favorable easy conversions from oil to pellets have been made; competition from heat pumps; warm winters; a stable electricity price; and the current structure of heating in residential buildings, where electric heating dominates. To change this falling trend pellets need to become more attractive to consumers. This project aimed to analyze the requirements for the next generation of pellets systems and to develop potential solutions, in collaboration with the pellets industry. More specifically, the study looked at consumers' attitudes toward heating choices and different heating through a survey to 2000 house owners across Sweden. The project included a market analysis of Swedish and international technologies and examines the conditions for Swedish pellet burning technology in different markets. In addition, new solutions and developments for Swedish pellets burning technology are described

  19. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  20. Measuring method for heat-shrinkage of fuel pellet

    International Nuclear Information System (INIS)

    Komono, Akira; Ishizaki, Jin; Inaki, Kiyohiro.

    1997-01-01

    The present invention concerns a method of determining an amount of heat-shrinkage of UR 2 pellets containing gadolinium oxide (Gd 2 O 2 ) based on the difference of the density thereof before and after heating. In a heat shrinkage test of UO 2 pellets containing from 1.0 to 15.0% by weight of gadolinium oxide, the amount of heat-shrinkage is measured under the condition of heat-retaining temperature: from 1700 to 1750degC, temperature elevation time and lowering time: from 90 to 120mins, heat-retaining time: 24hours, inert gas atmosphere, gas pressure: 0.35kg/cm 2 and gas dew point: from -55 to 40degC without changing O/M. This invention has a feature in the use of the inert gas and the elevation of the dew point of the gas. Then, oxygen dissociation phenomenon from crystal lattices of the fuel pellets is suppressed, and normal densification value is shown. Then, fuel pellets of good quality with less fluctuation of the heat-shrinkage can be obtained. (N.H.)

  1. Process analytical technology (PAT) approach to the formulation of thermosensitive protein-loaded pellets: Multi-point monitoring of temperature in a high-shear pelletization.

    Science.gov (United States)

    Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza

    2016-12-01

    In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Energetic ion diagnostics using neutron flux measurements during pellet injection

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs

  3. Development of upgraded pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, M.; Shimomura, T.; Tanaka, N.; Iwamoto, S.; Hashiri, N.; Oda, Y.; Minami, M.; Hiratsuka, H.; Kawasaki, K.; Takatsu, H.; Shimizu, M.

    1989-01-01

    The pneumatic 4-shot pellet injector had been in use for JT-60 (JAERI Tokamak-60) contributing to plasma studies in 1988. It could propel the pellets up to 1.6 km/sec at 50 bar propellant gas. In 1989, the new gun assembly has been reinstalled in the upgraded system to provide higher performance and reliability. The supply pressure of the propellant gas is to be raised to 100 bar to obtain higher pellet velocity up to 2.3 km/sec. The device is now in use for JT-60, and is expected to contribute to further plasma studies. In this paper the outline of features and performance of the device is presented. 5 refs., 9 figs

  4. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  5. Proceedings of the 2. world conference on Pellets

    International Nuclear Information System (INIS)

    2006-07-01

    The conference and exhibition had over 1000 participants from 60 different countries. Subject areas covered by the conference were: Raw Materials For Densification; Pellet Production Technologies; Pellet Burning Technologies; Supply Chain Logistics; Environmental Issues; Marketing of Densified Fuels; Co-Generation of Heat and Electricity from Densified Fuels; 57 contributions have been separately indexed for the database

  6. Effect of Granule Size on Diametric Tolerance of Annular Fuel Pellet

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho; Kim, Keon Sik; Kang, Ki Won; Song, Kun Woo

    2008-01-01

    A dual cooled annular fuel has been seriously considered as a favorable option for an extended power uprate of a Pressurized Water Reactor fuel assembly. An annular fuel shows a lot of advantages from the point of a fuel safety and its economy due to its unique configurational merit such as an increased heat transfer area and a thin pellet thickness. From the viewpoint of the fuel pellet fabrication, however, the unique shape of annular fuel pellet causes challenging difficulties to satisfy a diametric tolerance. A sintered cylindrical PWR fuel pellet fabricated by a conventional double-acting press has an hour-glass shape due to an inhomogeneous green density distribution in a powder compact. Thus, a sintered pellet usually undergoes a centerless grinding process in order to secure diametric tolerance specifications. In the case of an annular pellet fabrication using a conventional double-acting press, the same hour-glass shape would probably occur. An inhomogeneous green density distribution in a powder compact is attributed to granule-granule frictions and granule to pressing mold wall frictions. Frictions result in an irregular pressing load distribution in a powder compact. In order to mitigate the frictions, a lot of process variables should be considered such as pre-compaction pressure, lubricant content, granule size and compaction pressure. The purpose of this study is to investigate the effect of a granule size on the amount of deformation after sintering, in other words, the amount of an hour-glassing. The granules with classified size ranges were made to green annular pellets with the same height and diameters. The hour-glassing amounts of the sintered annular pellets were measured and compared with that of the annular pellet made by unclassified granule

  7. Carbon pellet cloud striations

    International Nuclear Information System (INIS)

    Parks, P.B.

    1989-01-01

    Fine scale striations, with alternating rows of bright and dark zones, have been observed in the ablation clouds of carbon pellets injected into the TEXT tokamak. The striations extend along the magnetic field for about 1 cm with quite regular cross-field variations characterized by a wavelength of a few mm. Their potential as a diagnostic tool for measuring q-profiles in tokamaks provides motivation for investigating the origin of the striations. The authors propose that the striations are not due to a sequence of high and low ablation rates because of the finite thermal magnetic islands localized at rational surfaces, q = m/n, would be responsible for reducing the electron flux to the pellet region; the length of the closed field line which forms the local magnetic axis of the island is too long to prevent a depletion of plasma electrons in a flux tube intercepting the pellet for the duration 2 rp / vp . Instead, they propose that striations are the manifestation of the saturated state of growing fluctuations inside the cloud. The instability is generated by E x B rotation of the ablation cloud. The outward centrifugal force points down the ablation density gradient inducing the Rayleigh-Taylor instability. The instability is not present for wave numbers along the field lines, which may explain why the striations are long and uniform in that direction. The E field develops inside the ablation cloud as a result of cold electron return currents which are induced to cancel the incoming hot plasma electron current streaming along the field lines

  8. Apparatus for transferring nuclear fuel pellets to a plate loader

    International Nuclear Information System (INIS)

    Huggins, T.B.

    1978-01-01

    An apparatus is described for transferring nuclear fuel pellets from a grinding machine to a plate loader. It includes a frame, an endless belt fitted to the frame, a control system provided on it for actuating the belt at a preset speed, a V shaped vessel fitted directly above the belt and extending along its length to guide the pellets on the belt and a device to receive the pellets coming from the belt [fr

  9. Correlations between different methods of UO2 pellet density measurement

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1977-07-01

    Density of UO 2 pellets was measured by three different methods, i.e., geometrical, water-immersed and meta-xylene immersed and treated statistically, to find out the correlations between UO 2 pellets are of six kinds but with same specifications. The correlations are linear 1 : 1 for pellets of 95% theoretical densities and above, but such do not exist below the level and variated statistically due to interaction between open and close pores. (auth.)

  10. Acoustic emission from fuel pellets in a simulated reactor environment

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Kennedy, C.R.; Reimann, K.J.

    1977-01-01

    Thermal-shock damage of nuclear reactor fuel pellets in a simulated reactor environment has been correlated with acoustic-emission data obtained from sensors placed on extensions of the electrical feedthroughs. Ringdown counts, rms output data, and event-location data has been acquired for experiments carried out with single pellets as well as multiple pellet stacks. These tests have shown that acoustic-emission monitoring can provide information indicating the onset and the extent of cracking

  11. Fuel rod with axial regions of annular and standard fuel pellets

    International Nuclear Information System (INIS)

    Freeman, T.R.

    1991-01-01

    This patent describes a fuel rod for use in a nuclear reactor fuel assembly. It comprises: an elongated hollow cladding tube; a pair of end plugs connected to and sealing the cladding tube at opposite ends of thereof; and an axial stack of fuel pellets contained in and extending between the end plugs at the opposite ends of the tube, all of the fuel pellets contained in the tube being composed of fissile material being enriched above the level of natural enrichment; the fuel pellets in the stack thereof being provided in an arrangement of axial regions. The arrangement of axial regions including a pair of first axial regions defined respectively at the opposite ends of the pellet stack adjacent to the respective end plugs. The pellets in the first axial regions being identical in number and having annular configurations with an annulus of a first void size. The arrangement of axial regions also including another axial region defined between the first axial regions, some of the pellets in the another axial region having solid configurations

  12. Dependency between removal characteristics and defined measurement categories of pellets

    Science.gov (United States)

    Vogt, C.; Rohrbacher, M.; Rascher, R.; Sinzinger, S.

    2015-09-01

    Optical surfaces are usually machined by grinding and polishing. To achieve short polishing times it is necessary to grind with best possible form accuracy and with low sub surface damages. This is possible by using very fine grained grinding tools for the finishing process. These however often show time dependent properties regarding cutting ability in conjunction with tool wear. Fine grinding tools in the optics are often pellet-tools. For a successful grinding process the tools must show a constant self-sharpening performance. A constant, at least predictable wear and cutting behavior is crucial for a deterministic machining. This work describes a method to determine the characteristics of pellet grinding tools by tests conducted with a single pellet. We investigate the determination of the effective material removal rate and the derivation of the G-ratio. Especially the change from the newly dressed via the quasi-stationary to the worn status of the tool is described. By recording the achieved roughness with the single pellet it is possible to derive the roughness expect from a series pellet tool made of pellets with the same specification. From the results of these tests the usability of a pellet grinding tool for a specific grinding task can be determined without testing a comparably expensive serial tool. The results are verified by a production test with a serial tool under series conditions. The collected data can be stored and used in an appropriate data base for tool characteristics and be combined with useful applications.

  13. Energy wood. Part 2b: Wood pellets and pellet space-heating systems; Holzenergie Teil 2b: Holzpellets und Pelletheizungen / Energie du bois Partie 2b: Granules de bois et installations de chauffage a granules de bois

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T. [Verenum, Zuerich (Switzerland)

    2002-07-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  14. Pellet ablation and ablation model development

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1989-01-01

    A broad survey of pellet ablation is given, based primarily on information presented at this meeting. The implications of various experimental observations for ablation theory are derived from qualitative arguments of the physics involved. The major elements of a more complete ablation theory are then outlined in terms of these observations. This is followed by a few suggestions on improving the connections between theory and experimental results through examination of ablation data. Although this is a rather aggressive undertaking for such a brief (and undoubtedly incomplete) assessment, some of the discussion may help us advance the understanding of pellet ablation. 17 refs

  15. Occupational exposure of aldehydes resulting from the storage of wood pellets.

    Science.gov (United States)

    Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K

    2017-06-01

    An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.

  16. Pellet production from agricultural raw materials - A systems study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel; Bernesson, Sven; Hansson, Per-Anders [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-75007 Uppsala (Sweden)

    2011-01-15

    The demand for biofuel pellets has increased considerably in recent years, causing shortage of the traditional raw materials sawdust and wood shavings. In this study, the costs and energy requirements for the production of pellets from agricultural raw materials were analysed. The materials studied were Salix, reed canary grass, hemp, straw, screenings, rape-seed meal, rape cake and distiller's waste. Four production scales were analysed, having an annual output of 80,000, 8000, 800 and 80 tonnes of pellets per year. It was concluded that the raw materials of greatest interest were Salix and reed canary grass. They had competitive raw material costs and acceptable fuel properties and could be mixed with sawdust in existing large-scale pelleting factories. Straw had low production costs but can cause serious ash-related problems and should, as also is the case for screenings, be avoided in small-scale burners. Hemp had high raw material costs and is of less commercial interest, while distiller's waste, rape-seed meal and rape cake had higher alternative values when used as protein feed. The scale of production had a crucial influence on production costs. The machinery was used much more efficiently in large-scale plants, resulting in clear cost savings. Small-scale pelleting, both static and mobile, required cheap raw materials, low labour costs and long utilisation times to be profitable. In most cases, briquetting would be more commercially viable. The energy use in manufacturing pellets from air-dried crops was generally no higher than when moist sawdust was used as the raw material. (author)

  17. Ultrasonic analysis of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Bittencourt, Marcelo de S.Q.; Baroni, Douglas B.; Martorelli, Daniel S., E-mail: bittenc@ien.gov.br, E-mail: douglasbaroni@ien.gov.br, E-mail: daniel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Ultrassom; Dias, Fabio C.; Silva, Jose W.S. da, E-mail: fabio@ird.gov.br, E-mail: wanderley@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Salvaguardas

    2013-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. In the nuclear area, ceramics are of great importance due to the process of fabrication of fuel pellets for nuclear reactors. Generally, high accuracy destructive techniques are used to characterize nuclear materials for fuel fabrication. These techniques usually require costly equipment and facilities, as well as experienced personnel. This paper aims at presenting an analysis methodology for UO2 pellets using a non-destructive ultrasonic technique for porosity measurement. This technique differs from traditional ultrasonic techniques in the sense it uses ultrasonic pulses in frequency domain instead of time domain. Therefore, specific characteristics of the analyzed material are associated with the obtained frequency spectrum. In the present work, four fuel grade UO2 pellets were analyzed and the corresponding results evaluated. (author)

  18. Energetic ion diagnostics using neutron flux measurements during pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  19. Ablation of Hydrogen Pellets in Hydrogen and Helium Plasmas

    DEFF Research Database (Denmark)

    Jørgensen, L W; Sillesen, Alfred Hegaard; Øster, Flemming

    1975-01-01

    Measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. The investigations were carried out because of the possibility of refuelling fusion reactors by the injection of pellets. The ablation rate found is higher than expected on the basis of a theory...

  20. Behavior of large grain UO{sub 2} pellet by new ADU powder

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y [Nuclear Development Corp., Tokai, Ibaraki (Japan); Doi, S [Mitsubishi Atomic Power Industries Inc., Kobe (Japan); Abeta, S [Mitsubishi Heavy Industries Ltd, Yokohama (Japan); Yamate, K [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-08-01

    In Japan, high burnup PWR fuel is being developed for assembly discharge burnups from 48 to 55GWd/t. As the pressure in the rods due to fission gas release from the pellets during the long burnup period is an important issue, some kinds of large grain pellets are being investigated in order to reduce fission gas release assuming their behavior will be as predicted by the simple diffusion mode. One kind of large grain pellet is manufactured from the highly sinterable powder produced by the new ADU (ammonium diuranate) process for converting UF{sub 6} gas to UO{sub 2+x} powder. First, we checked the difference in the characteristics of the new active powder and the one in current use by investigating its pelletizing (pressing and sintering), densification, grain growth and microstructure (pore and grain structure). Secondly, we measured the thermal creep, thermal expansion and thermal conductivity of the large grain pellet, in out-of-pile tests. As a results, it was found that the thermal properties of the large grain pellet are the same as those of the current. ADU pellet except for thermal densification and creep behavior. Thirdly, irradiation experiments were performed in the Halden test reactor and the pressure and fuel stack length change in the rods were monitored at power. After irradiation up to about 20GWd/t, PIE has been carried out. It was confirmed that the fission gas release of the large grain pellet is lower and the in-pile densification is smaller than for pellets in current use. The reduction due to the large grain size is lower than expected from the Booth model because the fission gas release rate is very small and the effect of recoil/knockout is comparable to that of diffusion for a low linear heat rate. This paper compares the microstructure of the new pellet with its large grains and pores produced by a performer and a current pellet with normal sized grains and intrinsic pores. It also describes how this comparison relates the in-pile behavior

  1. Dynamic hohlraum and ICF pellet implosion experiments on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.

    1999-01-01

    By stabilizing an imploding z-pinch on Z (20 MA, 100 ns) with a solid current return can and a nested wire array the authors have achieved dynamic hohlraum radiation temperatures over 200 eV at a diameter of approximately 1 mm. The pinch configuration yielding this temperature is a nested tungsten wire array of 240 and 120 wires at 4 and 2 cm diameters weighing 2 and 1 mg, 1 cm long, imploding onto a 5 mm diameter, 14 mg/cc cylindrical CH foam, weighing 3 mg. They have used a single 4 cm diameter tungsten wire array to drive a 1.6 mm diameter ICF capsule mounted in a 6 mg/cc foam inside a 3 mg copper annulus at 5 mm diameter, and measured x-ray emissions indicative of the pellet implosion. Mounting the pellet in foam may have caused the hohlraum to become equator-hot. They will present results from upcoming pellet experiments in which the pellet is mounted by thread and driven by a larger diameter, 6 or 7 mm, copper annulus to improve radiation drive symmetry. They will also discuss designs for tapered foam annular targets that distort a cylindrical pinch into a quasi-sphere that will wrap around an ICF pellet to further improve drive symmetry

  2. Prototype of a high speed pellet launcher for JET

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Kupschus, P.; Helm, J.; Flory, D.; Zacchia, F.

    1989-01-01

    JET is planning to build a high speed prototype pellet injector cap0able of delivering single D 2 -ice pellets, one per plasma pulse, with a velocity of up to 5 kms -1 . The prototype will be based on a 2-stage gun system which is presently being developed at JET using a test stand. One gun of the teststand will be transformed into the prototype used at the torus. Earlier tests have shown that D 2 -ice pellets can only sustain peak accelerations of 5x10 6 ms -2 without breaking and that they suffer from an erosion effect in the barrel limiting the pellet velocity to about 2.7 kms -1 . Results are presented proving that these problems can be overcome by accelerating the ice in a protective sabot (cartridge). With this method velocities of up to 3.8 kms -1 have been obtained. The sabot technique, however, requires a separation of the sabot from the pellet before this is injected into the plasma. Three possible separation methods are described and experimental results of one of them are presented. Also improvements of the gun are discussed which allow to operate the gun by remote control. (author). 5 refs.; 5 figs

  3. Variations in the wood raw material for pellets manufacture and its influence on the quality of wood pellets; Variationer inom traeraavaran foer pelletstillverkning och deras paaverkan paa pelletskvaliteten

    Energy Technology Data Exchange (ETDEWEB)

    Jirjis, Raida; Vinterbaeck, Johan; Engberg, Jessica [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Bioenergy; Oehman, Marcus [ETC Energitekniskt Centrum, Piteaa (Sweden)

    2002-05-01

    The aim of this project was to study the variations in properties of raw material and its effect on pellets quality. The project included three parts which together would help describe the relationship between material properties, process parameters and fuel quality. The first part dealt with a small-scale production of pellets using a well defined raw material. The objectives of this part were to study the effect of tree species, stem diameter and storage of raw material on pellets quality. In the second part of the project data concerning characteristics of raw material and product quality were collected from two pellet factories: SAABI AB, where spruce is the major raw material, and Bioenergi i Luleaa AB, which uses mainly sawdust from pine. The objectives of this part of the project were to analyse and evaluate the relationship between raw material properties/process parameters and fuel quality using multivariate data analysis. Part three of this project involved a questionnaire survey in which pellets producers were asked at four occasions during one year of production, to give information about variations in raw material properties during various seasons, characteristics of the material during pressing and to supply data related to process parameters. Data concerning variations in pellet quality during the whole year were also requested. The sawdust used in the first part of the project was originated from small diameter trees (14 cm in average) and large diameter stems (30-36 cm) of Scots pine and Norway spruce. One third of the material was dried at room temperature to a moisture content (MC) around 12 % (fresh weight basis), then frozen until needed. The rest of the material was stored in 32 plastic net bags in a large outdoor pile during the period end of May-January. The average dry matter loss in all assortments after eight months of storage was about 0.5 % per month. An attempt to produce pellets from the fresh and stored material from the various

  4. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  5. The compaction and sintering of UO_2-Zr cermet pellets

    International Nuclear Information System (INIS)

    Tri Yulianto; Meniek Rachmawati; Etty Mutiara

    2013-01-01

    An innovative fuel pellet of UO_2-Zr cermet has been developed to improve thermal conductivity of UO_2 pellet by adding small amount Zr metal in to UO_2 matrix below 10 % weight. Zirconium powder will serve for the creation of bridges or web structure during compaction and will effectively reduce contact between of UO_2 particles. Based on the theory of phase equilibrium of metals-metal oxides-ceramic, this fabrication technique may produce UO_2 pellets containing continuous metal channel on the grain boundary of UO_2 through sintering in a reduction atmosphere. The fabrication was done by varying process parameters of mixing and compaction. Characterisation of UO_2-Zr cermet pellet involved visual test, dimensional and density measurement, and ceramography test. This advanced cermet fabrication technology may address common issue with cermet fuels such as microstructure with continuous metal channel structure in the UO_2 matrix, which is more effectively than the commonly accepted microstructure involving fraction of UO_2 pellet by standard fabrication route. (author)

  6. Pellets de trigo e soja produzidos por extrusão Wheat and soybean pellets produced by extrusion-cooking

    Directory of Open Access Journals (Sweden)

    Sin Huei Wang

    2008-09-01

    Full Text Available A mistura de trigo e soja representa uma importante fonte calórico-protéica com proteínas de boa qualidade. Apesar disso, a utilização da soja como ingrediente tem sido limitada pelo seu sabor de feijão cru (beany flavor, o qual é melhorado pelo processo de extrusão. Foram estudados os efeitos de umidade da mistura, Temperatura de Barril (TB e Velocidade de Rotação de Parafuso (VRP, Nº 5 do extrusor no Índice de Expansão (IE, no Índice de Solubilidade em Água (ISA e nas características sensoriais de pellets produzidos com mistura de trigo e soja (90:10, objetivando a otimização deste processo para a obtenção de pellets fritos com melhores qualidades sensoriais. A farinha mista crua foi extrusada em 2 umidades (32 e 35%, 4 TB (60 a 90 °C e 4 VRP (60 a 150 rpm, totalizando 32 tratamentos. O pellet frito, preparado com a farinha mista com 32% de umidade e extrusada em 60 rpm a 80 °C, apresentou o maior IE e as melhores qualidades sensoriais (aparência, sabor e textura, sendo preferido pela equipe de provadores não treinados, tanto com sabor de bacon como com sabor de queijo.The mixture of wheat with soybean represents an important calorie-protein source with good protein quality. In spite of this, the use of soybeans as an ingredient has been limited by their beany flavor, which is improved by the extrusion process. Effects of mixture moisture, Barrel Temperature (BT and Screw-Speed (SS, Nº 5 on Expansion Index (EI, Water Solubility Index (WSI and sensory characteristics of pellets produced with a wheat-soybean (90:10 mixture were studied, in order to optimize this process for obtaining fried pellets with better sensory qualities. Raw mixed flour was extruded at two moisture contents (32 and 35%, four BT (60 to 90 °C and four SS (60 to 150 rpm, totalizing 32 treatments. The fried pellets, prepared with the mixed flour with 32% moisture and extruded at 60 rpm and 80 °C, presented the greatest EI and the best sensory

  7. Impacts of pellets injected from the low-field side on plasma in ITER

    International Nuclear Information System (INIS)

    Wisitsorasak, A.; Onjun, T.

    2011-01-01

    Impacts of pellets injected from the low-field side (LFS) on plasma in ITER are investigated using the 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model. The pellet ablation model is coupled with the plasma core transport model, which is a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport model. The boundary conditions are assumed to be at the top of the pedestal, in which the pedestal parameters are predicted using a pedestal model based on the theoretical-based pedestal width scaling (either magnetic and flow shear stabilization width scaling, or flow shear stabilization width scaling, or normalized poloidal pressure width scaling) and the infinite-n ballooning mode pressure gradient limit. These pedestal models depend sensitively on the density at the top of the pedestal, which can be strongly influenced by the injection of pellets. The combination of the MMM95 and NCLASS models, together with the pedestal and NGS models, is used to simulate the time evolution of the plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the injection of LFS pellets. It is found that the injection of pellets results in a complicated plasma scenario, especially in the outer region of the plasma and the plasma conditions at the boundary in which the pellet has an impact on increasing the plasma edge density, but reducing the plasma edge temperature. The LFS pellet has a stronger impact on the edge as compared to the center. For fusion performance, the pellet can result in either enhancement or degradation, depending sensitively on the pellet parameters; such as the pellet size, pellet velocity, and pellet frequency. For example, when a series of deuterium pellets with a size of 0.5 cm, velocity of 1 km/s, and frequency of 2 Hz are injected into the ITER plasma from the LFS, the

  8. A study of friction and axial effects in pellet-clad mechanical interaction

    International Nuclear Information System (INIS)

    Harriague, S.; Meyer, J.E.

    1983-01-01

    An analysis is made of the effect of friction forces at the pellet-cladding contact points on the behaviour of a fuel rod under a power-up ramp. A thermoelastic description of the pellets is given; the stiffness matrix and initial displacements are obtained from a finite element calculation. The cladding is considered to behave as a thermoelastic thin shell. A method is developed to assemble the stiffness of each pellet and corresponding cladding section on a fuel rod, resulting in an explicit description of the whole stack. The assumption of thermoelasticity allows for a very fast calculation, even when including hundreds of pellets under an arbitrary axial distribution of power. Results showing the pattern of friction and axial forces, and relative and localized displacements along the rod, are presented. In most cases, pellets at the top of the stack slide with respect to the clad. As a result of the build-up of axial forces due to friction, pellets at lower positions in the fuel column may show, at the contact positions, no relative displacements with respect to the cladding. The effect of pellet dishing and L/D ratio on the axial strains and local deformations are shown. The predictions are consistent with the experimental observations on the effect of pellet shape. Finally, a discussion is made of the results of this study. The use of these results as a guideline for establishing proper boundary conditions in a non-linear PCMI model (i.e., including plasticity and pellet cracking) are also discussed. (author)

  9. Description of pelletizing facility

    Directory of Open Access Journals (Sweden)

    Čokorilo Vojin

    2006-01-01

    Full Text Available A lot of electrical energy in Serbia was used for heating, mainly for domes- tics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks, etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal make a lot difficulties to the each mine because of environmental pollution, spontaneous combustion, low price, smaller market, etc. To prevent the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, University of Belgrade, designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project.

  10. Comparative study of durability test methods for pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Temmerman, Michaeel; Rabier, Fabienne [Centre wallon de Recherches agronomiques (CRA-W), 146, chaussee de Namur, B-5030, Gembloux (Belgium); Jensen, Peter Daugbjerg [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe-TFZ, Schulgasse 18, D-94315 Straubing (Germany)

    2006-11-15

    Different methods for the determination of the mechanical durability (DU) of pellets and briquettes were compared by international round robin tests including different laboratories. The DUs of five briquette and 26 pellet types were determined. For briquettes, different rotation numbers of a prototype tumbler and a calculated DU index are compared. For pellets testing, the study compares two standard methods, a tumbling device according to ASAE S 269.4, the Lignotester according to ONORM M 7135 and a second tumbling method with a prototype tumbler. For the tested methods, the repeatability, the reproducibility and the required minimum number of replications to achieve given accuracy levels were calculated. Additionally, this study evaluates the relation between DU and particle density. The results show for both pellets and briquettes, that the measured DU values and their variability are influenced by the applied method. Moreover, the variability of the results depend on the biofuel itself. For briquettes of DU above 90%, five replications lead to an accuracy of 2%, while 39 replications are needed to achieve an accuracy of 10%, when briquettes of DU below 90% are tested. For pellets, the tumbling device described by the ASAE standard allows to reach acceptable accuracy levels (1%) with a limited number of replications. Finally, for the tested pellets and briquettes no relation between DU and particle density was found. (author)

  11. High-speed hydrogen pellet acceleration using an electromagnetic railgun system

    International Nuclear Information System (INIS)

    Onozuka, M.; Oda, Y.

    1997-01-01

    Using a low electric energy railgun system, solid hydrogen pellet acceleration test have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. Pneumatically pre-accelerated hydrogen pellets measuring 3 mm in diameter and 4-9 mm in length were successfully accelerated by a railgun system that uses a laser-induced plasma armature formation. A 2 m long single railgun with ceramic insulators accelerated th hydrogen pellet to 2.6 kms -1 with a supplied energy of 1.7 kJ. The average acceleration rate and the energy conversion coefficient were improved to about 1.6 x 10 6 ms -2 and 0.37%, which is 1.6 times and three times as large as that using a railgun with plastic insulators, respectively. Furthermore, using the 1 m long augment railgun with ceramic insulators, the energy conversion coefficient was improved to about 0.55% while the acceleration rate was increased to 2.4 x 10 6 ms -2 . The highest hydrogen pellet velocity attained was about 2.3 kms -1 for the augment railgun under an energy supply of 1.1 kJ. Based on the findings, it is expected that the acceleration efficiency and the pellet velocity can be further improved by using a longer augment railgun with ceramic insulators and by applying an optimal power supply. (orig.)

  12. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  13. quality assurance calculation in UO2 pellet manufacturing process

    International Nuclear Information System (INIS)

    Can, S.; Acarkan, S.; Guereli, L. and others

    1997-01-01

    A process qualification plan is prepared for preparation of quality assurance documentation in accordance with ISO-9000 series of standards, for sintered UO 2 pellets manufactured in the Nuclear Fuel Technology Department. The objectives of this plan are to determine quantitatively and statistically process capability of the pellet production, to check product properties (are) in conformance with specifications at the pre-( ) confidence levels, to prepare necessary documents and to assess the results. The product properties taking into account are chemical composition, cracks, density, microstructure and grain size. The statistical parameters used for qualification element of quality assurance are calculated.Statistical values for sintered pellets are: LENGTH/WEIGHT/DIAMETER/DENSITY/%TD: MEAN:13,395/16,808/12,293/10,679/97,400 STD:0,1651/ 0,252/0,0212/0,015/0,140. It was seen that sintered pellets manufactured in the Nuclear Fuel Technology Department meet the criteria within 95% confidence level. In this paper specifications, criteria and calculations will be explained in detail

  14. Comparison of cryogenic (hydrogen) and TESPEL (polystyrene) pellet particle deposition in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; Panadero, N.; Ascabíbar, E.; Estrada, T.; García, R.; Hernández Sánchez, J.; López Fraguas, A.; Navarro, M.; Pastor, I.; Soleto, A.; TJ-II Team

    2017-10-01

    A cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun-type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection compared with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.

  15. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  16. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  17. Apparatus and method for classifying fuel pellets for nuclear reactor

    International Nuclear Information System (INIS)

    Wilks, R.S.; Breakey, G.A.; Castner, R.P.; Sternheim, E.; Sturges, R.H. Jr.; Taleff, A.

    1984-01-01

    Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets is claimed. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits

  18. Interaction between aluminium oxide pellets and Zircaloy tubes in steam atmospheres at temperatures above 12000C

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Schanz, G.; Sepold, L.

    1988-09-01

    The burnable poison rods in light water reactors (LWR) consist of Al 2 O 3 /B 4 C pellets surrounded by Zircaloy-4 cladding tubes. In the Al 2 O 3 /B 4 C pellets of a LWR rod alumina is the main constituent (98.6 wt.-%) whereas boron carbide acts as neutron absorber. Failure of the Al 2 O 3 /Zircaloy test rods started at 1350 0 C when first droplets of molten material were observed running down the test bundle forming bundle blockages upon solidification. Post test examinations revealed that the process of liquefaction was initiated by a reduction of alumina by Zircaloy resulting in a (Zr, Al, O) melt which decomposed on cooldown into two metallic phases, a (Zr, Al) alloy and oxygen-stabilized a-Zr(O). The components of an extremely porous ceramic melt were also Zr, Al, and oxygen but with a higher oxygen content compared to the metallic melt. The ceramic melt decomposes on cooldown into an Al 2 O 3 /ZrO 2 eutectic with various amounts of primary constituents. Other types of relocated material were due to melting of essentially unreacted Zircaloy cladding and to debris formation by fracturing of oxidized cladding and Al 2 O 3 pellets stack residues. The interactions between Al 2 O 3 and Zircaloy occurring in a burnable poison rod are furthermore important for the behavior of the entire LWR core because the generated metals are able to attack the UO 2 chemically and dissolve or liquefy the fuel even below the melting point of Zircaloy (1760 0 C). As a result, fuel elements which contain burnable poison rods are expected to fail under severe accident conditions at about 1500 0 C. (orig./HP) [de

  19. Eudragit L/HPMCAS blend enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability.

    Science.gov (United States)

    Fang, Yu; Wang, Guozheng; Zhang, Rong; Liu, Zhihua; Liu, Zhenghua; Wu, Xiaohui; Cao, Deying

    2014-06-01

    The objectives of the present work were to use blends of Eudragit L and hydroxypropyl methylcellulose acetate succinate (HPMCAS) as enteric film coatings for lansoprazole (LSP) pellets. The enteric-coated pellets were prepared with a fluid-bed coater. The influence of the blend ratio, type of plasticizer, plasticizer level, coating level, and curing conditions on gastric stability in vitro drug release and drug stability was evaluated. Furthermore, the bioavailability of the blend-coated pellets in beagle dogs was also performed. The blend-coated pellets exhibited significant improvement of gastric stability and drug stability compared to the pure polymer-coated pellets. Moreover, the AUC values of blend-coated pellets were greater than that of the pure polymer-coated pellets. It was concluded that the using blends of Eudragit L and HPMCAS as enteric film coatings for LSP pellets improved the drug stability and oral bioavailability.

  20. Evaluation of Mechanical Parameters of Pellets

    Directory of Open Access Journals (Sweden)

    Ľubomír Kubík

    2016-01-01

    Full Text Available The paper dealt with the evaluation of mechanical properties of the cylinder wheat straw, rapeseed straw and 50/50 % mixed wheat and rapeseed straw pellet samples. The pellets were made by the granulating machine MGL 200 (Kovonovak. The compressive loading curves of dependencies of stress on strain were realised by the test stand Andilog Stentor 1000 (Andilog Technologies, Vitrolles, France. Certain mechanical parameters were determined, namely the initial force (force at 10 % of compress strain, force in maximum of loading curve, strain in maximum of loading curve, initial stress (stress at 10 % of compression strain, stress in maximum of loading curve and modulus of elasticity. Mean value of the initial force was maximal for mixed straw pellet samples 52.49 N. Mean values of the initial force of the wheat straw samples and the rapeseed straw samples were smaller and almost identical 43.58 N and 43.12 N. Mean values of the initial stress of loading curve, of the wheat straw samples reached 1.46 MPa, the rapeseed straw samples reached value 1.40 MPa and the mixed straw samples reached value 1.63 MPa. Mean value of the force in maximum of loading curve was also maximal for mixed straw pellet samples 213.26 N. Mean values of the force in maximum of loading curve of the wheat straw samples reached 178.11 N. The rapeseed straw samples reached value 95.95 N and the mixed straw samples reached value 213.26 N. Mean values of the stress in maximum of loading curve, of the wheat straw samples reached 5.93 MPa, the rapeseed straw samples reached value 3.11 MPa and the mixed straw samples reached value 7.10 MPa Mean values of the modulus of elasticity, of the wheat straw samples reached 18.27 MPa, the rapeseed straw samples reached value 13.08 MPa and the mixed straw samples reached value 14.97 MPa. Significant correlations of the mechanical parameters pellet samples were observed among initial force and initial stress and modulus of elasticity

  1. Die Hard - improving the physical quality of extruded fish feed pellets

    DEFF Research Database (Denmark)

    Dethlefsen, Markus Wied

    The present thesis, Die Hard – Improving the Physical Quality of Extruded Fish Feed Pellets, approaches some of the biggest challenges within production of high-performance feed: Oil leakage and pellet strength. Salmon farmers in the aquaculture industry are requesting high energy dense diets...... with a supreme physical quality. To fulfil the market expectations, feed pellets have to contain 40% fat and tolerate high levels of stress during the transportation to the fish cages – without the pellets crumbling and oil leaking out of the feed. To solve this task, an improved understanding of the pellet...... structure’s impact on the physical quality of the feed is required. Through detailed analyses of the pellets’ microstructure, it was found that the optimal pore structure is defined by a high pore-surface-area to object-volume ratio. To obtain this pore structure, a new generation of dies was developed...

  2. Device for introducing radiative pellets in a tube

    International Nuclear Information System (INIS)

    Michel, A.; Milesi, A.

    1983-01-01

    Fuel sheaths are filled through a device comprising a funnel-guide with a bore having a diameter and slightly higher than pellet diameter and slightly lower than fuel can inside diameter. The flaring part of the funnel is toward facing a pellet distributor placed in a containment cell. The fuel can is tightened and aligned for a close contact with the funnel-guide [fr

  3. Applications and interactions of solid impurity pellets with reactor relevant plasma

    International Nuclear Information System (INIS)

    Deng Baiquan; Peng Lilin; Huang Jinhua; Yan Jiancheng

    2003-01-01

    Based on the kinetic two-dimensional lentil-shape ablation theory of hydrogenic pellet developed by Kuteev, the new extended algorithm for erosion speed and ablation rate calculations of the impurity pellets in reactor relevant plasma has been derived. The preliminary exploration for the feasibility of applying impurity pellet injection to the α particle diagnostics in the future ITER device has been performed. The comparisons between the numerical integral calculation results and analysis show that the lithium pellet injection possesses much more compatibilities. It might be feasible to apply this technique to both α particle diagnostics and safety factor q profile measurement in the future ITER device. (authors)

  4. The effect of U3O-8 addition on the UO2 pellet

    International Nuclear Information System (INIS)

    Indrati, Y.T.; Syarif, D. G.; Handayani, A.

    1998-01-01

    The purpose of varied U 3 O 8 addition on the UO 2 pellet fabrication is to from 1-3 mu pores. The green pellets, compacted with 3 ton/cm 2 , are a mixture powder of UO 2 , TiO 2 (0.1% weight) and varied U 3 O 8 (0-12.5% weight). The green pellets were presintered by H2 atmosphere. The presintered pellets were put on the ceramic crucibles and than those were put on the SS 316 tube with argon atmosphere. The 1400 o C sintering was hold with the soaking time 3 hr and the same rate of heating and cooling 150 o C/hr. The UO 2 pellet with 5% (weight) U 3 O 8 addition has 95.17% of theoretic density and 548.4 ±6.57 VH. Based on the identification of microstructure of pellet, it is not acceptable for nuclear fuel although pellet has 10.02 mu on grain size and 1.3 mu on closed pore size. By the diffractometer X-ray, crystal structure of pellet is face centered cubic (FCC) with the O/U ratio is 2.08

  5. Pellet acceleration studies relating to the refuelling of a steady-state fusion reactor

    International Nuclear Information System (INIS)

    Dimock, D.; Jensen, K.; Jensen, V.O.; Joergensen, L.W.; Pecseli, H.L.; Soerensen, H.; Oester, F.

    1975-11-01

    Several methods for refuelling a steady state-fusion reactor have been proposed, and the pellet method seems advantageous if the pellet can be accelerated to the necessary velocity. A study group was formed to analyze this acceleration problem. Two pellet velocity values were considered: 10 4 m/s and 300 m/s. A pellet velocity of 10 4 m/s may be suitable in the case of a reactor, whereas 300 m/s is believed to be a reasonable velocity at which to perform realistic ablation experiments in the near future. A pneumatic acceleration method was found promising. The pressure is either supplied separately or by evaporation of a part of the pellet. In the latter case, a spark behind the pellet should provide the evoporation and the necessary heating of the driving gas. A preliminary test at room temperature with pellets made of beeswax (the density being ten times that of solid hydrogen, and plastic properties similar to those of solid hydrogen) resulted in a pellet velocity of 100 m/s at a modest value of the energy supplied to the spark. (Auth.)

  6. Development of wood pellets market in South East Europe

    Directory of Open Access Journals (Sweden)

    Glavonjić Branko D.

    2015-01-01

    Full Text Available The paper presents the results of researching wood pellets market in nine countries in South East Europe and Slovakia. Objective of the research was to observe the actual situation regarding the number of producers, size of installed capacities, production volume, foreign trade flows and existing problems and obstacles which significantly limit the sustainable development of wood pellets market in the selected countries. Selection of such an objective results from the fact that according to the stated elements there are no sufficiently reliable data, wherefore this region is a huge gap in numerous reports of international and national organizations and institutions. Results of the conducted research show that in the middle of 2014, 245 producers were engaged in wood pellets production in South East Europe and Slovakia, 116 of which were located in Bulgaria and Serbia. Most of the producers of wood pellets has installed capacities of 1,000-5,000 tons annually, while only 18 factories in the entire region have the installed capacity over 30,000 tons/year. Observed collectively in all stated countries, the total installed capacities for wood pellets production were 2.2 million tons in 2013 and the realized production was 1.36 million tons. The largest part of the produced amounts of wood pellets in this region is exported. 1.06 million tons were exported from the region in 2013, which is 77.9% of the realized production. Such high export is the result of the underdevelopment of the local market (Slovenia is the only exception and the problems which exist and limit its faster development in most countries.

  7. Grain Size and Phase Purity Characterization of U3Si2 Pellet Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hoggan, Rita E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, Kevin R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cappia, Fabiola [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wagner, Adrian R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-05-01

    Characterization of U3Si2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U3Si2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm. The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U3Si2 as the main phase composing about 80 vol. %, Si rich phases (USi and U5Si4) composing about 13 vol. %, and UO2 composing about 5 vol. %. Initial batches from the extended U3Si2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO2: achieving U3Si2 phase purity between 95 vol. % and 98 vol. % U3Si2. The amount of UO2 in sintered U3Si2 pellets is correlated to the length of time between U3Si2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.

  8. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Kim, Yul-Min; Kim, Jae-heon

    2004-03-01

    The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

  9. Fuzzy control of the iron ore pellets thermal treatment on a conveying car

    Directory of Open Access Journals (Sweden)

    В’ячеслав Йосипович Лобов

    2017-07-01

    Full Text Available The purpose of this article is to solve the problem of fuzzy control of iron ore pellets thermal treatment on a conveyor roasting machine, to build an automated control system of conveyor roasting machine and perform simulation and to present the results of research. According to the structural scheme of the fuzzy control an automated control system is proposed for being modelled. This is done by using the software MATLAB. The use of atomic emission spectroscopy determines the percentage of the major elements in iron ore pellets considering the main process parameters. This article uses an automated system of fuzzy control of iron ore pellets firing on a conveyor roasting machine with the introduction of atomic emission spectroscopy of the pellets. Development and practical implementation of fuzzy control will improve their quality by taking into account the basic parameters of thermal treatment of pellets such as speed of movement of the grate trucks, gas flow rate, the height of the layer of pellets and the venting speed of the pellets layer with gas-air flow, humidity, average diameter, the basicity and the iron composition in the pellets. The expediency of the developed method of using automated fuzzy control system of iron ore pellets firing on a conveyor roasting car has been proved. The system with fuzzy controller provides a reduction on average 2 m3/h, which is 0,3% of natural gas consumption as compared to the existing systems. This provides more uniform gas permeability of the layer of pellets, which leads to filtration rate increase of the gas flow and to heat exchange intensification in the layer of pellets. It makes it possible to introduce the atomic emission spectroscopy of non-burned pellets and to increase the productivity of conveyor roasting machine by 2,5%. At the same time the resistance of technological equipment (pallets increases, due to more uniform distribution of the thermal field

  10. ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Lang, P. [EURATOM / UKAEA, Abingdon, UK; Allen, S. L. [Lawrence Livermore National Laboratory (LLNL); Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Meitner, Steven J. [ORNL; Combs, Stephen Kirk [ORNL; Commaux, Nicolas JC [ORNL; Loarte, A. [ITER Organization, Cadarache, France; Jernigan, Thomas C. [ORNL

    2015-08-01

    The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components (PFCs). Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation.A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.

  11. Development of H2 pellet injectors for industrial marketing

    International Nuclear Information System (INIS)

    Visler, T.

    1988-09-01

    1. Discussion of the construction of injector installation at ETA-BETA II. 2. Production and experience with two different ''pipe-guns''. One for large pellets, diameter/length = 4.5-5 mm/8-20 mm and one for small pellets, diameter/length = 2 mm/3-4 mm. (author) 27 ills., 39 refs

  12. A state-of-the-art report on the development of B{sub 4}C materials as neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choong Hwan; Kim, Sun Jae; Park, Jee Yun; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    Boron of 10 atomic weight is one of the best neutron absorbing elements. Among the boron compounds, B{sub 4}C and its composites exhibit excellent material properties. Those materials absorb thermal and fast neutrons, are thermally and chemically very stable, and are very strong in mechanical properties. By neutron irradiation B-10 transforms into Li releasing one He atom. This He release causes swelling, cracking and fragmentation of B{sub 4}C bulks and results in degradation of the materials. The essence of technical developments of B{sub 4}C-based neutron absorbers is the minimization of the effects of He release, and this can be realized through microstructural optimizations of grain and porosity distributions. While pure B{sub 4}C is very difficult in sintering, new neutron absorbing materials of B{sub 4}C-cermets are being developed. B{sub 4}C-cermets are composite materials in which B{sub 4}C powders are dispersed in the metal matrix of Al or Cu. Those materials show easiness in sintering, mechanical forming, and B{sub 4}C content controlling. Neutron absorbing and shielding materials play an important role for the safety of reactor operations and environmental protections. Those materials are being used as monolithic pellets for control rods, burnable poison fuel rods, rack materials for spent fuel storages, shielding materials for shipping casks, and especially for shielding plates for liquid metal reactors. 37 figs., 12 tabs., 41 refs. (Author).

  13. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  14. Recycling of Manganese Secondary Raw Material Via Cold-Bond Pelletizing Process

    International Nuclear Information System (INIS)

    Ahmed, Y.M.Z.; Mohamed, F.M.

    2004-01-01

    Large quantities of fines were produced during the shipping, transportation, handling and storage of manganese ore sinter imported from different countries to Sinai Company for ferromanganese production. These fines are generally considered as valuable secondary raw materials. Hence, they have a potential to be recycled back to the submerged arc furnace after having been agglomerated. For agglomerates to be considered as feed materials for submerged arc furnace they must have sufficient room temperature strength. Cold-bonded penalization process offers an economically attractive and environmentally viable method for achieving this. Ordinary Portland cement was used in this investigation for the purpose of producing a suitable cold-bonded pellet from such fines. In this investigation, the effect of adding different percentages of Portland cement on the mechanical properties of both green and pellet dried at room temperature for 1, 3, 7, 14, and 28 days of normal curing were studied. The results revealed that, although the compressive strength of green pellets improved with the increase of the amount of cement added. retardation in pellet drop strength was reported. Whereas, the increase in both the cement content and time of drying leads to increase in the mechanical properties of pellets normally cured at room temperature. pellets obtain with the addition of 9% cement shows reasonable mechanical properties to be charged in the submerged are furnace. ferromanganese alloy having a standard range composition was produced in a laboratory submerged are furnace using such pellets

  15. Effects of variations in fuel pellet composition and size on mixed-oxide fuel pin performance

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jensen, B.W.; Baker, R.B.

    1980-10-01

    Experiments have been conducted which assess the effects on fuel pin performance of specific minor variations from nominal in both fuel pellet size and pellet composition. Such pellets are generally referred to in the literature as rogue pellets. The effect of these rogue pellets on fuel pin and reactor performance is shown to be minimal

  16. Study on the pelletizing of sulfate residue with magnetite concentrate in grate-kiln system

    Directory of Open Access Journals (Sweden)

    Shufeng Y.

    2010-01-01

    Full Text Available The experiment on the feasibility of pelletizing with magnetite concentrate and the wasted sulfate residue was carried out, to research the performance of pellet in grate-kiln system and simulate the grate-kiln pelletizing process in the micro-pellet roasting simulation system in laboratory, and the process experiments on preheating and roasting sections were conducted. The results show that in order to obtain pellet with good performance and the magnetite concentrate should be over 20 in mass percent, the suitable pelletizing time is about 10 min and moisture is around 12.5%. Also, according to the process parameters of drying and preheating sections obtained from experiment, it will be successful to use magnetite concentrate and the wasted sulfate residue for pelletizing, which exploits a new way for the use of sulfate residue.

  17. The CIT [compact ignition tokamak] pellet injection system: Description and supporting research and development

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1989-01-01

    The Compact Ignition Tokamak (CIT) will use an advance, high-velocity pellet injection system to achieve and maintain ignited plasmas. Two pellet injectors are provided: a moderate-velocity (1-to 1.5-km/s), single-stage pneumatic injector with high reliability and a high-velocity (4- to 5-km/s), two-stage pellet injector that uses frozen hydrogenic pellets encased in sabots. Both pellet injectors are qualified for operation with tritium feed gas. Issues such as performance, neutron activation of injector components, maintenance, design of the pellet injection vacuum line, gas loads to the reprocessing system, and equipment layout are discussed. Results and plans for supporting research and development (R and D) in the areas of tritium pellet fabrication and high-velocity, repetitive two-stage pneumatic injectors are presented. 7 refs., 4 figs., 2 tabs

  18. 3400 m/s deuterium pellet injector for Tore Supra

    International Nuclear Information System (INIS)

    Perin, J.P.; Geraud, A.

    1995-01-01

    This paper reports on the Tore Supra high velocity pellet injector which was built in Grenoble and after qualification tests installed on Tore Supra Tokomak where it is used for plasma and ablation studies. By using a two stage light gas gun (TSG) and two cells (φ = 3 mm or 4 mm), unsupported pellets pellets (1 to 3.5 10 21 atoms) made directly in the gun by > [1] have been launched into Tore Supra plasma at speeds between 2400m/s and 3400m/s with a reliability of 80%. These higher pellets velocities (> 2500 m/s) [2] are obtained by the optimization of a TSG and the search for the cryogenic conditions of freezing deuterium with good mechanical properties. In particular, the impurities concentration in deuterium during the condensation process has been studied. Several tens pellets have been injected into ohmically and ICR heated plasma and during LH current drive experiments with a good reliability in the range of 3000m/s. These experiments allowed us to extend significantly the ablation data base. Central penetrations can be reached even for high temperatures plasma (3-5 keV) and very peaked density profiles have been obtained in ohmically and ICR heated plasmas A transient improved confinement regime is then observed, which presents some features similar to the PEP regime obtained on JET. (orig.)

  19. Pellet injector development at ORNL [Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Gouge, M.J.; Argo, B.E.; Baylor, L.R.; Combs, S.K.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Simmons, D.W.; Sparks, D.O.; Tsai, C.C.

    1990-01-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3 He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  20. Proposal for Ultrasonic Technique for evaluation elastic constants in UO2 pellets

    International Nuclear Information System (INIS)

    Lopes, Alessandra Susanne Viana Ragone; Baroni, Douglas Brandao; Bittencourt, Marcelo de Siqueira Queiroz; Souza, Mauro Carlos Lopes

    2015-01-01

    Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO 2 pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application. (author)