WorldWideScience

Sample records for absorbed light energy

  1. Effect of Low Content Chlorophyll on Distribution Properties of Absorbed Light Energy in Leaves of Mutant Rice

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-ming; ZHANG Rong-xian; TANG Yun-lai

    2004-01-01

    This paper reported the diurnal variations of photochemical efficiency of PSII, thermal dissipation rate and other physiology process in thelow content chlorophyll mutant rice and its wild type under field conditions, and analyzed the difference of absorbed light distribution between the two rice varieties in a day. The results showed that the mutant had poor absorbed light because of its little light absorption coefficient, but higher electron transportg rate could partly reduce the disadvantageous effect of deficient absorbed light in mutant. Compared with wild-type rice, the mutant had less excess excitation energy and the fraction of absorbed light allocated to photochemical process was more.

  2. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  3. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmehl, Russell H. [Tulane Univ., New Orleans, LA (United States)

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods were used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.

  4. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.

    Science.gov (United States)

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J

    2011-05-01

    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs.

  5. Using intramolecular energy transfer to transform non-photoactive, visible-light-absorbing chromophores into sensitizers for photoredox reactions.

    Science.gov (United States)

    Gu, Jing; Chen, Jin; Schmehl, Russell H

    2010-06-02

    This work discusses the synthesis, photophysical behavior, and photoinduced electron-transfer reactivity of multichromophoric molecules having a visible-light-absorbing MLCT component coupled to a ligand with a localized excited state of the same spin multiplicity that serves to lengthen the excited-state lifetime of the complex significantly. The appropriate ligands were prepared by Wittig coupling of a bipyridine derivative with pyrenecarboxaldehyde. The modified ligand, a pyrene-vinyl-bipyridyl ensemble (pyrv-bpy), was then reacted with RuCl(3) to yield [(pyrv-bpy)(2)RuCl(2)]. The complex has MLCT absorption out to 800 nm, and excitation results in the formation of a ligand-localized excited state with a lifetime long enough to undergo bimolecular electron-transfer reactions. The pyrenylvinyl "localized" excited state of the complex reacts via photoinduced electron transfer with a variety of viologen and diquat electron acceptors. The remarkable aspect of the electron-transfer process is that whereas the excited state can be considered to be ligand-localized the photoredox reaction almost certainly involves the direct formation of the one-electron-oxidized metal center.

  6. Energy-Absorbing Beam Member

    Science.gov (United States)

    Littell, Justin D. (Inventor)

    2017-01-01

    An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.

  7. Light-absorbing impurities in Arctic snow

    Directory of Open Access Journals (Sweden)

    S. J. Doherty

    2010-08-01

    Full Text Available Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study.

    The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC, the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow: Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity

  8. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    Science.gov (United States)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  9. Multiobjective Topology Optimization of Energy Absorbing Materials

    Science.gov (United States)

    2015-08-01

    125–143 DOI 10.1007/s00158-014-1117-8 RESEARCH PAPER Multiobjective topology optimization of energy absorbing materials Raymond A. Wildman · George A...recent developments. J Multiscale Model 3(4):1–42 Qiao P, Yang M, Bobaru F (2008) Impact mechanics and high-energy absorbing materials: review . J Aerosp...ARL-RP-0533 ● AUG 2015 US Army Research Laboratory Multiobjective Topology Optimization of Energy Absorbing Materials by

  10. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship......Minorsky's well-known empirical formula, which relates the absorbed energy to the destroyed material volume, has been widely used in analyses of high energy collision and grounding accidents for nearly 40 years. The advantage of the method is its apparent simplcity. Obviously, its drawback...

  11. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    Science.gov (United States)

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented.

  12. Light Absorbers and Catalysts for Solar to Fuel Conversion

    Science.gov (United States)

    Kornienko, Nikolay I.

    Increasing fossil fuel consumption and the resulting consequences to the environment has propelled research into means of utilizing alternative, clean energy sources. Solar power is among the most promising of renewable energy sources but must be converted into an energy dense medium such as chemical bonds to render it useful for transport and energy storage. Photoelectrochemistry (PEC), the splitting of water into oxygen and hydrogen fuel or reducing CO 2 to hydrocarbon fuels via sunlight is a promising approach towards this goal. Photoelectrochemical systems are comprised of several components, including light absorbers and catalysts. These parts must all synergistically function in a working device. Therefore, the continual development of each component is crucial for the overall goal. For PEC systems to be practical for large scale use, the must be efficient, stable, and composed of cost effective components. To this end, my work focused on the development of light absorbing and catalyst components of PEC solar to fuel converting systems. In the direction of light absorbers, I focused of utilizing Indium Phosphide (InP) nanowires (NWs) as photocathodes. I first developed synthetic techniques for InP NW solution phase and vapor phase growth. Next, I developed light absorbing photocathodes from my InP NWs towards PEC water splitting cells. I studied cobalt sulfide (CoSx) as an earth abundant catalyst for the reductive hydrogen evolution half reaction. Using in situ spectroscopic techniques, I elucidated the active structure of this catalyst and offered clues to its high activity. In addition to hydrogen evolution catalysts, I established a new generation of earth abundant catalysts for CO2 reduction to CO fuel/chemical feedstock. I first worked with molecularly tunable homogeneous catalysts that exhibited high selectivity for CO2 reduction in non-aqueous media. Next, in order to retain molecular tunability while achieving stability and efficiency in aqueous

  13. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  14. Light absorbing carbon emissions from commercial shipping

    Science.gov (United States)

    Lack, Daniel; Lerner, Brian; Granier, Claire; Baynard, Tahllee; Lovejoy, Edward; Massoli, Paola; Ravishankara, A. R.; Williams, Eric

    2008-07-01

    Extensive measurements of the emission of light absorbing carbon aerosol (LAC) from commercial shipping are presented. Vessel emissions were sampled using a photoacoustic spectrometer in the Gulf of Mexico region. The highest emitters (per unit fuel burnt) are tug boats, thus making significant contributions to local air quality in ports. Emission of LAC from cargo and non cargo vessels in this study appears to be independent of engine load. Shipping fuel consumption data (2001) was used to calculate a global LAC contribution of 133(+/-27) Ggyr-1, or ~1.7% of global LAC. This small fraction could have disproportionate effects on both air quality near port areas and climate in the Arctic if direct emissions of LAC occur in that region due to opening Arctic sea routes. The global contribution of this LAC burden was investigated using the MOZART model. Increases of 20-50 ng m-3 LAC (relative increases up to 40%) due to shipping occur in the tropical Atlantic, Indonesia, central America and the southern regions of South America and Africa.

  15. Can polar bear hairs absorb environmental energy?

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2011-01-01

    Full Text Available A polar bear (Ursus maritimus has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  16. Can polar bear hairs absorb environmental energy?

    OpenAIRE

    He Ji-Huan; Wang Qing-Li; Sun Jie

    2011-01-01

    A polar bear (Ursus maritimus) has superior ability to survive in harsh Arctic regions, why does the animal have such an excellent thermal protection? The present paper finds that the unique labyrinth cavity structure of the polar bear hair plays an important role. The hair can not only prevent body temperature loss but can also absorb energy from the environment.

  17. Photophoretic trampoline - Interaction of single airborne absorbing droplets with light

    CERN Document Server

    Esseling, Michael; Alpmann, Christina; Denz, Cornelia

    2012-01-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids - just like their solid counterparts - can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  18. An Energy Absorber with Force Modificator

    Institute of Scientific and Technical Information of China (English)

    SU Hao; ZHANG Xiaowei; YU Tongxi

    2006-01-01

    Thin-walled tubes are extensively applied in engineering,especially in vehicle structures to resist axial or traversal impact loads,for their excellent energy absorbing capacity.However,in the axial deformation mode,the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures,cargo and environment.Aiming to develop energy absorbers with impact-force modificator,square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube.A small device is designed to serve as an impact-force modificator,which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube,so as to reduce the peak force.Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption.The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube.With future improvements,it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.

  19. Wheeler-Feynman Absorbers on the Light Horizon

    CERN Document Server

    Lear, C W

    2016-01-01

    Early Wheeler-Feynman absorber theories invoke both retarded and advanced electromagnetic waves for photon emission and absorption in order to remove problems involving lack of radiative damping during electron acceleration. Subsequent inquiries have suggested that only certain cosmologies would allow such a retarded-advanced wave mechanism to exist. These include quasi-steady state cosmologies and exclude flat, expanding Friedman-type cosmologies. Key to the exclusion process is a diminishing density of future absorbers in an ever-expanding universe. Such absorbers would be expected to be real electromagnetically interacting particles. However future virtual absorber sites, if they exist, would not be so diminished. Such sites would be plentiful on the future light horizon, receding from the source at the speed of light. The present treatment proposes that virtual absorption sites are present at every point in spacetime, and are characterized by the Fresnel-Kirchhoff diffraction integral. On the future light...

  20. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    Science.gov (United States)

    2016-08-01

    ARL-TR-7743 ● AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology...AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration by Muthuvel...COVERED (From - To) 10 January 2012–29 February 2016 4. TITLE AND SUBTITLE Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology

  1. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  2. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Science.gov (United States)

    Liu, J.; Lin, P.; Laskin, A.; Laskin, J.; Kathmann, S. M.; Wise, M.; Caylor, R.; Imholt, F.; Selimovic, V.; Shilling, J.

    2016-12-01

    The light-absorbing organic aerosol (OA), commonly referred to as "brown carbon (BrC)", has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. The inherent changes in chemical compositions and the relationship with the light absorption will be discussed in detail.

  3. A Pair of Light Emitting Diodes for Absorbance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongyong; Eom, Inyong [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of)

    2013-10-15

    Two same wavelength LEDs (i. e. an emitter LED and a detector LED, respectively) were successfully used to measure absorbance of BTB solution. A linear calibration with r-squared value of 0.9945 was achieved. 0.03 μM of LOD was observed with a noise level of 2 Χ 10{sup -4} absorbance unit. We are now examining relative sensitivities of different LEDs with distinct wavelength. In the future, building a spectrophotometer equipped with LEDs is quite interesting both in scientifically and pedagogically (i. e. undergraduate lab course). Light emitting diodes (LEDs) have a semiconductor chip (∼1 mm{sup 2} area) mounted on a concave mirror and emit narrow band of wavelengths when forward biased. LEDs have been widely used in many fields. Conventional light bulbs are being replaced by LED bulbs.

  4. 叶绿素缺乏对大豆光系统Ⅱ和光能分配的影响%Effect of Chlorophyll-deficient on PSⅡand Distribution Properties of Absorbed Light Energy in Leaves of Soybean

    Institute of Scientific and Technical Information of China (English)

    郭晶晶; 龚丽丽; 韩涛; 张雪; 许晓明

    2009-01-01

    研究田间条件下大豆叶绿素缺乏突变体以及野生型叶片逐步展开过程中的叶绿素含量、气体交换、叶绿素荧光动力学等特性,并分析了二者在叶片展开过程中吸收光能分配的差异.结果表明:叶绿素缺乏导致突变体大豆有活性的PSⅡ反应中心数目减少,每个反应中心的光能吸收和激发能捕获增加,但是PSⅡ电子传递受阻,致使每个反应中心的激发能耗散增加.与野生型相比,突变体大豆叶片所吸收的能量中分配给热耗散的能量较多,而过剩的激发能较少;同时随着叶绿素含量降低,光合电子传递中向光呼吸分配的比例增大.%The chlorophyll contents, gas exchange and chlorophyll fluorescence kinetics were extensively studied in chlorophyll-deficient mutant soybean leaves and its wild-type from emergency to full expansion under field conditions. The difference of the absorbed light distribution between two soybean varieties during the development of leaves was also assessed. Results showed that chlorophyll deficient induced a decrease of PS Ⅱ reaction centers, and resulted in an increase of excited energy capture per active reaction centers. It also showed that PS Ⅱ electron transport was blocked apparently, and the energy dissipation increased per PS Ⅱ reaction centers. Compared with wild-type soybean,the mutant had less excitation energy and the fraction of absorbed light allocated to energy dissipation. Furthermore, with the deficiency of the chlorophyll content allocation of photosynthetic electron transport to photorespiration was enhanced.

  5. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  6. Research on Effect of Four Natural Ultraviolet Light Absorbers on Photostabilization of Azadirachtin-A

    Institute of Scientific and Technical Information of China (English)

    TAN Wei-hong; SONG Zhan-qian

    2006-01-01

    This study examined the photostabilization of Azadirachtin-A (Aza-A) when exposed to ultraviolet light in the presence of some natural absorbers. Aza-A extract solutions with and without natural UV light absorbers in methanol were applied onto the surface of glass slides. At particular intervals, the remaining concentration of Aza-A was analyzed by HPLC.Using first-order kinetic equation, the dissipation half-life values (DT50) for the degradation of Aza-A under ultraviolet radiation were obtained. It indicated that the addition of ferulic acid, gallic acid, and rutin provided moderate degree of photostabilization of Aza-A and that addition of aloin provided the best photostabilization of Aza-A, among these UV absorbers studied. Photostabilization of Aza-A by different UV light absorbers appears to be due to the competitive energy absorption of UV photons by the absorbers molecules. The dissipation half-life values of Aza-A after irradiation under ultraviolet light suggested that the addition of aloin (in 1:1 mol ratio) can provide better photostabilization of azadirachtin molecule.

  7. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Roberts, Alexander Sylvester; Ding, Fei;

    2016-01-01

    Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed for the fab......Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed...... the potential for a wide range of applications, including the use in commonly used infrared bands or absorbers for (solar) thermo-photovoltaic energy conversion, where high absorbance and simultaneously low (thermal) re-radiation is of paramount importance....

  8. High-voltage thin-absorber photovoltaic device structures for efficient energy harvesting

    Science.gov (United States)

    Welser, Roger E.; Pethuraja, Gopal G.; Zeller, John W.; Sood, Ashok K.; Sablon, Kimberly A.; Dhar, Nibir K.

    2014-06-01

    Efficient photovoltaic energy harvesting requires device structures capable of absorbing a wide spectrum of incident radiation and extracting the photogenerated carriers at high voltages. In this paper, we review the impact of active layer thickness on the voltage performance of GaAs-based photovoltaic device structures. We observe that thin absorber structures can be leveraged to increase the operating voltage of energy harvesting devices. Thin absorbers in combination with advanced light trapping structures provide an exciting pathway for enhancing the performance of flexible, lightweight photovoltaic modules suitable for mobile and portable power applications.

  9. Exploring Light's Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, John [Univ. of California, Berkeley, CA (United States)

    2013-12-01

    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-to-center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO! microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  10. Exploring Light’s Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, John Colby [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    2012-12-01

    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-­to-­center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-­to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO3 microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-­20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  11. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  12. Shining light on radiation detection and energy transfer : Triazole ligands used for detection of radiation and lanthanide binding

    NARCIS (Netherlands)

    Dijkstra, Peter

    2016-01-01

    Some substances, fluorophores, absorb light and then emit that light again as fluorescence. Apart from absorption of light, some of these substances can also emit light after having absorbed energy from radiation. A substance which can absorb radiation and emit the energy as light is called a scinti

  13. Characteristics of New-type Energy Absorber for Vehicle Collision

    Institute of Scientific and Technical Information of China (English)

    XU Qing-xin; SHEN Rong-ying; ZHOU Hai-ting

    2008-01-01

    A new type energy absorber was introduced, which is composed of thousands of thin ring plates with different diameters. Because it can switch the impact to thousands of shearing actions among thin ring plates inside the absorber, the impact energy is decentralized and dissipated gradually, the impact acting time is extended and the peak of acceleration is reduced obviously. Numerical simulations by finite element method (FEM) coupled with smoothed particle hydrodynamics (SPH) method were preformed to predict the energy absorption characteristics. Energy absorption ability with different impact velocities was studied and the effects of thickness and material of ring plates were discussed. The sled crash test was carried out to validate the result of simulations. The new type absorber is effective for collision that impact velocity is lower than 40 km/h.

  14. Energy deposition studies for the LBNE beam absorber

    CERN Document Server

    Rakhno, Igor L; Tropin, Igor S

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  15. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  16. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    Science.gov (United States)

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  17. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated.......We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  18. Numerical Modeling of a Wave Energy Point Absorber

    DEFF Research Database (Denmark)

    Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning

    2009-01-01

    The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas....... Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating floater. Finally, a latching control strategy is analysed in open-loop configuration for energy maximization....

  19. The Allocation of Photosynthetic Electron Transport and Absorbed Light Energy in Leaves of Four Woody Plants Acclimated to Different Light Intensities%4种木本植物叶片的光合电子传递和吸收光能分配特性对光强的适应

    Institute of Scientific and Technical Information of China (English)

    林植芳; 彭长连; 孙梓健; 林桂珠; 温达志

    2000-01-01

    The characteristics of acclimation in photochemistry, thermal energy dissipation and electron transport to three light intensities in leaves of forest plants were studied by using the combination of gas exchange and chlorophyll fluorescence measurements. The saplings of tree species Schima superba, Castanopsis fissa and understory shrub species Psychotria rubra, Ardisia quinquegona were grown for 8 months under 100%, 36% or 16% of full sunlight. The estimated rates of photochemical reactions, thermal energy dissipation, and percentages of absorbed light dissipating as thermal energy increased with increasing growth light intensity in all four plants (Figs. 2,3), whereas the allocated fraction of absorbed light to photochemistry decreased (Table 2). Photosynthetic electron transport rate (JF) was the highest under 100% sunlight, accompanied by a high partitioning ratio to photorespiration (Jo/JF) (Fig.1, Table 1). The changes in values of these parameters of electron transport and energy were similar between tree species and shrub species under deep shade of 16% sunlight, but were different under 100% sunlight (Tables 1,2). All these parameters were higher in tree species than in shrub species, except that a higher fraction of absorbed light was dissipated as thermal energy in shrub species under high light condition. The results indicated that both tree and shrub species from a natural forest could acclimate to high light intensity by increasing the fractions of thermal energy dissipation and electron transport flow through photorespiration.%以气体交换和叶绿素荧光测定相结合的方法研究了亚热带自然林乔木荷树、黧蒴和林下灌木九节、罗伞幼苗的光合电子传递及激发能利用的分配对生长光强的适应特性。4种植物生长于100%、36%和16%的自然光下8个月,叶片的光化学速率和热能耗散速率随光强增大而提高,热能耗散占总的光能吸收的比例也因光强不同而改变,16%

  20. Nanofocusing of longitudinally polarized light using absorbance modulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Zhao, Xing, E-mail: zhaoxingtjnk@nankai.edu.cn; Zhang, Bo; Zheng, Yi; Zhou, Liqiu; Fang, Zhiliang [Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education of China, Nankai University, Tianjin 300071 (China); Wang, Lingjie; Wu, Yanxiong [Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-02-10

    Recently, many methods based on amplitude or phase modulation to reduce the focal spot and enhance the longitudinal field component of a tight-focused radially polarized light beam have been suggested. But they all suffer from spot size limit 0.36λ/NA and large side lobes strength in longitudinal component. Here, we report a method of generating a tighter focused spot by focusing radially polarized and azimuthally polarized beams of different wavelengths on a thin photochromic film through a high-numerical-aperture lens simultaneously. In this method, by suppressing the radial component and compressing the longitudinal component of radially polarized beam, absorbance modulation makes the ultimate spot size break the size limit of 0.36λ/NA with side-lobe intensity of longitudinal component below 1% of central-peak intensity. The theoretical analysis and simulation demonstrate that the focal spot size could be smaller than 0.1λ with nearly all radial component blocked at high intensity ratio of the two illuminating beams.

  1. Energy deposition and radiological studies for the LBNF Hadron Absorber

    CERN Document Server

    Rakhno, I L; Tropin, I S; Eidelman, Y I

    2015-01-01

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  2. A Design Outline for Floating Point Absorber Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Mohammed Faizal

    2014-04-01

    Full Text Available An overview of the most important development stages of floating point absorber wave energy converters is presented. At a given location, the wave energy resource has to be first assessed for varying seasons. The mechanisms used to convert wave energy to usable energy vary for different wave energy conversion systems. The power output of the generator will have variations due to varying incident waves. The wave structure-interaction leads to modifications in the incident waves; thus, the power output is also affected. The device has to be stable enough to prevent itself from capsizing. The point absorber will give optimum performance when the incident wave frequencies correspond to the natural frequency of the device. The methods for calculating natural frequencies for pitching and heaving systems are presented. Mooring systems maintain the point absorber at the desired location. Various mooring configurations as well as the most commonly used materials for mooring lines are discussed. An overview of scaled modelling is also presented.

  3. Principles of light energy management

    Science.gov (United States)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  4. Energy Efficient Task Light

    DEFF Research Database (Denmark)

    Logadottir, Asta; Ardkapan, Siamak Rahimi; Johnsen, Kjeld

    2014-01-01

    The objectives of this work is to develop a task light for office lighting that fulfils the minimum requirements of the European standard EN12464 - 1 : Light and lightingLighting of work places, Part 1: Indoor workplaces and the Danish standard DS 700 : Lys og belysning I arbejdsrum , or more...... specifically the requirements that apply to the work area and the immediate surrounding area. By providing a task light that fulfils the requirements for task lighting and the immediate surrounding area, the general lighting only needs to provide the illuminance levels required for background lighting...... and thereby a reduction in installed power for general lighting of about 40 % compared to the way illuminance levels are designed in an office environment in Denmark today. This lighting strategy is useful when the placement of the task area is not defined in the space before the lighting is design ed...

  5. Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.;

    2014-01-01

    -diffraction of the incident light, here being strongly sensitive to the medium position with respect to the focus. This technique, based on the complex spatial structure of both the incident and the diffracted fields, can be employed for the detection and measurement of weak non-linearities.......Water suspension of light-absorbing nano-sized particles is an example of a medium in which non-linear effects are present at moderate light intensities favorable for optical treatment of organic and biological objects. We study experimentally the phenomena emerging in a thin layer of such a medium...... under the action of inhomogeneous light field formed due to the Pearcey diffraction pattern near a microlens focus. In this high-gradient field, the light energy absorbed by the particles induces inhomogeneous distribution of the medium refraction index, which results in observable self...

  6. Monte Carlo calculation of radiation energy absorbed in plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, R.T.; Bonzi, E.V. [Universidad Nacional de Cordoba (Argentina). Facultad de Matematica, Astronomia y Fisica

    1995-05-01

    Monte Carlo calculations of the rate of absorbed energy from a photon beam were carried out to compare the response of commercial plastic scintillators with that of air in the energy region below 1 MeV. We have found that for photon energies above 100 keV, the response of different kinds of plastics is proportional to that of air, while below this value of energy, we have obtained differences between the responses of plastics and air. In a literature search, we have also found discrepancies with other authors as well as among them. In this paper, we investigate the possibilities of eliminating these differences and explaining discrepancies. We found that doping a plastic scintillator with silicon makes the composite materials behave like air from 2 keV up to 600 keV, making the ratio of absorbed energy constant. This energy region is of interest in radiology and surface radiotherapy and we conclude that a plastic scintillator with truly air-equivalent behavior is of importance to carry out more precise dosimetry. Other elements such as fluorine and magnesium were also considered, but silicon was found to be more appropriate due to its greater atomic number and its interchangeability with carbon in hydrocarbon molecules. (author).

  7. Energy absorbing efficiency of various aluminum foam filled tube

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Man; Lee, Won Sik; Ko, Se Hyun [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)

    2005-04-15

    In this study various types of A1 foam filled tubes were fabricated using foam of A1-12wt.%Si by powder metallurgical process. Their energy absorbing efficiencies were investigated with compression test, focusing on the structure and bonding effects between tube and foam. The results show that the energy absorption is affected by structure of A1 foam filled tube. Among fully foam filled tube, partially foam filled tube and A1 hollow tube with the same weight, fully foam filled tube seems to have superior potential for industrial application to energy absorption parts. Also energy absorption efficiency is increased by interaction between tube and foam and especially, bonding between tube and metallic foam gives rise to increase the energy absorption efficiency up to above 1.2 times. This results from the arrest of folding of tube by metallic foam and the change of stress mode from uni-axial to multi-axial during compression.

  8. Novel multi-chromophor light absorber concepts for DSSCs for efficient electron injection

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Robert; Strothkaemper, Christian; Bartelt, Andreas; Hannappel, Thomas; Eichberger, Rainer [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fasting, Carlo [Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany); Thomas, Inara [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut fuer Organische Chemie, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin (Germany)

    2011-07-01

    Dye sensitized solar cells (DSSCs) operate by injecting electrons from the excited state of a light-harvesting dye into the continuum of conduction band states of a wide bandgap semiconductor. The light harvesting efficiency of pure organic dyes is limited by a narrow spectral electronic transition. A beneficial broad ground state absorption in the VIS region can be achieved by applying a single molecular dye system with multiple chromophors involving a Foerster resonance energy transfer (FRET) mechanism for an efficient electron injection. A model donor acceptor dye system capable for FRET chemically linked to colloidal TiO{sub 2} and ZnO nanorod surfaces was investigated in UHV environment. We used VIS/NIR femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy to study the charge injection dynamics of the antenna system. Different chromophors attached to a novel scaffold/anchor system connecting the organic absorber unit to the metal oxide semiconductor were probed.

  9. Do laser interferometers absorb energy from gravitational waves ?

    CERN Document Server

    Ma, Yiqiu; Zhao, Chunnong; Kells, William

    2014-01-01

    In this paper we discuss the energy interaction between gravitational waves and laser interferom- eter gravitational wave detectors. We show that the widely held view that the laser interferometer gravitational wave detector absorbs no energy from gravitational waves is only valid under the approximation of a frequency-independent optomechanical coupling strength and a pump laser without detuning with respect to the resonance of the interferometer. For a strongly detuned interferometer, the optical-damping dynamics dissipates gravitational wave energy through the interaction between the test masses and the optical ?eld. For a non-detuned interferometer, the frequency-dependence of the optomechanical coupling strength causes a tiny energy dissipation, which is proved to be equivalent to the Doppler friction raised by Braginsky et.al.

  10. Wheeler-Feynman Absorbers on the Light Horizon

    OpenAIRE

    Lear, C. W.

    2016-01-01

    Early Wheeler-Feynman absorber theories invoke both retarded and advanced electromagnetic waves for photon emission and absorption in order to remove problems involving lack of radiative damping during electron acceleration. Subsequent inquiries have suggested that only certain cosmologies would allow such a retarded-advanced wave mechanism to exist. These include quasi-steady state cosmologies and exclude flat, expanding Friedman-type cosmologies. Key to the exclusion process is a diminishin...

  11. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    Science.gov (United States)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  12. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.

    Science.gov (United States)

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-11-24

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform.

  13. Soot on snow experiments: light-absorbing impurities effect on the natural snowpack

    Directory of Open Access Journals (Sweden)

    J. Svensson

    2015-02-01

    Full Text Available Light-absorbing impurities affect snow and ice via a decrease in albedo and a consequent disturbance to the radiative energy balance. Experimentally, these matters have only been examined in a few studies. Here we present results from a series of experiments in which we deposited different soot concentrations onto natural snow in different regions of Finland, and thereafter monitored the changes of the snowpack through the melting season. Measurements of the particulates in the snow indicated concentrations in the range of thousands of ppb to have clear effects on the snow properties, including the albedo, the physical snow characteristics, and an increased melt rate. For soot concentrations in the hundreds of ppb range, the effects were not as clearly visible, and it was more difficult to attribute the effects solely to the soot on the snow. Comparisons between our experimental data and the widely used Snow, Ice and Aerosol Radiation (SNICAR model showed a general agreement when the model was specifically tuned to our measurements. This study highlights the importance of additional experimental studies, to further articulate and quantify the effects of light-absorbing impurities on snow.

  14. Soot on snow experiments: light-absorbing impurities effect on the natural snowpack

    Science.gov (United States)

    Svensson, J.; Virkkula, A.; Meinander, O.; Kivekäs, N.; Hannula, H.-R.; Järvinen, O.; Peltoniemi, J. I.; Gritsevich, M.; Heikkilä, A.; Kontu, A.; Hyvärinen, A.-P.; Neitola, K.; Brus, D.; Dagsson-Waldhauserova, P.; Anttila, K.; Hakala, T.; Kaartinen, H.; Vehkamäki, M.; de Leeuw, G.; Lihavainen, H.

    2015-02-01

    Light-absorbing impurities affect snow and ice via a decrease in albedo and a consequent disturbance to the radiative energy balance. Experimentally, these matters have only been examined in a few studies. Here we present results from a series of experiments in which we deposited different soot concentrations onto natural snow in different regions of Finland, and thereafter monitored the changes of the snowpack through the melting season. Measurements of the particulates in the snow indicated concentrations in the range of thousands of ppb to have clear effects on the snow properties, including the albedo, the physical snow characteristics, and an increased melt rate. For soot concentrations in the hundreds of ppb range, the effects were not as clearly visible, and it was more difficult to attribute the effects solely to the soot on the snow. Comparisons between our experimental data and the widely used Snow, Ice and Aerosol Radiation (SNICAR) model showed a general agreement when the model was specifically tuned to our measurements. This study highlights the importance of additional experimental studies, to further articulate and quantify the effects of light-absorbing impurities on snow.

  15. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Azusa; Nakabai, Yuya [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki [Shiseido Research Center, Hayabuchi, Tsuzuki-ku, Yokohama 224-8558 (Japan); Yagi, Mikio, E-mail: yagimiki@ynu.ac.jp [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2015-10-15

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k{sub T–T}, decreases in the following order: k{sub T–T} (BMDBM–DOMBM)>k{sub T–T} (BMDBM–OMC)≥k{sub T–T} (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed.

  16. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    Science.gov (United States)

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.

  17. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  18. Potential sustainable energy source: Pheroid™ with incorporated light harvesting materials

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2010-09-01

    Full Text Available . In the photosynthetic system light energy is absorbed by antenna chlorophylls and this energy is then passed onto a reaction centre chlorophyll molecule where charge separation occurs [1] in less than 100 ps and at about 95% efficiency [2]. It has been shown...-based combinations, which enables the production of small, elastic artificial vesicles, called Pheroid™. Previous work has shown that photosynthetic light harvesting material can be incorporated into the Pheroid™ (Figure 1). Figure 1: Examples of photosynthetic...

  19. Optical closure study on light-absorbing aerosols

    Science.gov (United States)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  20. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    Science.gov (United States)

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-03-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.

  1. Crystallographic and electronic properties of AlCrN films that absorb visible light

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Nishio, K.; Isshiki, T.

    2017-05-01

    We investigate the crystallographic and electronic properties of wurtzite Cr-doped AlN (AlCrN) films (Cr ≤12.0%) that absorb visible light. We confirmed that the films consist of wurtzite columnar single crystals that are densely packed, c-axis oriented, and exhibit a random rotation along the a-axis in plane by using transmission electron microscopy. The oxidation state of Cr was found to be 3+ using Cr K-edge X-ray absorption near edge structure, which implies that Cr can be a substitute for Al3+ in AlN. The first nearest neighbor distances estimated using Cr K-edge extended X-ray absorption fine structure (EXAFS) were found to be nearly isotropic for incident light with electric fields that are parallel and perpendicular to the plane. The results of ab initio lattice relaxation calculations for the model of wurtzite Al1-xCrxN supercell where Cr replaces Al support the EXAFS results. The calculations for the model showed that additional energy bands are formed in the band gap of AlN, in which the Fermi energy (EF) is present. As expected from the calculation results, the electrical conductivity increases with increase in the Cr concentration, implying that the density of states at EF increases monotonically. From these results, we can conclude that AlCrN films are an intermediate band material with respect to their crystallographic and electric properties.

  2. Conversion and conservation of light energy in a photosynthetic microbial mat ecology

    DEFF Research Database (Denmark)

    Al-Najjar, Mohammad; Jørgensen, Bo Barker; de Beer, Dirk

    2010-01-01

    : in light-limiting conditions, 95.5% of the absorbed light energy dissipated as heat and 4.5% was channeled into photosynthesis. This energy disproportionation changed in favor of heat dissipation at increasing irradiance, with >99% of the absorbed light energy being dissipated as heat and ...Here we present, to the best of our knowledge, the first balanced light energy budget for a benthic microbial mat ecosystem, and show how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). Our approach...... uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering–absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis...

  3. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A.A.; De Beer, D.; Jørgensen, B. B.

    2011-01-01

    : in light-limiting conditions, 95.5% of the absorbed light energy dissipated as heat and 4.5% was channeled into photosynthesis. This energy disproportionation changed in favor of heat dissipation at increasing irradiance, with >99% of the absorbed light energy being dissipated as heat and 700 micromol......Here we present, to the best of our knowledge, the first balanced light energy budget for a benthic microbial mat ecosystem, and show how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (J(abs)). Our...... approach uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering-absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis...

  4. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, Universite de Lyon 1, IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne cedex (France); Krimmer, J.; Freud, N.; L' etang, J.M. [Universite de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA - Lyon, Universite Lyon 1, Centre Leon Berard (France); Herault, J.; Amblard, R.; Angellier, G. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  5. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers.

    Science.gov (United States)

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-11-26

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems.

  6. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.

    Science.gov (United States)

    Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick

    2015-02-09

    Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

  7. A novel energy absorber based on magnetorheological gel

    Science.gov (United States)

    Pang, Haoming; Xuan, Shouhu; Sun, Chuanlin; Gong, Xinglong

    2017-10-01

    In this work, a novel magnetorheological energy absorber (MREA) was designed by using magnetorheological gel (MRG) as the damping medium. The proposed MREA had tunable piston gap distances and variable inner magnetic flux density distribution. The piston gap distance could be varied from 7–2 mm and the magnetic flux density at the gap increased from 120–860 mT, respectively. Under both low velocity compression and high speed impact, the damping could be divided into three parts. In the impact test, the velocity of a drop hammer could be reduced from to 3.4–0 m s‑1 within a very short time (13 ms) and distance (17 mm). The maximum damping force of the MREA reached to as high as 8 kN. The damping force could also be adjusted by changing the current input. Under a 2 A current, the energy absorption ratio increased about 23% (from 4.13–5.07 J mm‑1).

  8. Intermediate-energy light sources

    CERN Document Server

    Corbett, W

    2003-01-01

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light sourc...

  9. Anti-terrorist vehicle crash impact energy absorbing barrier

    Energy Technology Data Exchange (ETDEWEB)

    Swahlan, D.J.

    1989-04-18

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism. 6 figs.

  10. Anti-terrorist vehicle crash impact energy absorbing barrier

    Energy Technology Data Exchange (ETDEWEB)

    Swahlan, David J. (Albuquerque, NM)

    1989-01-01

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.

  11. Energy Efficiency Through Lighting Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Berst, Kara [Chickasaw Nation, Ada, OK (United States); Howeth, Maria [Chickasaw Nation, Ada, OK (United States)

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  12. The Feynman-Wheeler Perfect Absorber Theory in a New Light

    Science.gov (United States)

    Sidharth, B. G.

    2010-08-01

    The original Feynman-Wheeler perfect absorber theory lead to the Instantaneous Action at a Distance formulation. We observe that this is perfectly meaningful in the light of recent studies pointing to a small but non-zero photon mass. The Quantum Mechanical effects within the Compton scale of such a small mass photon would lead to the above formulation.

  13. Energy Star Lighting Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-09-30

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven of PEARL program during the period of April 2006 to September 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC continued receiving the CFL samples purchased by sponsors and finished performing the sphere testing for all CFL models at 100 hours of life. After that LRC aged the CFL samples to 1000 hours of life, and then performed sphere testing for all CFL models at 1000 hours of life. Then the CFLs were placed on the test rack to be aged to 40% of their rated life. Rapid Cycle Stress Test was also performed for all models using different sets of CFL samples.

  14. Energy Star Lighting Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2007-03-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and results of Cycle Seven and Cycle Eight of PEARL program during the period of October 2006 to March 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC finished performing the sphere testing for all CFL models in Cycle Seven at 40% of their rated life. LRC also performed re-test of Rapid Cycle Stress Test, under the request of DOE, for five CFL models that failed the Rapid Cycle Stress Test in Cycle Seven. From January 2007 to March 2007, LRC coordinated the procuring efforts for the CFL models that were selected for Cycle Eight.

  15. Light harvesting for quantum solar energy conversion

    Science.gov (United States)

    Markvart, Tomas

    2000-05-01

    Despite wide structural and functional differences, the laws that govern quantum solar energy conversion to chemical energy or electricity share many similarities. In the photosynthetic membrane, in common with semiconductor solar cells, the conversion process proceeds from the creation of electron-hole pairs by a photon of light, followed by charge separation to produce the required high-energy product. In many cases, however, mechanisms are needed to enhance the optical absorption cross-section and extend the spectral range of operation. A common way of achieving this is by light harvesting: light absorption by a specialised unit which transfers the energy to the conversion apparatus. This paper considers two examples of light harvesting - semiconductor solar cells and the photosynthetic apparatus - to illustrate the basic operation and principles that apply. The existence of a light harvesting unit in photosynthesis has been known since the early 1930's but details of the process - relating, in particular, to the relationship between the structure and spectral properties - are still being unravelled. The excitation energy carriers are excitons but the precise nature of the transport - via the solid state Frenkel-Peierls variety or by Förster's resonant energy transfer - is still subject to debate. In semiconductor solar cells, the energy of the absorbed photon is collected by minority carriers but the broad principles remain the same. In both cases it is shown that the rate of energy conversion is described by a law which parallels the Shockley's solar cell equation, and the light harvesting energy collection is subject to reciprocity relations which resemble Onsager's reciprocity relations between coefficients which couple appropriate forces and flows in non-equilibrium thermodynamics. Differences in the basic atomic make-up in the two systems lead to different energy transport equations. In both cases, however, similar mathematical techniques based on Green

  16. Thermoelectricity without absorbing energy from the heat sources

    Science.gov (United States)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-01-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  17. Reprint of : Thermoelectricity without absorbing energy from the heat sources

    Science.gov (United States)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-08-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  18. Nano-Textured Fiber Coatings for Energy Absorbing Polymer Matrix Composite Materials

    Science.gov (United States)

    2004-12-01

    NANO-TEXTURED FIBER COATINGS FOR ENERGY ABSORBING POLYMER MATRIX COMPOSITE MATERIALS R. E. Jensen and S. H. McKnight Army Research Laboratory...Textured Fiber Coatings For Energy Absorbing Polymer Matrix Composite Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  19. Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view.

    Science.gov (United States)

    Sun, Ping-Ping; Li, Quan-Song; Feng, Shuai; Li, Ze-Sheng

    2016-06-07

    Organic-inorganic methylammonium lead halide perovskites have recently attracted great interest emerging as promising photovoltaic materials with a high 20.8% efficiency, but lead pollution is still a problem that may hinder the development and wide spread of MAPbI3 perovskites. To reduce the use of lead, we investigated the structures, electronic and optical properties of mixed MAGexPb(1-x)I3 theoretically by using density functional theory methods at different calculation levels. Results show that the mixed Ge/Pb perovskites exhibit a monotonic decrease evolution in band energy to push the band gap deeper in the near-infrared region and have a red shift optical absorption with an increased proportion of Ge. The results also indicate that lattice distortion and spin-orbit coupling (SOC) strength play important roles in the band gap behavior of MAGexPb(1-x)I3 by affecting the bandwidths of CBM and VBM. The calculations for short circuit current density, open circuit voltage, and theoretical power conversion efficiency suggest that mixed Ge/Pb perovskite solar cells (PSCs) with efficiency over 22% are superior to MAPbI3 and MAGeI3. And notably, MAGe0.75Pb0.25I3 is a promising harmless material for solar cells absorber with the highest theoretical efficiency of 24.24%. These findings are expected to be helpful for further rational design of nontoxic light absorption layer for high-performance PSCs.

  20. Spectral Reflectance of Sub-Micron Scale Light Absorbing Impurities Using Hyperspectral Microscopy

    Science.gov (United States)

    Kaspari, S.; Dal Farra, A.; Beach, J.; Schaepman, M. E.; Schwikowski, M.

    2016-12-01

    Light absorbing impurities (LAI) include black carbon, mineral dust and colored organic material. When deposited on highly reflective snow and glacier ice, LAI cause darkening of the surface, resulting in greater absorption of solar energy, heating of the snow/ice, and accelerated snow and glacier melt. Efforts to reduce LAI emissions and deposition have the potential to slow melt in regions where LAI are a substantial driver of snow and/or glacier melt. However, difficulties in characterizing the optical properties of mineral dust and organic LAI impede the assessment of the relative importance of black carbon, dust and organic LAI in driving melt. We developed a new method to optically characterize black carbon, mineral dust and organic matter at the particle scale using a Hyperspectral Microscope (HM, Cytoviva). The HM provides quantitative spectral analysis of nanoscale (128 nm pixel resolution) materials in the visible to near-infrared range (400 nm-1000 nm). We present: 1) an overview of the modifications we made to the HM in order to measure LAI reflectance, 2) reflectance spectra of pure minerals, black carbon, and humic substances measured with the HM at the particle scale, 3) a comparison of the HM measured spectra with bulk measurements made of the same materials using a spectroradiometer, and 4) preliminary results from environmental samples.

  1. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  2. A review on the performance of conventional and energy-absorbing rockbolts

    Institute of Scientific and Technical Information of China (English)

    Charlie C.Li; Gisle Stjern; Arne Myrvang

    2014-01-01

    This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to loadedisplacement graphs for every type of rockbolt. Conven-tional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate;a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement;and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.

  3. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    Science.gov (United States)

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and

  4. On Two Models of the Light Pulse Delay in a Saturable Absorber

    CERN Document Server

    Zapasskii, V S

    2011-01-01

    A comparative analysis of two approaches to description of the light modulation pulse delay in a saturable absorber is presented. According to the simplest model, the delay of the optical pulse is a result of distortion of its shape due to absorption self-modulation in the nonlinear medium. The second model of the effect, proposed at the beginning of our century, connects the pulse delay with the so-called "slow light" resulting from the group velocity reduction under conditions of the coherent population oscillations. It is shown that all the known experimental data on the light pulse delay in saturable absorbers can be comprehensively described in the framework of the simplest model of saturable absorber and do not require invoking the effect of coherent population oscillations with spectral hole-burning and anomalous modifications of the light group velocity. It is concluded that the effect of group velocity reduction under conditions of coherent population oscillations has not received so far any experime...

  5. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    Directory of Open Access Journals (Sweden)

    C. G. Schmitt

    2014-10-01

    Full Text Available Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May–August of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM, a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC. As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC. During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2. Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC results were well correlated (r2 = 0.92. These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g−1 than remote glaciers (as low as 2.0 ng g−1 eBC, indicating that population centers can influence local glaciers by sourcing BC.

  6. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter;

    2010-01-01

    Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...

  7. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyun; Hae Shin, Ji; Park, Tai Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Mi-Sun [Biomass Research Team, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Jun Sim, Sang [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2006-05-15

    Cyanobacteria provide an efficient system for producing H{sub 2} from water using solar energy. The energy conversion efficiency can be defined by the ratio of H{sub 2} produced to the light energy absorbed. An IR and opalescent plate method was used to measure the light energy absorbed. Since cyanobacteria absorb light in the visible range but not in the infrared range, the net amount of light energy absorbed by the cells can be estimated by measuring the IR and visible light intensities transmitted through the biochamber. A rectangular biochamber was used for measuring the conversion efficiency from light energy to H{sub 2} energy. A quantum meter and radiometer were used to measure the light intensity transmitted through the chamber. Anabaena variabilis was cultured in a BG11 medium with 3.6mM NaNO{sub 3} and the light intensity was 40-50{mu}mol/m{sup 2}/s in the growth phase and 120-140{mu}mol/m{sup 2}/s in the H{sub 2} production phase. The maximum H{sub 2} production was 50ml for 40h and cell density was 1.2g/l. The H{sub 2} production rate was 4.1ml H{sub 2}/g dry cell weight/h. Based on the light absorbed in the H{sub 2} production phase, the energy conversion efficiency from light to H{sub 2} was 1.5% on average and 3.9% at the maximum. Based on the light energy absorbed in the cell growth and H{sub 2} production phases, the energy conversion efficiency was 1.1% on average. (author)

  8. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  9. Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma

    Science.gov (United States)

    Li, Yan; Gobin, Andre M; Dryden, Gerald W; Kang, Xinqin; Xiao, Deyi; Li, Su Ping; Zhang, Guandong; Martin, Robert CG

    2013-01-01

    Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS. The results indicate that both cancerous tissue and cancer cells took up more gold nanoparticles and were completely ablated after exposure to near infrared light. The benign tissue and noncancerous cells showed less uptake of these nanoparticles, and remained viable after exposure to near infrared light. CS-GGS nanoparticles could provide an optimal endoluminal therapeutic option for near infrared light ablation of esophageal cancer. PMID:23818775

  10. Photoacoustic eigen-spectrum from light-absorbing microspheres and its application in noncontact elasticity evaluation

    Science.gov (United States)

    Gao, Xiaoxiang; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2017-01-01

    Noncontact evaluation of elastic properties of a microstructure is still a challenge in turbid media. In this Letter, we present the observation of a phenomenon—the photoacoustic eigen-spectrum from light-absorbing objects. Analysis and experiments demonstrate that the eigen-vibration information of a microstructure is imprinted in its photoacoustic coda waves after it is exposed to a laser pulse illumination. The spectral lines in the time-frequency map of photoacoustic coda waves correspond to the eigen-frequencies of the light-absorber. This phenomenon provides a physical basis for noncontact evaluation of elastic properties of a microstructure in turbid media. Elastic parameters can be accurately inversed from the measured photoacoustic eigen-spectrum.

  11. Total absorption of visible light in ultra-thin weakly-absorbing semiconductor gratings

    CERN Document Server

    Sturmberg, Björn C P; Choi, Duk-Yong; White, Thomas P; Botten, Lindsay C; Dossou, Kokou B; Poulton, Christopher G; Catchpole, Kylie R; McPhedran, Ross C; de Sterke, C Martijn

    2016-01-01

    The perfect absorption of light in subwavelength thickness layers generally relies on exotic materials, metamaterials or thick metallic gratings. Here we demonstrate that total light absorption can be achieved in ultra-thin gratings composed of conventional materials, including relatively weakly-absorbing semiconductors, which are compatible with optoelectronic applications such as photodetectors and optical modulators. We fabricate a 41 nm thick antimony sulphide grating structure that has a measured absorptance of A = 99.3% at a visible wavelength of 591 nm, in excellent agreement with theory. We infer that the absorption within the grating is A = 98.7%, with only A = 0.6% within the silver mirror. A planar reference sample absorbs A = 7.7% at this wavelength.

  12. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  13. Triazolobithiophene Light Absorbing Self-Assembled Monolayers: Synthesis and Mass Spectrometry Applications

    Directory of Open Access Journals (Sweden)

    Denis Séraphin

    2011-10-01

    Full Text Available The synthesis of five light absorbing triazolobithiophenic thiols, which were utilized for producing self-assembled monolayers (SAMs on gold surfaces, is presented. The monolayer formation was monitored by cyclic voltammetry, indicating excellent surface coverage. The new triazolobithiophenic compounds exhibited an absorption maximum around 340 nm, which is close to the emission wavelength of a standard nitrogen laser. Consequently these compounds could be used to aid ionization in laser desorption mass spectrometry (MS.

  14. Lighting Retrofitting: improving energy efficiency and lighting quality

    OpenAIRE

    2015-01-01

    In order to minimize energy consumption for lighting and increasing lighting quality in existing offices old lighting systems can be retrofitted with more efficient luminaires. Additional savings can be achieved by installing a lighting control system. Installation time and costs can be reduced by installing LED luminaires equipped with inbuilt lighting controls. In the case study six rooms were analysed: in two rooms the old lighting system has been retrofitted with LED luminaires with inbui...

  15. INTERMEDIATE-ENERGY LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, William

    2002-11-25

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light source employs periodic bending magnets to guide a charged particle beam around the storage ring. As the charged beam is accelerated in an arc, it produces a sweeping fan of synchrotron radiation that extends from the infrared part of the electromagnetic spectrum (<1 eV) to hard X rays (>20 keV). Quadrupole magnets keep the electrons tightly focused, and a radio-frequency acceleration system replenishes beam energy lost to radiation emission. To optimize the output radiation, a premium is placed on high current electron beams with small cross section and extreme position stability. Magnetic insertion devices are used to further enhance radiation output by a factor of 10 or more over bend magnet sources. The storage ring vacuum chamber includes exit ports to allow portions of the radiation fan to propagate down photon beam transport lines to optical systems and experimental stations. A typical storage ring features 10 or more such radiation ports. The photon beam

  16. Optical properties and aging of light-absorbing secondary organic aerosol

    Science.gov (United States)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  17. Energy efficient outdoor lighting: an implementation

    OpenAIRE

    Farahat, Ahmed; Florea, Anna; Martínez Lastra, José Luis; Brañas Reyes, Christian; Azcondo Sánchez, Francisco Javier

    2014-01-01

    Lighting strongly influences human daily activities. Smart lighting emerged as new generation of lighting system, able to precisely address the specific needs. Under conditions of shortage in fossil fuels and high prices for energy, smart lighting enables design of lighting systems, which can efficiently use power resources without compromising the user experience. The paper describes implementation of outdoor lighting solution targeting energy efficiency. The proposed approach takes holistic...

  18. Specific Energy Absorbed Study Of Aluminum (2024-351T Tubes Alloy Under Lateral Crush

    Directory of Open Access Journals (Sweden)

    Ayad Arab Ghaidan

    2013-04-01

    Full Text Available This paper aims to find SEA (Specific Energy Absorber for lateral crushing (statically behavior for Aluminum (2024-T351 alloy with difference lengths (10, 20, and 30 mm. An experimental, finite element simulation, and theoretical models present to find force-deformation curves and then find SEA for difference lengths. Experimental results more agreements with finite elements simulation and theoretical when length of tubes is increase for load deformation curve, because when the length increases the plastic region increase with initial plastic collapse load (Pc. The experimental, ANSYS simulation and theoretical results have plotted and it has seen that the theory also underestimates the ANSYS results because in theoretical model, is customary to assume that the material is perfectly plastic, therefore, the finite element simulation might predict the experimental results better than the theoretical one. The results show that light density Aluminum alloy is suitable for SEA.

  19. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  20. Modeling the dynamic modulation of light energy in photosynthetic algae.

    Science.gov (United States)

    Papadakis, Ioannis A; Kotzabasis, Kiriakos; Lika, Konstadia

    2012-05-01

    An integrated cell-based dynamic mathematical model that take into account the role of the photon absorbing process, the partition of excitation energy, and the photoinactivation and repair of photosynthetic units, under variable light and dissolved inorganic carbon (DIC) availability is proposed. The modeling of the photon energy absorption and the energy dissipation is based on the photoadaptive changes of the underlying mechanisms. The partition of the excitation energy is based on the relative availability of light and DIC to the cell. The modeling of the photoinactivation process is based on the common aspect that it occurs under any light intensity and the modeling of the repair process is based on the evidence that it is controlled by chloroplast and nuclear-encoded enzymes. The present model links the absorption of photons and the partitioning of excitation energy to the linear electron flow and other quenchers with chlorophyll fluorescence emission parameters, and the number of the functional photosynthetic units with the photosynthetic oxygen production rate. The energy allocation to the LEF increases as DIC availability increases and/or light intensity decreases. The rate of rejected energy increases with light intensity and with DIC availability. The resulting rate coefficient of photoinactivation increases as light intensity and/or as DIC concentration increases. We test the model against chlorophyll fluorescence induction and photosynthetic oxygen production rate measurements, obtained from cultures of the unicellular green alga Scenedesmus obliquus, and find a very close quantitative and qualitative correspondence between predictions and data.

  1. Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential.

    Science.gov (United States)

    Hoerner, Paul; Schlegel, H Bernhard

    2017-02-16

    The angular dependence of ionization by linear and circularly polarized light has been examined for N2, NH3, H2O, CO2, CH2O, pyrazine, methyloxirane, and vinyloxirane. Time-dependent configuration interaction with single excitations and a complex absorbing potential was used to simulate ionization by a seven cycle 800 nm cosine squared pulse with intensities ranging from 0.56 × 10(14) to 5.05 × 10(14) W cm(-2). The shapes of the ionization yield for linearly polarized light can be understood primarily in terms of the nodal structure of the highest occupied orbitals. Depending on the orbital energies, ionization from lower-lying orbitals may also make significant contributions to the shapes. The shapes of the ionization yield for circularly polarized light can be readily explained in terms of the shapes for linearly polarized light. Averaging the results for linear polarization over orientations perpendicular to the direction of propagation yields shapes that are in very good agreement with direct calculations of the ionization yield by circularly polarized light.

  2. A review on the performance of conventional and energy-absorbing rockbolts

    Directory of Open Access Journals (Sweden)

    Charlie C. Li

    2014-08-01

    Full Text Available This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load–displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.

  3. Source attribution of light-absorbing impurities in seasonal snow across northern China

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-01-01

    Full Text Available Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of light-absorbing impurities (LAI, including all particles that absorb light in the 650–700 nm wavelength interval. The LAI, together with 14 other analytes, are used as input to a positive matrix factorization (PMF receptor model to explore the sources of the LAI in the snow. The PMF analysis for the LAI sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured snow light absorption: a soil dust source, an industrial pollution source, and a biomass and biofuels burning source. Soil dust was the main source of the LAI, accounting for ~ 53% of the LAI on average.

  4. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-06-01

    Full Text Available Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP, including all particles that absorb light in the 650–700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  5. Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices

    Science.gov (United States)

    Ouled Chtiba, M.; Choura, S.; Nayfeh, A. H.; El-Borgi, S.

    2010-03-01

    We propose an optimal design for supplementing flexible structures with a set of absorbers and piezoelectric devices for vibration confinement and energy harvesting. We assume that the original structure is sensitive to vibrations and that the absorbers are the elements where the vibration energy is confined and then harvested by means of piezoelectric devices. The design of the additional mechanical and electrical components is formulated as a dynamic optimization problem in which the objective function is the total energy of the uncontrolled structure. The locations, masses, stiffnesses, and damping coefficients of these absorbers and capacitances, load resistances, and electromechanical coupling coefficients are optimized to minimize the total energy of the structure. We use the Galerkin procedure to discretize the equations of motion that describe the coupled dynamics of the flexible structure and the added absorbers and harvesting devices. We develop a numerical code that determines the unknown parameters of a pre-specified set of absorbers and harvesting components. We input a set of initial values for these parameters, and the code updates them while minimizing the total energy in the uncontrolled structure. To illustrate the proposed design, we consider a simply supported beam with harmonic external excitations. Here, we consider two possible configurations for each of the additional piezoelectric devices, either embedded between the structure and the absorbers or between the ground and absorbers. We present simulations of the harvested power and associated voltage for each pair of collocated absorber and piezoelectric device. The simulated responses of the beam show that its energy is confined and harvested simultaneously.

  6. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...... determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...

  7. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...... presented in the paper. The effect of nonlinear buoyancy force – in comparison to linear buoyancy force – and constraints of the controller on the power outtake of the device have been studied in details and supported by numerical simulations....

  8. Dynamics of light-induced changes in CIGSe2 solar cells with electroplated absorber

    Energy Technology Data Exchange (ETDEWEB)

    Werth, Anton; Neerken, Janet; Ohland, Joerg; Parisi, Juergen; Riedel, Ingo [Carl-von-Ossietzky Universitaet Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, Aurubis AG, Hovestr. 50, D-20539 Hamburg (Germany)

    2011-07-01

    In this work we studied the transient evolution of the J-V-characteristics of CIGSe2 solar cells during light soaking (LS). The failure of the dark-light superposition (cross over - CO) evolves already within seconds whereas the positive effect of the LS procedure shows up on large time scales (several hours up to days). We focus on the evolution and relaxation dynamics of these mechanisms in CIGSe2-solar cells with CdS and an alternative buffer layer. The investigations include IV-analysis and space charge profiling on different time scales (miliseconds up to several hours). The influence of the spectral composition of the irradiation used for LS was also considered. We discuss our results in terms of photoinduced changes of the conduction band offset and the metastable interface characteristics of the buffer-absorber interface.

  9. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    Science.gov (United States)

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

  10. Household transitions to energy efficient lighting

    OpenAIRE

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies have the potential to significantly reduce household electricity consumption. But adoption of many technologies has been slow. This paper employs a unique dataset of German households to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The 'rebound' effect of increased light luminosity during the transition to energy efficie...

  11. Gyroscopic power take-off wave energy point absorber in irregular sea states

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R.K.

    2017-01-01

    Highlights •A GyroPTO wave energy point absorber with magnetic coupling mechanism is proposed. •A 4DOF nonlinear model of the GyroPTO absorber has been derived. •Rational approximations are performed on the radiation damping moments. •Synchronization of the device is more easily maintained in nar...... in narrow-banded sea waves. •The generator gain and the magnetic coupling constant influence the performance of the device....

  12. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    E. L. Shapiro

    2009-04-01

    Full Text Available Light-absorbing and high-molecular-weight secondary organic products were observed to result from the reaction of glyoxal in mildly acidic (pH=4 aqueous inorganic salt solutions mimicking aqueous tropospheric aerosol particles. High-molecular-weight (500–600 amu products were observed when ammonium sulfate ((NH42SO4 or sodium chloride (NaCl was present in the aqueous phase. The products formed in (NH42SO4 or ammonium nitrate (NH4NO3 solutions absorb light at UV and visible wavelengths. Substantial absorption at 300–400 nm develops within two hours, and absorption between 400–600 nm develops within days. Pendant drop tensiometry measurements show that the products are not surface-active. The experimental results along with ab initio predictions of the UV/Vis absorption of potential products suggest a mechanism involving the participation of the ammonium ion. If similar products are formed in atmospheric aerosol particles, they could change the optical properties of the seed aerosol over its lifetime.

  13. Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets

    Science.gov (United States)

    Okamoto, Koichi; Tanaka, Daisuke; Degawa, Ryo; Li, Xinheng; Wang, Pangpang; Ryuzaki, Sou; Tamada, Kaoru

    2016-11-01

    In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

  14. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  15. Triplet Energy Transport in Platinum-Acetylide Light Harvesting Arrays.

    Science.gov (United States)

    Chen, Zhuo; Hsu, Hsien-Yi; Arca, Mert; Schanze, Kirk S

    2015-06-18

    Light harvesting and triplet energy transport is investigated in chromophore-functionalized polystyrene polymers featuring light harvesting and energy acceptor chromophores (traps) at varying loading. The series of precision polymers was constructed via reversible addition-fragmentation transfer polymerization and functionalized with platinum acetylide triplet chromophores by using an azide-alkyne "click" reaction. The polymers have narrow polydispersity and degree of polymerization ∼60. The chromophores have the general structure, trans-[-R-C6H4-C≡C-Pt(PBu3)2-C≡C-Ar], where R is the attachment point to the polystyrene backbone and Ar is either -C6H4-C≡C-Ph or -pyrenyl (PE2-Pt and Py-Pt, respectively, with triplet energies of 2.35 and 1.88 eV). The polychromophores contain mainly the high-energy PE2-Pt units (light absorber and energy donor), with randomly distributed Py-Pt units (3-20% loading, energy acceptor). Photophysical methods are used to study the dynamics and efficiency of energy transport from the PE2-Pt to Py-Pt units in the polychromophores. The energy transfer efficiency is >90% for copolymers that contain 5% of the Py-Pt acceptor units. Time-resolved phosphorescence measurements combined with Monte Carlo exciton dynamics simulations suggest that the mechanism of exciton transport is exchange energy transfer hopping between PE2-Pt units.

  16. Energy Transfer in Light-Adapted Photosynthetic Membranes: From Active to Saturated Photosynthesis

    OpenAIRE

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N.; Johnson, Neil F.

    2009-01-01

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane archite...

  17. Synthesis and properties of polyamide–Ag2S composite based solar energy absorber surfaces

    NARCIS (Netherlands)

    Krylovaa, Valentina; Baltrusaitis, Jonas

    2013-01-01

    Silver sulfide (Ag2S), an efficient solar light absorber, was synthesized using a modified chemical bath deposition (CBD) method and polyamide 6 (PA) as a host material via solution phase reaction between AgNO3 and Na2S2O3. X-ray diffraction (XRD) data showed a single, α-Ag2S (acanthite), crystallin

  18. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  19. Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyungil; Kwon, O Bum; Park, Hyung Wook [Ulsan Nat’l Institute of Science and Technology, Ulsan (Korea, Republic of)

    2017-02-15

    Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers’ safety, owing to efficient impact absorption.

  20. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications.

    Science.gov (United States)

    Cao, Duyen H; Stoumpos, Constantinos C; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G

    2015-06-24

    We report on the fabrication and properties of the semiconducting 2D (CH3(CH2)3NH3)2(CH3NH3)(n-1)Pb(n)I(3n+1) (n = 1, 2, 3, and 4) perovskite thin films. The band gaps of the series decrease with increasing n values, from 2.24 eV (CH3(CH2)3NH3)2PbI4 (n = 1) to 1.52 eV CH3NH3PbI3 (n = ∞). The compounds exhibit strong light absorption in the visible region, accompanied by strong photoluminescence at room temperature, rendering them promising light absorbers for photovoltaic applications. Moreover, we find that thin films of the semi-2D perovskites display an ultrahigh surface coverage as a result of the unusual film self-assembly that orients the [Pb(n)I(3n+1)](-) layers perpendicular to the substrates. We have successfully implemented this 2D perovskite family in solid-state solar cells, and obtained an initial power conversion efficiency of 4.02%, featuring an open-circuit voltage (V(oc)) of 929 mV and a short-circuit current density (J(sc)) of 9.42 mA/cm(2) from the n = 3 compound. This result is even more encouraging considering that the device retains its performance after long exposure to a high-humidity environment. Overall, the homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.

  1. Effects of weld damage on the dynamics of energy absorbing lanyards.

    Science.gov (United States)

    Katona, David N; Bennett, Charlie R; McKoryk, Michael; Brisson, Andre L; Sparrey, Carolyn J

    2017-01-26

    Manufacturers recommend removing fall protection system components from service for any indication of weld spatter or tool damage; however, little is known about the specific effects of lanyard damage on fall arrest dynamics. Thirty-two energy absorbing lanyards were drop tested after being damaged with weld spatter, plasma torches and cutting tools and compared with new, undamaged lanyards. Two lanyards damaged with a plasma torch failed completely without deploying the energy absorber while weld spatter damage and tool cuts, up to 2/3 through the width of the webbing, had no effect on fall arrest dynamics. The results highlight the catastrophic implications of high temperature damage to lanyard webbing resulting from plasma torches - which require immediate removal from service. In addition, the integrated energy absorber design in bungee style lanyards makes them more susceptible to damage anywhere along its length. We therefore recommended against bungee lanyards for ironworkers and welders.

  2. Guide to Energy-Efficient Lighting

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  3. Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Peiheng Zhoun; Shifeng Zou; Xiaolong Weng; Jianliang Xie; Longjiang Deng

    2014-01-01

    In this paper, a dual-band mid-infrared metamaterial absorber was proposed to improve the energy absorption efficiency. Up to 99%absorption was obtained at 9.03 and 11.83μm in the simulation, and each absorption band can be tuned by the dielectric spacing layer, i.e., the dielectric constant and its thickness. The dual-band absorption mechanism was analyzed, and the quite well absorption performance at large incident angles was also presented. The results of this study can be applied in the field of thermal absorbing and solar energy harvesting.

  4. Potential climatic effects of light absorbing particles over the Third Pole regions

    Science.gov (United States)

    Ji, Zhenming; Kang, Shichang

    2016-04-01

    Light absorbing particles (LAPs) have important impact on regional climate over the Third Pole regions. Carbonaceous and mineral aerosols, which are considered as the anthropogenic and natural sources respectively, can absorb and scatter incident solar radiation in the atmosphere. Meanwhile, LAPs deposition in snow/ice can also change the surface albedo, resulting in perturbations in the surface radiation balance. However, most studies that have made quantitative assessments of the climatic effect of LAPs over the Third Pole regions did not consider the impact of dust on snow/ice at the surface. In this study, a regional climate model RegCM4.3.4 (Regional Climate Model version 4.3.4) coupled with an aerosol-snow/ice feedback module was used to investigate the emission, distribution, and deposition of carbonaceous and dust aerosols. The study was focused on the two issues: 1) the evaluation of model performance; 2) the assessment of climatic effects induced by carbonaceous and mineral dust aerosols, respectively.

  5. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.

  6. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost V.; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat O.

    2016-11-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of fossil fuel combustion in the southern part of the basin (AAE ˜ 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40 % in total absorption, respectively.

  7. New Light on Dark Energy

    Science.gov (United States)

    2008-01-01

    observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").

  8. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light

    DEFF Research Database (Denmark)

    Middelboe, Anne Lise; Sand-Jensen, Kaj; Binzer, Thomas

    2006-01-01

    (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year...... and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy...... metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide...

  9. Light thoughts on dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V.

    2004-04-01

    The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  10. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light

    Science.gov (United States)

    Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  11. Numerical study on energy absorbing characteristics of thin-walled tube under axial and oblique impact

    Directory of Open Access Journals (Sweden)

    V. Santhosh kumar

    2016-03-01

    Full Text Available Energy absorbing characteristics (EAC of thin wall tube during the impact are important in the automobile and aerospace industries. In this paper, energy absorbing characteristics such as mean force, peak force, energy absorption and crash force efficiency (CFE of three different cross-sections (square, rectangular and circular at three different thicknesses (2 mm, 2.5 mm and 4 mm were analyzed. The analysis was accomplished using ABAQUS/EXPLICIT, and aluminum alloy (AA6063 was used as a shell material. The result of impact (or crash-worthiness against axial load indicates that the circular cross section of 2.5 mm thickness is optimum. During the oblique (15°, 30°, 45° impact, increasing the angle leads to less energy absorption. Also, Multilinear regression analysis was carried out to predict the energy absorption characteristics at 90°.

  12. Embodied Energy and Off-Grid Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  13. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...

  14. Effects of Consecutive Wideband Tympanometry Trials on Energy Absorbance Measures of the Middle Ear

    Science.gov (United States)

    Burdiek, Laina M.; Sun, Xiao-Ming

    2014-01-01

    Purpose: Wideband acoustic immittance (WAI) is a new technique for assessing middle ear transfer function. It includes energy absorbance (EA) measures and can be acquired with the ear canal pressure varied, known as "wideband tympanometry" (WBTymp). The authors of this study aimed to investigate effects of consecutive WBTymp testing on…

  15. Transferability of Charpy Absorbed Energy to Fracture Toughness Based on Weibull Stress Criterion

    Institute of Scientific and Technical Information of China (English)

    Hongyang JING; Lianyong XU; Lixing HUO; Fumiyoshi Minami

    2005-01-01

    The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.

  16. DETERMINATION OF HEAT LOSS FACTOR OF SOLAR ENERGY COLLECTOR WITH THE ABSORBER MADE FROM POLYMERIC PIPES

    Directory of Open Access Journals (Sweden)

    Ermuratskii V.

    2009-12-01

    Full Text Available It is studied thermal loss factor of solar energy collector, which absorber represents the register made from polymeric pipes. Input data are results of tests in non-stationary thermal regime at the zero water flow rate and the minimum sunlight.

  17. Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten Mejlhede

    2015-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational partic...

  18. Assessment criteria for assessing energy-absorbing front underrun protection on trucks

    NARCIS (Netherlands)

    Schram, R.; Leneman, F.J.W.; Zweep, C. van der; Wismans, J.S.H.M.; Witteman, W.J.

    2006-01-01

    The objective of this article is to investigate the possibilities to assess (energy-absorbing) front underrun protection (FUP) devices with respect to injuries of the car occupant without using a car and dummy in the test procedure. A large number of different crash configurations are simulated to

  19. Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.

    Science.gov (United States)

    Wietek, Jonas; Broser, Matthias; Krause, Benjamin S; Hegemann, Peter

    2016-02-19

    Chloride conducting channelrhodopsins (ChloCs) are new members of the optogenetic toolbox that enable neuronal inhibition in target cells. Originally, ChloCs have been engineered from cation conducting channelrhodopsins (ChRs), and later identified in a cryptophyte alga genome. We noticed that the sequence of a previously described Proteomonas sulcata ChR (PsChR1) was highly homologous to the naturally occurring and previously reported ChloCs GtACR1/2, but was not recognized as an anion conducting channel. Based on electrophysiological measurements obtained under various ionic conditions, we concluded that the PsChR1 photocurrent at physiological conditions is strongly inward rectifying and predominantly carried by chloride. The maximum activation was noted at excitation with light of 540 nm. An initial spectroscopic characterization of purified protein revealed that the photocycle and the transport mechanism of PsChR1 differ significantly from cation conducting ChRs. Hence, we concluded that PsChR1 is an anion conducting ChR, now renamed PsACR1, with a red-shifted absorption suited for multicolor optogenetic experiments in combination with blue light absorbing cation conducting ChRs.

  20. Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications

    Science.gov (United States)

    Ansari, Azizurrahaman; Jaleel Akhtar, Mohammad

    2017-01-01

    The magnetic, thermal, thermo-mechanical, electromagnetic and microwave absorption properties of Co/graphite loaded polystyrene composites prepared by melt blending and injection molding techniques are studied in X-band (8.4–12.4 GHz) for seeking their usage as efficient light weight microwave absorbers. For profound understanding of electromagnetic absorption process at micro level, the advanced SEM and x-ray diffraction testing of the composites are carried out. The magnetic properties of the prepared Co/graphite loaded polystyrene composites are studied using the vibrating sample magnetometer. The thermal stability and thermo-mechanical properties of the prepared composites are analyzed by thermo gravimetric analysis and dynamic mechanical and thermal analysis, respectively. The complex permittivity and permeability values of the prepared composite samples in X-band of microwave frequency are extracted from the scattering data recorded during the vector network analyzer measurements. The minimum reflection loss (maximum absorption loss) of  ‑32.02 dB (99.94%) is achieved at 10.13 GHz for Co/graphite loaded polystyrene composite with the excess loading of graphite flakes for sample thickness of 1.8 mm. High absorption loss, light weight and low thickness of the proposed multicomponent Co/graphite loaded polystyrene composites make them promising candidates for electromagnetic shielding and stealth applications.

  1. Light and energy - daylight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Jens; Logadottir, A.; Traberg-Borup, S.; Barrie-Nielsen, K.

    2009-07-01

    All measurements where conducted in the spring of 2007, except the Interpane panel. The solar cell panels have been evaluated by three performance indicators to assess the daylight quantity within the room and the systems ability to maintain view to the outside. In the study, we used two performance indicators to assess the daylight quantity within the room: 1. the daylight factor (overcast sky) 2. the relative work plane illuminance (clear sky condition) Overcast sky: In general, all panels provided less daylight than the recommended requirement in the Danish Building Regulation of 2% on the work plane. This will most likely result in additional need for electric lighting. However, larger window areas and more parts of the facade with clear unobstructed glass may be one solution. Clear sky: In general, all panels provided less interior light levels than the two reference systems in the back of the room. Almost all systems aloud more or less direct sunlight in the window perimeter through the clear openings and additional needs for some kind of shading device is to be expected. Some systems blocked a large portion of the light in the majority of the room, and additional electric light in this part of the room may be needed. Only one performance indicator where used to describe the quality of the panels. View: In general, all panels, except two, obstruct the view significantly and cause figure/background confusion for a view position close to the window and the discrepancies of colour judgements. Only two systems provided a fairly clear view to the outside without to much distortion of the view. (au)

  2. Numerical modelling of wave energy absorption by a floating point absorber system

    Energy Technology Data Exchange (ETDEWEB)

    Backer, G. De; Banasiak, R.; Beels, C. [Ghent University Civil Engineering Department, Zwijnaarde (Belgium); J. De Rouck, J. De

    2007-07-01

    Point absorbers are wave energy converters (WECs) consisting of small (floating) bodies oscillating with either one or more degrees of freedom. They can either move with respect to a fixed reference, or with respect to a floating reference. Different buoy geometries are evaluated to obtain the ideal values of size, shape and draft with regard to power absorption for a given moderate wave climate. In this paper, the performance of a heaving point absorber in a floating platform is analysed in a linear way.

  3. Power maximization of a point absorber wave energy converter using improved model predictive control

    Science.gov (United States)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  4. Procedure to Measure Indoor Lighting Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  5. Procedure to Measure Indoor Lighting Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  6. Optimal Energy Transfer in Light-Harvesting Systems

    Directory of Open Access Journals (Sweden)

    Lipeng Chen

    2015-08-01

    Full Text Available Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.

  7. Optimal Energy Transfer in Light-Harvesting Systems.

    Science.gov (United States)

    Chen, Lipeng; Shenai, Prathamesh; Zheng, Fulu; Somoza, Alejandro; Zhao, Yang

    2015-08-20

    Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.

  8. A universal electromagnetic energy conversion adapter based on a metamaterial absorber

    Science.gov (United States)

    Xie, Yunsong; Fan, Xin; Wilson, Jeffrey D.; Simons, Rainee N.; Chen, Yunpeng; Xiao, John Q.

    2014-09-01

    On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, photoconductive antennas, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

  9. Enhancing the Dynamic Range of Targeted Energy Transfer in Acoustics Using Several Nonlinear Membrane Absorbers

    CERN Document Server

    Bellet, Romain; Côte, Renaud; Mattei, Pierre-Olivier

    2014-01-01

    In order to enhance the robustness and the energy range of efficiency of targeted energy transfer (TET) phenomena in acoustics, we discuss in this paper about the use of multiple nonlinear membrane absorbers in parallel. We show this way, mainly thanks to an experimental set-up with two membranes, that the different absorbers have additional effects that extend the efficiency and the possibilities of observation of TET. More precisely, we present the different behavior of the system under sinusoidal forcing and free oscillations, characterizing the phenomena for all input energies. The frequency responses are also presented, showing successive clipping of the original resonance peak of the system. A model is finally used to generalize these results to more than two NES and to simulate the case of several very similar membranes in parallel which shows how to extend the existence zone of TET.

  10. Renewable Energy Laboratory for Lighting Systems

    CERN Document Server

    Cristian, Dumitru

    2010-01-01

    Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

  11. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  12. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m(2), the output power significantly increased to 24 mW/cm(2) because of the increase in the surface temperature to 141 °C.

  13. Absorbed Dose and Collision Kerma Relationship for High-Energy Photons

    Science.gov (United States)

    Sibata, Claudio Hissao

    Historically, exposure has been used as an important quantity to specify X- or (gamma)- ray beams. For any photon beam the energy fluence is proportional to the exposure. Exposure can be calculated and/or measured if the spectrum of the beam is known and charged particle equilibrium (CPE) exists. For low energy photons (up to approximately 1 MeV), due to the existence of CPE, absorbed dose (D) is equal to the collision kerma (K(,c)). For megavoltage photons this equality is lost due to CPE failure, which also restricts the measurement of exposure. It is possible, though, to find a relationship between the absorbed dose and collision kerma when transient charged particle equilibrium (TCPE) exists. This basic idea was originally proposed by Roesch in 1958 and its refinement has been discussed by Attix in 1979 and 1983. The modified Roesch's formula which enables us to measure exposure even for high-energy photons is given by D = (beta) K(,c) (TURNEQ) K(,c) (1 + (mu)' ) where (mu)' is the effective linear attenuation coefficient and is the mean distance the secondary electrons carry kinetic energy in the direction of the photon beam while depositing it as absorbed dose. The symbol (beta) is the quotient of the absorbed dose and the collision kerma. The importance of Roesch's formula has been recognized and used implicitly in the recent dosimetry protocol of the AAPM (Task Group 21). However, the value used in the protocol is based on theoretical calculations which do not include photon scattering. As a result of the present effort the parameters (mu)' and have been determined experimentally, for the first time. The dependence of (beta) on several factors has been studied and (beta) has been obtained including the effects of scattering. Calculations were also performed for several photon energies and materials, using the Roesch method, which does not include photon scattering effects. Comparisons of measured and calculated values of show reasonable agreement.

  14. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    Directory of Open Access Journals (Sweden)

    Apratim Majumder

    2016-06-01

    Full Text Available Absorbance-Modulation-Optical Lithography (AMOL has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes the underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137nm for λ = 647nm using extremely low intensities (4-30 W/m2, which is 34 times lower than that required in conventional AMOL. We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.

  15. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    Science.gov (United States)

    Majumder, Apratim; Wan, Xiaowen; Masid, Farhana; Pollock, Benjamin J.; Andrew, Trisha L.; Soppera, Olivier; Menon, Rajesh

    2016-06-01

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes the underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the "exposing" beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137nm for λ = 647nm) using extremely low intensities (4-30 W/m2, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.

  16. Investigating the effect and uncertainties of light absorbing impurities in snow and ice on snow melt and discharge generation using a hydrologic catchment model and satellite data

    Science.gov (United States)

    Matt, Felix; Burkhart, John F.

    2017-04-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.

  17. Lighting Energy Saving with Light Pipe in Farm Animal Production

    Directory of Open Access Journals (Sweden)

    Hans von Wachenfelt

    2015-12-01

    Full Text Available The Swedish animal production sector has potential for saving electric lighting of €4-9 million per year using efficient daylight utilisation. To demonstrate this, two light pipe systems, Velux® (house 1 and Solatube® (house 2, are installed in two identical pig houses to determine if the required light intensity, daylight autonomy (DA, and reduced electricity use for illumination can be achieved. In each house, three light sensors continuously measure the indoor daylight relative to an outdoor sensor. If the horizontal illuminance at pig height decreases below 40 lux between 08.00 and 16.00 hours, an automatic control system activates the lights, and electricity use is measured. The daylight factor (DF and DA are determined for each house, based on annual climate data. The mean annual DA of 48% and 55% is achieved for house 1 and house 2, respectively. Light pipes in house 2 have delivered significantly more DA than those in house 1. The most common illuminance range between 0 and 160 lux is recorded in both houses, corresponding to approximately 82% and 83% of daylight time for house 1 and house 2, respectively. Further, the daylighting system for house 2 has produced a uniform DF distribution between 0.05 and 0.59. The results demonstrate that considerable electric energy savings can be achieved in the animal production sector using light pipes. Saving 50% of electric lighting would correspond to 36 GWh or 2520 t CO2 per year for Sweden, but currently the energy savings are not making the investment profitable.

  18. Calculation of fluence and absorbed dose in head tissues due to different photon energies.

    Science.gov (United States)

    Azorín, C; Vega-Carrillo, H R; Rivera, T; Azorín, J

    2014-01-01

    Calculations of fluence and absorbed dose in head tissues due to different photon energies were carried out using the MCNPX code, to simulate two models of a patient's head: one spherical and another more realistic ellipsoidal. Both head models had concentric shells to describe the scalp skin, the cranium and the brain. The tumor was located at the center of the head and it was a 1 cm-radius sphere. The MCNPX code was run for different energies. Results showed that the fluence decreases as the photons pass through the different head tissues. It can be observed that, although the fluence into the tumor is different for both head models, absorbed dose is the same.

  19. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  20. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Roberts, Alexander; Ding, Fei

    2016-01-01

    for the fabricated MIM resonator. Excellent thermal stability of the absorber is demonstrated at high operating temperatures (800 °C). The experimental broadband absorption spectra show good agreement with simulations. The resonator with 12 nm top tungsten and 100 nm alumina spacer film shows absorbance above 95...

  1. Design, Modeling, and Analysis of a Novel Hydraulic Energy-Regenerative Shock Absorber for Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Junyi Zou

    2017-01-01

    Full Text Available To reduce energy consumption or improve energy efficiency, the regenerative devices recently have drawn the public’s eyes. In this paper, a novel hydraulic energy-regenerative shock absorber (HERSA is developed for vehicle suspension to regenerate the vibration energy which is dissipated by conventional viscous dampers into heat waste. At first, the schematic of HERSA is presented and a mathematic model is developed to describe the characteristic of HERSA. Then the parametric sensitivity analysis of the vibration energy is expounded, and the ranking of their influences is k1≫m2>m1>k2≈cs. Besides, a parametric study of HERSA is adopted to research the influences of the key parameters on the characteristic of HERSA. Moreover, an optimization of HERSA is carried out to regenerate more power as far as possible without devitalizing the damping characteristic. To make the optimization results more close to the actual condition, the displacement data of the shock absorber in the road test is selected as the excitation in the optimization. The results show that the RMS of regenerated energy is up to 107.94 W under the actual excitation. Moreover it indicates that the HERSA can improve its performance through the damping control.

  2. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  3. Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules

    Science.gov (United States)

    Zhang, Chi

    Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm

  4. Ultra-light weight undamped tuned dynamic absorber for cryogenically cooled infrared electro-optic payload

    Science.gov (United States)

    Veprik, Alexander; Babitsky, Vladimir

    2017-04-01

    Attenuation of tonal cryocooler induced vibration in infrared electro-optical payloads may be achieved by using of Tuned Dynamic Absorber (TDA) which is, generally speaking, a passive, weakly damped mass-spring system the resonant frequency of which is precisely matched with the driving frequency. Added TDA results in a favorable modification of the frequency response functions of combined structure. In particular, a favorable antiresonant notch appears at the frequency of tonal excitation along with the adjacent secondary resonance, the width and depth of which along with its closeness to the secondary resonance are strongly dependent on the mass and damping ratios. Using heavier TDA favorably results in wider and deeper antiresonant notch along with increased gap between antiresonant and resonant frequencies. Lowering damping in TDA favorably results in deepening the antiresonant notch. The weight of TDA is usually subjected to tight design constrains. Use of lightweight TDA not only diminishes the attainable performance but also complicates the procedure of frequency matching. Along these lines, even minor frequency deviations may negate the TDA performance and even result in TDA failure in case of resonant build up. The authors are presenting theoretical and practical aspects of designing and constructing ultra-light weight TDA in application to vibration attenuation of electro-optical infrared payload relying on Split Stirling linear cryocooler, the driving frequency of which is fixed and may be accurately tuned and maintained using a digital controller over the entire range of working conditions and lifetime; the lack of mass ratio is compensated by minimizing the damping ratio. In one particular case, in excess of 100-fold vibration attenuation has been achieved by adding as little as 5% to the payload weight.

  5. Incorporating piezoelectric energy harvester in tunable vibration absorber for application in multi-modal vibration reduction of a platform structure

    Science.gov (United States)

    Lee, Chun-Ying; Lin, Jia-Hong

    2017-02-01

    Tunable vibration absorber is an effective device to reduce the vibration of structure subjected to harmonic excitation. The vibration energy is transferred mostly to the absorber when the natural frequency of the absorber is tuned to the excitation frequency. In this study, a piezoelectric (PZT) transducer was incorporated into the absorber in order to harvest the vibration energy and still alleviate the vibration of a platform structure. The tuning in dynamic characteristics of the absorber was facilitated by controlling its tip mass. The design formulation of the absorber was presented with a single degree-of-freedom (SDOF) model having the equivalent parameters. In the meantime, an optimal electric load resistor was determined to maximize the power output from the PZT transducer. The experimental measurement validated the SDOF model with good accuracy both in the vibration response and the output electric voltage. Finally, the absorber was installed on a platform structure to investigate its vibration reduction and energy harvesting capability for the external disturbance frequency covering certain frequency span. With three resonance modes of the platform studied, the absorber was able to reduce more than 80% of its original vibration and harvest several folds of electric power comparing with the untuned absorber. Although the performance in vibration reduction was slightly influenced (sensor or actuator applications.

  6. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    Science.gov (United States)

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.

  7. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  8. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  9. Point-by-point near-field optical energy deposition around plasmonic nanospheres in absorbing media.

    Science.gov (United States)

    Harrison, R K; Ben-Yakar, Adela

    2015-08-01

    Here we investigate the effects of absorbing media on plasmon-enhanced near-field optical energy deposition. We find that increasing absorption by the medium results in increased particle scattering at the expense of particle absorption, and that much of this increased particle scattering is absorbed by the medium close to the particle surface. We present an analytical method for evaluating the spatial distribution of near-field enhanced absorption surrounding plasmonic metal nanospheres in absorbing media using a new point-by-point method. We propose criteria to define relevant near-field boundaries and calculate the properties of the local absorption enhancement, which redistributes absorption to the near-field and decays asymptotically as a function of the distance from the particle to background levels. Using this method, we performed a large-scale parametric study to understand the effect of particle size and wavelength on the near-field absorption for gold nanoparticles in aqueous media and silicon, and identified conditions that are relevant to enhanced local infrared absorption in silicon. The presented approach provides insight into the local energy transfer around plasmonic nanoparticles for predicting near-field effects for advanced concepts in optical sensing, thin-film solar cells, nonlinear imaging, and photochemical applications.

  10. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  11. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    OpenAIRE

    Olabi A.G.; Baroutaji A.

    2010-01-01

    Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2) on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This m...

  12. Source Attribution of Light-absorbing Aerosols in Arctic Snow (Invited)

    Science.gov (United States)

    Hegg, D.; Warren, S. G.; Grenfell, T. C.; Doherty, S. J.; Larson, T. V.; Clarke, A. D.

    2010-12-01

    Light-absorbing aerosols (LAA) deposited on the arctic snow pack, in particular black carbon (BC), contribute appreciably to the arctic radiation budget and their reduction has been suggested as a means to attenuate warming in the arctic. Effective prediction and mitigation of Arctic snow LAA requires that the sources of the LAA be elucidated. To this end, receptor modeling in the form of Positive Matrix Factorization (PMF) has been exercised on a data set of chemical concentrations in snow of various species (including inorganic and organic acids, carbohydrates and selected other organics as well as LAA) derived from an extensive set of snow samples from locations in Russia (including Siberia), Canada, Greenland, the Arctic Ocean and Svalbard. The data were obtained in three distinct periods: spring of 2007, spring of 2008, and spring of 2009. Data from each period were analyzed separately (note that the Svalbard data were analyzed only recently and were not included in the published 2007 analysis). Aerosol light absorption was determined spectrophotometrically at multiple wavelengths on filters through which melted snow was filtered. Based on the Angstrom exponent of the light absorption, partitioning of the absorption between BC and other LAA species was estimated. Statistics of the LAA concentrations for the Arctic as a whole and the geographic distribution of BC and other LAA species are presented. PMF analysis of the filtrate and filters from the 2007 data set from western Siberia, the Canadian lower arctic and Greenland revealed four factors or sources: two distinct biomass burning sources, a pollution source and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources together accounting for > 90% of the black carbon. Geographically, the biomass sources were dominant for all regions except the Arctic Ocean near the North Pole. For the 2008 and 2009 data sets, from eastern Siberia and

  13. Impacts of light-absorbing impurities on snow and their quantification with bidirectional reflectance measurements

    Science.gov (United States)

    Gritsevich, Maria; Peltoniemi, Jouni; Meinander, Outi; Dagsson-Waldhauserová, Pavla; Zubko, Nataliya; Hakala, Teemu; Virkkula, Aki; Svensson, Jonas; de Leeuw, Gerrit

    2017-04-01

    rate gets faster than the diffusion rate (under condition of warm outside temperatures), as it was observed at the end of the experiment reported here, dark material starts accumulating into the surface [5]. The BC deposited on snow at warm temperatures initiates rapid melting process and may cause dramatic changes on the snow surface. References 1 Peltoniemi J.I., Hakala T., Suomalainen J., Honkavaara E., Markelin L., Gritsevich M., Eskelinen J., Jaanson P., Ikonen E. (2014): Technical notes: A detailed study for the provision of measurement uncertainty and traceability for goniospectrometers. Journal of Quantitative Spectroscopy & Radiative Transfer 146, 376-390, http://dx.doi.org/10.1016/j.jqsrt.2014.04.011 2 Zubko N., Gritsevich M., Zubko E., Hakala T., Peltoniemi J.I. (2016): Optical measurements of chemically heterogeneous particulate surfaces // Journal of Quantitative Spectroscopy and Radiative Transfer, 178, 422-431, http://dx.doi.org/10.1016/j.jqsrt.2015.12.010 3 Peltoniemi J.I., Gritsevich M., Hakala T., Dagsson-Waldhauserová P., Arnalds Ó., Anttila K., Hannula H.-R., Kivekäs N., Lihavainen H., Meinander O., Svensson J., Virkkula A., de Leeuw G. (2015): Soot on snow exper- iment: bidirectional reflectance factor measurements of contaminated snow // The Cryosphere, 9, 2323-2337, http://dx.doi.org/10.5194/tc-9-2323-2015 4 Svensson J., Virkkula A., Meinander O., Kivekäs N., Hannula H.-R., Järvinen O., Peltoniemi J.I., Gritsevich M., Heikkilä A., Kontu A., Neitola K., Brus D., Dagsson-Waldhauserova P., Anttila K., Vehkamäki M., Hienola A., de Leeuw G. & Lihavainen H. (2016): Soot-doped natural snow and its albedo — results from field experiments. Boreal Environment Research, 21, 481-503, http://www.borenv.net/BER/pdfs/preprints/Svensson1498.pdf 5 Meinander O., Kontu A., Virkkula A., Arola A., Backman L., Dagsson-Waldhauserová P., Järvinen O., Manninen T., Svensson J., de Leeuw G., and Leppäranta M. (2014): Brief communication: Light-absorbing

  14. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  15. Bandgap Tunability in Sb-Alloyed BiVO₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications.

    Science.gov (United States)

    Loiudice, Anna; Ma, Jie; Drisdell, Walter S; Mattox, Tracy M; Cooper, Jason K; Thao, Timothy; Giannini, Cinzia; Yano, Junko; Wang, Lin-Wang; Sharp, Ian D; Buonsanti, Raffaella

    2015-11-01

    The challenge of fine compositional tuning and microstructure control in complex oxides is overcome by developing a general two-step synthetic approach. Antimony-alloyed bismuth vanadate, which is identified as a novel light absorber for solar fuel applications, is prepared in a wide compositional range. The bandgap of this quaternary oxide linearly decreases with the Sb content, in agreement with first-principles calculations.

  16. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  17. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  18. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  19. Energy Optimization of Road Tunnel Lighting Systems

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available A road tunnel is an enclosed and covered infrastructure for the vehicular traffic. Its lighting system provides 24 h of artificial sources only, with a higher amount of electric power used during the day. Due to safety reasons, when there is natural lighting outside the tunnel, the lighting levels in the stretches right after the entrance and before the exit must be high, in order to guide the driver’s eye towards the middle of the tunnel where the luminance must guarantee safe driving, avoid any over-dimensioning of the lighting systems, and produce energy savings. Such effects can be reached not only through the technological advances in the field of artificial lighting sources with high luminous efficiency, but also through new materials for road paving characterized by a higher reflection coefficient than other ordinary asphalts. This case study examines different technical scenarios, analyzing and comparing possible energy and economic savings. Traditional solutions are thus compared with scenarios suggesting the solutions previously mentioned. Special asphalts are interesting from an economic point of view, whereas the high costs of LED sources nowadays represent an obstacle for their implementation.

  20. FracTherm - fractal hydraulic structures for energy efficient solar absorbers and other heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, M. [Fraunhofer Inst. for Solar Energy Systems, Freiburg (Germany)

    2004-07-01

    The energy efficiency of heat exchangers such as solar absorbers is determined both by their thermal efficiency - evaluated by the collector efficiency factor F' - and the primary energy which is needed to drive the pump transporting the fluid. The former is strongly influenced by the uniformity of the volume flow whereas the latter also depends on the pressure drop in the fluid channels. Thus, in order to obtain a high energy efficiency, it is necessary to ensure a uniform flow distribution with low pressure drop. However, conventional hydraulic structures often show a high pressure drop (serial flow) or a non-uniform flow distribution (parallel flow). In contrast to these channel designs, many natural structures are built of multiple branched channels (''fractals''). The aim of a current research work, which is funded by the German Federal Environmental Foundation (DBU), is to transfer those principles of fluid channel design to technical applications (bionic approach) and compare the structures with conventional ones. This paper describes how fractal hydraulic structures are generated and assessed using hydraulic and thermal simulations. Flow experiments as well as thermography with an absorber model are shown. Furthermore, investigations of flow phenomena using Computational Fluid Dynamics (CFD) are presented. (orig.)

  1. Optimal Discrete PTO Force Point Absorber Wave Energy Converters in Regular Waves

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2013-01-01

    the conventional fluid power systems suffer of poor efficiency. Therefore discrete fluid power force systems have been proposed. Limited research has, however, been conducted with focus on choosing the discrete force levels and force profiles for a discrete PTO system for WECs. This paper is to support the design...... of discrete force systems for PTO, by focusing on how to choose the optimal PTO force levels and force profile when seeking to increase energy harvesting. The work concerns point absorber WECs and utilises a simple float model based on linear wave theory. Utilising the principle of superposition...

  2. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.

    Science.gov (United States)

    Mirkovic, Tihana; Ostroumov, Evgeny E; Anna, Jessica M; van Grondelle, Rienk; Govindjee; Scholes, Gregory D

    2017-01-25

    The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

  3. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness

    Directory of Open Access Journals (Sweden)

    Sunday M. Ofochebe

    2016-05-01

    Full Text Available In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  4. Absorbable energy monitoring scheme: new design protocol to test vehicle structural crashworthiness.

    Science.gov (United States)

    Ofochebe, Sunday M; Enibe, Samuel O; Ozoegwu, Chigbogu G

    2016-05-01

    In vehicle crashworthiness design optimization detailed system evaluation capable of producing reliable results are basically achieved through high-order numerical computational (HNC) models such as the dynamic finite element model, mesh-free model etc. However the application of these models especially during optimization studies is basically challenged by their inherent high demand on computational resources, conditional stability of the solution process, and lack of knowledge of viable parameter range for detailed optimization studies. The absorbable energy monitoring scheme (AEMS) presented in this paper suggests a new design protocol that attempts to overcome such problems in evaluation of vehicle structure for crashworthiness. The implementation of the AEMS involves studying crash performance of vehicle components at various absorbable energy ratios based on a 2DOF lumped-mass-spring (LMS) vehicle impact model. This allows for prompt prediction of useful parameter values in a given design problem. The application of the classical one-dimensional LMS model in vehicle crash analysis is further improved in the present work by developing a critical load matching criterion which allows for quantitative interpretation of the results of the abstract model in a typical vehicle crash design. The adequacy of the proposed AEMS for preliminary vehicle crashworthiness design is demonstrated in this paper, however its extension to full-scale design-optimization problem involving full vehicle model that shows greater structural detail requires more theoretical development.

  5. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    Science.gov (United States)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  6. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    Science.gov (United States)

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  7. Secondary brown carbon - Formation of light-absorbing compounds in atmospheric particulates from selected dicarbonyls and amines

    Science.gov (United States)

    Kampf, Christopher; Filippi, Alexander; Hoffmann, Thorsten

    2015-04-01

    One of the main open questions regarding organic compounds in atmospheric chemistry today is related to the formation of optically-active compounds and the occurrence of so called brown carbon (Andreae and Gelencsér, 2006). While organic compounds in ambient fine particles for decades have been assumed to not absorb solar radiation, thus resulting in a net cooling effect on climate (IPCC, 2007), it is now generally accepted that a continuum of light-absorbing carbonaceous species is present in fine aerosols (Pöschl, 2003). In this study, light-absorbing compounds from reactions between dicarbonyl compounds, i.e., glyoxal, methylglyoxal, acetylacetone, 2,3-butanedione, 2,5-hexanedione, and glutaraldehyde, and amine species, i.e., ammonia and glycine, were investigated at atmospherically relevant concentrations in bulk solution experiments mimicking atmospheric particulates. Product analyses were performed using UV/Vis spectrophotometry and (ultra) high performance liquid chromatography coupled to diode array detection and ion trap mass spectrometry (HPLC-DAD-ESI-MS/MS), as well as ultra-high resolution (Orbitrap) mass spectrometry (UHPLC-ESI-HRMS/MS). We demonstrate that light-absorbing compounds are formed from a variety of atmospherically relevant dicarbonyls via particle phase reactions with amine nucleophiles. Single dicarbonyl and mixed dicarbonyl experiments were performed and products were analyzed. The reaction products are suggested to be cyclic nitrogen containing compounds such as imidazoles or dihydropyridines as well as open chain compounds resulting from aldol condensation reactions. Further, the reactive turnover was found to be higher at increasing pH values. The aforementioned processes may be of higher relevance in regions with high aerosol pH, e.g., resulting from high ammonia emissions as for example in northern India (Clarisse et al., 2009). References Andreae, M.O., and Gelencsér, A. (2006): Black carbon or brown carbon? The nature of light-absorbing

  8. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  9. An energy absorbing far-field boundary condition for the elastic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B

    2008-07-15

    The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

  10. Application of Charpy Impact Absorbed Energy to the Safety Assessment Based on SINTAP

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the APl 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At default level( level 0), the assessment point was established by estimating fracture toughness value KIc conservatively from Charpy energy test data. At the same time, the analysis level 1 (basic level)was applied based on the fracture toughness CTOD. Then the two assessment levels were compared. The assessment results show that all assessment points are located within the failure lines of analysis levels 0 and 1. So the welded joint of the pipeline is safe. It can be concluded that the assessment based on Charpy absorbed energy is practicable when other fracture toughness data are not available, or cannot be easily obtained. The results are conservative.

  11. Lumbar load attenuation for rotorcraft occupants using a design methodology for the seat impact energy-absorbing system

    Science.gov (United States)

    Moradi, Rasoul; Beheshti, Hamid; Lankarani, Hamid

    2012-12-01

    Aircraft occupant crash-safety considerations require a minimum cushion thickness to limit the relative vertical motion of the seat-pelvis during high vertical impact loadings in crash landings or accidents. In military aircraft and helicopter seat design, due to the potential for high vertical accelerations in crash scenarios, the seat system must be provided with an energy absorber to attenuate the acceleration level sustained by the occupants. Because of the limited stroke available for the seat structure, the design of the energy absorber becomes a trade-off problem between minimizing the stroke and maximizing the energy absorption. The available stroke must be used to prevent bottoming out of the seat as well as to absorb maximum impact energy to protect the occupant. In this study, the energy-absorbing system in a rotorcraft seat design is investigated using a mathematical model of the occupant/seat system. Impact theories between interconnected bodies in multibody mechanical systems are utilized to study the impact between the seat pan and the occupant. Experimental responses of the seat system and the occupant are utilized to validate the results from this study for civil and military helicopters according to FAR 23 and 25 and MIL-S-58095 requirements. A model for the load limiter is proposed to minimize the lumbar load for the occupant by minimizing the relative velocity between the seat pan and the occupant's pelvis. The modified energy absorber/load limiter is then implemented for the seat structure so that it absorbs the energy of impact in an effective manner and below the tolerable limit for the occupant in a minimum stroke. Results show that for a designed stroke, the level of occupant lumbar spine injury would be significantly attenuated using this modified energy-absorber system.

  12. Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber

    Science.gov (United States)

    Bellet, R.; Cochelin, B.; Herzog, P.; Mattei, P.-O.

    2010-07-01

    This paper deals with the application of the concept of targeted energy transfer to the field of acoustics, providing a new approach to passive sound control in the low frequency domain, where no efficient dissipative mechanism exists. The targeted energy transfer, also called energy pumping, is a phenomenon that we observe by combining a pure nonlinear oscillator with a linear primary system. It corresponds to an almost irreversible transfer of vibration energy from the linear system to the auxiliary nonlinear one, where the energy is finally dissipated. In this study, an experimental set-up has been developed using the air inside a tube as the acoustic linear system, a thin circular visco-elastic membrane as an essentially cubic oscillator and the air inside a box as a weak coupling between those two elements. In this paper, which mainly deals with experimental results, it is shown that several regimes exist under sinusoidal forcing, corresponding to the different nonlinear normal modes of the system. One of these regimes is the quasi-periodic energy pumping regime. The targeted energy transfer phenomenon is also visible on the free oscillations of the system. Indeed, above an initial excitation threshold, the sound extinction in the tube follows a quasi-linear decrease that is much faster than the usual exponential one. During this linear decrease, the energy of the acoustic medium is irreversibly transferred to the membrane and then damped into this element called nonlinear energy sink. We present also the frequency responses of the system which shows a clipping of the original resonance peak of the acoustic medium and we finally demonstrate the ability of the nonlinear absorber to operate in a large frequency band, tuning itself to any linear system.

  13. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  14. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Directory of Open Access Journals (Sweden)

    J. E. Engström

    2011-08-01

    Full Text Available The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed.

    One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter.

    Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season or pristine air from the Southern Indian Ocean (summer monsoon. The two ways of correction (optical and chemical lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm−1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm−1. A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter

  15. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  16. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    Science.gov (United States)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  17. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

    Directory of Open Access Journals (Sweden)

    N. Goldenson

    2012-09-01

    Full Text Available The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1 now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4, run to equilibrium for year 2000 levels of CO2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO2. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.

  18. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

    Directory of Open Access Journals (Sweden)

    N. Goldenson

    2012-02-01

    Full Text Available The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1 now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4, run to equilibrium for year 2000 levels of CO2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO2. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.

  19. Comparative study of energy saving light sources

    Energy Technology Data Exchange (ETDEWEB)

    Khan, N.; Abas, N. [Department of Electrical Engineering, Comsats Institute of Information technology, Park Road, Islamabad (Pakistan)

    2011-01-15

    Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23 W CFL, 21 W EEFL, 18 W fluorescent tube or 15 W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100 W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of -20 C < T{sub CFL} < 60 C and -30 C < T{sub CFL} < 50 C but CFL frequently damage in wet and damp locations. Costs of low THD and high PF CFL, EEFL and LED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems. (author)

  20. Numerical Time Integration Methods for a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten

    2012-01-01

    The objective of this abstract is to provide a review of models for motion simulation of marine structures with a special emphasis on wave energy converters. The time-domain model is applied to a point absorber system working in pitch mode only. The device is similar to the well-known Wavestar...... float located in the Danish North Sea. The main objective is to produce a tool that can accurately simulate the dynamics of a floating structure with an arbitrary geometry provided the frequency domain coefficients are calculated beforehand. The latter calculation is based on linear fluid structure...... interaction (small deformations of the fluid surface and body), inviscid incompressible, irrotational flow and a linearized Euler-Bernoulli formulation of the fluid pressure. The time-domain analysis of a floating structure involves the calculation of a convolution integral between the impulse response...

  1. Vibration Mitigation in Partially Liquid-Filled Vessel using Passive Energy Absorbers

    CERN Document Server

    Farid, Maor; Gendelman, O V

    2016-01-01

    This paper treats possible solutions for vibration mitigation in reduced-order model of partially-filled liquid tank under impulsive forcing. Such excitation may lead to hydraulic impacts applied on the tank inner walls. Finite stiffness of the tank walls is taken into account. We explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performances are examined numerically. The liquid sloshing mass is modeled by equivalent massspring-dashpot system, which can both perform small-amplitude linear oscillations and impact the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite-elemet approach to assess the natural frequencies for specific system parameters and to...

  2. LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

    Directory of Open Access Journals (Sweden)

    CHUL-HUN CHUNG

    2013-08-01

    Full Text Available This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

  3. Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface

    CERN Document Server

    Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2016-01-01

    We demonstrate that a self-complementary checkerboard-like metasurface works as a broadband coherent perfect absorber (CPA) when symmetrically illuminated by two counter-propagating incident waves. A theoretical analysis based on wave interference and results of numerical simulations of the proposed metasurface are provided. In addition, we experimentally demonstrate the proposed CPA in the terahertz regime by using a time-domain spectroscopy technique. We observe that the metasurface can work as a CPA below its lowest diffraction frequency. The size of the absorptive areas of the proposed CPA can be much smaller than the incident wavelength. Unlike conventional CPAs, the presented one simultaneously achieves the broadband operation and energy concentration of electromagnetic waves at the deep-subwavelength scale.

  4. Heterogeneous Combustion Particles with Distinctive Light-Absorbing and Light-Scattering Phases as Mimics of Internally-Mixed Ambient Atmospheric Particles

    Science.gov (United States)

    Conny, J. M.; Ma, X.; Gunn, L. R.

    2011-12-01

    Particles with heterogeneously-distributed light-absorbing and light-scattering phases were generated from incomplete combustion or thermal decomposition to mimic real atmospheric particles with distinctive optical properties. Individual particles and particle populations were characterized microscopically. The purpose was to examine how optical property measurements of internally-mixed ambient air particles might vary based on the properties of laboratory-generated particles produced under controlled conditions. The project is an initial stage in producing reference samples for calibrating instrumentation for monitoring climatically-important atmospheric aerosols. Binary-phase particles containing black carbon (BC) and a metal or a metal oxide phase were generated from the thermal decomposition or partial combustion of liquid fuels at a variety of temperatures from 600 °C to 1100 °C. Fuels included mixtures of toluene or isooctane and iron pentacarbonyl or titanium tetrachloride. Scanning electron microscopy with energy-dispersive x-ray spectroscopy revealed that burning the fuels at different temperatures resulted in distinctive differences in morphology and carbon vs. metal/metal oxide composition. Particles from toluene/Fe(CO)5 thermal decomposition exhibited aggregated morphologies that were classified as dendritic, soot-like, globular, or composited (dendritic-globular). Particles from isooctane/TiCl4 combustion were typically spherical with surface adducts or aggregates. Diameters of the BC/TiO2 particles averaged 0.68 μm to 0.70 μm. Regardless of combustion temperature, the most abundant particles in each BC/TiO2 sample had an aspect ratio of 1.2. However, for the 600 °C and 900 °C samples the distribution of aspect ratios was skewed toward much larger ratios suggesting significant chainlike aggregation. Carbon and titanium compositions (wt.) for the 600 °C sample were 12 % and 53 %, respectively. In contrast, the composition trended in the opposite

  5. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  6. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  7. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    Science.gov (United States)

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  8. Performance of a Tethered Point Wave-Energy Absorber in Regular and Irregular Waves

    KAUST Repository

    Bachynski, Erin E.

    2010-01-01

    The importance of the mooring system on the dynamic response of a point-absorber type ocean-wave energy converter (WEC) is investigated using a frequency-domain approach. In order to ensure the safety of WECs, careful consideration of the response and resonance frequencies in all motions must be evaluated, including the effects of the mooring system. In this study, a WEC floater with a closed, flat bottom is modeled as a rigid vertical cylinder tethered by elastic mooring lines. The WEC hydrodynamic added mass and damping are obtained using established potential-flow methods, with additional damping provided by the energy-extraction system. The results show that the response of the WEC, and the corresponding power takeoff, varies with the diameter-to-draft (D=T) ratio, mooring system stiffness, and mass distribution. For a given wave climate in Northern California, near San Francisco, the heave energy extraction is found to be best for a shallow WEC with a soft mooring system, compared to other systems that were examined. This result assumes a physical limit (cap) on the motion which is related to the significant wave height to draft ratio. Shallow draft designs, however, may experience excessive pitch motions and relatively larger viscous damping. In order to mitigate the pitch response, the pitch radius of gyration should be small and the center of mass should be low. Copyright © 2010 by ASME.

  9. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  10. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    Science.gov (United States)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  11. Light incoherence theory revisited by Heisenberg time-energy uncertainty challenges solar cell optimization

    CERN Document Server

    Herman, Aline; Deparis, Olivier

    2014-01-01

    Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.

  12. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004

    Science.gov (United States)

    Stohl, A.; Andrews, E.; Burkhart, J. F.; Forster, C.; Herber, A.; Hoch, S. W.; Kowal, D.; Lunder, C.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stebel, K.; Stone, R.; StröM, J.; TøRseth, K.; Wehrli, C.; Yttri, K. E.

    2006-11-01

    During summer of 2004, about 2.7 million hectare of boreal forest burned in Alaska, the largest annual area burned on record, and another 3.1 million hectare burned in Canada. This study explores the impact of emissions from these fires on light absorbing aerosol concentration levels, aerosol optical depths (AOD), and albedo at the Arctic stations Barrow (Alaska), Alert (Canada), Summit (Greenland), and Zeppelin/Ny Ålesund on Spitsbergen (Norway). The Lagrangian particle dispersion model FLEXPART was run backward from these sites to identify periods that were influenced by forest fire pollution plumes. It is shown that the fires led to enhanced values of particle light absorption coefficients (σap) at all of these sites. Barrow, about 1000 km away from the fires, was affected by several fire pollution plumes, one leading to spectacularly high 3-hour mean σap values of up to 32 Mm-1, more than the highest values measured in Arctic Haze. AOD measurements for a wavelength of 500 nm saturated but were estimated at above 4-5 units, unprecedented in the station records. Fire plumes were transported through the atmospheric column over Summit continuously for 2 months, during which all measured AOD values were enhanced, with maxima up to 0.4-0.5 units. Equivalent black carbon concentrations at the surface at Summit were up to 600 ng m-3 during two major episodes, and Alert saw at least one event with enhanced σap values. FLEXPART results show that Zeppelin was located in a relatively unaffected part of the Arctic. Nevertheless, there was a 4-day period with daily mean σap > 0.3 Mm-1, the strongest episode of the summer half year, and enhanced AOD values. Elevated concentrations of the highly source-specific compound levoglucosan positively confirmed that biomass burning was the source of the aerosols at Zeppelin. In summary, this paper shows that boreal forest fires can lead to elevated concentrations of light absorbing aerosols throughout the entire Arctic. Enhanced

  13. Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Valeria Castellucci

    2015-04-01

    Full Text Available The power production of the linear generator wave energy converter developed at Uppsala University is affected by variations of mean sea level. The reason is that these variations change the distance between the point absorber located on the surface and the linear generator located on the seabed. This shifts the average position of the translator with respect to the center of the stator, thereby reducing the generator output power. A device mounted on the point absorber that compensates for tides of small range by regulating the length of the connection line between the buoy at the surface and the linear generator has been constructed and tested. This paper describes the electro-mechanical, measurement, communication and control systems installed on the buoy and shows the results obtained before its connection to the generator. The adjustment of the line was achieved through a linear actuator, which shortens the line during low tides and vice versa. The motor that drives the mechanical device was activated remotely via SMS. The measurement system that was mounted on the buoy consisted of current and voltage sensors, accelerometers, strain gauges and inductive and laser sensors. The data collected were transferred via Internet to a Dropbox server. As described within the paper, after the calibration of the sensors, the buoy was assembled and tested in the waters of Lysekil harbor, a few kilometers from the Uppsala University research site. Moreover, the performance of the sensors, the motion of the mechanical device, the power consumption, the current control strategy and the communication system are discussed.

  14. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  15. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S. [University of Kashmir, Srinagar (India); Bhaduri, P.P. [Variable Energy Cyclotron Centre, Kolkata (India); Jahan, H. [Aligarh Muslim University, Aligarh (India); Senger, A. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Adak, R.; Samanta, S. [Bose Institute, Kolkata (India); Prakash, A. [Banaras Hindu University, Varanasi (India); Dey, K. [Gauhati University, Guwahati (India); Lebedev, A. [Institute für Kernphysik, Goethe Universität Frankfurt, Frankfurt (Germany); Kryshen, E. [Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Gatchina (Russian Federation); Chattopadhyay, S., E-mail: sub@vecc.gov.in [Variable Energy Cyclotron Centre, Kolkata (India); Senger, P. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Bhattacharjee, B. [Gauhati University, Guwahati (India); Ghosh, S.K.; Raha, S. [Bose Institute, Kolkata (India); Irfan, M.; Ahmad, N. [Aligarh Muslim University, Aligarh (India); Farooq, M. [University of Kashmir, Srinagar (India); Singh, B. [Banaras Hindu University, Varanasi (India)

    2015-03-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  16. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    Science.gov (United States)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  17. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria

    CERN Document Server

    Huh, Joonsuk; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

    2013-01-01

    Phototrophic organisms such as plants, photosynthetic bacteria and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have multiple functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be amongst the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level we introduce an atomistic model that mimic a complete light-harvesting apparatus of green sulfur bacteria. The model contains about 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the...

  18. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    Science.gov (United States)

    Wade, Bonnie

    As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of

  19. Perovskite semiconductor La(Ni0.75W0.25)O3 nanoparticles for visible-light-absorbing photocatalytic material

    Science.gov (United States)

    Xu, Lei; Xie, Hongde; Pu, Yinfu; Huang, Yanlin; Qin, Lin; Seo, Hyo Jin

    2017-01-01

    La(Ni0.75W0.25)O3 perovskite oxide was prepared via the sol-gel Pechini route. The pure crystalline phase was verified via X-ray diffraction measurements and Rietveld structure refinements. Some measurements were applied to characterize the surface of the nanoparticles such as transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, specific surface area, and X-ray photo-electron spectroscopy measurements. The optical measurement confirmed that this perovskite oxide can absorb the visible light presenting low band energy of 2.41 eV. The d-d allowed transitions in Ni2+-O octahedral have great contributions to the narrow band-gap. The Ni2+-containing perovskite was applied as a photocatalyst showing the desirable photodegradation ability for methylene blue solutions under the excitation of visible-light. The photocatalysis activities were discussed in the relationship with its special perovskite-type structure such as the NiO6 color centers and multivalent cation ions etc.

  20. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  1. A COMPARISON OF ENERGY ABSORBING CAPABILITIES OF PAPER AND STEEL STRUCTURES SUBJECTED TO PROGRESSIVE FAILURE UNDER FREE FALLING OBJECTS

    Directory of Open Access Journals (Sweden)

    QASIM H. SHAH

    2007-08-01

    Full Text Available An inverted paper cup of 0.26 mm thickness was subjected to deformation under a freely falling steel ball at a velocity of 2.77 m/sec. The deformed features of the paper cup were measured. The dynamic loading event was simulated using piecewise linear plasticity material model in LSDYNA. Deformed shape of the paper cup in finite element model matched closely with experimental results with ignorable small discrepancies. The paper cup was able to absorb all the kinetic energy of the falling steel ball for the above mentioned falling speed and the ball did not bounce out of the cavity generated by the impact. In LSDYNA a similar size steel cup was also subjected to a freely falling ball with same speed and the energy absorbed was compared to the energy absorbed by the paper cup. It was found that under similar conditions a paper cup would undergo a significant progressive failure and absorb all the energy of the falling object.

  2. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  3. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  4. A Computational Approach for Model Update of an LS-DYNA Energy Absorbing Cell

    Science.gov (United States)

    Horta, Lucas G.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    NASA and its contractors are working on structural concepts for absorbing impact energy of aerospace vehicles. Recently, concepts in the form of multi-cell honeycomb-like structures designed to crush under load have been investigated for both space and aeronautics applications. Efforts to understand these concepts are progressing from tests of individual cells to tests of systems with hundreds of cells. Because of fabrication irregularities, geometry irregularities, and material properties uncertainties, the problem of reconciling analytical models, in particular LS-DYNA models, with experimental data is a challenge. A first look at the correlation results between single cell load/deflection data with LS-DYNA predictions showed problems which prompted additional work in this area. This paper describes a computational approach that uses analysis of variance, deterministic sampling techniques, response surface modeling, and genetic optimization to reconcile test with analysis results. Analysis of variance provides a screening technique for selection of critical parameters used when reconciling test with analysis. In this study, complete ignorance of the parameter distribution is assumed and, therefore, the value of any parameter within the range that is computed using the optimization procedure is considered to be equally likely. Mean values from tests are matched against LS-DYNA solutions by minimizing the square error using a genetic optimization. The paper presents the computational methodology along with results obtained using this approach.

  5. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    Science.gov (United States)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  6. A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics

    KAUST Repository

    Kirkpatrick, James

    2012-01-09

    The synthesis and optimization of new photovoltaic donor polymers is a time-consuming process. Computer-based molecular simulations can narrow the scope of materials choice to the most promising ones, by identifying materials with desirable energy levels and absorption energies. In this paper, such a retrospective analysis is presented of a series of fused aromatic push-pull copolymers. It is demonstrated that molecular calculations do indeed provide good estimates of the absorption energies measured by UV-vis spectroscopy and of the ionization potentials measured by photoelectron spectroscopy in air. Comparing measured photovoltaic performance of the polymer series to the trend in efficiencies predicted by computation confirms the validity of this approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. HELIX: The High Energy Light Isotope Experiment

    Science.gov (United States)

    Wakely, Scott

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  8. Energy Efficient LED Spectrally Matched Smart Lighting Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research has teamed with the University of Southern Mississippi to develop a novel energy efficient smart light system. Smart lighting adds an...

  9. Vapor shielding models and the energy absorbed by divertor targets during transient events

    Energy Technology Data Exchange (ETDEWEB)

    Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Pshenov, A. A.; Eksaeva, E. A.; Marenkov, E. D.; Krasheninnikov, S. I. [National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation)

    2016-02-15

    The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shielding is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding

  10. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  11. Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; MA Feng-wang

    2015-01-01

    To understand how drought stress affects CO2 assimilation and energy partitioning in apple (Malus domestica Borkh.), we investigated photosynthesis and photo-protective mechanisms when irrigation was withheld from potted Fuji trees. As the drought progressing, soil relative water content (SRWC) decreased from 87 to 24%in 15 d;this combined the decreasing in leaf relative water content (LRWC), net photosynthesis rate (Pn) and stomatal conductance (Gs). However, the concen-trations of chlorophyl s (Chl) remained unchanged while Pn values were declining. Photochemistry reactions were slightly down-regulated only under severe drought. Rubisco activity was signiifcantly decreased as drought conditions became more severe. The actual efifciency of photosystem II (ΦPSI ) was diminished as drought became more intense. Consequently, xanthophyl-regulated dissipation of thermal energy was greatly enhanced. Simultaneously, the ratio ofΦPSI to the quantum yield of carbon metabolism, which is measured under non-photorespiratory conditions, increased in paral el with drought severity. Our results indicate that, under progressive drought stress, the reduction in photosynthesis in apple leaves can be attributed primarily to stomatal limitations and the inhibited capacity for CO2 ifxation. Xanthophyl cycle-dependent ther-mal dissipation and the Mehler reaction are the most important pathways for dispersing excess energy from apple leaves during periods of drought stress.

  12. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    Science.gov (United States)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  13. Stimulated Raman scattering of light absorbing media excited by ultrashort laser pulses

    Science.gov (United States)

    Marchevskiy, F. N.; Strizhevskiy, V. L.; Feshchenko, V. P.

    1985-01-01

    The fluctuation-dissipation theory of spontaneous and stimulated vibration Raman scattering is worked out taking into account the dissipation losses at frequencies of laser pump and scattering radiation. General expressions are found, which describe the absolute intensities and shape, energy and duration of scattered pulses in terms of the parameters of the medium and the the input laser pulses. The general regularities are analyzed in detail. Conditions are found for the realization of spontaneous or stimulated Raman scattering and its dependence on absorption, pulse duration and other parameters of the problem.

  14. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics – Part 1: Surface tension depression and light-absorbing products

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2009-07-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The light-absorbing products form on the order of minutes, and solution composition continues to change over several days. The results suggest an aldol condensation pathway involving the participation of the ammonium ion. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit surface tension depression. Methylglyoxal uptake could potentially change the optical properties, climate effects, and heterogeneous chemistry of the seed aerosol over its lifetime.

  15. Multireference excitation energies for bacteriochlorophylls A within light harvesting system 2

    DEFF Research Database (Denmark)

    Anda, Andre; Hansen, Thorsten; De Vico, Luca

    2016-01-01

    of the excitation energy. Increasing the torsion of the acetyl moiety raises the excited state energy, resulting in a blue shift of the excitation energy. The obtained results mark a giant leap for multiconfigurational multireference quantum chemical methods in the photochemistry of biological systems, which can......Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range...... of parameters to reproduce the spectra. Here, we present a method that can determine key parameters to chemical accuracy. These will eliminate free variables in the modeling, thus reducing the problem. Using MS-RASPT2/RASSCF calculations, we compute excitation energies and transition dipole moments of all...

  16. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm.

    Science.gov (United States)

    da Silveira Petruci, João Flavio; Liebetanz, Michael G; Cardoso, Arnaldo Alves; Hauser, Peter C

    2017-08-25

    In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry.

    Science.gov (United States)

    Filimonova, Tatyana A; Volkov, Dmitry S; Proskurnin, Mikhail A; Pelivanov, Ivan M

    2013-12-01

    An optoacoustic technique for solutions of strongly light-absorbing analytes at 0.1-0.01 mol l(-1) is proposed. The technique is based on the wide-band forward mode detection of temporal profiles of laser-generated ultrasonic pulses (optoacoustic signals). The leading edge of the signal repeats the distribution of the laser fluence in the medium, which makes it possible to determine its optical absorption and investigate its dynamics during a reaction. The range of light-absorption coefficients starts from 1 to 5 and reaches 10(4) to 10(5) cm(-1). The determination of iron(II) as ferroin shows the possibility of probing 0.1 mol l(-1) of iron(II), which was not previously achieved for this reaction by optical spectroscopy. To further prove the concept, kinetic measurements for ferroin decomposition at the level of 0.1 mol l(-1) and at high pHs are performed. The results are compared with spectrophotometry at lower concentrations and show good reproducibility and accuracy of kinetic constants.

  18. Identification of light absorbing oligomers from glyoxal and methylglyoxal aqueous processing: a comparative study at the molecular level

    Science.gov (United States)

    Finessi, Emanuela; Hamilton, Jacqueline; Rickard, Andrew; Baeza-Romero, Maria; Healy, Robert; Peppe, Salvatore; Adams, Tom; Daniels, Mark; Ball, Stephen; Goodall, Iain; Monks, Paul; Borras, Esther; Munoz, Amalia

    2014-05-01

    Numerous studies point to the reactive uptake of gaseous low molecular weight carbonyls onto atmospheric waters (clouds/fog droplets and wet aerosols) as an important SOA formation route not yet included in current models. However, the evaluation of these processes is challenging because water provides a medium for a complex array of reactions to take place such as self-oligomerization, aldol condensation and Maillard-type browning reactions in the presence of ammonium salts. In addition to adding to SOA mass, aqueous chemistry products have been shown to include light absorbing, surface-active and high molecular weight oligomeric species, and can therefore affect climatically relevant aerosol properties such as light absorption and hygroscopicity. Glyoxal (GLY) and methylglyoxal (MGLY) are the gaseous carbonyls that have perhaps received the most attention to date owing to their ubiquity, abundance and reactivity in water, with the majority of studies focussing on bulk physical properties. However, very little is known at the molecular level, in particular for MGLY, and the relative potential of these species as aqueous SOA precursors in ambient air is still unclear. We have conducted experiments with both laboratory solutions and chamber-generated particles to simulate the aqueous processing of GLY and MGLY with ammonium sulphate (AS) under typical atmospheric conditions and investigated their respective aging products. Both high performance liquid chromatography coupled with UV-Vis detection and ion trap mass spectrometry (HPLC-DAD-MSn) and high resolution mass spectrometry (FTICRMS) have been used for molecular identification purposes. Comprehensive gas chromatography with nitrogen chemiluminescence detection (GCxGC-NCD) has been applied for the first time to these systems, revealing a surprisingly high number of nitrogen-containing organics (ONs), with a large extent of polarities. GCxGC-NCD proved to be a valuable tool to determine overall amount and rates of

  19. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  20. A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform

    Directory of Open Access Journals (Sweden)

    Patricia Krecl

    2014-04-01

    Full Text Available Carbon-containing particles are associated with adverse health effects, and their light-absorbing fractions were recently estimated to be the second largest contributor to global warming after carbon dioxide. Knowledge on the spatiotemporal variability of light-absorbing carbon (LAC particles in urban areas is relevant for air quality management and to better diagnose the population exposure to these particles. This work reports on the first mobile LAC mass concentrations (MLAC measured on-board four taxis in the Stockholm metropolitan area in November 2011. On average, concentrations were higher and more variable during daytime (median of 1.9 µg m−3 and median absolute deviation of 2.3 µg m−3. Night-time (21:00–05:00 measurements were very similar for all road types and also compared to levels monitored at an urban background fixed site (median of 0.9 µg m−3. We observed a large intra-urban variability in concentrations, with maxima levels inside road tunnels (median and 95th percentile of 7.5 and 40.1 µg m−3, respectively. Highways presented the second ranked concentrations (median and 95th percentile of 3.2 and 9.7 µg m−3, respectively associated with highest vehicle speed (median of 65 km h−1, traffic rates (median of 62 000 vehicles day−1 and 1500 vehicles h−1 and diesel vehicles share (7–10% when compared to main roads, canyon streets, and local roads. Multiple regression modelling identified hourly traffic rate and MLAC concentration measured at an urban background site as the best predictors of on-road concentrations, but explained only 25% of the observed variability. This feasibility study proved to be a time- and cost-effective approach to map out ambient MLAC concentrations in Stockholm and more research is required to represent the distribution in other periods of the year. Simultaneous monitoring of other pollutants, closely correlated to MLAC levels in traffic-polluted environments, and including video

  1. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  2. Impact Testing and Simulation of a Crashworthy Composite Fuselage Section with Energy-Absorbing Seats and Dummies

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    A 25-ft/s vertical drop test of a composite fuselage section was conducted with two energy-absorbing seats occupied by anthropomorphic dummies to evaluate the crashworthy features of the fuselage section and to determine its interaction with the seats and dummies. The 5-ft diameter fuselage section consists of a stiff structural floor and an energy-absorbing subfloor constructed of Rohacel foam blocks. The experimental data from this test were analyzed and correlated with predictions from a crash simulation developed using the nonlinear, explicit transient dynamic computer code, MSC.Dytran. The anthropomorphic dummies were simulated using the Articulated Total Body (ATB) code, which is integrated into MSC.Dytran.

  3. Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distribution in Photoacoustic Computed Tomography: A numerical Investigation

    CERN Document Server

    Huang, Chao; Schoonover, Robert W; Wang, Lihong V; Anastasio, Mark A

    2015-01-01

    Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that seeks to reconstruct an estimate of the absorbed optical energy density within an object. Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), which can result in image artifacts when acoustic aberrations are significant. It has been demonstrated that incorporating knowledge of an object's SOS distribution into a PACT image reconstruction method can improve image quality. However, in many cases, the SOS distribution cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, certain information regarding an object's SOS distribution is encoded in the PACT measurement data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy density ...

  4. Intermediate energy light sources and the SSRF project

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Advances in insertion device technology, top-up operation and superconducting RF cavities make it possible to generate high brightness X-ray with intermediate energy light sources, which leads a new trend in designing and constructing third generation light sources around the world. The development status and the remarkable technical features of intermediate energy light sources are reviewed, and the main SSRF properties are described in this paper.

  5. Living Lightly: Energy Conservation in Housing.

    Science.gov (United States)

    Bender, Tom

    This publication contains a series of papers which promote the concepts of energy conservation and offer safe and convenient ways of handling all aspects of our lives affected by energy without having to depend in any way on fossil fuels or nuclear power. These changes, which can be brought about in homes and in energy flows affected by the…

  6. Light Absorbing Impurities in Snow in the Western US: Partitioning Radiative Impacts from Mineral Dust and Black Carbon

    Science.gov (United States)

    Skiles, M.; Painter, T. H.

    2013-12-01

    Melt of annual mountain snow cover dominates water resources in the western United States. Recent studies in the Upper Colorado River Basin have shown that radiative forcing by light absorbing impurities (LAIs) in mountain snow cover has accelerated snowmelt, impacted runoff timing and magnitude, and reduced annual flow. However, these studies have assumed that LAIs are primarily mineral dust, and have not quantified the radiative contribution by carbonaceous particles from bio and fossil fuel (industrial and urban) sources. Here we quantify both dust and black carbon (BC) content and assess the unique BC radiative forcing contribution in this dust dominated impurity regime using a suite of advanced field, lab, and modeling techniques. Daily measurements of surface spectral albedo and optical grain radius were collected with a field spectrometer over the 2013 spring melt season in Senator Beck Basin Study Area in the San Juan Mountains, CO, Southwestern US. Coincident snow samples were collected daily and processed for; (1) dust and BC content (2) impurity particle size, and (3) impurity optical properties. Measured snow and impurity properties were then used to drive the Snow, Ice, and Aerosol Radiation (SNICAR) model. Partitioning the unique radiative contribution from each constituents is achieved through unique model runs for clean snow, dust only, and BC only.

  7. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  8. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption

    Directory of Open Access Journals (Sweden)

    M. Gyawali

    2009-10-01

    Full Text Available Hundreds of wildfires in Northern California were sparked by lightning during the summer of 2008, resulting in downwind smoke for the months of June and July. Comparisons are reported for aerosol optics measurements in Reno, Nevada made during the very smoky month of July and the relatively clean month of August. Photoacoustic instruments equipped with integrating nephelometers were used to measure aerosol light scattering and absorption coefficients at wavelengths of 405 nm and 870 nm, revealing a strong variation of aerosol light absorption with wavelength. Insight on fuels burned is gleaned from comparison of Ångström exponents of absorption (AEA versus single scattering albedo (SSA of the ambient measurements with laboratory biomass smoke measurements for many fuels. Measurements during the month of August, which were largely unaffected by fire smoke, exhibit surprisingly low AEA for aerosol light absorption when the SSA is highest, again likely as a consequence of the underappreciated wavelength dependence of aerosol light absorption by particles coated with non-absorbing organic and inorganic matter. Coated sphere calculations were used to show that AEA as large as 1.6 are possible for wood smoke even with non-absorbing organic coatings on black carbon cores, suggesting care be exercised when diagnosing AEA.

  9. Absorbing Charged Rotating Metric in de Sitter Space in Advanced Time Coordinates and the Related Energy-Momentum Tensor

    Institute of Scientific and Technical Information of China (English)

    XU Dian-Yah

    2000-01-01

    Absorbing charged rotating (ACR) metric in de Sitter space and related energy-momentum tensor are derived.The ACR metric is very simple in advanced time coordinates. The ACR metric involves 8 independent parameters which are divided into two classes: (1) the mass M, charge Q, angular momentum per unit mass a, and cosmological constant A; (2) M/ v, 2M/ v2, Q/ v, and 2Q/ v2. The non-stationary part of the energy-momentum tensor is positive definite everywhere.

  10. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A., E-mail: camila_fmedica@hotmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  11. Energy efficiency of lighting installations: Software application and experimental validation

    Directory of Open Access Journals (Sweden)

    J.A. Lobão

    2015-11-01

    Full Text Available The rational use of energy and energy-efficient environmental public street lighting is an important topic. In the design of new public lighting installations, national regulations containing energy-efficient guidelines are already used. Nevertheless, either in new installations or in reconstructions of existing lighting, designers do not generally consider all the available means to save energy. In installations of street lighting, energy consumption can be reduced by reducing the losses in the conductors, associated with the efficiency of the equipment, allowing better use of the available energy. The losses in the conductors must be analysed in conjunction with all the loads that contribute to the current in the sections of the installed street lighting. When opting for more efficient lamps and luminaires or lighting control systems, the current decreases in the sections covered with the most significant power loss due to proportionality with the square of the current. This decrease, often forgotten, is considered in this work in the investment analysis of efficiency and sustainable street lighting via simulation and experimental results. This analysis, combined with the features and operating parameters of the electrical installation, accounts for all the gains that can make a difference in the choice of efficient street lighting.

  12. New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2004-10-01

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

  13. Enhancing the light absorbance of polymer solar cells by introducing pulsed laser-deposited CuIn0.8Ga0.2Se2 nanoparticles

    OpenAIRE

    Zhao, Yu; LI, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu,Ning

    2014-01-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit cu...

  14. Constraints on the Extragalactic Background Light from Very High Energy Gamma-Ray Observations of Blazars

    OpenAIRE

    Finke, Justin D.; Razzaque, Soebur

    2009-01-01

    The extragalactic background light (EBL) from the infrared to the ultraviolet is difficult to measure directly, but can be constrained with a variety of methods. EBL photons absorb gamma-rays from distant blazars, allowing one to use blazar spectra from atmospheric Cherenkov telescopes (ACTs) to put upper limits on the EBL by assuming a blazar source spectrum. Here we apply a simple technique, similar to the one developed by Schroedter (2005), to the most recent very-high energy (VHE) gamma-r...

  15. Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots.

    Science.gov (United States)

    Werwie, Mara; Xu, Xiangxing; Haase, Mathias; Basché, Thomas; Paulsen, Harald

    2012-04-03

    Light-harvesting complex (LHCII) of the photosynthetic apparatus in plants is attached to type-II core-shell CdTe/CdSe/ZnS nanocrystals (quantum dots, QD) exhibiting an absorption band at 710 nm and carrying a dihydrolipoic acid coating for water solubility. LHCII stays functional upon binding to the QD surface and enhances the light utilization of the QDs significantly, similar to its light-harvesting function in photosynthesis. Electronic excitation energy transfer of about 50% efficiency is shown by donor (LHCII) fluorescence quenching as well as sensitized acceptor (QD) emission and corroborated by time-resolved fluorescence measurements. The energy transfer efficiency is commensurable with the expected efficiency calculated according to Förster theory on the basis of the estimated donor-acceptor separation. Light harvesting is particularly efficient in the red spectral domain where QD absorption is relatively low. Excitation over the entire visible spectrum is further improved by complementing the biological pigments in LHCII with a dye attached to the apoprotein; the dye has been chosen to absorb in the "green gap" of the LHCII absorption spectrum and transfers its excitation energy ultimately to QD. This is the first report of a biological light-harvesting complex serving an inorganic semiconductor nanocrystal. Due to the charge separation between the core and the shell in type-II QDs the presented LHCII-QD hybrid complexes are potentially interesting for sensitized charge-transfer and photovoltaic applications.

  16. Timepix detector energy calibration using synchrotron light

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Kazuyoshi; Vicente, Mateus, E-mail: mateus_vicente@live.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Benoit, Mathieu [CERN (France)

    2014-07-01

    The Timepix is a hybrid pixelated detector. It is able to measure the energy of an incident particle on its sensor and provide the particle position within its matrix of 256x256 pixels 55 μm{sup 2} simultaneously. It has direct applications in high energy physics and medical physics. The energy collected by the sensor is translated into an analog electrical pulse and then converted into a digital signal for the readout. To relate in a precise way the digital signal with the actual values of energy, an energy calibration is required. In this work a method of calibration and analysis for the calibration of the detector will be presented. (author)

  17. Energy saving in tunnel entrance lighting.

    NARCIS (Netherlands)

    Schreuder, D.A. & Swart, L.

    1993-01-01

    Tunnel entrances may present themselves during the day as a "black hole" in which no details can be perceived. In order to ensure safe and comfortable driving at high speeds, the entrance zone must be lit to a high luminance level. Modern tunnel lighting technology is focused on two aspects: (1

  18. Basic Energy Conservation and Management Part 1: Looking at Lighting

    Science.gov (United States)

    Krueger, Glenn

    2012-01-01

    Reducing school district energy expenditures has become a universal goal. However, school board members, superintendents, and directors of buildings and grounds are often unaware of the many options available to conserve energy. School energy conservation used to be relatively simple: turn off the lights and turn down the heat in the winter and…

  19. Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays.

    Science.gov (United States)

    Withington, Stafford; Thomas, Christopher N

    2009-06-01

    Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector's optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.

  20. The Silting-Up Prevention in the Geothermal Absorbent Openings of Geothermal Energy Plant Pyrzyce

    Directory of Open Access Journals (Sweden)

    Noga Bogdan

    2014-06-01

    Full Text Available The paper presents precipitation results from cold thermal water deposits that are the main cause of clogging in absorbent geothermal wells and borehole areas. As a result of physical and chemical analysis, laboratory tests and observation of the operation of a geothermal installation, a new method was developed to prevent the precipitation of sludge from cooled thermal water. The method being a modification of soft acidising was tentatively named as a super soft acidising method

  1. A review of measurement and modeling of Light-absorbing Particles in Snow and Ice and their climatic and hydrological impact

    Science.gov (United States)

    Qian, Y.; Doherty, S. J.; Lau, W. K. M.; Ming, J.; Wang, H.; Warren, S. G.; Yasunari, T. J.; Zhang, R.; Flanner, M.

    2015-12-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance , which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this talk, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  2. Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System.

    Science.gov (United States)

    Suram, Santosh K; Xue, Yexiang; Bai, Junwen; Le Bras, Ronan; Rappazzo, Brendan; Bernstein, Richard; Bjorck, Johan; Zhou, Lan; van Dover, R Bruce; Gomes, Carla P; Gregoire, John M

    2017-01-09

    Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs' phase rule into the algorithm, physically meaningful phase maps are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V-Mn-Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV2O6. The open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.

  3. Multireference Excitation Energies for Bacteriochlorophylls A within Light Harvesting System 2.

    Science.gov (United States)

    Anda, André; Hansen, Thorsten; De Vico, Luca

    2016-03-08

    Light-harvesting system 2 (LH2) of purple bacteria is one of the most popular antenna complexes used to study Nature's way of collecting and channeling solar energy. The dynamics of the absorbed energy is probed by ultrafast spectroscopy. Simulation of these experiments relies on fitting a range of parameters to reproduce the spectra. Here, we present a method that can determine key parameters to chemical accuracy. These will eliminate free variables in the modeling, thus reducing the problem. Using MS-RASPT2/RASSCF calculations, we compute excitation energies and transition dipole moments of all bacteriochlorophylls in LH2. We find that the excitation energies vary among the bacteriochlorophyll monomers and that they are regulated by the curvature of the macrocycle ring and the dihedral angle of an acetyl moiety. Increasing the curvature lifts the ground state energy, which causes a red shift of the excitation energy. Increasing the torsion of the acetyl moiety raises the excited state energy, resulting in a blue shift of the excitation energy. The obtained results mark a giant leap for multiconfigurational multireference quantum chemical methods in the photochemistry of biological systems, which can prove instrumental in exposing the underlying physics of photosynthetic light-harvesting.

  4. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.

    Science.gov (United States)

    Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

    2014-02-05

    Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales.

  5. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    Science.gov (United States)

    Baroutaji, A.; Olabi, A. G.

    2010-06-01

    Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2) on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1) and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2).

  6. The effect of the elliptical ratio on the tubular energy absorber subjected to lateral loading under quasistatic conditions

    Directory of Open Access Journals (Sweden)

    Olabi A.G.

    2010-06-01

    Full Text Available Tubular systems are proposed to be used as energy absorber because they are cheap and easy to manufacture; recently some researchers use the elliptical tube as energy absorber. In this work, the influence of elliptical ratio (r =D1/D2 on energy absorption capability and load carrying capacity and stress of mild steel elliptical tubes has been investigated both experimentally and numerically, the experimental analyses conducted by using Zwick Type BT1-FB050TN testing instrument. This machine is universal instrument for performing tensile test and compression test, Fig (1 and bending test and it is consider as an important machine for measuring the mechanical properties of materials and structures. The loading frame consist of two vertical lead screws, a moving crosshead and an upper and lower bearing plate which bears the load of the lead screws. The maximum capacity of the loading frame attached to the table mounted unit is 50KN In this study a velocity between 310mm/min was applied to the moving component to ensure the quasistatic conditions whereas velocities between 0.5mm/min and 15 mm/min have been used by many researchers to simulate the quasi-static lateral compression of tubes between various indenters [1-2]. In addition to the experimental work, computational method using ANSYS is used to predict the loading and response of such tubes where series of models was performed with elliptical ratios ranging from 0.5 to 1.5. Comparison of numerical and experimental forcedeflection response is presented. It has been found that with changing the elliptical ratio of the tube the loaddeflection curve change and this leads to change the energy absorbed by tube, the changing of the geometrical shape of the tube leads to change the volume of this tube and hence the mass. By reducing the elliptical ratio to 0.5 the tube will absorb 43.3% more energy and the system will gain 102% more in terms of specific energy, fig (2.

  7. Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice-ocean system

    Science.gov (United States)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schweiger, Axel

    2007-03-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m-2. There was considerable interannual variability, with a range of 826 to 1044 MJ m-2. The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  8. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    Science.gov (United States)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  9. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    Science.gov (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  10. Influence of Striking Edge Radius (2 mm versus 8 mm) on Instrumented Charpy Data and Absorbed Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-08-15

    The most commonly used test standards for performing Charpy impact tests (ISO 148 and ASTM E 23) envisage the use of strikers having different radii of the striking edge, i.e. 2 mm (ISO) and 8 mm (ASTM). The effect of striker geometry on Charpy results was extensively studied in the past in terms of absorbed energy measured by the machine encoder, but few investigations are available on the influence of striker configuration on the results of instrumented Charpy tests (characteristic forces, displacements and integrated energy). In this paper, these effects are investigated based on the analysis of published results from three interlaboratory studies and some unpublished Charpy data obtained at SCK-CEN. The instrumented variables which are the most sensitive to the radius of the striking edge are the maximum force and its corresponding displacement, with 8mm-strikers providing systematically higher values. Absorbed energies, obtained both from the instrumented trace and from the pendulum encoder, are almost insensitive to the type of striker up to 200 J. For higher energy levels, the values obtained from 8mm strikers become progressively larger. Data scatter is generally higher for 2mm-strikers.

  11. Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    David L. Andrews

    2011-12-01

    Full Text Available Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon—or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics.

  12. Energy flow lines as light paths a didactical analysis

    CERN Document Server

    Horn, M E

    2006-01-01

    Analyses of interviews with secondary school students about their conceptions of light at the University of Potsdam indicate that numerous students have a deterministic view of light. With regard to these results the model of energy flow lines, which has been discussed recently in the didactical literature, is of special interest. Following this model, light is presumed to move along energy flow lines as trajectories. In an analysis of the model of energy flow lines four didactical dimensions (didactical content, internal structure, present-day relevance and future significance) are investigated. It can be shown that a discussion of this model in physics at school can increase the meta-conceptional knowledge of the students about the models of light. On the other hand, this can promote deterministic conceptions and the Bohm interpretation of quantum mechanics. But the question remains: Should the nature of light really be described as deterministic?

  13. Energy Efficient LED Spectrally Matched Smart Lighting Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research and the University of Houston Clear Lake have teamed to develop a widely extensible, affordable, energy efficient, smart lighting...

  14. Single-atom electron energy loss spectroscopy of light elements

    National Research Council Canada - National Science Library

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    ... scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons...

  15. Forster Energy Transfer Theory as Reflected in the Structures of Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Univ. of Illinois, Urbana-Champaign, IL (United States); Strumpfer, Johan [Univ. of Illinois, Urbana-Champaign, IL (United States); Hsin, Jen [Univ. of Illinois, Urbana-Champaign, IL (United States); Chandler, Danielle [Univ. of Illinois, Urbana-Champaign, IL (United States); Scheuring, Simon [Institut National de la Sante Et Recherche Medicale, Paris (France); Hunter, C. Neil [Univ. of Sheffield (United Kingdom); Schulten, Klaus [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2011-02-22

    Förster's theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster's energy transfer formula, as used widely today in many fields of science, is also derived.

  16. Saving energy by overriding automatic lighting control: A case study

    NARCIS (Netherlands)

    Lelkens, A.

    2011-01-01

    Modern office buildings are often equipped with automatic systems that turn on the lights if somebody enters a room and turn them off when everybody has left the room. This ensures that users do not leave the lights on during the night and thus avoids wasting energy. For cost reasons, most of these

  17. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  18. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    Directory of Open Access Journals (Sweden)

    Saeid Nikafshar

    2017-02-01

    Full Text Available Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM imaging. Additionally, the glass transition temperatures (Tg before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light.

  19. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    Science.gov (United States)

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  20. Distortion of pulse height spectra due to absorbers in the measurement of low-energy beta-rays with a silicon detector

    CERN Document Server

    Yamamoto, H; Norimura, T; Katase, A

    2002-01-01

    In measurement of beta-rays from sup 1 sup 4 C with a silicon semiconductor detector, pulse height spectra are observed to change by insertion of absorbers between the source and the detector. An obvious broad peak appears in the spectra by the insertion. An increase in the absorber thickness reduces the peak height, and shifts the peak position to the higher energy side in the spectra. On the other hand, the increase in the distance between the source and the absorber also reduces the peak height, but does not move the position of the peak. The absorption curve derived from these results shows its particular shape corresponding to the respective position of the absorber. Therefore, the distortion of the pulse height spectrum for low-energy beta-rays depends not only on the thickness of the absorber but also on its position between the source and the detector. (author)

  1. Direct observational evidence of the influence of absorbing aerosols on surface energy partitioning during the monsoon onset period over Kanpur

    Science.gov (United States)

    Tripathi, S. N.; Sarangi, C.

    2016-12-01

    Detailed understanding of the radiative impact of ambient aerosols on land-atmosphere energy interactions during the onset period over the Indian summer monsoon region (ISMR) is essential for improving spatiotemporal prediction of the Indian summer monsoon. Transportation of air masses influenced by biomass burning outbreaks in the Himalayan foothills to Kanpur, located in ISMR, during May 2016 provides a unique opportunity to investigate the influence of absorbing aerosols on the Bowen ratio. Collocated half hourly observations of aerosol properties, surface energy balance and fluxes and carbon dioxide (CO2) fluxes over Kanpur under clear sky conditions were used. During this period, increase in aerosol optical depth (AOD) was associated with decrease in single scattering albedo and increase in near surface PM2.5 concentrations indicating that the increase in columnar aerosol loading was primarily due to increase in absorbing aerosols near the surface. Our results show that the net radiation (NR) decreases by 130 Wm-2 per unit increase in AOD at the surface, most of which is due to interactions of aerosols with incoming shortwave radiation. Comparison of observed Bowen ratio for low- and high AOD scenarios illustrates that the increase in aerosol is associated with a reduction in the Bowen ratio for all values of NR. The decrease in sensible heat fluxes relative to the net radiation (SH/NR) per unit increase in AOD is 50 % during midday. We found that aerosol-induced stability in near surface temperature gradient suppresses energy dissipation by the sensible heat flux. Further, relative latent heat flux was found to increase 25 % per unit increase in AOD, mainly due to enhanced photosynthesis as a function of a greater fraction of diffuse radiation. This is evident from the more negative CO2 flux with AOD. Thus, this study provides the first observational evidence of the influence of absorbing aerosols on the Bowen ratio over this region of climatic importance.

  2. Implications of light energy on food quality and packaging selection.

    Science.gov (United States)

    Duncan, Susan E; Chang, Hao-Hsun

    2012-01-01

    Light energy in the ultraviolet and visible light regions plays a critical role in overall food quality, leading to various degradation and oxidation reactions. Food degradation and oxidation result in the destruction of nutrients and bioactive compounds, the formation of off odors and flavors, the loss of food color, and the formation of toxic substances. Food compounds are sensitive to various light wavelengths. Understanding the effect that specific light wavelengths have on food compounds will allow the development of novel food packaging materials that block the most damaging light wavelengths to photostability of specific food compounds. Future research should focus more specifically on the effect of specific light wavelengths on the quality of specific food products, as there is limited published information on this particular topic. This information also can be directly related to the selection of food packaging materials to retain both high quality and visual clarity of food products exposed to light.

  3. Experimental evidence of an incomplete thermalization of the energy in an x-ray microcalorimeter with a TaAu absorber.

    Science.gov (United States)

    Perinati, E; Barbera, M; Varisco, S; Silver, E; Beeman, J; Pigot, C

    2008-05-01

    We have conducted an experimental test at our XACT facility using an x-ray microcalorimeter with TaAu absorber and neutron transmutation doped germanium thermal sensor. The test was aimed at measuring the percentage of energy effectively thermalized after absorption of x-ray photons in superconducting tantalum. Moreover, in general, possible formation of long living quasiparticles implies that by using a superconducting absorber, a fraction of the deposited energy could not be thermalized on the useful time scale of the thermal sensor. To investigate this scenario, we exploited an absorber made of gold, where no energy trapping is expected, with a small piece of superconducting tantalum attached on top. We obtained evidence that the thermalization of photons absorbed in tantalum is delayed by energy trapping from quasiparticles. We compare the experimental results with numerical simulations and derive a value for the intrinsic lifetime of quasiparticles.

  4. Selective solar absorbers: A cost effective solution for access to clean energy in rural Africa

    CSIR Research Space (South Africa)

    Katumba, G

    2008-11-01

    Full Text Available In this present era of global energy crisis there is a greater need to turn to renewable, cost effective and sustainable energy resources. In rural Africa, in particular, the demand for domestic energy is even higher. This is exacerbated...

  5. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  6. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A' aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  7. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    Science.gov (United States)

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  8. Solid-state lighting: an energy-economics perspective

    Science.gov (United States)

    Tsao, J. Y.; Saunders, H. D.; Creighton, J. R.; Coltrin, M. E.; Simmons, J. A.

    2010-09-01

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  9. Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan

    Science.gov (United States)

    Adachi, Kouji; Moteki, Nobuhiro; Kondo, Yutaka; Igarashi, Yasuhito

    2016-08-01

    Light-absorbing atmospheric aerosols such as carbonaceous particles influence the climate through absorbing sunlight. The mixing states of these aerosol particles affect their optical properties. This study examines the changes in the mixing states and abundance of strongly light absorbing carbonaceous particles by using transmission electron microscopy (TEM) and single-particle soot photometer (SP2), as well as of iron oxide particles, in Tokyo, Japan. TEM and SP2 use fundamentally different detection techniques for the same light-absorbing particles. TEM allows characterization of the morphological, chemical, and structural features of individual particles, whereas SP2 optically measures the number, size, and mixing states of black carbon (BC). A comparison of the results obtained using these two techniques indicates that the peaks of high soot (nanosphere soot (ns-soot)) concentration periods agree with those of the BC concentrations determined by SP2 and that the high Fe-bearing particle fraction periods measured by TEM agree with that of high number concentrations of iron oxide particles measured using SP2 during the first half of the observation campaign. The results also show that the changes in the ns-soot/BC mixing states primarily correlate with the air mass sources, wind speed, precipitation, and photochemical processes. Nano-sized, aggregated, iron oxide particles mixed with other particles were commonly observed by using TEM during the high iron oxide particle periods. We conclude that although further quantitative comparison between TEM and SP2 data will be needed, the morphologically and optically defined ns-soot and BC, respectively, are essentially the same substance and that their mixing states are generally consistent across the techniques.

  10. Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    Wave Energy Converters (WECs) extract energy from ocean waves and have the potential to produce a significant contribution of electricity from renewable sources. However, large "WEC farms" or "WEC arrays" are expected to have "WEC array effects", expressed as the impact of the WECs on the wave...... of geometric layout configurations and wave conditions. WEC response, wave induced forces on the WECs and wave field modifications have been measured. Each WEC consists of a buoy with diameter of 0.315 m. Power take-off is modeled by realizing friction based energy dissipation through damping of the WECs...... array effects and for validation and extension of numerical models. This model validation will enable optimization of the geometrical layout of WEC arrays for real applications and reduction of the cost of energy from wave energy systems....

  11. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Y. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Previsic, M. [Re Vision Consulting, Sacramento, CA (United States); Epler, J. [Re Vision Consulting, Sacramento, CA (United States); Lou, J. [Oregon State Univ., Corvallis, OR (United States)

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  12. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  13. Reuse of the Reflective Light and the Recycle Heat Energy in Concentrated Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2013-01-01

    Full Text Available A complex solar unit with microcrystalline silicon solar cells placed around the centered GaAs triple junction solar cell has been proposed and carried out. With the same illumination area and intensity, the total resultant power shows that the excess microcrystalline silicon solar cells increase the total output power by 13.2% by absorbing the reflective light from the surface of optical collimators. Furthermore, reusing the residual heat energy generated from the above-mentioned mechanism helps to increase the output power by around 14.1%. This mechanism provides a simple method to enhance the utility rate of concentrated photovoltaic (CPV system. Such concept can be further applied to the aerospace industry and the development of more efficient CPV solar energy applications.

  14. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  15. High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide.

    Science.gov (United States)

    Zhu, Huimin; Pan, Mingao; Johansson, Malin B; Johansson, Erik M J

    2017-06-22

    Here, a lead-free silver bismuth iodide (AgI/BiI3 ) with a crystal structure with space group R3‾ m is investigated for use in solar cells. Devices based on the silver bismuth iodide deposited from solution on top of TiO2 and the conducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole-transport layer are prepared and the photovoltaic performance is very promising with a power conversion efficiency over 2 %, which is higher than the performance of previously reported bismuth-halide materials for solar cells. Photocurrent generation is observed between 350 and 700 nm, and the maximum external quantum efficiency is around 45 %. The results are compared to solar cells based on the previously reported material AgBi2 I7 , and we observe a clearly higher performance for the devices with the new silver and bismuth iodides composition and different crystal structure. The X-ray diffraction spectrum of the most efficient silver bismuth iodide material shows a hexagonal crystal structure with space group R3‾ m, and from the light absorption spectrum we obtain an indirect band gap energy of 1.62 eV and a direct band gap energy of 1.85 eV. This report shows the possibility for finding new structures of metal-halides efficient in solar cells and points out new directions for further exploration of lead-free metal-halide solar cells. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. METAL-POLYMER SOLAR COLLECTORS WITH MULTICHANNEL ABSORBER FOR MULTIFUNCTIONAL MULTIPURPOSE ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.

    2012-08-01

    Full Text Available New modification of liquid-metal-polymer solar collector for solar heating and for creation of multifunctional energy systems on its basis, particularly solar refrigeration systems was developed. A comparative study of several modifications of polymer collectors involving data of a set of foreign researchers was made and high efficiency of the new elaboration was proven.

  17. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  18. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  19. Controlling Light to Make the Most Energy From the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Dennis; Corcoran, Chris; Eisler, Carissa; Flowers, Cris; Goodman, Matt; Hofmann, Carrie; Sadtler, Bryce

    2013-07-18

    Representing the Light-Material Interactions in Energy Conversion (LMI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of LMI to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency.

  20. Light-harvesting materials: Soft support for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  1. Predicting the Reflectance of Paper Dyed with Ink Mixtures by Describing Light Scattering as a Function of Ink Absorbance

    OpenAIRE

    Rousselle, Fabrice; Hébert, Mathieu; Hersch, Roger

    2010-01-01

    We consider the problem of predicting the spectral reflectance of paper samples immersed in ink mixtures of varying ink concentrations. Relying on an adapted version of the Kubelka-Munk theory, we predict the reflectances of the samples dyed by ink mixtures. We first derive a method to calculate the effective scattering coefficient of an inked paper sample as a function of its absorbance coefficient. Then we learn from a single sample the reduction in ink concentrations when two inks are mixe...

  2. Light's labour's lost - policies for energy-efficient lighting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-29

    When William Shakepeare wrote Love's Labour's Lost he would have used light from tallow candles at a cost (today) of 12,000 British pounds per million-lumen hours. The same amount of light from electric lamps now costs only 2 pounds! But today's low-cost illumination still has a dark side. Globally, lighting consumes more electricity than is produced by either hydro or nuclear power and results in CO2 emissions equivalent to two thirds of the world's cars. A standard incandescent lamp may be much more efficient than a tallow candle, but it is far less efficient than a high-pressure sodium lamp. Were inefficient light sources to be replaced by the equivalent efficient ones, global lighting energy demand would be up to 40% less at a lower overall cost. Larger savings still could be realised through the intelligent use of controls, lighting levels and daylight. But achieving efficient lighting is not just a question of technology; it requires policies to transform current practice. This book documents the broad range of policy measures to stimulate efficient lighting that have already been implemented around the world and suggests new ways these could be strengthened to prevent light's labour's from being lost.

  3. Spider orb webs rely on radial threads to absorb prey kinetic energy.

    Science.gov (United States)

    Sensenig, Andrew T; Lorentz, Kimberly A; Kelly, Sean P; Blackledge, Todd A

    2012-08-07

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.

  4. A METHOD OF DETERMINING THE ABILITY OF THE ARRESTER TO ABSORB ENERGY WITHOUT BREAKING THE HEAT BALANCE

    Directory of Open Access Journals (Sweden)

    S.Yu. Shevchenko

    2015-08-01

    Full Text Available Purpose.The aim of this study is to obtain a method for determining the capacity surge arrester nonlinear absorb energy without breaking the heat balance in modes of long-term application of operating voltage, which allows for analysis of their work in terms of violations as electricity. Methodology. For values of the energy passing through the arrester must be able to determine the current value for the voltage value in the area of leakage current-voltage characteristics. We have carried out calculations of the energy passing everywhere arrester for certain periods of time based on the current-voltage characteristics obtained experimentally. Analysis of the experimental current-voltage characteristics of resistors and literature led to the important conclusion that the dielectric properties of the ceramic varistor affect the value of active power losses in the arrester only when the active component of the leakage current is very small. This is confirmed by the characteristics of different classes of varistor voltage. This property of varistors and surge arresters shows the need to consider how the dielectric and conductive properties of the varistor ceramics in the analysis of work in the area of the arrester leakage current-voltage characteristic. These results demonstrate the need to clarify the mathematical model and the method for determining the energy dissipates in the area of the arrester leakage current CVC with their account. Results. The study, an improved mathematical model for calculating energy affects surge arrester during its working life. The study obtained the method, of evaluation capacity surge arrester, maintains heat balance throughout working life. Based on experimentally obtained current-voltage characteristic of the varistors is defined voltage at which surge arrester starts conducting active current. This allowed to receive specified mathematical model for calculating energy affects surge arrester and develop a method

  5. Leveraging Lighting for Energy Savings: GSA Northwest/Artic Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-01-01

    Case study describes how the Northwest/Arctic Region branch of the General Services Administration (GSA) improved safety and energy efficiency in its Fairbanks Federal Building parking garage used by federal employees, U.S. Marshals, and the District Court. A 74% savings was realized by replacing 220 high-pressure sodium fixtures with 220 light-emitting diode fixtures.

  6. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  7. Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris.

    Science.gov (United States)

    Moulisová, Vladimíra; Luer, Larry; Hoseinkhani, Sajjad; Brotosudarmo, Tatas H P; Collins, Aaron M; Lanzani, Guglielmo; Blankenship, Robert E; Cogdell, Richard J

    2009-12-01

    Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.

  8. Low light adaptation: Energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris

    Energy Technology Data Exchange (ETDEWEB)

    Moulisova, Vladimira; Luer, Larry; Hoseinkhani, Sajjad; Brotosudarmo, Tatas H.P.; Collins, Aaron M.; Lanzani, Guglielmo; Blankenship, R. E.; Cogdell, Richard J

    Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.

  9. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  10. Photochromic Electret: A New Tool for Light Energy Harvesting.

    Science.gov (United States)

    Castagna, Rossella; Garbugli, Michele; Bianco, Andrea; Perissinotto, Stefano; Pariani, Giorgio; Bertarelli, Chiara; Lanzani, Guglielmo

    2012-01-05

    In this paper, a photochromic electret for light energy harvesting is proposed and discussed. Such electret directly converts the photon energy into electric energy thanks to a polarization modulation caused by the photochromic reaction, which leads to a change in dipole moment. Theoretical concepts on which the photochromic electret is based are considered with an estimation of the effectiveness as a function of material properties. Finally, an electret based on a photochromic diarylethene is shown with the photoelectric characterization as a proof of concept device.

  11. Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing

    Science.gov (United States)

    Sliseris, J.; Yan, L.; Kasal, B.

    2017-09-01

    Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.

  12. An iterative approach for modeling the interaction of a partial coherent light distribution with an absorbing photosensitive polymer

    Science.gov (United States)

    Heyvaert, S.; Meuret, Y.; Meulebroeck, W.; Thienpont, H.

    2012-06-01

    The propagation of coherent light through a heterogeneous medium is an often-encountered problem in optics. Analytical solutions, found by solving the appropriate differential equations, usually only exist for simplified and idealized situations limiting their accuracy and applicability. A widely used approach is the Beam Propagation Method in which the electric field is determined by solving the wave equation numerically, making the method time-consuming, a drawback exacerbated by the heterogeneity of the medium. In this work we propose an alternative approach which combines, in an iterative way, optical ray-tracing simulation in the software ASAP™ with numerical simulations in Matlab in order to model the change in light distribution in a medium with anisotropic absorption, exposed to partially coherent light with high irradiance. The medium under study is a photosensitive polymer in which photochemical reactions cause the local absorption to change as a function of the local light fluence. Under continuous illumination, this results in time-varying light distributions throughout the irradiance process. In our model the fluence-absorption interaction is modelled by splitting up each iteration step into two parts. In the first part the optical ray-tracing software determines the new light distribution in the medium using the absorption from the previous iteration step. In the second part, using the new light distribution, the new absorption coefficients are calculated and expressed as a set of polynomials. The evolution of the light distribution and absorption is presented and the change in total transmission is compared with experiments.

  13. MCNP6 fragmentation of light nuclei at intermediate energies

    CERN Document Server

    Mashnik, Stepan G

    2014-01-01

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He4 from energetic nucleons ...

  14. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.

  15. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.

    Science.gov (United States)

    Sliski, Alan; Soares, Christopher; Mitch, Michael G

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.

  16. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  17. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  18. Experimental investigation of space--energy distributions of slow neutrons in water near plane absorber

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A.; El-Konsol, S.; Novikov, A.; Zakharkin, I.; Hamouda, I.

    1973-12-31

    A mechanical neutron time-of-flight spectrometer was used to measure neutron space-energy distributions near a cadmium plate, of 1 mm thickness, immersed in a water-filled tank. The ET-RR-1 reactor served as a neutron source. Measurements of thermal and resonance neutron distributions, using activation technique, were performed in the tank with and without the cadmium plate. Measurements were made of the neutron spectra emerging normally from the plate ( mu = +1). The spectra were measured at the distances 0, 0.25, 0.5, 1.5, 3.0, and 5.0 cm from the plate surface. An exit tube was used to extract the neutron beam from the region of measurement. The required corrections were introduced to the measured spectra. The measurements are discussed and analyzed in the framework of the neutron temperature approximation. An appreciable softening effect is observed for the measured neutron spectra of mu = +1. The temperature for the spectrum at a distance of 0.25 cm from the plate was 41 deg lower than that of the asymptotic spectrum, and the softening effect relaxed and vanished at a distance of 5 cm. (18 figures) (auth)

  19. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  20. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.

  1. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.

  2. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Four and Cycle Five of PEARL program during the period of October 2003 to April 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Four is lumen maintenance at 40% rated life, and parameters tested for Cycle Five are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.

  3. Energy-efficient lighting applications in a supermarket environment

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, D.

    1996-01-01

    This paper describes the application of energy-efficient lighting in a retail environment, specifically a supermarket. It will reveal the general theory behind Big V`s chosen lighting design, and then discuss two examples of the application: one, a retrofit to an existing supermarket; the other, the adaption of the design to a new store. The factors that influence Big V`s lighting design are: (1) the best presentation of product for merchandising purposes, and (2) the lowest operating cost. These two factors can often be mutually exclusive. For merchandising purposes, the best design would make the product `jump off the shelf` at a customer, preferably into his/her shopping cart. Such an arrangement would include high footcandle levels along with a very high color rendering index (CRI). To design only to these requirements would result in very high original and operating costs for the lighting system. However, to base the design on cost considerations alone would result in low light levels at a very low CRI. Since neither option is acceptable, Big V`s design is a compromise, combining the best light quality at a reasonable cost.

  4. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  5. True-time delay by slow light in a semiconductor waveguide with alternating amplifying and absorbing sections

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    Modeling of slow light in a semiconductor waveguide with alternating gain and absorption sections demonstrate an increase in time delay by concatenating segments. A true-time delay is predicted over a large bandwidth at high frequency.......Modeling of slow light in a semiconductor waveguide with alternating gain and absorption sections demonstrate an increase in time delay by concatenating segments. A true-time delay is predicted over a large bandwidth at high frequency....

  6. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    Science.gov (United States)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing

  7. Laser diode structures with a saturable absorber for high-energy picosecond optical pulse generation by combined gain-and Q-switching

    Science.gov (United States)

    Ryvkin, B. S.; Avrutin, E. A.; Kostamovaara, J. E. K.; Kostamovaara, J. T.

    2017-02-01

    The performance of gain-switched Fabry-Perot asymmetric-waveguide semiconductor lasers with a large equivalent spot size and an intracavity saturable absorber was investigated experimentally and theoretically. The laser with a short (˜20 μm) absorber emitted high-energy afterpulse-free optical pulses in a broad range of injection current pulse amplitudes; optical pulses with a peak power of about 35 W and a duration of about 80 ps at half maximum were achieved with a current pulse with an amplitude of just 8 A and a duration of 1.5 ns. Good quality pulsations were observed in a broad range of elevated temperatures. The introduction of a substantially longer absorber section leads to strong spectral broadening of the output without a significant improvement to pulse energy and peak power.

  8. the Use of Solar Light for Energy Saving

    Directory of Open Access Journals (Sweden)

    Antonio Peña-García

    2011-01-01

    Full Text Available Shifting the threshold zone of road tunnels with semitransparent tension structures has shown itself to be an effective way of saving energy in regards to electricity consumption, maintenance, and construction materials used in the electrical lighting, thus lessening negative environmental impacts. Even though the shape of the tension structure has a major influence on energy savings, the optimal type of structure for each tunnel is often difficult to determine, because experiments using real tunnels are extremely expensive. It is thus necessary to find methods of doing this that are both reliable as well as economical. In this research study, three candidate structures were set up at the portal of a scale model of a real tunnel. The energy savings in each case were analyzed and compared. As a result, it was possible to formulate a new equation that calculates the energy savings in the threshold zone.

  9. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508, Japan and Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan); Toshito, Toshiyuki; Omachi, Chihiro; Kibe, Yoshiaki; Hayashi, Kensuke; Shibata, Hiroki; Tanaka, Kenichiro; Nikawa, Eiki; Asai, Kumiko; Shimomura, Akira; Kinou, Hideto; Isoyama, Shigeru; Mizoe, Jun-etsu [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508 (Japan); Fujii, Yusuke; Takayanagi, Taisuke; Hirayama, Shusuke [Hitachi, Ltd., Hitachi Research Laboratory, 7-1-1, Omika-chou, Hitachi-shi, Ibaraki-ken 319-1292 (Japan); Nagamine, Yoshihiko [Hitachi, Ltd., Hitachi Works, 3-1-1, Saiwai-chou, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Shibamoto, Yuta [Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya-shi, Aichi-ken 467-8601 (Japan); Komori, Masataka [Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan)

    2015-12-15

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.

  10. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    Science.gov (United States)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  11. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-03-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.

  12. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2006-05-01

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).

  13. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    Science.gov (United States)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  14. 吸收涂层法抑制龙虾眼透镜杂散光%Elimination of stray light for lobster eyes lens with absorbing coating

    Institute of Scientific and Technical Information of China (English)

    欧阳名钊; 付跃刚; 胡源; 高天元; 董科研; 王加科; 贺文俊; 马辰昊

    2014-01-01

    The concept of lobster optics was inspired by the unique structure of lobster eyes in biological world. The image points of the lobster eyes lens are distributed as a cross, which consist of focal arm and focal point. Due to the distribution of image points, there is significant background stray light in the lobster eyes lens, which seriously restricts its applications. Based on the analysis of the focusing process in the lobster eye lens, the absorbing coating method was proposed to suppress the stray light. Through combination of the end absorbing coating method and the penetration absorbing coating method, the cross focal arm and background stray light were obviously suppressed. With the model which is built with stray light analysis software, it is shown from the comparison that with absorbing coating method, the stray light of lobster-eyes lens can be remarkably inhibited. It is indicated that the level of background stray light is reduced by roughly one order of magnitude, the size of focal arms is decreased and its intensity falls by 40% under the premise of without reducing the illumination of central focus. It could greatly increase the SNR and the contrast of image.%龙虾眼光学的灵感来自于生物界中龙虾眼睛独特的结构形式。龙虾眼透镜的像点是十字形分布,由焦臂、焦点组成,在光波段应用存在明显的背景杂光,严重制约了其应用。通过对龙虾眼透镜的聚焦过程进行分析,提出了使用吸收涂层法对龙虾眼透镜杂散光进行抑制,综合运用末端涂层法和贯穿涂层法消除十字焦臂及背景光从而抑制杂散光。通过使用杂光分析软件进行建模对比分析表明,在不降低中心焦点照度的前提下,使用吸收涂层可以显著抑制龙虾眼透镜的杂光。背景杂光水平降低约一个数量级,而十字焦臂弥散减小并且强度下降约40%。从而可以明显提高信噪比与图像的对比度。

  15. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    National Research Council Canada - National Science Library

    Byung-Lip Ahn; Ji-Woo Park; Seunghwan Yoo; Jonghun Kim; Hakgeun Jeong; Seung-Bok Leigh; Cheol-Yong Jang

    2015-01-01

      We investigated the synergetic effect between light-emitting diode (LED) lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS...

  16. Effectiveness Of UVC Lights Irradiation To Improve Energy Saving

    Directory of Open Access Journals (Sweden)

    Sameer A. Bilal

    2015-08-01

    Full Text Available HVAC Heating Ventilation and Air conditioning is the largest consumer of energy in commercial and industrial buildings. HVAC systems account for an approximated 50 of energy use in buildings. The sources of contamination and odour comes from the growth of bacteria mold and fungus that accumulate and develop on wet surfaces of HVAC coils and drain pans causing respiratory infection cough tight chest and wheezing. Besides the effects on human health Fungal contamination that adheres to the fins of cooling coil of air handling unit AHU cause a significant increase in pressure drop across the coil and decrease in heat exchange efficiency which Leeds to loss of cooling capacity and additional energy use. To prevent the fungal and microorganism growth on the cooling coil and drain pan of HVAC systems many studies conducted but not all these solutions were sufficient to remove microbial organism from the HVAC 100 . The UV-C light options through a process known as UVGI Ultraviolet germicidal irradiation is a technology showed a significant impact to produce clean air and improve indoor air quality 16. UVGI lights produce short wavelength light kills microorganisms including viruses bacteria mold and many other fungi by disrupting their DNA. The effectiveness of UVGI installed inside HVAC systems depends on many factors and the application Methods in HVAC systems. A few studies showed whether the use of UVGI results in energy saving. The objective of this study is to find the effect of fungal growth on the cooling coil surface by using field measurements at actual operating conditions of heat transfer and air flow for a non-irradiated coil in comparison to irradiated coil .Hence evaluate if there would be an enthalpy change at the coil and document the effectiveness of UVGI coil cleaning on restoring cooling capacity and save energy.

  17. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye.

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-15

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  18. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    Science.gov (United States)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  19. Cellular Energy Absorbing TRIP-Steel/Mg-PSZ Composite: Honeycomb Structures Fabricated by a New Extrusion Powder Technology

    Directory of Open Access Journals (Sweden)

    Ulrich Martin

    2010-01-01

    Full Text Available Lightweight linear cellular composite materials on basis of austenite stainless TRIP- (TRansformation Induced Plasticity- steel as matrix with reinforcements of MgO partially stabilized zirconia (Mg-PSZ are described. Two-dimensional cellular materials for structural applications are conventionally produced by sheet expansion or corrugation processes. The presented composites are fabricated by a modified ceramic extrusion powder technology. Characterization of the microstructure in as-received and deformed conditions was carried out by optical and scanning electron microscopy. Magnetic balance measurements and electron backscatter diffraction (EBSD were used to identify the deformation-induced martensite evolution in the cell wall material. The honeycomb composite samples exhibit an increased strain hardening up to a certain engineering compressive strain and an extraordinary high specific energy absorption per unit mass and unit volume, respectively. Based on improved property-to-weight ratio such linear cellular structures will be of interest as crash absorbers or stiffened core materials for aerospace, railway, or automotive applications.

  20. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  1. Electron absorbed fractions of energy and S-values in an adult human skeleton based on {mu}CT images of trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J; De O Lira, C A B [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Richardson, R B [Radiation Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); Brown, K Robson, E-mail: rkramer@uol.com.br [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)

    2011-03-21

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on {mu}CT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 {mu}m thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters {sup 14}C, {sup 59}Fe, {sup 131}I, {sup 89}Sr, {sup 32}P and {sup 90}Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 {mu}m endosteum and the previously recommended 10 {mu}m endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by {approx}20% when the beta emitters are in marrow.

  2. Energy and daylighting: A correlation between quality of light and energy consciousness

    Energy Technology Data Exchange (ETDEWEB)

    Krug, N. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Architecture

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.

  3. Light quality and energy savings with combined use of daylight and artificial light in public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Nazzal, A. A. [Helsinki University of Technology, Lighting Laboratory, Espoo (Finland)

    1998-09-01

    The main objective of daylighting is to achieve an optimal level of visual and thermal comfort, and to extend the availability of daylight in time and space so that daylight is supplemented with artificial lighting only when necessary. At the same time, daylighting can be a risky proposition in comparison with artificial lighting not only in regard to its constant variation both in quality and quantity, but also because of its strong glare and overheating effect. In colder climates with long and cold winters and cool and short summers, the desire to maximize daylight penetration also has to be tempered with unwanted solar gains in summer and heat loss in winter. Maximizing the benefits and minimizing the deficiencies of both daylight and artificial light may be difficult to achieve unless they are seen as integrated parts of the overall energy optimization of the building and considered early in the design process. This paper considers the case of the Helsinki Museum of Contemporary Art. It illustrates how an effective compromise between the conflicting requirements of providing sufficient light of a high quality for optimum viewing conditions and effective display can be reconciled with the need to restrain light levels to promote conservation. 6 refs.,7 figs.

  4. Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-08-01

    Full Text Available We investigated the synergetic effect between light-emitting diode (LED lighting efficiency and building energy savings in heating and cooling using an alternative thermal operating system (ATOS of indoor LED lighting integrated with the ventilation system of a building as an active cooling device. The heat generated from LED lighting and the indoor lighting illuminance were experimentally determined. The indoor heat gains in cooling and heating periods were determined using measurement data; the annual energy savings of an office building in heating and cooling were calculated through simulation. The LED lighting illuminance increased by approximately 40% and the lighting contribution for indoor heat gain was 7.8% in summer, while 69.8% in winter with the ATOS. Consequently, the annual total energy use of the office building could be reduced by 5.9%; the energy use in cooling and heating was reduced by 18.4% and 3.3%, respectively.

  5. Energy consciousness in the design of lighting for people

    Energy Technology Data Exchange (ETDEWEB)

    Halldane, J.F.

    1975-01-01

    A comprehensive overview of energy and power distribution in the environment is presented as it relates to lighting. The objectives are to develop a consciousness of the effects of light and vision in order to utilize them more effectively. Notes are made of the physical effects of radiant power on living things and materials including thermal absorption, reflection, transmission, refraction, spectral conversion, interference, diffraction, polarization, phototropy, luminescence, photochemical changes, and photoelectric effects. Environmental issues are stressed. The evaluation process in design is briefly discussed. Reference is made to the goal, parameter, synthesis, and criterion specification as a checklist for evaluation. Particular concern is raised for the occupants who experience the constructed environment, since their interests do not appear to be sufficiently represented in the present day design process. Meaningfulness of measurement is emphasized and some anomalies illustrated. (auth)

  6. Single-atom electron energy loss spectroscopy of light elements

    Science.gov (United States)

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  7. Single-atom electron energy loss spectroscopy of light elements.

    Science.gov (United States)

    Senga, Ryosuke; Suenaga, Kazu

    2015-07-31

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds.

  8. Absorbed dose in AgBr in direct film for photon energies ( < 150 keV): relation to optical density. Theoretical calculation and experimental evaluation.

    Science.gov (United States)

    Helmrot, E; Alm Carlsson, G

    1996-01-01

    In the radiological process it is necessary to develop tools so as to explore how X-rays can be used in the most effective way. Evaluation of models to derive measures of image quality and risk-related parameters is one possibility of getting such a tool. Modelling the image receptor, an important part of the imaging chain, is then required. The aim of this work was to find convenient and accurate ways of describing the blackening of direct dental films by X-rays. Since the beginning of the 20th century, the relation between optical density and photon interactions in the silver bromide in X-ray films has been investigated by many authors. The first attempts used simple quantum theories with no consideration of underlying physical interaction processes. The theories were gradually made more realistic by the introduction of dosimetric concepts and cavity theory. A review of cavity theories for calculating the mean absorbed dose in the AgBr grains of the film emulsion is given in this work. The cavity theories of GREENING (15) and SPIERS-CHARLTON (37) were selected for calculating the mean absorbed dose in the AgBr grains relative to the air collision kerma (Kc,air) of the incident photons of Ultra-speed and Ektaspeed (intraoral) films using up-to-date values of interaction coefficients. GREENING'S theory is a multi-grain theory and the results depend on the relative amounts of silver bromide and gelatine in the emulsion layer. In the single grain theory of SPIERS-CHARLTON, the shape and size of the silver bromide grain are important. Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the

  9. Ultrafast Energy Relaxation in Single Light-Harvesting Complexes

    CERN Document Server

    Malý, Pavel; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2015-01-01

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100 fs range. At the same time much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work we employ a pump-probe type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behaviour agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repe...

  10. Ultrafast energy relaxation in single light-harvesting complexes.

    Science.gov (United States)

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  11. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  12. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Bing, E-mail: ouyangbing.zj@foxmail.com; Xue, Jia-Dan, E-mail: jenniexue@126.com; Zheng, Xuming, E-mail: zhengxuming126@126.com, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Fang, Wei-Hai, E-mail: zxm@zstu.edu.cn, E-mail: fangwh@dnu.edu.cn, E-mail: fangwh@dnu.edu.cn [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  13. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: resonance Raman and complete active space self-consistent field calculation study.

    Science.gov (United States)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S2(A'), S6(A'), and S7(A') excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S2(A'), S6(A'), and S7(A') excited states were very different. The conical intersection point CI(S2/S1) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S2(A') state: the radiative S(2,min) → S0 transition and the nonradiative S2 → S1 internal conversion via CI(S2/S1). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S1/T1) in the excited state decay dynamics of PITC is evaluated.

  14. Design and Control of the PowerTake-Off System for a Wave Energy Converter with Multiple Absorbers

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    feasibility for real PTO systems still causes dispute. In this dissertation an analytical result is provided, proving that reactive control is highly beneficial at even “low” PTO efficiencies. The formulated reactive control is tested in a wave tank with 1:20 scale absorbers, validating the expected...... performance. The wave tank tests also verify the derived wave and absorber models, which are based on linear wave theory. This increases the confidence in the heavy use of models through-out the work. A new high performing control method is developed for wave power extraction characterised...... force control of a multi-chambered cylinder driven by the absorber, while efficiently transferring the generated power directly into a battery of high pressure accumulators. The concept allows DDCs of multiple absorbers to supply the same accumulator battery, where a hydraulic motor may use the stored...

  15. Light-harvesting host-guest antenna materials for solar energy conversion devices

    Science.gov (United States)

    Huber, Stefan; Calzaferri, Gion

    2006-04-01

    In natural photosynthesis, light is absorbed by photonic antenna systems consisting of a few hundred chlorophyll molecules. These devices allow fast energy transfer from an electronically excited molecule to an unexcited neighbour molecule in such a way that the excitation energy reaches the reaction centre with high probability. Trapping occurs there. The anisotropic arrangement of the chlorophyll molecules is important for efficient energy migration. In natural antennae the formation of aggregates is prevented by fencing the chlorophyll molecules in polypeptide cages. A similar approach is possible by enclosing dyes inside a microporous material and by choosing conditions such that the cavities are able to uptake only monomers but not aggregates. In most of our experiments we have been using zeolite L as a host because it was found to be very versatile. Its crystals are of cylindrical shape and consist of an extended one-dimensional tube system. They can be prepared in wide size range. We have filled the individual tubes with successive chains of different dye molecules and we have shown that photonic antenna materials can be prepared. Moreover, fluorescent dye molecules can be bound covalently to the channel entrances. Dependent on the spectral properties of these stopcock molecules, the electronic excitation energy is transported radiationless to the stopcock fixed at the ends of the nanochannels or injected from the stopcock to the dyes inside the zeolite. The radiationless energy migration is in competition with spontaneous emission, thermal deactivation, quenching, and photochemically induced degradation. Fast energy migration is therefore crucial for an efficient antenna material. - The supramolecular organization of the dyes inside the channels is a first stage of organization. It allows light harvesting within the volume of a dye-loaded zeolite L crystal and radiationless transport to both ends of the cylinder or from the ends to the centre. The second

  16. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Laser, light, and energy devices for cellulite and lipodystrophy.

    Science.gov (United States)

    Peterson, Jennifer D; Goldman, Mitchel P

    2011-07-01

    Cellulite affects all races, and it is estimated that 85% of women older than 20 years have some degree of cellulite. Many currently accepted cellulite therapies target deficiencies in lymphatic drainage and microvascular circulation. Devices using radiofrequency, laser, and light-based energies, alone or in combination and coupled frequently with tissue manipulation, are available for improving cellulite. Laser assisted liposuction may improve cellulite appearance. Although improvement using these devices is temporary, it may last several months. Patients who want smoother skin with less visible cellulite can undergo a series of treatments and then return for additional treatments as necessary. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems.

    Science.gov (United States)

    Şener, Melih; Strümpfer, Johan; Hsin, Jen; Chandler, Danielle; Scheuring, Simon; Hunter, C Neil; Schulten, Klaus

    2011-02-25

    Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.

  20. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  1. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  2. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  3. Nanostructures for Enhanced Light Absorption in Solar Energy Devices

    Directory of Open Access Journals (Sweden)

    Gustav Edman Jonsson

    2011-01-01

    Full Text Available The fascinating optical properties of nanostructured materials find important applications in a number of solar energy utilization schemes and devices. Nanotechnology provides methods for fabrication and use of structures and systems with size corresponding to the wavelength of visible light. This opens a wealth of possibilities to explore the new, often of resonance character, phenomena observed when the object size and the electromagnetic field periodicity (light wavelength λ match. Here we briefly review the effects and concepts of enhanced light absorption in nanostructures and illustrate them with specific examples from recent literature and from our studies. These include enhanced optical absorption of composite photocatalytically active TiO2/graphitic carbon films, systems with enhanced surface plasmon resonance, field-enhanced absorption in nanofabricated carbon structures with geometrical optical resonances and excitation of waveguiding modes in supported nanoparticle assembles. The case of Ag particles plasmon-mediated chemistry of NO on graphite surface is highlighted to illustrate the principle of plasmon-electron coupling in adsorbate systems.

  4. Plasmonic harvesting of light energy for Suzuki coupling reactions.

    Science.gov (United States)

    Wang, Feng; Li, Chuanhao; Chen, Huanjun; Jiang, Ruibin; Sun, Ling-Dong; Li, Quan; Wang, Jianfang; Yu, Jimmy C; Yan, Chun-Hua

    2013-04-17

    The efficient use of solar energy has received wide interest due to increasing energy and environmental concerns. A potential means in chemistry is sunlight-driven catalytic reactions. We report here on the direct harvesting of visible-to-near-infrared light for chemical reactions by use of plasmonic Au-Pd nanostructures. The intimate integration of plasmonic Au nanorods with catalytic Pd nanoparticles through seeded growth enabled efficient light harvesting for catalytic reactions on the nanostructures. Upon plasmon excitation, catalytic reactions were induced and accelerated through both plasmonic photocatalysis and photothermal conversion. Under the illumination of an 809 nm laser at 1.68 W, the yield of the Suzuki coupling reaction was ~2 times that obtained when the reaction was thermally heated to the same temperature. Moreover, the yield was also ~2 times that obtained from Au-TiOx-Pd nanostructures under the same laser illumination, where a 25-nm-thick TiOx shell was introduced to prevent the photocatalysis process. This is a more direct comparison between the effect of joint plasmonic photocatalysis and photothermal conversion with that of sole photothermal conversion. The contribution of plasmonic photocatalysis became larger when the laser illumination was at the plasmon resonance wavelength. It increased when the power of the incident laser at the plasmon resonance was raised. Differently sized Au-Pd nanostructures were further designed and mixed together to make the mixture light-responsive over the visible to near-infrared region. In the presence of the mixture, the reactions were completed within 2 h under sunlight, while almost no reactions occurred in the dark.

  5. Analytical modeling of photon absorption coefficient in mono and bilayer circular graphene quantum dots for light absorber applications

    Science.gov (United States)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-02-01

    We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved

  6. A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells.

    Science.gov (United States)

    Ishii, Ayumi; Miyasaka, Tsutomu

    2014-04-14

    A thin solid-state dye-sensitized photovoltaic cell is fabricated by composing organic and inorganic heterojunctions in which the visible-light sensitizers are cyclopentadiene derivatives (Cp*) coordinated to a metal oxide, typically TiO2. The coordination bonds of the metallocene molecular complex (Ti-Cp*) create a new LMCT (ligand-to-metal charge transfer) absorption band and induce a rectified charge transfer from the organic ligands to TiO2, leading to photocurrent generation. Photovoltaic junctions are completed by coating crystalline organic molecules (perylene) as a hole-transport layer on the Cp*-coordinated TiO2 surface by using the vapor deposition method. The molecular plane of Cp* on the TiO2 surfaces seems to help the hole-transport layer to form ordered structures, which effectively improve carrier conductivities and minimize interfacial resistance. The organic-inorganic hybrid thin-film photocell with metallocene molecular complexes is capable of generating high open-circuit voltages exceeding 1.2 V. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-Metal Sulfide for Absorbing Near Infrared Light%多元金属硫化物的近红外吸收性能

    Institute of Scientific and Technical Information of China (English)

    徐磊; 夏海平

    2013-01-01

    采用新型超声喷雾共沉淀技术,以Fe (NO3)3、Al(NO3)3、Ba(NO3)2、Gd2O3、Cu(NO3)2和Na2S为原料制备Cu5 FeS4,BaCu2 S2,CuGd2 S4,CuAlS2 4种金属硫化物纳米粉体,用X射线粉末衍射仪表征了多元金属硫化物纳米粒子的晶相结构;采用扫描电镜观察了多元金属硫化物的晶相形貌,并测定了纳米粒子从可见到近红外的胶体状吸收和透过光谱.研究表明不同化学组成的纳米硫化铜对近红外光都具有显著的吸收增强效应,同时对可见光波段具有很高的透过率,这种具有特殊光学吸收特性的纳米金属硫化物有望成为新型太阳能热屏蔽器件的新材料.%The four multi-metal sulfides Cu5 FeS4,BaCu2 S2,CuGd2 S4,and CuAlS2 are prepared by ultrasonic atomization and coprecipitation with Fe(NO3)3,Al(NO3)3,Ba(NO3)2,Gd2O3,Cu(NO3)2 and Na2S as raw materials.The phases of multi-metal sulfides are investigated by X-ray powder diffraction.The morphology of the multi-metal sulfides are observed by scanning electron microscope.The absorption and transmittance of the multi-metal sulfides in state of sol from visable light to near infrared wavelength are recorded.The results indicate that the four multi-metal sulfides are of high absorbance for near infrared light,while high transmittance for visible light.It suggests that the nano multi-metal sulfides with such special absorbing characteristics is proposed to be applied in design for novel solar heat shielding.

  8. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    Energy Technology Data Exchange (ETDEWEB)

    Conan O' Rourke; Yutao Zhou

    2007-12-31

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This final report summarizes the experimental procedure and results of all cycles (Cycles 1 through 8) of PEARL program from the beginning of year 2000 to the end of 2007, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. In each cycle of PEARL program, PEARL Board selects a list of Compact Fluorescent Lamp (CFL) and Residential Lighting Fixture (RLF) models that are Energy Star qualified. In Cycle 5, Cycle 7, and Cycle 8, no fixture models were selected. After that PEARL sponsors procure product samples for each selected model from different stores and locations in the retail market and send them to LRC for testing. LRC then receive and select the samples, and test them against Energy Star specifications. After the testing LRC analyze and report the results to PEARL Board. Totally 185 models of CFL and 52 models of RLF were tested in PEARL program. Along with the evolution of the Energy Star specifications from year 2000 to 2003, parameters that were required by Energy Star changed during the eight years of PEARL program. The testing parameters and number of samples tested in PEARL program also changed during this time. For example, in Cycle 1, three samples of each models were tested

  9. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  10. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bar, M.; Weinhardt, L.; Pookpanratana, S.; Heske, C.; Nishiwaki, S.; Shafarman, W.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J.D.

    2008-05-11

    The chemical and electronic structure of high efficiency chalcopyrite thin film solar cell absorbers significantly differs between the surface and the bulk. While it is widely accepted that the absorber surface exhibits a Cu-poor surface phase with increased band gap (Eg), a direct access to the crucial information of the depth-dependency of Eg is still missing. In this paper, we demonstrate that a combination of x-ray emission and absorption spectroscopy allows a determination of Eg in the surface-near bulk and thus complements the established surface- and bulk-sensitive techniques of Eg determination. As an example, we discuss the determination of Eg for a Cu(In,Ga)Se2 absorber [(1.52 +- 0.20) eV].

  11. Parameterization of light scattering for solving the inverse problem of determining the concentrations of the principal light scattering and absorbing admixtures in shelf waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin

    2001-12-01

    Full Text Available A method for estimating the water backscattering coefficient was put forward on the basis of experimental data of diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance. Calculations were carried out for open sea waters of different types and the spectral dependencies were found ("anomalous" spectra and explained. On this basis, a new model of light backscattering on particles in the sea is proposed. This model may be useful for modelling remote sensing reflectance spectra in order to solve the inverse problems of estimating the concentration of natural admixtures in shelf waters.

  12. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Directory of Open Access Journals (Sweden)

    N. Ma

    2011-10-01

    Full Text Available In this paper, the mixing state of light absorbing carbonaceous (LAC was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP. A closure study between the hemispheric backscattering fraction (HBF measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer.

  13. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Directory of Open Access Journals (Sweden)

    N. Ma

    2012-03-01

    Full Text Available In this paper, the mixing state of light absorbing carbonaceous (LAC was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP. A closure study between the hemispheric backscattering fraction (HBF measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer.

  14. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  15. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  16. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  17. The Economic Evaluation of Lighting Energy-saving Modification Program

    Directory of Open Access Journals (Sweden)

    ZHANG Xing-zheng

    2012-06-01

    Full Text Available Many lighting energy-saving modification programs have the embarrassment of uneconomical. This papertakes into account economic evaluation to solve the problem. According to illuminative equipments price, lifespan and power consumption, the optimal program will be found under the limited investment. Firstly, the benefit ratio will be used to evaluate on the equipments modification necessity, and get the modification sequence. If the biggest benefit ratio is in different equipment simultaneously, the better one will be selected in terms of relative investment recovery period. The relative remaining time is innovatively introduced into economic evaluation for determining the equipments modification locations. Then the system operation flowchart is to prove that the scheme is workable.

  18. Positronium energy levels at order $m \\alpha^7$: light-by-light scattering in the two-photon-annihilation channel

    CERN Document Server

    Adkins, Gregory S; Salinger, M D; Wang, Ruihan; Fell, Richard N

    2014-01-01

    Recent and ongoing experimental work on the positronium spectrum motivates new efforts to calculate positronium energy levels at the level of three loop corrections. We have obtained results for one set of such corrections involving light-by-light scattering of the photons produced in a two-photon virtual annihilation process. Our result is an energy shift $1.58377(8) m \\alpha^7/\\pi^3$ for the n=1 singlet state, correcting the ground state hyperfine splitting by -6.95 kHz. We also obtained a new and more precise result for the light-by-light scattering correction to the real decay of parapositronium into two photons.

  19. Tungstate Oxide for Absorbing Near Infrared Light%新型纳米氧化钨的近红外吸收性能

    Institute of Scientific and Technical Information of China (English)

    徐磊; 夏海平

    2012-01-01

    采用化学沉淀法制备纳米氧化钨粉体,并用氢氮混合气对其进行还原处理,分析了还原处理温度对氧化钨化学组成的影响,用 X 射线粉末衍射仪表征了纳米氧化钨粒子的晶相与化学组成,采用扫描电子显微镜观察了该粒子还原处理前后的晶相形貌,并测定了由该纳米颗粒还原前后制得的胶状液体从可见光到近红外波长范围内的吸收光谱和透过光谱。研究表明:还原后的氧化钨纳米粒子对 1400~1600nm 和 1900~2200nm 波段的近红外光具有显著的吸收增强效应,同时对可见光具有很高的透过性,这种具有特殊光学吸收特性的纳米氧化钨可望在新型太阳能热屏蔽器件的设计中得到应用。%A nano-powder of tungstate oxide was firstly prepared by a chemical precipitation process, and then the powder was reduced in H2/N2 gases at a high temperature. The phase and chemical composition of tungstate oxide before and after reduction were investigated by X-ray powder diffraction. The morphology of tungstate oxide before and after reduction was observed by scanning electron microscope. The absorption and transmittance spectra of tungstate oxide in a sol state from visible to near infrared wavelength were determined. The results indicated that the tungstate oxide after reduction had a high absorbance in 1 400-1 600 nm and 1 900-2 200 nm wave band for near infrared light and a high transmittance for visible light. It is suggested that the nano-powder of tungstate oxide with the special absorbing characteristics may be promising to be applied in the design for novel solar heat shielding.

  20. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient ({delta}pH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the

  1. Lighting and social practices - what role does lighting play for low energy house (LEH) households and LED frontrunners?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise

    As lighting in Danish households consume approximately 1.3 TWh every year, reducing electricity consumption from lighting is important. Studies have shown that a mere substitution of inefficient lighting technologies towards more efficient ones may not be possible, as many social and cultural...... dimensions influence how people use and relate to lighting. Assessing how very distinctive contexts of households (that diverge from an exemplary kind of household), such as low energy houses and LED frontrunner households, use and understand lighting, may give some insight into what may trigger or hamper...

  2. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  3. 76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)

    Science.gov (United States)

    2011-08-04

    ... 1904-AC50 Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information. SUMMARY... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence...

  4. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  5. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  6. Sources of spatial variability in light absorbing components along an equatorial transect from 165°E to 150°W

    Science.gov (United States)

    Simeon, Jennifer; Roesler, Collin; Pegau, W. Scott; Dupouy, CéCile

    2003-10-01

    Spatial variability of major light-absorbing components in seawater was analyzed at the equator from 165°E to 150°W during the Zonal Flux Cruise aboard the R/V Thompson from 20 April to 10 May 1996. Spectral absorption coefficients were separated into phytoplankton, nonphytoplankton chromophoric particulate material (CPM) and chromophoric dissolved organic material (CDOM). CPM and phytoplankton absorption account for about 20% and 80% of the total particulate absorption, respectively, above 100 m. The <0.2 μm CDOM absorption accounts for nearly 80% of the total absorption below 100 m. A significant portion of spatial variability in particulate absorption was due to conservative processes in the upper 100 m. Non-conservative spatial variability of phytoplankton absorption was zonally determined by the biomass changes of a spectrally invariant taxonomic community and vertically by photoacclimation. Distributions of size-fractionated CDOM absorption are suggestive of the presence of new (0.2 to 0.7 μm) and old (<0.2 μm) DOM pools. Photochemical reactions and microbial activity are nonconservative processes that act upon these pools, respectively. New DOM was found primarily in the upper water column, while an analysis of variance showed that <0.2 μm CDOM originating from deep water composes the background CDOM in the Equatorial Pacific.

  7. Short-time dynamics of 2-thiouracil in the light absorbing S{sub 2}(ππ{sup ∗}) state

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jie; Zhang, Teng-shuo; Xue, Jia-dan; Zheng, Xuming, E-mail: zxm@zstu.edu.cn [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cui, Ganglong; Fang, Wei-hai [Chemistry College, Beijing Normal University, Beijing 100875 (China)

    2015-11-07

    Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T{sub 1} are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated using second-order perturbation methods with a high-level complete-active space self-consistent field. Three competitive nonadiabatic pathways to the lowest triplet state T{sub 1} from the initially populated singlet excited state S{sub 2} were proposed. We investigate the initial decay dynamics of 2TU from the light absorbing excited states using resonance Raman spectroscopy, time-dependent wave-packet theory in the simple model, and complete-active space self-consistent field (CASSCF) and time dependent-Becke’s three-parameter exchange and correlation functional with the Lee-Yang-Parr correlation functional (TD-B3LYP) calculations. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were compared with the CASSCF(16,11) predicted key nonadiabatic decay routes. Our results indicate that the predominant decay pathway initiated at the Franck-Condon region is toward the S{sub 2}/S{sub 1} conical intersection point and S{sub 2}T{sub 3} intersystem crossing point, but not toward the S{sub 2}T{sub 2} intersystem crossing point.

  8. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  9. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet wit

  10. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    Science.gov (United States)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  11. Deployment methods of visible light communication lights for energy efficient buildings

    Science.gov (United States)

    Niaz, Muhammad Tabish; Imdad, Fatima; Kim, Soomi; Kim, Hyung Seok

    2016-10-01

    Indoor visible light communication (VLC) uses light emitting diodes (LEDs) to provide both illumination and data communication. The deployment of LED plays an important role in maintaining a steady optical power distribution over the reference receiving plane. Typical ways of luminaire deployment in offices and homes are not optimized for VLC. This paper investigates various configurations of LEDs for deploying them on the ceilings of offices and homes. The existing square array deployment of LEDs does not provide a full coverage on the receiving plane leaving dead spaces, which in turn affects the performance of the whole system. An optimized circular deployment scheme is proposed that considers both the position of the LED transmitters on the ceiling and the first reflections at each wall to yield more accurate results. Rectangular deployment and circular deployment are analyzed through simulation of the received optical power distribution, average outage area rate, and energy consumption. An optimization technique is developed to analyze the LED deployment schemes. It is clear from the results that the circular LED deployment provides a better performance than the square array grid LED deployment.

  12. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  13. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  14. GEANT 4.8.2, 9.2 and 9.4 simulations versus experimental proton energy loss in thick absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Evseev, Ivan; Schelin, Hugo R.; Ahmann, Francielle; Milhoretto, Edney; Paschuk, Sergei A., E-mail: evseev@utfpr.edu.b, E-mail: schelin@utfpr.edu.b, E-mail: sergei@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Yevseyeva, Olga; Assis, Joaquim T. de; Ievsieieva, Ievgeniia, E-mail: yevseveva@iprj.uerj.b, E-mail: joaquim@iprj.uerj.b [Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Dept. de Modelagem Computacional; Hormaza, Joel M., E-mail: jmesa@ibb.unesp.b [Universidade Estadual Paulista (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Diaz, Katherin S. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Havana (Cuba); Lopes, Ricardo T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIN/COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2011-07-01

    Monte Carlo simulations are a powerful tool to estimate the proton energy loss and straggling in medical applications. The physics of proton interaction with matter for thick absorbers (like a human body) has a well-established theory for the so-called Bethe-Bloch domain, and the basic principles of Monte Carlo simulation for such processes are well known since the middle of the past century. However, in spite of GEANT4 has been validated against proton stopping powers from the NIST PSTAR, the evolution of the code leads to some result instability within the various code releases. In this work, we present the recent results for the comparison of our GEANT4 simulations against experimental proton energy loss for some thick absorbers. All the simulations were performed using the GEANT4 Hadrontherapy Advanced Example. The GEANT4 versions 4.8.2, 4.9.2, and 4.9.4 were tested with different simulation parameters, such as varied cut values. In addition to the Standard model, some other models for the electromagnetic processes from the GEANT4 Low Energy Extension Pack were tested as well. Experimental data were taken from for polyethylene, and from for aluminum and gold absorbers. The theoretical predictions for the spectra were calculated using the self-consistent Gaussian solution of the Boltzmann kinetic equation in the Fokker-Plank form. In order to compare the GEANT4 simulations with other popular codes, the same spectra were simulated by TRIM/SRIM2011 and MCNPX2.4.0. The simultaneous comparison of the results obtained for different materials at various initial proton energies were done using the reduced calibration curve approach. (author)

  15. Pall摩擦耗能减震器减震性能研究%The shock absorption properties of Pall frictional energy dissipation shock absorber

    Institute of Scientific and Technical Information of China (English)

    孙志松

    2009-01-01

    Against to the fast developing status of structural shock absorption technology, the applied situation of Pall frictional energy dissipa-tion shock absorber was introduced. The basic constitution and shack absorption properties of Pall frictional energy dissipation shock absorber were analyzed, the result indicated that it can dissipate large amount seismic energy and had better shock absorption effect with energy dissipa-tion supporting of Pall frictional shock absorption device as protective structure.%针对结构减震技术迅速发展的现状,介绍了Pall摩擦耗能减震器的应用情况,就Pall摩擦耗能减震器的基本构造及减震性能进行了分析,结果表明:采用安装Pall摩擦减震装置的耗能支撑来保护结构,可耗散大量地震能量,减震效果好.

  16. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency.

  17. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  18. A practical method for the assessment of daylight-responsive lighting control systems regarding energy savings and lighting quality

    Energy Technology Data Exchange (ETDEWEB)

    Belendorf, H.; Aydinli, S.; Kaase, H. [Technical Univ. of Berlin, Inst. for Electronics and Lighting Technology, Berlin (Germany)

    2000-07-01

    The increased utilization of daylight-responsive lighting-control systems in commercial buildings requires the possibility to compare different systems regarding energy and lighting performance. Measurements at the Technical University of Berlin (TUB) on various daylight-responsive lighting controls have been made analyzing the energy saving potential and ability to fulfill general lighting requirements. The paper describes a basis for the calculation founded on these test-measurements in 1:1 test-rooms in order to assess the energy and lighting performance of the system as well as calculating a general quantity (the system-triple) per room-zone to classify and compare different systems. The method meets practical requirements because it takes into account the official guidelines for lighting in offices (dependent on the specific country, e.g. in Germany the standard DIN5035 'Artificial Lighting of Interiors' or other equivalent European standards). The quantity called system-triple consists of three numbers, of which one number describes the energy saving performance (system-potential), the other two relate to the behavior towards its maintaining the requirements to the illuminance level in the room (relative short-coming and exceeding light exposure). The system-potential tends to be independent from the sky-condition, although the situation in which the system is going to be applied has quite an influence on the system-potential. The method is an essential part of a comprehensive procedure, developed at the TUB, for predicting the energy saving potential regarding electric lighting in an office equipped with daylight-following lighting control systems. (au)

  19. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Directory of Open Access Journals (Sweden)

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  20. Quantization of light energy directly from classical electromagnetic theory in vacuum

    Institute of Scientific and Technical Information of China (English)

    She Wei-Long

    2005-01-01

    It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.

  1. 78 FR 43197 - Duke Energy Florida, Inc.; Florida Power & Light Company; Tampa Electric Company; Orlando...

    Science.gov (United States)

    2013-07-19

    ... Company; Orlando Utilities Commission; Notice of Compliance Filings Take notice that on July 10, 2013, Duke Energy Florida, Inc., Florida Power & Light Company, Tampa Electric Company, and Orlando...

  2. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng

    2014-07-15

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  3. Toward absolute chemical composition distribution measurement of polyolefins by high-temperature liquid chromatography hyphenated with infrared absorbance and light scattering detectors.

    Science.gov (United States)

    Lee, Dean; Shan, Colin Li Pi; Meunier, David M; Lyons, John W; Cong, Rongjuan; deGroot, A Willem

    2014-09-02

    Chemical composition distribution (CCD) is a fundamental metric for representing molecular structures of copolymers in addition to molecular weight distribution (MWD). Solvent gradient interaction chromatography (SGIC) is commonly used to separate copolymers by chemical composition in order to obtain CCD. The separation of polymer in SGIC is, however, not only affected by chemical composition but also by molecular weight and architecture. The ability to measure composition and MW simultaneously after separation would be beneficial for understanding the impact of different factors and deriving true CCD. In this study, comprehensive two-dimensional chromatography (2D) was coupled with infrared absorbance (IR5) and light scattering (LS) detectors for characterization of ethylene-propylene copolymers. Polymers were first separated by SGIC as the first dimension chromatography (D1). The separated fractions were then characterized by the second dimension (D2) size exclusion chromatography (SEC) with IR5 and LS detectors. The concentrations and compositions of the separated fractions were measured online using the IR5 detector. The MWs of the fractions were measured by the ratio of LS to IR5 signals. A metric was derived from online concentration and composition data to represent CCD breadth. The metric was shown to be independent of separation gradients for an "absolute" measurement of CCD breadth. By combining online composition and MW data, the relationship of MW as a function of chemical composition was obtained. This relationship was qualitatively consistent with the results by SEC coupled to IR5, which measures chemical composition as a function of logMW. The simultaneous measurements of composition and MW give the opportunity to study the SGIC separation mechanism and derive chain architectural characteristics of polymer chains.

  4. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection.

    Science.gov (United States)

    Krüger, Tjaart P J; Ilioaia, Cristian; Johnson, Matthew P; Ruban, Alexander V; van Grondelle, Rienk

    2014-07-01

    The ability to dissipate large fractions of their absorbed light energy as heat is a vital photoprotective function of the peripheral light-harvesting pigment-protein complexes in photosystem II of plants. The major component of this process, known as qE, is characterised by the appearance of low-energy (red-shifted) absorption and fluorescence bands. Although the appearance of these red states has been established, the molecular mechanism, their site and particularly their involvement in qE are strongly debated. Here, room-temperature single-molecule fluorescence spectroscopy was used to study the red emission states of the major plant light-harvesting complex (LHCII) in different environments, in particular conditions mimicking qE. It was found that most states correspond to peak emission at around 700nm and are unrelated to energy dissipative states, though their frequency of occurrence increased under conditions that mimicked qE. Longer-wavelength emission appeared to be directly related to energy dissipative states, in particular emission beyond 770nm. The ensemble average of the red emission bands shares many properties with those obtained from previous bulk in vitro and in vivo studies. We propose the existence of at least three excitation energy dissipating mechanisms in LHCII, each of which is associated with a different spectral signature and whose contribution to qE is determined by environmental control of protein conformational disorder. Emission at 700nm is attributed to a conformational change in the Lut 2 domain, which is facilitated by the conformational change associated with the primary quenching mechanism involving Lut 1.

  5. The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling.

    Science.gov (United States)

    McKenzie, Karen; Maclean, Michelle; Grant, M Helen; Ramakrishnan, Praveen; MacGregor, Scott J; Anderson, John G

    2016-09-01

    Bacterial inactivation by 405 nm light is accredited to the photoexcitation of intracellular porphyrin molecules resulting in energy transfer and the generation of reactive oxygen species that impart cellular oxidative damage. The specific mechanism of cellular damage, however, is not fully understood. Previous work has suggested that destruction of nucleic acids may be responsible for inactivation; however, microscopic imaging has suggested membrane damage as a major constituent of cellular inactivation. This study investigates the membrane integrity of Escherichia coli and Staphylococcus aureus exposed to 405 nm light. Results indicated membrane damage to both species, with loss of salt and bile tolerance by S. aureus and E. coli, respectively, consistent with reduced membrane integrity. Increased nucleic acid release was also demonstrated in 405 nm light-exposed cells, with up to 50 % increase in DNA concentration into the extracellular media in the case of both organisms. SYTOX green fluorometric analysis, however, demonstrated contradictory results between the two test species. With E. coli, increasing permeation of SYTOX green was observed following increased exposure, with >500 % increase in fluorescence, whereas no increase was observed with S. aureus. Overall, this study has provided good evidence that 405 nm light exposure causes loss of bacterial membrane integrity in E. coli, but the results with S. aureus are more difficult to explain. Further work is required to gain greater understanding of the inactivation mechanism in different bacterial species, as there are likely to be other targets within the cell that are also impaired by the oxidative damage from photo-generated reactive oxygen species.

  6. Timing the warm absorber in NGC 4051

    Science.gov (United States)

    Silva, C. V.; Uttley, P.; Costantini, E.

    2016-12-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results of the extensive 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051 whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed in NGC 4051, is able to produce soft lags, up to 100 s, on timescales of hours. The time delay is associated with the response of the gas to changes in the ionizing source, either by photoionization or radiative recombination, which is dependent on its density. The range of radial distances that, under our assumptions, yield longer time delays are distances r 0.3-1.0 × 1016 cm, and hence gas densities n 0.4-3.0 × 107 cm-3. Since these ranges are comparable to the existing estimates of the location of the warm absorber in NGC 4051, we suggest that it is likely that the observed X-ray time lags may carry a signature of the warm absorber response time to changes in the ionizing continuum. Our results show that the warm absorber in NGC 4051 does not introduce lags on the short timescales associated with reverberation, but will likely modify the hard continuum lags seen on longer timescales, which in this source have been measured to be on the order of 50 s. Hence, these

  7. An inverse method for the design of energy absorbers in the frontend of passenger cars; Eine inverse Methode zur Auslegung von Energieabsorbern im Frontend von Personenkraftwagen

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, Dirk

    2011-07-01

    Mobility is one of the key factors of our society. The consequences for the environment and mankind can be seen every day. For example in 2009, about 35,500 people involved in traffic accidents in Europe died. The ambitious objective of the European Union, the reduction of the total number of road casualties in 2010, to 27,000 which is half of the road casualties in 2001, was not obtained. The enormous number of fatalities shows, that road safety will be an important issue in the future. Upcoming initiatives of the European Union will focus on accidents outside the city limits where about 60% of all road fatalities occur but also on vulnerable road users (such as children, pedestrians, cyclists and the elderly). The automotive industry has to assure that the vehicle structures are able to reduce the severity of injuries not only for vehicle occupants but also for the other people who are involved in an accident. This can be reached with active and passive safety systems. In this work an alternative design process for passive safety structures is introduced, which is based on the vehicle requirements. The so-called inverse design method is demonstrated for the design of energy absorbers in frontend systems used for pedestrian protection. It is based on a multi-stage optimization process. Compared to the classic design process, where the crash-pulse is usually based on vehicle stiffness and the deformation length, the inverse method focuses on the structural design based on a desired crash-pulse. Using virtual absorbers, which are not limited by any material behavior or geometry, legform to bumper testes can be simulated. Thus, the desired legform deceleration can be generated. The data obtained is used for the second step of the inverse design method, the generation of a ''real'' absorber. For the design of the ''real'' absorber small drop-tower simulations are sufficient. A parameterized finite element model is used. Both the

  8. Investigation of a scanning laser projector as an energy-efficient light source in plant production

    NARCIS (Netherlands)

    Murase, Haruhiko; Helm, van der Bob; Oke, Satoshi

    2015-01-01

    The energy costs for artificial lighting in plant factories are very high, but may be decreased by introducing more efficient light sources. Light absorption in plants takes place in the order of a femtosecond, while the chemical reactions for carbon fixation of 5 milliseconds are limiting the

  9. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Science.gov (United States)

    2012-04-09

    ... Parts 429 and 430 RIN 1904-AC67 Energy Conservation Program: Test Procedures for Light-Emitting Diode... light-emitting diode (LED) lamps to support implementation of labeling provisions by the Federal Trade... procedures. This rulemaking establishes test procedures that manufacturers of light-emitting diode (LED...

  10. Extrusion die geometry effects on the energy absorbing properties and deformation response of 6063-type Al-Mg-Si aluminum alloy

    Science.gov (United States)

    Gbenebor, O. P.; Fayomi, O. S. I.; Popoola, A. P. I.; Inegbenebor, A. O.; Oyawale, F.

    The response of 6063-type Al-Mg-Si alloy to deformation via extrusion was studied using tool steel dies with 15°, 30°, 45°, 60° and 75° entry angles. Compressive loads were subjected to each sample using the AVERY DENISON machine, adapted to supply a compressive load on the punch. The ability of the extrudate to absorb energy before fracture was calculated by integrating numerically the polynomial relationship between the compressive stress and sample strains. Strain rate was calculated for each specimen and the deformation zone length was mathematically derived from the die geometry to decipher its influence on both lateral and axial deformations. Results showed that extruding with a 15° die was the fastest as a result of the low flow stress encountered. Outstanding compressive strength, plastic deformation, strain rate and energy absorbing capacity were observed for the alloy extruded with a 75° die angle. Increase in die angles led to a decrease in deformation zone length and samples deformed more in the axial direction than in the lateral except for the 45o die which showed the opposite; the sample also showed the least ductility.

  11. Direct Energy Exchange Enhancement in Distributed Injection Light Gas Launchers

    Energy Technology Data Exchange (ETDEWEB)

    Alger, T W; Finucane, R G; Hall, J P; Penetrante, B M; Uphaus, T M

    2000-04-06

    It is not widely acknowledged or appreciated that conventional, two-stage light-gas launchers do not efficiently apply their high breech pressures to the design intent: accelerating the projectile. Our objective in this project was to carry out the analysis, design, construction, and testing of a new class of launchers that will address this limitation. Our particular application is to expand the pressure range of the conventional, two-stage gas launcher to overlap and validate the pressure regimes previously attainable only with shock waves generated by nuclear explosions, lasers, or multistage conventional explosions. That is, these launchers would have the capability to conduct--in a laboratory setting--high-velocity-impact, equation-of-state (EOS) measurements at up to 2-TPa (20 Mbar) pressure levels in high-Z materials. Our design entailed a new class of distributed-injection, gas-dynamic launchers that are designed to use a boat-tail projectile to overcome the fundamental gas-expansion phenomena known as escape velocity (the Riemann limit). Our program included analytical, numerical, and experimental studies of the fast gas release flow technique that is central to the success of our approach. The analyses led us to believe that, in a typical configuration, the pressure will be effectively applied to the projectile in a time short relative to its few-microsecond traverse time; the experimental program we conducted during FY1999 supported these estimates. In addition, our program revealed dramatic increased efficiency in this process that was previously unknown to the launcher community. The most fundamental practical restrictions on the performance of any gas launcher are the ability of the launcher to (1) contain pressure in a reservoir, and (2) effectively apply that pressure to the base of a moving projectile. Our gas-release test-fixture experiments showed that our design was capable of applying nearly twice the pressure to the projectile that is

  12. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  13. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  14. Scattering-absorbing method for the detection of 16.7 MeV high-energy pulse gamma

    Institute of Scientific and Technical Information of China (English)

    Tan Xinjian; Ouyang Xiaoping; Wang Qunshu

    2009-01-01

    Based on theoretical calculation and Monte Carlo simulation, this paper proposes a new method for the diagno-sing of 16.7 MeV high-energy pulse gamma, named "scattering absorption method". The ratio of the sensitivity of high-energy gamma to that of the low-energy background gamma can reach 106 to 108 by this new method. The sensitivity of 16.7 McV high-energy gamma ranges from 10-21 to 10-16 C·cm2. It's better than the traditional method which is based on the magnetic analyzer and Chcrankov detector on some aspects.

  15. The correlation of the energy resolution of incident light with the measured reflectance of multilayers

    Institute of Scientific and Technical Information of China (English)

    冯仕猛; 赵海鹰; 黄梅珍; 窦晓鸣

    2003-01-01

    This paper presents an expression for describing the correlation of the energy resolution of incident light with the measured reflectance of multilayers, and gives a new method for calculating the polychromatic-light reflectance of multilayers. Using this method we give the reflectance spectrum of some multilayers in the case in which the incident light is polychromatic. The theoretical analysis shows that for the multilayers of a given design the peak reflectance of the polychromatic light is smaller than that of the monochromatic light, but no-peak reflectance of the polychromatic light is bigger than that of the monochromatic light. Further, the measured reflectance spectrum will be a line if the energy resolution is less than a decided value. The shorter the design-wavelength of the multilayer, the stronger the effect of the energy resolution on the reflectance.

  16. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  17. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  18. Final report for EDI energy conservation with diode light; Slutrapport for EDI energibesparelser med diodelys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The aim of this project has been to develop technological knowledge and a competence platform for utilization of new light emitting diode technology for general lighting purposes. Furthermore the project has aimed at developing a 3 W light diode bulb to replace 15-20 W filament bulbs and halogen spotlights, and thereby demonstrating a large energy conservation potential in the use of LED technology for lighting purposes. (BA)

  19. Evaluating an emergent behaviour algorithm in JCSP for energy conservation in lighting systems

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Syed, Aly; Kerridge, J.

    2011-01-01

    Since the invention of the light bulb, artificial light is accompanying people all around the world every day and night. As the light bulb itself evolved a lot through years, light control systems are still switch-based and require users to make most of the decisions about its behaviour. This pap...... presents an algorithm for emergent behaviour in a lighting system to achieve stable, user defined light level, while saving energy. The algorithm employs a parallel design and was tested using JCSP. © 2011 The authors and IOS Press. All rights reserved....

  20. Long-distance electronic energy transfer in light-harvesting supramolecular polymers.

    Science.gov (United States)

    Winiger, Christian B; Li, Shaoguang; Kumar, Ganesh R; Langenegger, Simon M; Häner, Robert

    2014-12-01

    The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.

  1. SU-F-207-07: Dual-Energy Computed Tomography Detection Limit of Various Radiopaque Contrast Agents That Can Be Infused Within Absorbable Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Melancon, A; Jacobsen, M; Salatan, F; Jones, A; Cody, D; Nute, J; Melancon, M [U.T.M.D Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Absorbable IVC filters are shown to be safe and efficacious in preventing pulmonary embolism. These absorbable filters disappear from the body after their required duration, alleviating costly removal procedures and downstream complications. Monitoring the positioning and integrity of absorbable devices using dual-energy computed tomography (DECT) would improve treatment efficacy. The purpose of this study is to determine the limit of detection and the energy dependence of DECT for various contrast agents that may be infused within the IVC filters including gold nanoparticles (AuNP) having diameters of 2 and 4 nm. Methods: All imaging studies were performed on a GE Discovery CT750 system in Gemstone Spectral Imaging (GSI) mode. Plastic vials containing the contrast agent solutions of water and blood were placed in a water bath, and images were acquired with the GSI-5 preset. The images were reformatted into the coronal plane and 5mm diameter ROIs were placed within each solution on a GE Advantage Workstation. Monoenergetic reconstructions were generated from 40 – 140 keV. Results: Mass attenuation (contrast per unit density) for AuNPs was greater than iron, but less than barium and iodine. Contrast was 10.2 (± 3.6) HU for 4 nm AuNP at 0.72 mg/ml and 12.1 (± 4.2) for 2 nm AuNP at 0.31 mg/ml at 70 keV suggesting reasonable chance of visualization at these concentrations for 70 keV reconstruction. The contrast as a function of CT energy is similar in both water and blood. Iodine is most dependent, followed closely by barium and iron, and trailed by a large margin by the AuNP. This was unexpected given Au’s large atomic number and the predominance of photoelectric effect at low energy. Conclusion: Infusion of IVC filters with AuNP is feasible. Discrimination of AuNP-infused IVC filters from surrounding anatomy warrants further investigation.

  2. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  3. Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey

    Science.gov (United States)

    Wang, Xin; Pu, Wei; Ren, Yong; Zhang, Xuelei; Zhang, Xueying; Shi, Jinsen; Jin, Hongchun; Dai, Mingkai; Chen, Quanliang

    2017-02-01

    A snow survey was carried out to collect 13 surface snow samples (10 for fresh snow, and 3 for aged snow) and 79 subsurface snow samples in seasonal snow at 13 sites across northeastern China in January 2014. A spectrophotometer combined with chemical analysis was used to quantify snow particulate absorption by insoluble light-absorbing particles (ILAPs, e.g., black carbon, BC; mineral dust, MD; and organic carbon, OC) in snow. Snow albedo was measured using a field spectroradiometer. A new radiative transfer model (Spectral Albedo Model for Dirty Snow, or SAMDS) was then developed to simulate the spectral albedo of snow based on the asymptotic radiative transfer theory. A comparison between SAMDS and an existing model - the Snow, Ice, and Aerosol Radiation (SNICAR) - indicates good agreements in the model-simulated spectral albedos of pure snow. However, the SNICAR model values tended to be slightly lower than those of SAMDS when BC and MD were considered. Given the measured BC, MD, and OC mixing ratios of 100-5000, 2000-6000, and 1000-30 000 ng g-1, respectively, in surface snow across northeastern China, the SAMDS model produced a snow albedo in the range of 0.95-0.75 for fresh snow at 550 nm, with a snow grain optical effective radius (Reff) of 100 µm. The snow albedo reduction due to spherical snow grains assumed to be aged snow is larger than fresh snow such as fractal snow grains and hexagonal plate or column snow grains associated with the increased BC in snow. For typical BC mixing ratios of 100 ng g-1 in remote areas and 3000 ng g-1 in heavy industrial areas across northern China, the snow albedo for internal mixing of BC and snow is lower by 0.005 and 0.036 than that of external mixing for hexagonal plate or column snow grains with Reff of 100 µm. These results also show that the simulated snow albedos by both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios but tend to be higher than surface observations at high ILAP

  4. Analysis of Light Absorbing Aerosols in Northern Pakistan: Concentration on Snow/Ice, their Source Regions and Impacts on Snow Albedo

    Science.gov (United States)

    Gul, C.; Praveen, P. S.; Shichang, K.; Adhikary, B.; Zhang, Y.; Ali, S.

    2016-12-01

    Elemental carbon (EC) and light absorbing organic carbon (OC) are important particulate impurities in snow and ice which significantly reduce the albedo of glaciers and accelerate their melting. Snow and ice samples were collected from Karakorum-Himalayan region of North Pakistan during the summer campaign (May-Jun) 2015 and only snow samples were collected during winter (Dec 2015- Jan 2016). Total 41 surface snow/ice samples were collected during summer campaign along different elevation ranges (2569 to 3895 a.m.s.l) from six glaciers: Sachin, Henarche, Barpu, Mear, Gulkin and Passu. Similarly 18 snow samples were collected from Sust, Hoper, Tawas, Astore, Shangla, and Kalam regions during the winter campaign. Quartz filters were used for filtering of melted snow and ice samples which were then analyzed by thermal optical reflectance (TOR) method to determine the concentration of EC and OC. The average concentration of EC (ng/g), OC (ng/g) and dust (ppm) were found as follows: Passu (249.5, 536.8, 475), Barpu (1190, 397.6, 1288), Gulkin (412, 793, 761), Sachin (911, 2130, 358), Mear (678, 2067, 83) and Henarche (755, 1868, 241) respectively during summer campaign. Similarly, average concentration of EC (ng/g), OC (ng/g) and dust (ppm) was found in the samples of Sust (2506, 1039, 131), Hoper (646, 1153, 76), Tawas (650, 1320, 16), Astore (1305, 2161, 97), Shangla (739, 2079, 31) and Kalam (107, 347, 5) respectively during winter campaign. Two methods were adopted to identify the source regions: one coupled emissions inventory with back trajectories, second with a simple region tagged chemical transport modeling analysis. In addition, CALIPSO subtype aerosol composition indicated that frequency of smoke in the atmosphere over the region was highest followed by dust and then polluted dust. SNICAR model was used to estimate the snow albedo reduction from our in-situ measurements. Snow albedo reduction was observed to be 0.3% to 27.6%. The derived results were used

  5. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... materials and detector/filter geometry. Improvements in the energy and angular response of dosemeters for the measurements of doses from beta and low energy photon radiation can be achieved essentially through two different approaches: either by using thin detectors or multi-element dosemeters...

  6. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    Energy Technology Data Exchange (ETDEWEB)

    John, Sajeev [Univ. of Toronto, ON (Canada)

    2014-06-04

    We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.

  7. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  8. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... are outlined. The subjects dealt with compromise: the quantity to be measured, the required accuracy of measurement, calibration procedures, and dosemeter design including the main parameters influencing the energy and angular response of the dosemeter, such as detector thickness, filter thickness, dosemeter...

  9. A Computational Investigation on Bending Deformation Behavior at Various Deflection Rates for Enhancement of Absorbable Energy in TRIP Steel

    Science.gov (United States)

    Pham, Hang Thi; Iwamoto, Takeshi

    2016-08-01

    Transformation-induced plasticity (TRIP) steel might have a high energy-absorption characteristic because it could possibly consume impact energy by not only plastic deformation but also strain-induced martensitic transformation (SIMT) during deformation. Therefore, TRIP steel is considered to be suitable for automotive structures from the viewpoint of safety. Bending deformation due to buckling is one of the major collapse modes of automotive structures. Thus, an investigation on the bending deformation behavior and energy-absorption characteristic in TRIP steel at high deformation rate is indispensable to clarify the mechanism of better performance. Some past studies have focused on the improvement of mechanical properties by means of SIMT; however, the mechanism through which the energy-absorption characteristic in steel can be improved is still unclear. In this study, the three-point bending deformation behavior of a beam specimen made of type-304 austenitic stainless steel, a kind of TRIP steel, is investigated at various deflection rates by experiments and finite-element simulations based on a constitutive model proposed by one of the authors. After confirming the validity of the computation, the rate-sensitivity of energy absorption from the viewpoint of hardening behavior is examined and the improvement of the energy-absorption characteristic in TRIP steel including its mechanism is discussed.

  10. Simplified prediction model for lighting energy consumption in office building scheme design

    Institute of Scientific and Technical Information of China (English)

    余琼; 周潇儒; 林波荣; 朱颖心

    2009-01-01

    At the scheme design stage,the potential of daylighting is significant due to the saving for electric lighting use. There are few simple tools for architects to optimize the daylighting design. Therefore,it is useful to develop a design guideline related to the evaluation of lighting energy saving potential and sunlight design strategies. This paper analyzes the impacts of different artificial lighting control methods and design parameters on daylighting. A direct correlation between lighting energy consumption and parameters such as orientations,window to wall ratio (WWR) and perimeter depth is established. A simplified prediction model is proposed to estimate lighting energy consumption with the given perimeter depth,WWR,and window transparency. Validation of the model is carried out compared with detailed lighting simulation software for an office building. After the variation analysis for these parameters,design advises for the daylighting design at scheme design phase are summarized.

  11. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  12. National award for energy-efficient town lighting. Compilation of energy-efficient town lighting techniques; Bundeswettbewerb Energieeffiziente Stadtbeleuchtung. Sammlung energieeffizienter Techniken fuer die Stadtbeleuchtung

    Energy Technology Data Exchange (ETDEWEB)

    Piller, Sabine; Huebner, Vanessa; Barbre, Felix; Schaefer, Moritz [Berliner Energieagentur GmbH, Berlin (Germany)

    2009-02-11

    The national award for innovative urban lighting was initiated by the Federal Environmental Office. The resulting publication presents innovative techniques for urban lighting. While it is not a complete market survey, it provides an outline of modern, energy-efficient and environment-friendly technologies that are commercially available. Most systems are also available at comparatively low cost. For more information, interested users should refer to http://www.bmu.de/klimaschutzinitiative/aktuell/41708.php. (orig./AKB)

  13. Electron, photons, and molecules: Storing energy from light

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.R. [Argonne National Laboratory, IL (United States)

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  14. The impact of clerestory lights on energy efficiency of buildings

    Directory of Open Access Journals (Sweden)

    Đenadić Dalibor M.

    2015-01-01

    Full Text Available The buildings are among major energy consumers, whose energy efficiency is rather low. Clerestory windows are responsible for a large portion of energy losses from the buildings. The energy efficiency of buildings can greatly be improved by upgrading clerestory and other windows. This paper focuses on the theoretical and experimental investigations on how this can be performed in an old school building in the town of Bor in eastern part of Serbia. For that purpose a modern measuring technique has been applied to identify the existing status, and to compare theoretical and actual conditions.

  15. High energy light scattering in the generalized eikonal approximation.

    Science.gov (United States)

    Chen, T W

    1989-10-01

    The generalized eikonal approximation method is applied to the study of light scattering by a dielectric medium. In this method, the propagation of light inside the medium is assumed to be rectilinear, as in the usual eikonal method, but with a parameterized propagator which is used to include the edge effect and ray optics behavior at the limit of very short wavelengths. The resulting formulas for the intensity and extinction efficiency factor are compared numerically and shown to agree excellently with the exact results for a homogeneous dielectric sphere.

  16. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design

    Science.gov (United States)

    Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O.

    2016-06-01

    New relationships between energy efficiency, illuminance uniformity, spacing and mounting height in public lighting installations were derived from the analysis of a large sample of outputs generated with a widely used software application for lighting design. These new relationships greatly facilitate the calculation of basic lighting installation parameters. The results obtained are also based on maximal energy efficiency and illuminance uniformity as a premise, which are not included in more conventional methods. However, these factors are crucial since they ensure the sustainability of the installations. This research formulated, applied and analysed these new equations. The results of this study highlight their usefulness in rapid planning and urban planning in developing countries or areas affected by natural disasters where engineering facilities and computer applications for this purpose are often unavailable.

  17. Regulating the Energy Flow in a Cyanobacterial Light-Harvesting Antenna Complex.

    Science.gov (United States)

    Eisenberg, Ido; Caycedo-Soler, Felipe; Harris, Dvir; Yochelis, Shira; Huelga, Susana F; Plenio, Martin B; Adir, Noam; Keren, Nir; Paltiel, Yossi

    2017-02-16

    Photosynthetic organisms harvest light energy, utilizing the absorption and energy-transfer properties of protein-bound chromophores. Controlling the harvesting efficiency is critical for the optimal function of the photosynthetic apparatus. Here, we show that the cyanobacterial light-harvesting antenna complex may be able to regulate the flow of energy to switch reversibly from efficient energy conversion to photoprotective quenching via a structural change. We isolated cyanobacterial light-harvesting proteins, phycocyanin and allophycocyanin, and measured their optical properties in solution and in an aggregated-desiccated state. The results indicate that energy band structures are changed, generating a switch between the two modes of operation, exciton transfer and quenching, achieved without dedicated carotenoid quenchers. This flexibility can contribute greatly to the large dynamic range of cyanobacterial light-harvesting systems.

  18. Missing energy estimate in the light of the muon discrepancy

    Directory of Open Access Journals (Sweden)

    Tueros M.

    2013-06-01

    Full Text Available The determination of the primary energy of extensive air showers using the fluorescence technique requires an estimation of the energy carried away by the particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the model predictions for neutrino and muon production. In this contribution we describe a new method that could be used to obtain the missing energy directly from events measured simultaneously with the fluorescence and the surface detectors of the Pierre Auger Observatory, based on a toy model of the shower cascade. The method is applied to a synthetic sample of events to show its robustness and we discuss how the results could be used to make an estimation of the number of high energy muons in the cascade.

  19. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    Science.gov (United States)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  20. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater—Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F.Oner; R.A.Mamedoy

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of the average Coulomb interaction between two particles.Coulomb energy difference according to shell model of light mirror nuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions.In this study,using the one-center expansion of exponential-type wavefunctions in terms of Slater-type orbitals with the same center,we derived formula for Coulomb energy difference of light mirror nuclei.

  1. Noise-assisted energy transfer in quantum networks and light-harvesting complexes

    CERN Document Server

    Chin, Alex W; Caruso, Filippo; Huelga, Susana F; Plenio, Martin B

    2009-01-01

    We provide physically intuitive mechanisms for the effect of noise on excitation energy transfer (EET) in networks. Using these mechanisms of dephasing-assisted transport (DAT) in a hybrid basis of both excitons and sites, we shed new light on how noise enables energy transfer with efficiencies well above 90% across light harvesting molecules, like the Fenna-Matthew-Olson (FMO) complex. We demonstrate explicitly how noise alters the pathways of energy transfer across the complex, suppressing ineffective pathways and facilitating direct ones to the reaction centre. This understanding opens up a new paradigm of `noise-engineering' by which EET can be optimized in artificial light-harvesting structures.

  2. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater-Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F. Oner; B.A. Mainedov

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of theaverage Coulomb interaction between two particles. Coulomb energy difference according to shell model of light mirrornuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions. Inthis study, using the one-center expansion of exponential-type wavcfunctions in terms of Slater-type orbitals with thesame center, we derived formula for Coulomb energy difference of light mirror mulei.

  3. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  4. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons

    Science.gov (United States)

    Hadid, L.; Desbrée, A.; Schlattl, H.; Franck, D.; Blanchardon, E.; Zankl, M.

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  5. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    Science.gov (United States)

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-07

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  6. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    Science.gov (United States)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real

  7. Energy efficient computing exploiting the properties of light

    Science.gov (United States)

    Shamir, Joseph

    2013-09-01

    Significant reduction of energy dissipation in computing can be achieved by addressing the theoretical lower limit of energy consumption and replacing arrays of traditional Boolean logic gates by other methods of implementing logic operations. In particular, a slight modification of the concept of computing allows the incorporation of fundamentally lossless optical processes as part of the computing operation. While the introduced new concepts can be implemented electronically or by other means, using optics eliminates also energy dissipation involved in the translation of electric charges. A possible realization of the indicated concepts is based on directed logic networks composed of reversible optical logic gate arrays.

  8. Simulation and test for hydraulic electromagnetic energy-regenerative shock absorber%液电式馈能减振器外特性仿真与试验

    Institute of Scientific and Technical Information of China (English)

    张晗; 过学迅; 徐琳; 张杰

    2014-01-01

    With the rising concerns of global environmental issues, energy saving in automobiles becomes an important subject. In order to achieve the purpose of vibration reduction, the traditional passive shock absorber converts the vehicle vibration energy to thermal energy, and then the thermal energy is released into the air. However, the energy-regenerative shock absorber could harvest this part of the energy. This paper presents a vehicular hydraulic electromagnetic energy-regenerative shock absorber (HESA) which is designed for acquiring the vibration energy caused by road irregularity. It is composed of a hydraulic cylinder, two check valves, two accumulators, a hydraulic motor, a generator, and hydraulic lines. When the vehicle is subjected to vertical vibration, the oil in the HESA flows to the hydraulic motor through a hydraulic line, then the rotating hydraulic motor drives a generator to produce electricity. In order to consider the vibration reduction performance of the HESA, the damping characteristic was analyzed in detail. Through theoretical analysis, the damping force mathematical model of the HESA was deduced, and the calculation program was written in MATLAB, based on the HESA damping force mathematical model. The indicator diagram characteristic and speed characteristic of the HESA under the working condition of a sinusoidal displacement input of 1.67Hz was obtained from simulation tests, which was designed according to a national absorber test procedure. A test bench was constructed to verify the results of a simulation. The comparison between the bench test data and simulation data showed that the value of a compression travel damping force was smaller than the rebound travel’s, and the peak value of the simulation data was identical with the value in test data. The simulation speed characteristic curve of the HESA was compared with the bench test data. However, there were some distortions in the test indicator diagram characteristic curve because

  9. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  10. MCNP6 simulation of light and medium nuclei fragmentation at intermediate energies

    Directory of Open Access Journals (Sweden)

    Mashnik Stepan G.

    2016-01-01

    Full Text Available Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC, followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  11. MCNP6 simulation of light and medium nuclei fragmentation at intermediate energies

    CERN Document Server

    Mashnik, Stepan G

    2015-01-01

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes

  12. MCNP6 simulation of light and medium nuclei fragmentation at intermediate energies

    Science.gov (United States)

    Mashnik, Stepan G.; Kerby, Leslie M.

    2016-05-01

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to 4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  13. Semi-Classical and Quantized-Field Descriptions of Light Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    Science.gov (United States)

    Jacobs, Verne

    2016-05-01

    Semi-classical and quantum-field descriptions for the interaction of light with matter are systematically discussed. Applications of interest include resonant pump-probe optical phenomena, such as electromagnetically induced transparency. In the quantum-mechanical description of matter systems, we introduce a general reduced-density-matrix framework. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner, using a Liouville-space operator representation. In the semi-classical description, the electromagnetic field is described as a classical field satisfying the Maxwell equations. Compact Liouville-space operator expressions are derived for the linear and the general (n'th order) non-linear electromagnetic-response tensors describing moving many-electron systems. The tetradic matrix elements of the Liouville-space self-energy operators are evaluated for environmental collisional and radiative interactions. The quantized-field approach is essential for a fully self-consistent quantum-mechanical description. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  14. Embedding of $^{163}$Ho and $^{166m}$ Ho in the energy absorbers of low temperature metallic magnetic calorimeters

    CERN Multimedia

    The calorimetric measurement of the $^{163}$Ho electron capture spectrum is a promising tool to investigate the electron neutrino mass. A suitable method to embed the source in the detectors is the ion-implantation. This process has already been used to embed $^{163}$Ho ions in micro-fabricated low temperature metallic magnetic prototypes. The $^{163}$Ho electron capture spectrum obtained with these first prototypes is presently the most precise with an energy resolution of $\\Delta$$\\textit{E}$$_{FWHM}$ = 7.6 eV. In order to test the performance of the new generation of low temperature metallic magnetic calorimeters, we propose to perform a $^{163}$Ho ion-implantation on the new chip having two arrays consisting of 32 pixels each. An activity of about 1 Bq per pixel is required. With this new detector array we will be able to achieve a better energy resolution and to acquire a higher statistics which allows for studying the $^{163}$Ho spectral shape. We propose also to perform an ion-implantation of $^{166m}$...

  15. Progress in high-energy ball milling for the preparation of absorbing materials%吸波材料的高能球磨工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    王锰刚; 谌静; 谢国治; 陈文俊; 李艳; 张泽敖; 王嘉波; 沈杨; 孙康; 周倜

    2016-01-01

    High-energy ball milling method has become a important way to prepare various absorbing materials, because of simple control, environmental production, low cost and high efficiency. This paper summarizes the recent research progress of high-energy ball milling process in absorbing materials,indicating that high-energy ball milling process in absorbing materials, especially in flaky absorbing materials with shape anisotropy, which has very broad application prospects. Then we look forward to the development prospects of high-energy ball milling process in absorbing materials.%高能球磨法由于其便于控制、生产环保、成本低、效率高等优点成为制备吸波材料的一种重要方法。总结了近期高能球磨工艺在吸波材料领域的应用研究进展,表明高能球磨工艺在吸波领域,尤其是在制备具有形状各向异性的片状吸波材料领域,具有十分广阔的应用前景,展望了高能球磨工艺在未来吸波材料领域的发展前景。

  16. Energy Conservation Using Scotopically Enhanced Fluorescent Lighting In An Office Environment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-03-01

    This study was conducted in a recently built and occupied office building to determine whether the energy savings benefits of scotopically enhanced fluorescent lighting can be achieved while maintaining user acceptability.

  17. The renewable energy household lighting for Chibayish inhabitant’s in Iraq★

    Directory of Open Access Journals (Sweden)

    Dawood Furat

    2017-01-01

    Full Text Available Affordable and clean energy is one of the major goals for global sustainable development. Lighting is a major aspect of human energy consumption and access to quality lighting is one of the most important indicators of human development. Like other countries around the world, the Iraqi government has realized the importance of climate change and the necessity for clean energy which has led them to officially ratifying the Kyoto Protocol in January 2008. However, it is challenging to implement a clean and renewable energy lighting system for a small community like Chibayish in the Iraqi marshes. The Chibayish unique house building technique of man-made islands (floating baskets, results that these floating houses are not connected to the Iraqi national grid. The villagers in Chibayish require artificial light for their indoor living areas after dark and also for night fishing, which is a common practice. In this research study, various renewable energy resources have been examined in order to identify the most locally practical renewable energy technology for household lighting needs. The solar irradiance profile in the area showed the viability of solar energy in comparison to other renewable energy sources considered within these specific environmental conditions. An analysis carried out using HOMER Pro simulator shows that the solar photovoltaic is an affordable and reliable option for this community.

  18. Intrinsic energy resolution and light output of the $Lu_{07}Y_{03}$ AP:Ce scintillator

    CERN Document Server

    Kuntner, C; Lecoq, P; Pizzolotto, C; Schneegans, M

    2002-01-01

    Light output and energy resolution for a 2*2*10 mm/sup 3/ LuYAP:Ce crystal coupled to a XP2020Q photomultiplier were studied. The measured light output of 8530 photons/MeV includes the correction for the quantum efficiency of the XP2020Q photomultiplier. An energy resolution of 7.33% was obtained for 662 keV gamma -rays with a long face coupled to the PMT. The measured number of 2130 phe/MeV implies a photoelectron statistical contribution of 6.59% and hence a LuYAP intrinsic energy resolution of 3.21%. The relative light output of the LuYAP scintillator measured for photon energies varying from 31 keV to 1.333 MeV was constant within 7%. These observations are consistent with results for the YAP:Ce scintillator, and with the assumption that there is a direct correlation between the energy resolution of scintillators and non-proportionality of their light output versus energy in the low-energy domain. The results are compared to the relative light output of the LSO:Ce scintillator measured for varying energie...

  19. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  20. Dynamical dark energy in light of the latest observations

    Science.gov (United States)

    Zhao, Gong-Bo; Raveri, Marco; Pogosian, Levon; Wang, Yuting; Crittenden, Robert G.; Handley, Will J.; Percival, Will J.; Beutler, Florian; Brinkmann, Jonathan; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Koyama, Kazuya; L'Huillier, Benjamin; Nichol, Robert C.; Pieri, Matthew M.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Rossi, Graziano; Sánchez, Ariel G.; Shafieloo, Arman; Tinker, Jeremy L.; Tojeiro, Rita; Vazquez, Jose A.; Zhang, Hanyu

    2017-09-01

    A flat Friedmann-Robertson-Walker universe dominated by a cosmological constant (Λ) and cold dark matter (CDM) has been the working model preferred by cosmologists since the discovery of cosmic acceleration1,2. However, tensions of various degrees of significance are known to be present among existing datasets within the ΛCDM framework3-11. In particular, the Lyman-α forest measurement of the baryon acoustic oscillations (BAO) by the Baryon Oscillation Spectroscopic Survey3 prefers a smaller value of the matter density fraction ΩM than that preferred by cosmic microwave background (CMB). Also, the recently measured value of the Hubble constant, H0 = 73.24 ± 1.74 km s-1 Mpc-1 (ref. 12), is 3.4σ higher than the 66.93 ± 0.62 km s-1 Mpc-1 inferred from the Planck CMB data7. In this work, we investigate whether these tensions can be interpreted as evidence for a non-constant dynamical dark energy. Using the Kullback-Leibler divergence13 to quantify the tension between datasets, we find that the tensions are relieved by an evolving dark energy, with the dynamical dark energy model preferred at a 3.5σ significance level based on the improvement in the fit alone. While, at present, the Bayesian evidence for the dynamical dark energy is insufficient to favour it over ΛCDM, we show that, if the current best-fit dark energy happened to be the true model, it would be decisively detected by the upcoming Dark Energy Spectroscopic Instrument survey14.

  1. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  2. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    Science.gov (United States)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  3. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light.

    Science.gov (United States)

    Solhaug, Knut Asbjørn; Xie, Li; Gauslaa, Yngvar

    2014-08-01

    Photosynthesis was compared in two cyanobacterial lichens (Lobaria hallii and Peltigera praetextata) and two green algal lichens (Lobaria pulmonaria and Peltigera leucophlebia) exposed to red, green or blue light. Cyanolichens had substantially lower photosynthetic CO(2) uptake and O(2) evolution than the green algal lichens in blue light, but slightly higher photosynthesis in red and green light. The effective quantum yield of photosystem (PS) II (Φ(PSII)) decreased with increasing red and green light for all species, but in blue light this response occurred in green algal lichens only. Cyanolichen Φ(PSII) increased with increasing blue light at low irradiances, but decreased at stronger exposures. However, after adding red light the efficiency of blue light for photosynthetic O(2) evolution increased by 2.4 times. Because phycobilisomes associated with PSII have a low blue light absorption, our results are consistent with blue light absorption mainly by Chl in PSI. Thereby, unequal allocation of excitation energy between PSII and PSI results in low cyanolichen photosynthesis under blue light. This is new knowledge in the science of lichenology with important implications for e.g. the reliability of using Chl fluorometers with blue light for cyanolichens.

  4. Illumination performance and energy saving of a solar fiber optic lighting system.

    Science.gov (United States)

    Lingfors, David; Volotinen, Tarja

    2013-07-01

    The illumination performance and energy savings of a solar fiber optic lighting system have been verified in a study hall--corridor interior. The system provides intensive white light with a high luminous flux of 4500 lm under 130000 lx direct sun radiation at a 10 m fiber distance from the sun-tracking light collector. The color temperature that describes the light color perceived is 5800 ± 300 K, i.e. close to the direct sunlight outside, and the color rendering index (86), that describes how well colors are rendered under the light source, is higher for the solar lights than for the supplementary fluorescent lights (77). Thus this high quality solar lighting improves the visibility of all kinds of objects compared to the fluorescent lights. Annual lighting energy savings of 19% in Uppsala, Sweden and 46% in southern Europe were estimated for a study hall interior, as well as 27% and 55% respectively in an interior illuminated 16 h per day all days of a year.

  5. Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States.

    Science.gov (United States)

    Zhong, Xiaolan; Chervy, Thibault; Wang, Shaojun; George, Jino; Thomas, Anoop; Hutchison, James A; Devaux, Eloise; Genet, Cyriaque; Ebbesen, Thomas W

    2016-05-17

    We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.

  6. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  7. Predicting the Dynamic Crushing Response of a Composite Honeycomb Energy Absorber Using Solid-Element-Based Models in LS-DYNA

    Science.gov (United States)

    Jackson, Karen E.

    2010-01-01

    This paper describes an analytical study that was performed as part of the development of an externally deployable energy absorber (DEA) concept. The concept consists of a composite honeycomb structure that can be stowed until needed to provide energy attenuation during a crash event, much like an external airbag system. One goal of the DEA development project was to generate a robust and reliable Finite Element Model (FEM) of the DEA that could be used to accurately predict its crush response under dynamic loading. The results of dynamic crush tests of 50-, 104-, and 68-cell DEA components are presented, and compared with simulation results from a solid-element FEM. Simulations of the FEM were performed in LS-DYNA(Registered TradeMark) to compare the capabilities of three different material models: MAT 63 (crushable foam), MAT 26 (honeycomb), and MAT 126 (modified honeycomb). These material models are evaluated to determine if they can be used to accurately predict both the uniform crushing and final compaction phases of the DEA for normal and off-axis loading conditions

  8. Modelling excitonic-energy transfer in light-harvesting complexes

    CERN Document Server

    Kramer, Tobias

    2014-01-01

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  9. Modelling excitonic-energy transfer in light-harvesting complexes

    Science.gov (United States)

    Kramer, Tobias; Kreisbeck, Christoph

    2014-01-01

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  10. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  11. Light-Matter Interaction: Conversion of Optical Energy and Momentum to Mechanical Vibrations and Phonons

    CERN Document Server

    Mansuripur, Masud

    2016-01-01

    Reflection, refraction, and absorption of light by material media are, in general, accompanied by a transfer of optical energy and momentum to the media. Consequently, the eigen-modes of mechanical vibration (phonons) created in the process must distribute the acquired energy and momentum throughout the material medium. However, unlike photons, phonons do not carry momentum. What happens to the material medium in its interactions with light, therefore, requires careful consideration if the conservation laws are to be upheld. The present paper addresses some of the mechanisms by which the electromagnetic momentum of light is carried away by mechanical vibrations.

  12. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores

    Directory of Open Access Journals (Sweden)

    Ľudmila Nagyová

    2014-11-01

    Full Text Available Over the last few years, topics of displaying, presentation, lighting, energy saving and issues related to the environment while selling the fresh food (fruits, vegetable, bakery products, meat are becoming an important matter among traders. However, just bigger companies with transnational capital have devoted their attention to this issue yet. Generally, the energy costs make up 70% of operating costs in retail stores where the cooling system and lighting are the most energy consuming. Accent lighting in modern retails is largely involved in the overall design and atmosphere in shops and plays a crucial role in presenting the goods as well. Using of accent lighting can draw the customer's attention to a specific part of the sales area and achieve the overall harmonization in the store. With the rational using of combination of energy saving and effective accent lighting retailers can achieve not only attractive presentation of displayed products but also appreciable savings in the operation of their stores. It is the only factor that can be exactly measured and controlled. Using a Colour and Lux Meters we found out the intensity and color temperature of accent lighting used in domestic and foreign retail chains for the different kinds of fresh food products. Based on the obtained values we have compiled graphs, which are showing visual comfort. We also identified different types of accent lighting, which we assigned to their impact on emotional involvement of consumers. The starting points were the tests we conducted in simulated laboratory conditions. While searching of a compromise between effective and energy efficient accent lighting we take into consideration consumers' emotional response as well as the annual electricity consumption of different types of light sources. At the end we recommend options for energy-efficient, effective and spectacular lighting while using the optimal number of light sources and their logical organization

  13. Harvesting sunlight energy: a biophysics approach

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-04-01

    Full Text Available The most efficient light harvesting and energy transfer systems are found in nature as part of the photosynthesis process. In the photosynthetic system light energy is absorbed by antenna chlorophylls and this energy is then passed onto a reaction...

  14. Energy levels of light atoms in strong magnetic fields

    CERN Document Server

    Thirumalai, Anand

    2014-01-01

    In this review article we provide an overview of the field of atomic structure of light atoms in strong magnetic fields. There is a very rich history of this field which dates back to the very birth of quantum mechanics. At various points in the past significant discoveries in science and technology have repeatedly served to rejuvenate interest in atomic structure in strong fields, broadly speaking, resulting in three eras in the development of this field; the historical, the classical and the modern eras. The motivations for studying atomic structure have also changed significantly as time progressed. The review presents a chronological summary of the major advances that occurred during these eras and discusses new insights and impetus gained. The review is concluded with a description of the latest findings and the future prospects for one of the most remarkably cutting-edge fields of research in science today.

  15. Dimerization-assisted energy transport in light-harvesting complexes.

    Science.gov (United States)

    Yang, S; Xu, D Z; Song, Z; Sun, C P

    2010-06-21

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 [without a reaction center (RC)] to the LH1 (surrounding the RC) or from the LH2 to another LH2. The excited and unexcited states of a bacteriochlorophyll (BChl) are modeled by a quasispin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  16. Dimerization-assisted energy transport in light-harvesting complexes

    CERN Document Server

    Yang, S; Song, Z; Sun, C P

    2010-01-01

    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system, and then calculate the transfer efficiency and average transfer time at a low enough temperature. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.

  17. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, H.W.

    1977-06-30

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO.

  18. An exposition of the role of external base absorbent of solar energy with intelligent constructional structures with a view to reduction in energy use

    Directory of Open Access Journals (Sweden)

    Samira Sadeghi Kelishadi

    2014-07-01

    Full Text Available There is no doubt that one of the most important challenges facing engineers and designers ofarchitectural design and engineering is indeed the problem of energy. It is inline with this trend of thought that energy can be seen as a critical elementwith a view to the enhancement of mans economical and social welfare and it isin the sphere of construction engineering that the need arises for the use ofthe appropriate construction material which can best serve this vital aim ofenergy conservation by using renewable energy sources such as solar energy. Itis therefore a foregone conclusion that the more we are capable of using solarenergy we are helping to conserve our other energy sources and thus help toreduce our overall energy consumption. It is with this view in mind thatconstruction engineers and those working in building design have aimed at usingsystems that can manage energy consumption within their constructionalstructures, having arrived at a point where their building designs can actuallybe termed intelligent or smart constructionalstructures, whereby the system asa whole is capable of using solar energy instead of the traditional fossilfuels. Yet that which makes possible the use of solar energy more so today thanever before is the use of external ducts, which are installed in places mostexposed to sunlight, and have the capability of changing color and becominglighter or darker as the state of exposure calls for is the use of a certaintype of smart glass within the built structure, that makes possible the mostefficient use of sunlight entering the building, having the capability ofchanging color in correlation to the amount of sunlight received and becominglighter or darker appropriately, allowing that quantity of sunlight to enter thebuilding as is needed to counteract the greenhouse effect which causes anuncontrolled increase of temperature within the built structure, and thusallowing the most efficient use of solar energy in keeping

  19. DYNALIGHT DESKTOP: A GREENHOUSE CONTROL SYSTEM TO OPTIMIZE THE ENERGY COST-EFFICIENCY OF SUPPLEMENTARY LIGHTING

    DEFF Research Database (Denmark)

    Mærsk-Møller, Hans Martin; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto;

    2016-01-01

    for energy and cost-efficient climate control strategies that do not compromise product quality. In this paper, we present a novel approach addressing dynamic control of supplemental light in greenhouses aiming to decrease electricity costs and energy consumption without loss in plant productivity. Our...... approach uses weather forecasts and electricity prices to compute energy and cost-efficient supplemental light plans, which fulfils the production goals of the grower. The approach is supported by a set of newly developed planning software, which interfaces with a greenhouse climate computer. The planning......In Northern Europe the production of ornamental pot plants in greenhouses requires use of supplemental light, as light is a restricting climatic factor for growth from late autumn until early spring. To make this production ecologically and economically sustainable there is an urgent need...

  20. Light output and energy resolution of Ce sup 3 sup + -doped scintillators

    CERN Document Server

    Dorenbos, P

    2002-01-01

    The systematic trends regarding wavelength of emission, maximum obtainable scintillation light output, gamma-ray energy resolution, and scintillation decay time of Ce sup 3 sup + -doped fluorides, chlorides, bromides, iodides, oxides, sulfides, and selenides are reviewed. Theoretical limits will be compared with actually achieved values. The relation between energy resolution and non-proportional response of scintillators will be discussed.

  1. Dark Energy in Light of the Cosmic Horizon

    CERN Document Server

    Melia, Fulvio

    2007-01-01

    Based on dramatic observations of the CMB with WMAP and of Type Ia supernovae with the Hubble Space Telescope and ground-based facilities, it is now generally believed that the Universe's expansion is accelerating. Within the context of standard cosmology, the Universe must therefore contain a third `dark' component of energy, beyond matter and radiation. However, the current data are still deemed insufficient to distinguish between an evolving dark energy component and the simplest model of a time-independent cosmological constant. In this paper, we examine the role played by our cosmic horizon R0 in our interrogation of the data, and reach the rather firm conclusion that the existence of a cosmological constant is untenable. The observations are telling us that R0=c t0, where t0 is the perceived current age of the Universe, yet a cosmological constant would drive R0 towards ct (where t is the cosmic time) only once, and that would have to occur right now. In contrast, scaling solutions simultaneously elimin...

  2. Light harvesting and Blue-Green light induced non-photochemical quenching in two different C-phycocyanin mutants of synechocytis PCC 6803

    NARCIS (Netherlands)

    Tian, L.; Stokkum, van I.H.M.; Koehorst, R.B.M.; Amerongen, van H.

    2013-01-01

    Cyanobacteria are oxygen-evolving photosynthetic organisms that harvest sunlight and convert excitation energy into chemical energy. Most of the light is absorbed by large light harvesting complexes called phycobilisomes (PBs). In high-light conditions, cyanobacteria switch on a photoprotective mech

  3. DESCRIPTION OF THE TRITIUM-PRODUCING BURNABLE ABSORBER ROD FOR THE COMMERCIAL LIGHT WATER REACTOR TTQP-1-015 Rev 19

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.

    2012-02-01

    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  4. Clustered Geometries Exploiting Quantum Coherence Effects for Efficient Energy Transfer in Light Harvesting

    CERN Document Server

    Ai, Qing; Jin, Bih-Yaw; Cheng, Yuan-Chung

    2013-01-01

    Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revea...

  5. Performance Indexes Assessment for Lighting Systems Based on the Normalized Power Density and Energy Losses Estimation in University Workrooms

    OpenAIRE

    2015-01-01

    Well-designed lighting decreases accidents and diseases of eyes and can increase productivity and concentration. Increase of energy price and a high proportion of electric lighting energy consumption in buildings due to defects in designing and maintenance led to desirable lighting to be reduced. One of our challenges in providing health and quality of lighting is lack of economic justification of projects. Furthermore, evaluating the lighting systems is very important to improve these system...

  6. IC-BASED CONTROLS FOR ENERGY-EFFICIENT LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Richard Zhang

    2005-03-01

    A new approach for driving high frequency energy saving ballasts is developed and documented in this report. The developed approach utilizes an IC-based platform that provides the benefits of reduced system cost, reduced ballast size, and universal application to a wide range of lamp technologies, such as linear fluorescent lamps (LFL), compact fluorescent lamps (CFL) and high intensity discharge lamps (HID). The control IC chip set developed for the platform includes dual low voltage (LV) IC gate drive that provides gate drive for high and low side power switches in typical ballast circuits, and ballast controller IC that provides control functionalities optimal for different lamps and digital interface for future extension to more sophisticated control and communication.

  7. Designing Dual-Active Bridge (DAB) converter for energy storage/recovery systems in a lighting smart grid context

    OpenAIRE

    Rico Secades, Manuel; García Llera, Daniel; López Corominas, Emilio Ramón; Calleja Rodríguez, Antonio Javier

    2014-01-01

    Lighting Systems are suffering and important evolution with the introduction of LED lighting systems with new strategies of energy savings, incorporation of renewable energy sources and optionally a bidirectional interconnection with the mains (AC grid or DC interconnection bus). Lighting Systems are moving to Lighting Smart Grids and step by step integrating in Smart City strategies. In this context design of modular and efficient energy storage/recovery systems are gaining importance lookin...

  8. Intelligent lighting saves 57 % energy. Practical test. School Oberhaid; Intelligente Beleuchtung spart 57 Prozent Energie. Praxistest. Schule Oberhaid

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-07-15

    Already the first comparative measurements in the elementary school Oberhaid showed the enormous potential savings due to the new lighting system in conjunction with an intelligent control. Meanwhile, the measurement results of the winter half-year appear: The new facility achieves a power supply of 57 % and offers an ultimate in energy efficiency.

  9. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids

    NARCIS (Netherlands)

    Mueller, Marc G.; Lambrev, Petar; Reus, Michael; Wientjes, Emilie; Croce, Roberta; Holzwarth, Alfred R.; Müller, Marc G.

    2010-01-01

    The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excita

  10. The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Giacomo Salvadori

    2016-11-01

    Full Text Available The energy audit for a building is a procedure designed mainly to obtain adequate knowledge of the energy consumption profile, identify, and quantify opportunities for energy savings by a cost-benefit analysis and report, clearly and comprehensively, about the obtained results. If the audit is referred to a building with a significant historical and artistic value, a compatibility evaluation of the energy saving interventions with the architectural features should also be developed. In this paper, analysing the case study of a historical building used as public offices in Pisa (Italy, the authors describe how it is possible to conduct an energy audit activity (especially dedicated to the lighting system and they show how, for this type of buildings, it is possible to obtain significant energy savings with a refurbishment of the lighting system. A total number of seven interventions on indoor and outdoor lighting sub-systems were analysed in the paper. They are characterised by absolute compatibility with the historical and artistic value of the building and they show short payback times, variable between 4 and 34 months, allowing a reduction of the electrical energy consumption for the artificial indoor and outdoor lighting variable from 1.1 MWh/year to 39.0 MWh/year. The followed methodology and the evaluation results described in the paper, although based on a case study, can be extended to numerous historical buildings used as public offices, a recurring situation in the centres of Italian historical cities.

  11. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  12. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    Science.gov (United States)

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  13. Mono-energy coronary angiography with a compact light source

    Science.gov (United States)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-03-01

    While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

  14. Maintenance and Energy Optimization of Lighting Systems for the Improvement of Historic Buildings: A Case Study

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-08-01

    Full Text Available Proper lighting is vital to improve, from an artistic point of view, the surface expanse and decorative detailing of architectural heritage buildings considered valuable. When properly lit, monumental buildings can become to onlookers an essential part of the city. Nowadays, for design planners dealing with the improvement of buildings, whose architectural design should be valorized, the real challenge is to combine the lighting artistic requirements with scrupulous economic management in order to limit the energy demand and to respect the environment. For these reasons, this case study examines the lighting of the monumental façade and the cloister of St. Peter in Chains situated in the Faculty of Engineering of Sapienza University of Rome. The present lighting installation, characterized by metal halides, compact fluorescent and halogen lamps, is compared with an alternative scenario presenting LED lamps and scenographic lighting of the monumental façade. Such comparison is based on the evaluation of the lighting levels for different visual tasks and on energy and maintenance issues; the first analysis was performed through the software DIALux Evo 4.0, whereas the second was performed using ecoCALC. This study leads to the conclusion that the lighting levels of the solution presenting LED lamps are better than those of the present solution, and they comply with current standards. Finally, the higher costs of LED lamp installations and the scenographic lighting of the monumental façade are balanced by lower maintenance costs, with a payback period of seven years.

  15. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    DEFF Research Database (Denmark)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo

    2016-01-01

    -band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light...

  16. Proteorhodopsin--A new path for biological utilization of light energy in the sea

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The breakthrough of environmental genomics of marine microbes has revealed the existence of eubacterial rhodopsin in the sea, named proteorhodopsin (PR), which can take light to produce bio-energy for cell metabolism. Gene and protein sequence analysis and laser flash-induced photolysis experiments have validated the function of PR as light-driven proton-pump. During the pumping process, light energy is transformed into chemical gradient potential across plasma inner-membrane, the potential energy is then used to synthesize ATP. The finding of PR actually brings to light a novel pathway of sunlight utilization existing in heterotrophic eubacteria in contrast to the well-known chlorophyll-dependent photosynthesis in the sea. Since the group of PR-bearing bacteria is one of the numerically richest microorganisms on the Earth, accounting for 13% of the total in sea surface water, and with averaged cellular PR molecules of 2.5×104, PR- bearing bacteria are a key component not to be ignored in energy metabolism and carbon cycling in the sea. Based on the understanding of current literature and our own investigation on PR in the China seas which indicated a ubiquitous presence and high diversity of PR in all the marine environments, we propose a conceptual model of energy flow and carbon cycling driven by both pigment-dependent and -independent biological utilization of light in the ocean.

  17. The Chandra High Energy Transmission Grating Spectrometer probes the dusty warm absorber in the Seyfert 1 galaxy MCG--6-30-15

    CERN Document Server

    Lee, J C; Marshall, H L; Fabian, A C; Morales, R; Schulz, N S; Iwasawa, K

    2001-01-01

    The Chandra HETGS spectra of the Seyfert 1 galaxy MCG--6-30-15 show numerous narrow, unresolved (FWHM 0.48 keV (< 26 A). We attribute previous reports of an apparently highly redshifted O VII edge to the neutral Fe L absorption complex and the O VII resonance series (by transitions higher than He $\\gamma$; He $\\alpha,\\beta,\\gamma$ are also seen at lower energies). The implied dust column density needed to explain the FeI L edge feature agrees with that obtained from earlier reddening studies, which had already concluded that the dust should be associated with the ionized absorber (given the relatively lower observed X-ray absorption by cold gas). Our findings contradict the interpretation of Branduardi-Raymont et al. (2001), based on XMM-Newton RGS spectra, that this spectral region is dominated by highly relativistic soft X-ray line emission originating near the central black hole. Here we review these issues pertaining to the soft X-ray spectral features as addressed by Lee et al., (2001). (Details foun...

  18. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  19. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    Science.gov (United States)

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns