WorldWideScience

Sample records for absorbed glandular dose

  1. Calculation of Absorbed Glandular Dose using a FORTRAN Program Based on Monte Carlo X-ray Spectra in Mammography

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2011-03-01

    Full Text Available Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRAN code to calculate average glandular dose. Results: Average glandular dose variation was calculated against the voltage of the mammographic x-ray tube for d = 5 cm, HVL= 0.35 mm Al, and different value of g. Also, the results related to average glandular absorbed dose variation per unit roentgen radiation against the glandular fraction of breast tissue for kV = 28 and HVL = 0.400 mmAl and different values of d are presented. Finally, average glandular dose against d for g = 60% and three values of kV (23, 27, 35 kV with corresponding HVLs have been calculated. Discussion and Conclusion: The absorbed dose computational program is accurate, complete, fast and user friendly. This program can be used for optimization of exposure dose in mammography. Also, the results of this research are in good agreement with the computational results of others.

  2. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  3. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity

    International Nuclear Information System (INIS)

    Geeraert, N.; Bosmans, H.; Klausz, R.; Muller, S.; Bloch, I.

    2015-01-01

    The radiation risk in mammography is traditionally evaluated using the average glandular dose. This quantity for the average breast has proven to be useful for population statistics and to compare exposure techniques and systems. However it is not indicating the individual radiation risk based on the individual glandular amount and distribution. Simulations of exposures were performed for six appropriate virtual phantoms with varying glandular amount and distribution. The individualised average glandular dose (iAGD), i.e. the individual glandular absorbed energy divided by the mass of the gland, and the glandular imparted energy (GIE), i.e. the glandular absorbed energy, were computed. Both quantities were evaluated for their capability to take into account the glandular amount and distribution. As expected, the results have demonstrated that iAGD reflects only the distribution, while GIE reflects both the glandular amount and distribution. Therefore GIE is a good candidate for individual radiation risk assessment. (authors)

  4. FORTRAN Code for Glandular Dose Calculation in Mammography Using Sobol-Wu Parameters

    Directory of Open Access Journals (Sweden)

    Mowlavi A A

    2007-07-01

    Full Text Available Background: Accurate computation of the radiation dose to the breast is essential to mammography. Various the thicknesses of breast, the composition of the breast tissue and other variables affect the optimal breast dose. Furthermore, the glandular fraction, which refers to the composition of the breasts, as partitioned between radiation-sensitive glandular tissue and the adipose tissue, also has an effect on this calculation. Fatty or fibrous breasts would have a lower value for the glandular fraction than dense breasts. Breast tissue composed of half glandular and half adipose tissue would have a glandular fraction in between that of fatty and dense breasts. Therefore, the use of a computational code for average glandular dose calculation in mammography is a more effective means of estimating the dose of radiation, and is accurate and fast. Methods: In the present work, the Sobol-Wu beam quality parameters are used to write a FORTRAN code for glandular dose calculation in molybdenum anode-molybdenum filter (Mo-Mo, molybdenum anode-rhodium filter (Mo-Rh and rhodium anode-rhodium filter (Rh-Rh target-filter combinations in mammograms. The input parameters of code are: tube voltage in kV, half-value layer (HVL of the incident x-ray spectrum in mm, breast thickness in cm (d, and glandular tissue fraction (g. Results: The average glandular dose (AGD variation against the voltage of the mammogram X-ray tube for d = 4 cm, HVL = 0.34 mm Al and g=0.5 for the three filter-target combinations, as well as its variation against the glandular fraction of breast tissue for kV=25, HVL=0.34, and d=4 cm has been calculated. The results related to the average glandular absorbed dose variation against HVL for kV = 28, d=4 cm and g= 0.6 are also presented. The results of this code are in good agreement with those previously reported in the literature. Conclusion: The code developed in this study calculates the glandular dose quickly, and it is complete and

  5. Average glandular dose in routine mammography screening using a Sectra Microdose Mammography unit

    International Nuclear Information System (INIS)

    Hemdal, B.; Herrnsdorf, L.; Andersson, I.; Bengtsson, G.; Heddson, B.; Olsson, M.

    2005-01-01

    The Sectra MicroDose Mammography system is based on direct photon counting (with a solid-state detector), and a substantially lower dose to the breast than when using conventional system can be expected. In this work absorbed dose measurements have been performed for the first unit used in routine mammography screening (at the Hospitals of Helsingborg (Sweden)). Two European protocols on dosimetry in mammography have been followed. Measurement of half value layer (HVL) cannot be performed as prescribed, but this study has demonstrated than non-invasive measurements of HVL can be performed accurately with a sensitive and well collimated solid-state detector with simultaneous correction for the energy dependence. The average glandular dose for a 50 mm standard breast with 50% glandularity, simulated by 45 mm polymethylmethacrylate, was found to be 0.21 and 0.28 mGy in March and December 2004, respectively. These values are much lower than for any other mammography system on the market today. It has to be stressed that the measurement were made using the current clinical settings and that no systematic optimisation of the relationship between absorbed dose and diagnostic image quality has been performed within the present study. In order to further increase the accuracy of absorbed dose measurements for this unit, the existing dose protocols should be revised to account also for the tungsten/aluminium anode/filter combination, the multi-slit pre-collimator device and the occurrence of a dose profile in the scanning direction. (authors)

  6. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code.

    Science.gov (United States)

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-10-01

    X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. We studied some different X-ray sources and exposure factors that affect the MGD. "Midi-future" digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD.

  7. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  8. Preliminary results of the average glandular dose to the breast with TLDS measure is computed as the conversion factors; Resultados preliminares da dose glandular media na mama medida com TLDS e calculada atraves de fatores de conversao

    Energy Technology Data Exchange (ETDEWEB)

    Sardo, Luiz T.L.; Almeida, Claudio D.; Coutinho, Celia M.C., E-mail: ltsardo@yahoo.com.br, E-mail: claudio@ird.gov.br, E-mail: celia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    At mammography exams there is a risk of a breast cancer induced from the absorbed dose by the glandular tissue. According to the National Institute of Cancer, INCA, breast cancer is the second type most frequent in the world and the most common among women, therefore the necessity of monitoring the mean glandular dose, D{sub G}. Measuring methods of D{sub G} were established by some authors. Among the established methods the method of Dance is one of the most known. In this study was utilized a measurement method realized with TL dosimeters inserted in a breast tissue equivalent phantom, BTE, with 46% of glandularity and exposed using Mo/Mo and Mo/Rh target/filter combination and 28kV. To ensure this measurement method the results were compared with a calculation method, used by Dance, of D{sub G} from the measurement of incident air kerma, K{sub i}, and conversion factors to consider mainly the beam quality, the compressed thickness and the glandularity of the breast. The results of the comparison of the D{sub G} measurement with the obtained dose by the method of Dance demonstrated that for the thickness of 4.0 and 6.0 cm the doses were consistent. For the thickness of 5.0 cm the difference was higher, indicating that the glandularity may influence, suggesting further investigation. (author)

  9. Average glandular dose in patients submitted to mammographic examinations

    International Nuclear Information System (INIS)

    Nogueira, M.S.; Silva, T.A. da; Oliveira, M. de; Joana, G.S.; Oliveira, A.L.K.

    2008-01-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed to the early detection of the breast cancer. As the breast is composed of tissues with very soft composition and densities, it increases the difficulty to detect small changes in the normal anatomical structures that may be associated with breast cancer. To achieve the standards of resolution and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film screen system, and the film processing must be in optimal operational conditions. This study intended to evaluate the mean glandular dose of patients undergoing routine exams in one mammography unit. Patient image analyses were done by a radiologist doctor who took into account 10 evaluation criteria for each CC and MLO incidences. For estimating each patient glandular dose the radiographic technique parameters (kV and mAs) and the thickness of the compressed breast were recorded. European image quality criteria were adopted by the radiologist doctor to accept the image for diagnostic purpose. For breast densities of 50% adipose and 50% glandular tissues the incident air-kerma was measured and the glandular dose calculated considering the x-ray output during the exam. In the study of 50 patients the mean glandular dose varied from 0.90 to 3.27 mGy with a mean value of 1.98 mGy for CC incidences. For MLO incidences the mean glandular doses ranged from 0.97 to 3.98 mGy and a mean value of 2.60 mGy. (author)

  10. Preliminary results of the average glandular dose to the breast with TLDS measure is computed as the conversion factors

    International Nuclear Information System (INIS)

    Sardo, Luiz T.L.; Almeida, Claudio D.; Coutinho, Celia M.C.

    2013-01-01

    At mammography exams there is a risk of a breast cancer induced from the absorbed dose by the glandular tissue. According to the National Institute of Cancer, INCA, breast cancer is the second type most frequent in the world and the most common among women, therefore the necessity of monitoring the mean glandular dose, D G . Measuring methods of D G were established by some authors. Among the established methods the method of Dance is one of the most known. In this study was utilized a measurement method realized with TL dosimeters inserted in a breast tissue equivalent phantom, BTE, with 46% of glandularity and exposed using Mo/Mo and Mo/Rh target/filter combination and 28kV. To ensure this measurement method the results were compared with a calculation method, used by Dance, of D G from the measurement of incident air kerma, K i , and conversion factors to consider mainly the beam quality, the compressed thickness and the glandularity of the breast. The results of the comparison of the D G measurement with the obtained dose by the method of Dance demonstrated that for the thickness of 4.0 and 6.0 cm the doses were consistent. For the thickness of 5.0 cm the difference was higher, indicating that the glandularity may influence, suggesting further investigation. (author)

  11. The study of mean glandular dose in mammography in Yazd and the factors affecting it

    International Nuclear Information System (INIS)

    Bouzarjomehri, F.; Mostaar, A.; Ghasemi, A.; Ehramposh, M. H.; Khosravi, H.

    2006-01-01

    The objective of this study was to determine the mean glandular dose resulting from mammography examinations in Yazd, southeastern Iran and to identify the factors affecting it. Patients and Methods: This survey was conducted during May to December 2005 to estimate the mean glandular dose for women undergoing mammography and to report the distribution of dose. compressed breast thickness, glandular tissue content, and mammography technique used. The clinical data were collected from 946 mammograms taken from 246 women who were referred to four mammography centers. The mammography instruments in these centers were four modern units with a molybdenum anode and either molybdenum or rhodium filter. The exposure conditions of each mammogram were recorded. The breast glandular content of each mammogram was estimated by a radiologist. The mean glandular dose was calculated based on measuring the normalized entrance skin dose in air. half value layer, kVp, mAs, breast thickness and glandular content. Half value layer, kVp and entrance skin dose were measured by a solid-state detector. The analytical method of Sobol et al. was used for calculation of mean glandular dose . Results: The mean±SD mean glandular dose per film was.2±0.6 mGy for cranio caudal and 1.63±O.9 mGy for mediolateral oblique views. The mean±SD mean glandular dose per woman was 5.5 3.1.mGy. A positive correlation was found between the beam Half value layer with mean glandular dose (r=O.38) and the breast thickness with mean glandular dose (r=O.5). Conclusion: The mean±SD mean glandular dose per film of 1.42±0.8 mGy in present study was lower than most of similar reports. However, the mean mean glandular dose per woman was higher than that in other studies

  12. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  13. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  14. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl; Karellas, Andrew

    2007-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (D g N) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the D g N to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided

  15. Investigation of mean glandular dose versus compressed breast thickness relationship for mammography

    International Nuclear Information System (INIS)

    Bor, D.; Tukel, S.; Olgar, T.; Toklu, T.; Aydin, E.; Akyol, O.

    2008-01-01

    The relationship between the mean glandular dose (MGD) and the compressed breast thickness (CBT) is commonly used for the presentation of mammographic dose survey results and could also be useful for the assessment of individual breast doses retrospectively in case of lack of necessary dosimetric instrumentation. The high data scattering from the best fit reduces the reliability of this technique. The aim of this study was to investigate the accuracy of this relationship using the data collected from a patient survey and phantom experiment. Patients were divided into three different groups according to their breast glandularities, which were predicted from the inspection of previous mammograms. X-ray beam qualities that will be used in patient examinations were determined according to breast thickness and predicted glandularities. The MGD versus CBT relationship for all the examined patients resulted in a poor correlation (R 2 = 0.28). This relationship was separately obtained for each glandularity group and also for sub-groups of specific beam qualities. The best correlation (R 2 = 0.73) was obtained for the fatty breast group and Mo/Mo combination. A low correlation (R 2 = 0.34) was observed in the mid-glandularity group due to inclusion of a wide range of glandularities in this group. In the case of the dense breast group, although the glandularity range was narrow, there were e still high data scattering (R 2 = 0.25). This was probably due to the use of Mo/Rh and Mo/Mo combinations. This is validated by obtaining the MGD-CBT relationship specific to Mo/Mo combination (R 2 = 0.61). (authors)

  16. Dose absorbed in adults and children thyroid due to the I123 using the dosimetry MIRD and Marinelli

    International Nuclear Information System (INIS)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J.; Diaz, E.

    2014-08-01

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I 123 (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  17. Evaluation of glandular dose in conventional and digital mammography systems

    International Nuclear Information System (INIS)

    Coutinho, Celia Maria Campos

    2009-01-01

    A survey was conducted to estimate the average glandular dose (D g ) for patients undergoing mammography and to report the distribution of incident air kerma (K i ), patient age, compressed breast thickness and glandular tissue content. From 1183 cranio caudal mammograms clinical data were collected and doses were measured. The survey data included mammograms from six mammography equipment: two screen/film units (SFM), two computed radiography units (CR) and two full-field digital (DR). Mean value for patient age and compressed breast thickness were 57 +-12 y and 5.4 +-1.4 cm, respectively. To investigate the importance of technical characteristics of three different mammography systems and breast glandularity, K i and D g were measured for individual breast of 392 patients from the original sample with compressed breast thickness in the range of 5.5 cm to 6.5 cm using tissue-equivalent phantoms of different glandularities manufactured in this study to mimic both the attenuation and the density of breast tissues. Mean K i value was 10.0 +-3.6 mGy for SFM systems, 12.0 +-3.6 mGy for CR systems and 4.9 +-1.3 mGy for DR systems. Mean D g value was 1.4 +-0.5 mGy for S/F systems, 1.7 +-0.5 mGy for CR systems and 0.9 +-0.2 mGy for D R systems. Statistical analysis for differences in mean values of K i and D g between mammography systems showed significant effect of their technical characteristics (p i and D g , it was observed statistically significant differences between the group of patients with 0 to 50% glandularity and the group of patients with 50 to 100% glandularity. (author)

  18. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Rodrigues, Leonardo; Braz, Delson; Goncalves Magalhaes, Luis Alexandre

    2015-01-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15 deg. angular range (from -7.5 deg. to +7.5 deg.). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44

  19. Method for the evaluation of a average glandular dose in mammography

    International Nuclear Information System (INIS)

    Okunade, Akintunde Akangbe

    2006-01-01

    This paper concerns a method for accurate evaluation of average glandular dose (AGD) in mammography. At different energies, the interactions of photons with tissue are not uniform. Thus, optimal accuracy in the estimation of AGD is achievable when the evaluation is carried out using the normalized glandular dose values, g(x,E), that are determined for each (monoenergetic) x-ray photon energy, E, compressed breast thickness (CBT), x, breast glandular composition, and data on photon energy distribution of the exact x-ray beam used in breast imaging. A generalized model for the values of g(x,E) that is for any arbitrary CBT ranging from 2 to 9 cm (with values that are not whole numbers inclusive, say, 4.2 cm) was developed. Along with other dosimetry formulations, this was integrated into a computer software program, GDOSE.FOR, that was developed for the evaluation of AGD received from any x-ray tube/equipment (irrespective of target-filter combination) of up to 50 kVp. Results are presented which show that the implementation of GDOSE.FOR yields values of normalized glandular dose that are in good agreement with values obtained from methodologies reported earlier in the literature. With the availability of a portable device for real-time acquisition of spectra, the model and computer software reported in this work provide for the routine evaluation of AGD received by a specific woman of known age and CBT

  20. Development of an excel spreadsheet formean glandular dose in mammography

    International Nuclear Information System (INIS)

    Nagoshi, Kazuyo; Fujisaki, Tatsuya

    2008-01-01

    The purpose of this study was to develop an Excel spreadsheet to calculate mean glandular dose (D g ) in mammography using clinical exposure data. D g can be calculated as the product of incident air kerma (K a ) and D gN (i.e., D g =K a x D gN ). According to the method of Klein et al (Phys Med Biol 1997; 42: 651-671), K a was measured at the entrance surface with an ionization dosimeter. Normalized glandular dose (D gN ) coefficients, taking into account breast glandularity, were computed using Boone's method (Med Phys 2002; 29: 869-875). D gN coefficients can be calculated for any arbitrary X-ray spectrum. These calculation procedures were input into a Microsoft Excel spreadsheet. The resulting Excel spreadsheet is easy to use and is always applicable in the field of mammography. The exposure conditions concerning D g in clinical practice were also investigated in 22 women. Four exposure conditions (target/filter combination and tube voltage) were automatically selected in this study. This investigation found that average D g for each exposure was 1.9 mGy. Because it is recommended that quality control of radiation dose management in mammography is done using an American College of Radiology (ACR) phantom, information about patient dose is not obtained in many facilities. The present Excel spreadsheet was accordingly considered useful for optimization of exposure conditions and explanation of mammography to patients. (author)

  1. Assessment of mean glandular dose to patients from digital mammography systems

    International Nuclear Information System (INIS)

    Pwamang, Caroline K.

    2016-07-01

    Mean glandular dose assessment of patients undergoing digital mammography examination has been done. A total of 297 patient data was used for the study. Basic Quality Control tests were done to ascertain the performance of the equipment used. The results of Quality Control tests indicated that the three Mammography units used for this study were functioning within the internationally acceptable performance criteria. Patients with a breast thickness of 30 mm within the two age groups of 40-49 yrs and 50-64 yrs received doses slightly higher than the acceptable dose levels. A patient in the category 40-49 yrs with breast thickness of 30 mm received 1.83 mGy as calculated Mean Glandular Dose, 2.10 mGy was the recorded dose and 1.58 mGy was recorded under the age group 50-64 yrs. These values have deviated by -22%, -40%, and -5.33% respectively from 1.5 mGy which is the recommended dose for a breast thickness of 30 mm. Also patients with breast thickness of 70 mm under the age group 40–49 yrs had a recorded dose of 6.58 mGy, which deviated by -1.21% from the recommended value of 6.5 mGy for that breast thickness. Aside these values, all the other values were within the recommended dose values. The percentage deviation between the recommended values and the calculated values was within ±25% which was a working limit that was set for this work. Doses delivered by the Full-field Digital mammography equipment were higher than doses delivered by the Computered Radiography equipment. The calculated Mean Glandular Doses for the three facilities were within recommended dose values. (author)

  2. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  3. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  4. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  5. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Andrew M., E-mail: amhern@ucdavis.edu [Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States); Seibert, J. Anthony; Boone, John M. [Departments of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, California 95817 (United States)

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fit to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the

  6. Evaluation of subject contrast and normalized average glandular dose by semi-analytical models

    International Nuclear Information System (INIS)

    Tomal, A.; Poletti, M.E.; Caldas, L.V.E.

    2010-01-01

    In this work, two semi-analytical models are described to evaluate the subject contrast of nodules and the normalized average glandular dose in mammography. Both models were used to study the influence of some parameters, such as breast characteristics (thickness and composition) and incident spectra (kVp and target-filter combination) on the subject contrast of a nodule and on the normalized average glandular dose. From the subject contrast results, detection limits of nodules were also determined. Our results are in good agreement with those reported by other authors, who had used Monte Carlo simulation, showing the robustness of our semi-analytical method.

  7. The effect of aluminium added filter on mean glandular dose using mammography machine in MINT Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Wan Hazlinda Ismail; Abd Aziz Mhd Ramli

    2005-01-01

    The effect of various thickness of aluminium added filter on mean glandular dose in mammography is investigated for a standard breast phantom, 4.2 cm Perspex. A mammography machine in Medical Physics Laboratory MINT, Bennett Model DMF-150 is used to provide radiation in various kV range under clinical condition. The mean glandular dose on the phantom were measured based on technique recommended by AAPM protocol (1990) report no 29. The mean glandular dose was found reducing with increasing thickness of added filter. A more detail results of this study is presented in this paper. (Author)

  8. Comportamento da dose glandular versus contraste do objeto em mamografia: determinação de formalismo semi-empírico para diferentes combinações alvo-filtro Behavior of subject contrast versus glandular dose in mammography: determination of a semi-empirical formalism for different target-filter combinations

    Directory of Open Access Journals (Sweden)

    Gabriela Hoff

    2006-06-01

    Full Text Available OBJETIVO: Verificar o efeito da mudança no contraste do objeto, tempo de exposição e dose de radiação quando diferentes espessuras de filtração de molibdênio (Mo e ródio (Rh são empregadas em mamógrafos. MATERIAIS E MÉTODOS: Realizaram-se medidas da exposição na entrada da pele com uma câmara de ionização para diferentes espessuras para os filtros de Mo e Rh. Para determinar a dose glandular média foi utilizado simulador de BR12 (50% tecido adiposo e 50% tecido glandular de diferentes espessuras (4 cm e 8 cm. Energias na faixa de 24 kVp a 34 kVp foram empregadas e filmes Kodak MinR 2000 foram utilizados. RESULTADOS: Os resultados evidenciaram dados de contraste do objeto, dose glandular e tempo de exposição para diferentes espessuras de filtros adicionais e diferentes tensões. Esses dados indicaram aumento nos valores de contraste do objeto e tempo de exposição, com o aumento da espessura dos filtros. A dose glandular apresentou comportamento com diferentes tendências para cada caso analisado. Equações foram definidas para possibilitar a estimativa do contraste do objeto, dose glandular e tempo de exposição para os casos estudados. CONCLUSÃO: Os resultados possibilitaram a estimativa de equações que auxiliam na verificação do comportamento do contraste do objeto e da dose glandular para simuladores com espessura de 4 cm e 8 cm e para os filtros de Rh e Mo. Dessa forma, torna-se possível estimar a figura de mérito (razão entre o contraste do objeto e a dose glandular, podendo auxiliar na análise da relação risco-benefício dos casos estudados.OBJECTIVE: Our purpose was to verify the effect of changes in subject contrast, exposure time and radiation dose when different thicknesses of molybdenum (Mo and rhodium (Rh filters are used in mammography equipments. MATERIALS AND METHODS: Entrance skin exposure measurements were performed with an ionization chamber for different thicknesses of Mo and Rh filters

  9. Evaluation of average glandular dose in mammography services in 10 cities of Colombia; Avaliacao de dose glandular media em servicos de mamografia de 10 cidades de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Alejo-Martinez, H.; Salazar-Hurtado, E.; Puerto-Jimenez, D. [Grupo de Prevencion Temprana Del Cancer, Instituto Nacional de Cancerologia, Bogota D.C. (Colombia)

    2016-07-01

    The objective of this study was to conduct an assessment of dose in 60 mammography services that have screening programs for breast cancer in 10 cities of Colombia. The third quartile of the average glandular dose was 2,29 mGy, range between 1,0 and 5,6 mGy, for the phantom equivalent to a standard breast. This study included mammography units with conventional and digital technology. (author)

  10. Impact of digitalization of mammographic units on average glandular doses in the Flemish Breast Cancer Screening Program

    OpenAIRE

    De Hauwere, An; Thierens, Hubert

    2012-01-01

    The impact of digitalization on the average glandular doses in 49 mammographic units participating in the Flemish Breast Cancer Screening Program was studied. Screen-film was changed to direct digital radiography and computed radiography in 25 and 24 departments respectively. Average glandular doses were calculated before and after digitalization for different PMMA-phantom thicknesses and for groups of 50 successive patients. For the transition from screen-film to computed radiography both ph...

  11. Evaluation of average glandular dose in digital and conventional systems of the mammography; Avaliacao da dose glandular media em sistemas digitais e convencionais de mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Aline C.S.; Barros, Vinicius S.M.; Khoury, Hellen J., E-mail: alinecx90@gmail.com, E-mail: vsmdbarros@gmail.com, E-mail: hjkhoury@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Mello, Francisca A. de, E-mail: francissamello@yahoo.com.br [Hospital das Clinicas do Recife (HCR/UFPE), PE (Brazil)

    2014-07-01

    Mammography is currently the most effective method of diagnosis and detection of breast pathologies. The main interest in this kid of exam comes from the high incidence rate of breast cancer and necessity of high quality images for accurate diagnosis. Digital mammography systems have several advantages compared to conventional systems, however the use of digital imaging systems is not always integrated to an image acquisition protocol. Therefore, it is questionable if digital systems truly reduce the dose received by the patient, because many times is introduced in the clinics without optimization of the image acquisition protocols. The aim of this study is to estimate the value of incident air Kerma and average glandular dose (AGD) in patients undergoing conventional and digital mammography systems in Recife. This study was conducted with 650 patients in three hospitals. The value of incident air Kerma was estimated from the measurement of the yield of equipment and irradiation parameters used for each patient. From these results and using the methodology proposed by Dance et al. the value of the average glandular dose was calculated. The results obtained show that the lowest value of AGD was found with conventional screen-film system, indicating that the parameters for image acquisition with digital systems are not optimized. It was also observed that the institutions with digital systems use lower breast compression values than the conventional. (author)

  12. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  13. Glandular dose in breast tomosynthesis examinations: Preliminary study with a sample of patients

    International Nuclear Information System (INIS)

    Castillo, M.; Chevalier, M.; Calzado, A.; Valverde, J.

    2013-01-01

    The aim of this study is to analyze the mean glandular dose administered to a group of patients with a tomography system (Selenia Dimensions) service installed on a large hospital in which routine tests are done and screening. (Author)

  14. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  15. Estimate of average glandular dose (AGD) in national clinics of mammography

    International Nuclear Information System (INIS)

    Mora, Patricia; Segura, Helena

    2004-01-01

    The breast cancer represents the second cause of death by cancer in the femme population of our country. The specialized equipment for the obtaining of the mammographic images is higher every day and its use increases daily. The quality of the radiographic study is linked to the dose that this tissue intrinsically sensible receives to the ionizing radiations. The present work makes the first national study to quantify the average glandular doses and to connect them with the diagnostic quality and the recommendations to international scale. (Author) [es

  16. Evaluation of average glandular dose in mammography services in 10 cities of Colombia

    International Nuclear Information System (INIS)

    Alejo-Martinez, H.; Salazar-Hurtado, E.; Puerto-Jimenez, D.

    2016-01-01

    The objective of this study was to conduct an assessment of dose in 60 mammography services that have screening programs for breast cancer in 10 cities of Colombia. The third quartile of the average glandular dose was 2,29 mGy, range between 1,0 and 5,6 mGy, for the phantom equivalent to a standard breast. This study included mammography units with conventional and digital technology. (author)

  17. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  18. Comparison of average glandular dose in screen-film and digital mammography using breast tissue-equivalent phantom

    International Nuclear Information System (INIS)

    Shin, Gwi Soon; Kim, Jung Min; Kim, You Hyun; Choi, Jong Hak; Kim, Chang Kyun

    2007-01-01

    In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate (IP). We measured average glandular doses (ADG) in screen-film mammography (SFM) system with slow screen-film combination, computed mammography (CM) system, indirect digital mammography (IDM) system and direct digital mammography (DDM) system using breast tissue-equivalent phantom (glandularity 30%, 50% and 70%). The results were shown as follows: AGD values for DDM system were highest than those for other systems. Although automatic exposure control (AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter (Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in order to estimate a patient radiation dose

  19. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  20. Estimation of the average glandular dose on a team of tomosynthesis

    International Nuclear Information System (INIS)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-01-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  1. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation

    International Nuclear Information System (INIS)

    Marques, T.; Di Maria, S.; Vaz, P.; Ribeiro, A.; Belchior, A.; Cardoso, J.; Matela, N.; Oliveira, N.; Almeida, P.; Janeiro, L.

    2015-01-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. (authors)

  2. Average glandular dose in digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Olgar, T. [Ankara Univ. (Turkey). Dept. of Engineering Physics; Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Kahn, T.; Gosch, D. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-10-15

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  3. Average glandular dose in digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Olgar, T.; Universitaetsklinikum Leipzig AoeR; Kahn, T.; Gosch, D.

    2012-01-01

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  4. Evaluation of average glandular dose in digital and conventional systems of the mammography

    International Nuclear Information System (INIS)

    Xavier, Aline C.S.; Barros, Vinicius S.M.; Khoury, Hellen J.

    2014-01-01

    Mammography is currently the most effective method of diagnosis and detection of breast pathologies. The main interest in this kid of exam comes from the high incidence rate of breast cancer and necessity of high quality images for accurate diagnosis. Digital mammography systems have several advantages compared to conventional systems, however the use of digital imaging systems is not always integrated to an image acquisition protocol. Therefore, it is questionable if digital systems truly reduce the dose received by the patient, because many times is introduced in the clinics without optimization of the image acquisition protocols. The aim of this study is to estimate the value of incident air Kerma and average glandular dose (AGD) in patients undergoing conventional and digital mammography systems in Recife. This study was conducted with 650 patients in three hospitals. The value of incident air Kerma was estimated from the measurement of the yield of equipment and irradiation parameters used for each patient. From these results and using the methodology proposed by Dance et al. the value of the average glandular dose was calculated. The results obtained show that the lowest value of AGD was found with conventional screen-film system, indicating that the parameters for image acquisition with digital systems are not optimized. It was also observed that the institutions with digital systems use lower breast compression values than the conventional. (author)

  5. Glandular dose in breast tomosynthesis examinations: Preliminary study with a sample of patients; Dosis glandular en examenes de tomosintesis de mama: estudio preliminar con una muestra de pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M.; Chevalier, M.; Calzado, A.; Valverde, J.

    2013-07-01

    The aim of this study is to analyze the mean glandular dose administered to a group of patients with a tomography system (Selenia Dimensions) service installed on a large hospital in which routine tests are done and screening. (Author)

  6. Dose absorbed in adults and children thyroid due to the I{sup 123} using the dosimetry MIRD and Marinelli; Dosis absorbida en tiroides de adultos y ninos debido al I{sup 123} utilizando las dosimetrias MIRD y Marinelli

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Ciudad Universitaria, Trujillo (Peru); Diaz, E., E-mail: marvva@hotmail.com [Universidade Federal do Rio Grande do Sul, Av. Paulo Gamma 110, Bairro Farropilhas, Porto Alegre, RS 90040-060 (Brazil)

    2014-08-15

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I{sup 123} (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  7. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  8. Estimation of average glandular dose depending on the thickness of the breast; Estimativa da dose glandular media em funcao da espessura da mama

    Energy Technology Data Exchange (ETDEWEB)

    Real, Jessica V.; Luz, Renata M. da, E-mail: jessica.real@pucrs.br, E-mail: renata.luz@pucrs.br [Hospital Sao Lucas (HSL/PUCRS), Porto Alegre, RS (Brazil); Fröhlich, Bruna D.; Pertile, Alessandra S.; Silva, Ana Maria Marques da, E-mail: bruna.frohlich@acad.pucrs.br, E-mail: lessandra.pertile@acad.pucrs.br, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2014-07-01

    Breast cancer is the most common type of cancer in women worldwide. Mammography is, to date, the most efficient method for detecting an abnormality in the patient's breast. It is a technique of imaging diagnostic that requires special care because radiographs without adequate quality may lead to a false diagnosis and lead to the need for a repeat examination, increasing the dose of radiation in the patient. This study aimed to evaluate the average glandular dose (AGD), depending on the breast thickness in patients undergoing routine tests, with a digital computer radiography processing system. Analyzed 30 exhibitions in patients aged (65 ± 12) years, in the right and left caudal skull projections, for breasts with thicknesses between 45 mm and 50 mm. The calculated value of the AGD for this track thickness was (1.600 ± 0.009) mGy. The performance of mammography quality control tests was satisfactory and the AGD values obtained for the chosen thickness range is acceptable, since the threshold achievable is 1.6 mGy and the acceptable is 2 mGy. In Brazil, it is only required the input dose calculation in skin for 45 mm breasts. However, the calculation of AGD is required for different thicknesses of the breast, to identify the best mammographic pattern aiming at better image quality at the lowest dose provided the patient.

  9. Estimation of the average glandular dose on a team of tomosynthesis; Estimacion de la dosis glandular media en un equipo de tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-07-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  10. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  11. Absorbed dose measurements in mammography using Monte Carlo method and ZrO2+PTFE dosemeters

    International Nuclear Information System (INIS)

    Duran M, H. A.; Hernandez O, M.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Pinedo S, A.; Ventura M, J.; Chacon, F.; Rivera M, T.

    2009-10-01

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO 2 +PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  12. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  13. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  14. Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models.

    Science.gov (United States)

    Sarno, Antonio; Mettivier, Giovanni; Tucciariello, Raffaele M; Bliznakova, Kristina; Boone, John M; Sechopoulos, Ioannis; Di Lillo, Francesca; Russo, Paolo

    2018-06-07

    In cone-beam computed tomography dedicated to the breast (BCT), the mean glandular dose (MGD) is the dose metric of reference, evaluated from the measured air kerma by means of normalized glandular dose coefficients (DgN CT ). This work aimed at computing, for a simple breast model, a set of DgN CT values for monoenergetic and polyenergetic X-ray beams, and at validating the results vs. those for patient specific digital phantoms from BCT scans. We developed a Monte Carlo code for calculation of monoenergetic DgN CT coefficients (energy range 4.25-82.25 keV). The pendant breast was modelled as a cylinder of a homogeneous mixture of adipose and glandular tissue with glandular fractions by mass of 0.1%, 14.3%, 25%, 50% or 100%, enveloped by a 1.45 mm-thick skin layer. The breast diameter ranged between 8 cm and 18 cm. Then, polyenergetic DgN CT coefficients were analytically derived for 49-kVp W-anode spectra (half value layer 1.25-1.50 mm Al), as in a commercial BCT scanner. We compared the homogeneous models to 20 digital phantoms produced from classified 3D breast images. Polyenergetic DgN CT resulted 13% lower than most recent published data. The comparison vs. patient specific breast phantoms showed that the homogeneous cylindrical model leads to a DgN CT percentage difference between -15% and +27%, with an average overestimation of 8%. A dataset of monoenergetic and polyenergetic DgN CT coefficients for BCT was provided. Patient specific breast models showed a different volume distribution of glandular dose and determined a DgN CT 8% lower, on average, than homogeneous breast model. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. A study on the image quality of mammography and the average glandular dose

    International Nuclear Information System (INIS)

    Lee, In Ja; Kim, Hak Sung; Kim, Sung Soo; Huh, Joon

    2002-01-01

    We came to the following conclusion as the results of experiment on the image quality of mammography and the average glandular dose using 4 apparatuses at 3 hospital in Seoul. Whereas the measurement of half value layer showed no differences among the apparatuses, the measurement by an attenuation curve method showed some differences by 5.9%. There were 9.1% differences in the measurement by aluminum conversion method. The basic density of an automatic exposure control unit must be D = 1.40, but there was no automatic exposure unit adjusted precisely at any hospital. The unit at the B hospital exceeded the allowable limit by ± 0.15. In the photographing using an automatic exposure control unit and the management of an automatic film processor using a sensitometer, most automatic film processors were well kept. But in some cases the mean value of a fluctuation coefficient exceeded the allowable limit. There is a need for more cautious management. The image quality of breast phantom photography was affected by the screen/film system among the hospital. The average glandular dose at a breast of 4.2 cm thickness depended on the tube voltage, In the case of Mo/Mo, it was measured 0.26 ∼ 1.39 mGy less than ACR standard 3.0 mGy

  16. Estimates of Average Glandular Dose with Auto-modes of X-ray Exposures in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Izdihar Kamal

    2015-05-01

    Full Text Available Objectives: The aim of this research was to examine the average glandular dose (AGD of radiation among different breast compositions of glandular and adipose tissue with auto-modes of exposure factor selection in digital breast tomosynthesis. Methods: This experimental study was carried out in the National Cancer Society, Kuala Lumpur, Malaysia, between February 2012 and February 2013 using a tomosynthesis digital mammography X-ray machine. The entrance surface air kerma and the half-value layer were determined using a 100H thermoluminescent dosimeter on 50% glandular and 50% adipose tissue (50/50 and 20% glandular and 80% adipose tissue (20/80 commercially available breast phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, Virginia, USA with auto-time, auto-filter and auto-kilovolt modes. Results: The lowest AGD for the 20/80 phantom with auto-time was 2.28 milliGray (mGy for two dimension (2D and 2.48 mGy for three dimensional (3D images. The lowest AGD for the 50/50 phantom with auto-time was 0.97 mGy for 2D and 1.0 mGy for 3D. Conclusion: The AGD values for both phantoms were lower against a high kilovolt peak and the use of auto-filter mode was more practical for quick acquisition while limiting the probability of operator error.

  17. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C; Zhong, Y; Wang, T; Shaw, C [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), defined as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.

  18. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    International Nuclear Information System (INIS)

    Lai, C; Zhong, Y; Wang, T; Shaw, C

    2015-01-01

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), defined as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor

  19. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  20. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  1. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  2. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  3. Breast compression and radiation dose in two different mammographic oblique projections: 45 and 60 deg

    International Nuclear Information System (INIS)

    Brnic, Zoran; Hebrang, Andrija

    2001-01-01

    Introduction: Standard mammography includes two views, craniocaudal and medio-lateral oblique. Depending on patient's body constitution, central beam angle in mediolateral oblique projection may vary, with 45 deg. being suitable for the majority of patients in routine daily practice. With continuous improvement in X-ray technology and radiographers' training, the risk of radiation induced cancerogenesis is considerably reduced and acceptable when compared to benefit. However, the risk still exists, being cumulative and directly related to absorbed glandular dose. There is no minimal dose of radiation which is absolutely harmless, and every effort to reduce the dose is welcome. In this retrospective study two different angles (45 vs. 60 deg.) of mediolateral oblique view were compared according to radiation dose and efficacy of breast compression. Patients and methods: In 52 women, additional 60 deg. oblique films were done after craniocaudal and mediolateral oblique 45 deg.-films, with the same kVp and positioning technique. Breast thickness, time-current products (mA s) and absorbed doses were compared between 45 deg. - and 60 deg.-films. Subgroups of women with large, small, prominent and pendulous breasts were analyzed separately, following the same methodology as for the whole group. Results: mA s were 11.5% lower and compression 7% better with an angle of 60 deg. than with 45 deg. In the subgroup of women with small breasts, mA s values were 13% lower and compression 9% better with 60 deg. than with 45 deg., while in the subgroup with large breasts, mA s were 9% lower and compression 5% better. In the subgroup of patients with pendulous breasts, mA s values were 12% lower and compression 10% better with 60 deg. than with 45 deg., while in the subgroup with prominent breasts, mA s values were 4% lower and compression 3% better. Absorbed glandular dose was estimated to be approximately 20% lower when an oblique mammogram was done with 60 deg. instead of 45 deg

  4. Determination of mean glandular dose on patients and phantom in X-ray mammography

    International Nuclear Information System (INIS)

    Avramova-Cholakova, S.; Vassileva, J.

    2008-01-01

    The statistics of breast cancer rate in Bulgaria show a tendency towards increase of the morbidity from this disease. Last years campaigns against breast cancer are organized yearly. This leads to an increased number of screening and diagnostic mammograms that are made in the country. The dose associated with the examination is very low but not slightingly small. The glandular tissue in the breast is considered to be the most sensitive in relation to the radiation exposure. Several publications propose different methods, measurement set up or conversion coefficients for the calculation of the mean glandular dose (MGD) delivered to the breast during the X-ray examination. The question about the standardization of the measurement procedures arises since the differences in the results obtained using different methodologies may be quite big. The aim of this work is to develop a standard procedure for the measurement of MGD based on the recommendations mentioned in the European protocol on dosimetry in mammography, the European protocol for the quality control of the physical and technical aspects of mammography screening and the Code of practice: TRS 457 of the IAEA. Five contemporary film-screen mammography units were included in this study. Attention should be paid to the measurement set up. The reference point is chosen 6 cm from the chest wall edge laterally centered. If an ionization chamber is used for dose measurements the compression plate should be placed in close contact with it. If solid state detectors are used the compression plate should be put away from the detector and the output recalculated like if the plate is near the detector. The conversion coefficients for age dependence are not used in this study as not appropriate for the population included in it. PMMA measurements for the determination of diagnostic reference levels could be used but more correct results would be obtained with patient measurements

  5. A Monte Carlo model for mean glandular dose evaluation in spot compression mammography.

    Science.gov (United States)

    Sarno, Antonio; Dance, David R; van Engen, Ruben E; Young, Kenneth C; Russo, Paolo; Di Lillo, Francesca; Mettivier, Giovanni; Bliznakova, Kristina; Fei, Baowei; Sechopoulos, Ioannis

    2017-07-01

    To characterize the dependence of normalized glandular dose (DgN) on various breast model and image acquisition parameters during spot compression mammography and other partial breast irradiation conditions, and evaluate alternative previously proposed dose-related metrics for this breast imaging modality. Using Monte Carlo simulations with both simple homogeneous breast models and patient-specific breasts, three different dose-related metrics for spot compression mammography were compared: the standard DgN, the normalized glandular dose to only the directly irradiated portion of the breast (DgNv), and the DgN obtained by the product of the DgN for full field irradiation and the ratio of the mid-height area of the irradiated breast to the entire breast area (DgN M ). How these metrics vary with field-of-view size, spot area thickness, x-ray energy, spot area and position, breast shape and size, and system geometry was characterized for the simple breast model and a comparison of the simple model results to those with patient-specific breasts was also performed. The DgN in spot compression mammography can vary considerably with breast area. However, the difference in breast thickness between the spot compressed area and the uncompressed area does not introduce a variation in DgN. As long as the spot compressed area is completely within the breast area and only the compressed breast portion is directly irradiated, its position and size does not introduce a variation in DgN for the homogeneous breast model. As expected, DgN is lower than DgNv for all partial breast irradiation areas, especially when considering spot compression areas within the clinically used range. DgN M underestimates DgN by 6.7% for a W/Rh spectrum at 28 kVp and for a 9 × 9 cm 2 compression paddle. As part of the development of a new breast dosimetry model, a task undertaken by the American Association of Physicists in Medicine and the European Federation of Organizations of Medical Physics

  6. Method for determination of the mean fraction of glandular tissue in individual female breasts using mammography

    International Nuclear Information System (INIS)

    Jansen, J T M; Veldkamp, W J H; Thijssen, M A O; Woudenberg, S van; Zoetelief, J

    2005-01-01

    The nationwide breast cancer screening programme using mammography has been in full operation in the Netherlands since 1997. Quality control of the screening programme has been assigned to the National Expert and Training Centre for Breast Cancer Screening. Limits are set to the mean glandular dose and the centre monitors these for all facilities engaged in the screening programme. This procedure is restricted to the determination of the entrance dose on a 5 cm thick polymethylmethacrylate (PMMA) phantom. The mean glandular dose for a compressed breast is estimated from these data. Individual breasts may deviate largely from this 5 cm PMMA breast model. Not only may the compressed breast size vary from 2 to 10 cm, but breast composition varies also. The mean glandular dose is dependent on the fraction of glandular tissue (glandularity) of the breast. To estimate the risk related to individual mammograms requires the development of a method for determination of the glandularity of individual breasts. A method has been developed to derive the glandularity using the attenuation of mammography x-rays in the breast. The method was applied to a series of mammograms at a screening unit. The results, i.e., a glandularity of 93% within the range of 0 to 1, were comparable with data in the literature. The glandularity as a function of compressed breast thickness is similar to results from other investigators using differing methods

  7. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  8. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  9. Assessment of mean glandular dose for patients in mammography in some Hospitals in Khartoum state

    International Nuclear Information System (INIS)

    Abu Elmola, Alaa Mahdi

    2016-12-01

    A mammography examination facilitates the early detection of breast cancer. However, the potential risk of radiation- induced carcinogenesis is also increased with such a procedure. Thus assessment of the breast dose is important. The objective of this study was to determine the mean glandular dose (MGD) resulting from cranio caudal(CC) and mediolateral oblique (MLO) views in one breast and the total dose per woman in Sudan, and to identify the factors affecting it. Measurements were performed to estimate mean glandular doses for 60 patients who underwent mammography examination in two clinics in Khartoum, Sudan.Doses were studied in RCH and NDC, centers which were using computed radiography(CR)devices. The piranha system was used for determining the MGD in this work. The characteristics of the radiographic equipment and the exposure data of each patient were recorded using designed format. The MGD was calculated from the measured incident Air kerma using appropriate conversion coefficients. The range of CBT was (1-7)cm for two projections. The respective averages for the CC and MLO projections were (4.55±1.38)mGy and (4.15±1.33) mGy, respectively. The average MGD per image was (4.3±1.35)mGy. The MGD per women was (8.6±1.35)mGy. The mean±SD MGD per image in the present study was lower than most of similar reports. The average MGD values recorded in this study were above the limiting value of the Institute of Physical Sciences in Medicine(2.0 mGy) and American College of Radiology (3.0 mGy recommendation. This suggests that mammography x-ray generators in this case are not capable of achieving acceptable dose levels for patients safety. Therefore, with consideration of all other factors, quality control program tests must be carried out periodically and frequently of the mammography equipment.(Author)

  10. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  11. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  12. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  13. Breast internal dose measurements in a physical thoracic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D.; Oliveira, M.A.; Castro, A.L.S.; Dias, H.G.; Nogueira, L.B.; Campos, T.P.R., E-mail: sadonatosilva@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Hospital das Clinicas de Uberlandia, MG (Brazil). Departamento de Oncologia; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Anatomia e Departamento de Imagem

    2017-10-01

    Radiotherapy is a cancer treatment intended to deposit the entire prescribed dose homogeneously into a target volume in order to eliminate the tumor and to spare the surrounding healthy tissues. This paper aimed to provide a dosimetric comparison between the treatment planning system (TPS) ECLIPSE from Varian Medical Systems and the internal dosimetric measurements in a breast phantom. The methodology consisted in performing a 3D conformal radiotherapy planning with two tangential opposite parallel fields applied to the synthetic breast in a thoracic phantom. The irradiation was reproduced in the Varian Linear accelerator, model SL - 20 Precise, 6 MV energy. EBT2 Radiochromic films, placed into the glandular equivalent tissue of the breast, were used to measure the spatial dose distribution. The absorbed dose was compared to those values predicted by the treatment planning system; besides, the dosimetric uncertainties were analyzed. The modal absorbed dose was in agreement with the prescribed value of 180 cGy, although few high dose points between 180 and 220 cGy were detected. The findings suggested a non-uniform dose distribution in the glandular tissue of the synthetic breast, similar to those found in the TPS, associated with the irregular anatomic breast shape and presence of inhomogeneities next to the thoracic wall generated by the low lung density. (author)

  14. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  15. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  16. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  17. Guideline for determining the mean glandular dose according to DIN 6868-162 and threshold contrast visibility according to the quality assurance guideline for digital mammography systems.

    Science.gov (United States)

    Sommer, A; Schopphoven, S; Land, I; Blaser, D; Sobczak, T

    2014-05-01

    As part of the physico-technical quality assurance of the German breast cancer screening program, the threshold contrast visibility and the average glandular dose of every digital mammography system have to fulfill the requirements of the "European guidelines for quality assurance in breast cancer screening and diagnosis" (4th Edition). To accomplish uniform measurements in all federal states of Germany, the physical board of the reference centers developed a special guideline in 2009. Due to recent changes in the guidelines and standards, a second version of the guideline was developed by the reference centers. This guideline describes the determination of the average glandular dose as well as the CDMAM image acquisition and the CDMAM image evaluation. The determination of the threshold contrast visibility can be performed visually or automatically. The determination of the average glandular dose is based on DIN 6868 - 162 and the threshold contrast visibility test is based on the German "Quality Assurance Guideline". © Georg Thieme Verlag KG Stuttgart · New York.

  18. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  19. SU-F-I-01: Normalized Mean Glandular Dose Values for Dedicated Breast CT Using Realistic Breast-Shaped Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A [Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA (United States); Boone, J [Departments of Radiology and Biomedical Engineering, Biomedical Engeering Graduate Group, University of California Davis, Sacramento, CA (United States)

    2016-06-15

    Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dose coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered

  20. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  1. Relationship of Compressed Breast Thickness and Average Glandular Dose According to Focus/Filter

    International Nuclear Information System (INIS)

    Lee, In Ja

    2009-01-01

    The study examined the relationship between the compressed breast thickness and Average Glandular Dose (AGD) among 1,969 outpatients who went through breast X-ray in a university hospital for 10 months from July 1st, 2007 to April 30th, 2008. Then it analyzed the result acquired from 3,900 cases of Cranio-Caudal (CC) view, especially, when the breasts were compressed (13-15daN). The following is the conclusion driven from the relationship analysis. 1. The subjects aged in 40s and 50s were 2,679 out of 3,900 cases and this figure was 68.69% in all. 2. In terms of distribution depending on focus/filter, 41.0% was Mo/Mo, 34.8% was Mo/Rh, and 24.2% was Rh/Rh. 3. In terms of compressed breast thickness depending on focus/filter, the average thickness was 26.91 mm at Mo/Mo, 38.84 mm at Mo/Rh, and 48.80 mm at Rh/Rh. The average thickness of the entire cases was shown to be 36.27 mm. 4. AGD depending on focus/filter was 1.27 mGy at Mo/Mo, 1.55 mGy at Mo/Rh, and 1.42 mGy at Rh/Rh. The average glandular dose of the entire cases was shown to be 1.43 mGy. 5. The relationship of AGD depending on compressed breast thickness at Mo/Mo was y=0.0318x + 0.470 while it was y=0.0206x + 0.709 at Mo/Rh and y=0.0248x + 0.335 at Mo/Rh. It was highly influenced by the compressed breast thickness, however, more variation was detected at Mo/Mo depending on breast thickness.

  2. Estimation of average glandular dose depending on the thickness of the breast

    International Nuclear Information System (INIS)

    Real, Jessica V.; Luz, Renata M. da; Fröhlich, Bruna D.; Pertile, Alessandra S.; Silva, Ana Maria Marques da

    2014-01-01

    Breast cancer is the most common type of cancer in women worldwide. Mammography is, to date, the most efficient method for detecting an abnormality in the patient's breast. It is a technique of imaging diagnostic that requires special care because radiographs without adequate quality may lead to a false diagnosis and lead to the need for a repeat examination, increasing the dose of radiation in the patient. This study aimed to evaluate the average glandular dose (AGD), depending on the breast thickness in patients undergoing routine tests, with a digital computer radiography processing system. Analyzed 30 exhibitions in patients aged (65 ± 12) years, in the right and left caudal skull projections, for breasts with thicknesses between 45 mm and 50 mm. The calculated value of the AGD for this track thickness was (1.600 ± 0.009) mGy. The performance of mammography quality control tests was satisfactory and the AGD values obtained for the chosen thickness range is acceptable, since the threshold achievable is 1.6 mGy and the acceptable is 2 mGy. In Brazil, it is only required the input dose calculation in skin for 45 mm breasts. However, the calculation of AGD is required for different thicknesses of the breast, to identify the best mammographic pattern aiming at better image quality at the lowest dose provided the patient

  3. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  4. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  5. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  6. Comparative evaluation of average glandular dose and image of digital mammography and film mammography in Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Nogueira, M.; Leyton, F.; Rodrigue, L. L.C.; Oliveira, M.A.; Joana, G.S.; Silva, S.D.

    2015-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. Mammography is the best method for breast-cancer screening and is capable of reducing mortality rates To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. Digital mammography has been proposed as a substitute for film mammography given the benefits inherent to digital technology. The purpose of our study was to compare the technical performance of digital mammographic and screen-film mammography. A PMMA phantom with objects to simulate breast structures. For the screen/film (SF) technique the results showed that 54% mammography units did not achieve the minimum acceptable performance as far the image quality. Besides, 67% services showed inadequate performance in their processing systems, which had significant influence on the image quality. At the mean glandular dose only 44% of digital systems evaluated were compliant in all thicknesses of PMMA. The average glandular dose AGD was 90 % higher than in screen/film systems. (authors)

  7. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  8. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    International Nuclear Information System (INIS)

    Bertilsson, G.

    1975-10-01

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  9. Glandular dose and image quality control in mammography facilities with computerized radiography systems; Dose glandular e controle de qualidade da imagem em servicos de mamografia com sistema de radiografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Marcelino Vicente de Almeida

    2010-07-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. However, even though SF combinations have been improved and optimized over the years for breast imaging, there are some critical limitations, including a narrow exposure range, image artifacts, film processing problems, and inflexibility in image processing and film management. In recent years, digital mammography has been introduced in cancer screening programmes with the screen/film techniques gradually being phased out. Computed radiography (CR), also commonly known as photostimulable phosphor (PSP) imaging or storage phosphor, employs reusable imaging plates and associated hardware and software to acquire and to display digital projection radiographs. In this work, a protocol model was tested for performing image quality control and average glandular dose (AGD) evaluation in 19 institutions with computed radiography systems for mammography. The protocol was validated through tests at the Laboratorio de Radioprotecao Aplicada a Mamografia (LARAM) from the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). The image quality visual evaluation of CDMAM phantom showed that 53% of the facilities were able to produce images of excellent quality. Furthermore, the automated evaluation of image quality, using the analyze software cdcom.exe, showed that 57% of the images were considered to be of good quality. The detector linearity test showed that the CR response is very linear, where 95% of facilities evaluated were considered to be compliant. For the image noise was found that only 20% of facilities are in agreement with the parameters established for this test. The average glandular doses, which patients may be getting to perform an examination, were below the action levels

  10. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  11. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  12. Glandular dose and image quality control in mammography facilities with computerized radiography systems

    International Nuclear Information System (INIS)

    Dantas, Marcelino Vicente de Almeida

    2010-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. However, even though SF combinations have been improved and optimized over the years for breast imaging, there are some critical limitations, including a narrow exposure range, image artifacts, film processing problems, and inflexibility in image processing and film management. In recent years, digital mammography has been introduced in cancer screening programmes with the screen/film techniques gradually being phased out. Computed radiography (CR), also commonly known as photostimulable phosphor (PSP) imaging or storage phosphor, employs reusable imaging plates and associated hardware and software to acquire and to display digital projection radiographs. In this work, a protocol model was tested for performing image quality control and average glandular dose (AGD) evaluation in 19 institutions with computed radiography systems for mammography. The protocol was validated through tests at the Laboratorio de Radioprotecao Aplicada a Mamografia (LARAM) from the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). The image quality visual evaluation of CDMAM phantom showed that 53% of the facilities were able to produce images of excellent quality. Furthermore, the automated evaluation of image quality, using the analyze software cdcom.exe, showed that 57% of the images were considered to be of good quality. The detector linearity test showed that the CR response is very linear, where 95% of facilities evaluated were considered to be compliant. For the image noise was found that only 20% of facilities are in agreement with the parameters established for this test. The average glandular doses, which patients may be getting to perform an examination, were below the action levels

  13. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  14. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  15. Estimation of mean glandular dose for patients who undergo mammography and studying the factors affecting it

    Science.gov (United States)

    Barzanje, Sana L. N. H.; Harki, Edrees M. Tahir Nury

    2017-09-01

    The objective of this study was to determine mean glandular dose (MGD) during diagnostic mammography. This study was done in two hospitals in Hawler city in Kurdistan -region /Iraq, the exposure parameters kVp and mAs was recorded for 40 patients under go mammography. The MGD estimated by multiplied ESD with normalized glandular dose (Dn). The ESD measured indirectly by measuring output radiation mGy/mAs by using PalmRAD 907 as a suitable detector (Gigger detector).the results; shown that the mean and its standard deviation of MGD for Screen Film Mammography and Digital Mammography are (0.95±0.18)mGy and (0.99±0.26)mGy, respectively. And there is a significant difference between MGD for Screen Film Mammography and Digital Mammography views (p≤0. 05). Also the mean value and its standard deviation of MGD for screen film mammography is (0.96±0.21) for CC projection and (1.03±0.3) mGy for MLO projection, but mean value and its standard deviation evaluated of MGD for digital mammography is (0.92±0.17) mGy for CC projection and (0.98±0.2) mGy for MLO projection. As well as, the effect of kVp and mAs in MGD were studied, shows that in general as kVp and mAs increased the MGD increased accordingly in both of mammography systems.

  16. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  17. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  18. Mean glandular dose measurement on various breast phantom using mammography machine in MINT Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Asmaliza Hashim; Abd Aziz Mhd Ramli

    2005-01-01

    Until recently, mammography have been the primary means of detecting early breast cancer. Although there is a risk of radiation- induced carcinogenesis associated with the x-ray examination of the female breast, but this risk is small compared to its benefits with modern equipment and technique. Therefore, it is important to determine the dose of the tissue at risk from radiation exposure by measuring the mean glandular dose (MGD). This can help minimize the risk to the patient. This paper describe the MGD measurement done on various types and thickness of breast phantom using a Bennett mammography machine model DMF-150 in the Medical Physics laboratory at the Malaysian Institute for Nuclear Technology Research (MINT). Results of this study are discussed in this paper. (Author)

  19. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  20. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  1. Immunohistochemical characterization of glandular elements in glandular cardiac myxoma: Study of six cases

    Directory of Open Access Journals (Sweden)

    Devajit Nath

    2017-01-01

    Full Text Available Back ground: Glandular cardiac myxoma has varying clinical presentation with uncertain histogenesis and debatable immunohistochemical profile. Glandular epithelial differentiations are rare phenomenon known to be present as an intrinsic component of the tumor. The origin of the glands has been attributed to epithelial differentiation of a totipotent cardiomyogenic precursor cells or the entrapped foregut rests in the tumor. Materials and Methods: Retrospective study includes six cases of glandular cardiac myxoma collected over a perior of 4 years. Sections were examined to define the histogenesis, histological and immunohistochemical profile of the glandular elements. Results: Incidence of glandular cardiac myxoma was 6.6% with a male to female ratio of 1:2.Mean age was 49.9 years. Left atrium was the commonest site. Five were sporadic and one was familial. Chest pain and dyspnea were the commonest clinical symptoms. Histologically all myxoma showed well formed glandular structures with typical myxomatous area. No atypia, mitosis or necrosis was identified in the glandular elements. Markers in six cases of glandular cardiac myxoma were immunopositive for CK7, CK 19, EMA, CEA, focally for E-cadherin while immunonegative for CK20, Chromogranin, Synaptophysin, calretenin, vimentin, B-catenin, TTF-1 and GCDFP-15 favoring enteric differentiation. Conclusion: Glandular cardiac myxoma is a rare entity which shows characteristics similar to those of classical cardiac myxoma with benign glandular elements showing enteric differentiation. Complete surgical excision is the treatment of choice with good prognosis. It is important to recognize this entity to avoid an erroneous diagnosis of metastatic adenocarcinoma.

  2. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  3. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  4. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Silva S, A.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  5. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  6. Intercomparison of standards of absorbed dose between the USSR and the UK

    Science.gov (United States)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  7. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  8. Photon spectrum and absorbed dose in brain tumor.

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  10. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  11. Plant Glandular Trichomes

    Indian Academy of Sciences (India)

    landing on the plant. Glandular trichomes in catmint (Nepeta sp.) produce nepetalactone, closely related to the aphid sex pheromone, nepetalactol. Nepetalactone can be reduced to the corresponding nepetalactol. ... Plant glandular trichomes function either as repositories or releasing sites of various chemicals. Interest in ...

  12. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  13. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  14. Determination of absorbed dose to the lens of eye from external sources

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-01-01

    The methods of determining absorbed dose distributions in human eyeball by means of the experiments and available theories have been reported. A water phantom was built up. The distributions of beta dose were measured by an extrapolation ionization chamber at some depths corresponding to components of human eyeball such as cornea, sclera, anterior chamber and the lens of eye. The ratios among superficial absorbed dose (at 0.07 mm) and average absorbed doses at the depths 1,2,3 mm are obtained. They can be used for confining the deterministic effects of superficial tissues and organs such as the lens of eye for weakly penetrating radiations

  15. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  16. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  17. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  18. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  19. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  20. Radiation absorbed dose and expected risk in head and neck tissues after thyroid radioiodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, A [National Center for Nuclear and Radiation Control, AEA., Cairo (Egypt); Farag, H I [National Cancer instiute, Cairo University, Cairo (Egypt); Saleh, A [Al-hussien Hospital, Al-Azhar University, Cairo (Egypt)

    1997-12-31

    Measurement of absorbed dose in head and neck phantom after applying I-131 therapeutic dose for the treatment of thyroid malignancies was conducted. The measurement were carried out at several sites of phantom using TL dosimeters. The absorbed doses were also measured on the skin of four patients during their administration of I-131 therapeutic doses 1.332 GBq (36 mci) I-131. The measurements were taken over 69 hours exposure at different sites of phantom. The same measurements were carried out on the four patients. At five sites of the patients head and neck, the absorbed dose were measured and compared with that measured on the phantom. The values measured are discussed in the light of the published individual absorbed doses in the organs by ICRP tables. High absorbed doses were absorbed in the different sites of the head and neck during the I-131 therapy (0.14-9.68 mGy/mCi). 3 figs., 2 tabs.

  1. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  2. Absorbed dose from a beta source as shown by thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Wintle, A.G.; Aitken, M.J.

    1977-01-01

    The depth-dose curve was obtained for a 90 Sr- 90 Y beta source using a fine grain TL phosphor to measure the observed dose, aluminium absorbers being interposed between the source and the detector; the curve went through a maximum at an absorber thickness of about 40 mg cm -2 . This curve was then used to predict the average dose rate to various thicknesses of calcium fluoride which has a similar absorption characteristic to aluminium; these values were compared with experimentally determined dose rates. This work was done in connection with thermoluminescence dating of flint and calcite in archaeology and geology. (author)

  3. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  4. Thyroid absorbed dose using TLDs during mammography

    International Nuclear Information System (INIS)

    Gonzalez A, M.; Melendez L, M.; Davila M, P.

    2015-10-01

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  5. The absorbed dose to blood from blood-borne activity

    International Nuclear Information System (INIS)

    Hänscheid, H; Fernández, M; Lassmann, M

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10 −11  Gy·s −1 ·Bq −1 ·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1–1.2·10 −11  Gy·s −1 ·Bq −1 ·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m. (paper)

  6. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  7. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    Science.gov (United States)

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  8. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    Institute of Scientific and Technical Information of China (English)

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  9. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  10. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  11. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    International Nuclear Information System (INIS)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P.; Rojas P, E.; Marquez P, F.

    2015-10-01

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe 133 or Tc 99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133 Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133 Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc 99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc 99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  12. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  13. Absorbed dose to the patient by computerized whole body X-ray tomography

    International Nuclear Information System (INIS)

    Krauss, O.; Schuhmacher, H.

    1977-01-01

    The absorbed dose to the patient was measured for several medical investigations by computerized whole body scanning. An Alderson-phantom mounted with LiF-TLD was irradiated with a Delta-Scan (Ohio-Nuclear, 120 kV, 30 mA). The integral dose to the brain during a full examination (6 scans, filtration 3 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 3.2 rd and at the exit 0.6 rd. The dose to the eyes is 0.7 rd and to the thyroid gland 0.03 rd. The integral dose to the trunk (5 scans in the region of liver and kidneys, filtration 6 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 2.4 rd and at the exit 0.25 rd. The dose to the gonads is less than 2 and 4 mrd if the distance between the last scan and the gonads is more than 15 cm

  14. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  15. Absorbed dose to the urinary bladder wall for different radiopharmaceuticals using dynamic S-values

    International Nuclear Information System (INIS)

    Andersson, M.; Minarik, D.; Mattsson, S.; Leide-Svegborn; Johansson, L.

    2015-01-01

    Full text of publication follows. Aim and background: the urinary bladder wall is a radiosensitive organ that can receive a high absorbed dose from radiopharmaceuticals used in diagnostic nuclear medicine. Current dynamic models estimate the photon and electron absorbed dose at the inner surface of the bladder wall. The aim of this work has been to create a more realistic estimation of the mean absorbed dose to the urinary bladder wall from different radiopharmaceuticals. This calculation also uses dynamic specific absorption fractions (SAF) that changes with bladder volume and are gender specific. Materials and Methods: the volume of the urinary bladder content was calculated using a spherical approximation with a urinary inflow of 1.0 ml/min and 0.5 ml/min during day and night time, respectively. The activity in the bladder content was described using a bi-exponential extraction from the body. The absorbed dose to the bladder wall was estimated using linear interpolation of SAF values from different bladder volumes, ranging from 10 ml to 800 ml. Administration of the activity was assumed to start at 09:00 with an initial voiding after 40 minutes and a voiding interval of 3.5 hours during the day. A six hour night gap, starting at midnight, with a voiding right before and after the night period, was used. Calculations were made, with the same assumptions, for an earlier dynamic bladder model and with a static SAF value from the ICRP/ICRU adult reference computational phantoms for a bladder containing 200 ml. Values for the absorbed dose per unit administered activity for 19 commonly used radiopharmaceuticals were calculated, e.g. 18 F-FDG, 99m Tc-pertechnetate, 99m Tc-MAG3 and 123 I-NaI. Results and conclusion: the results of the estimates of the absorbed doses to the inner bladder wall were a factor of ten higher than the estimates mean absorbed doses. The mean absorbed doses to the bladder wall were slightly higher for females than males, due to a smaller female

  16. Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions

    International Nuclear Information System (INIS)

    Geber, Therese; Gunnarsson, Mikael; Mattsson, Sören

    2011-01-01

    This study investigated the relationship between the absorbed dose to the lens of the eye and the absorbed dose at different measurement positions near the eye of interventional radiologists. It also visualised the dose distribution inside the head, both when protective eyewear were used and without such protection. The best position for an eye lens dosimeter was found to be at the side of the head nearest to the radiation source, close to the eye. Positioning the dosimeter at the eyebrow could lead to an underestimation of the lens dose of as much as 45%. The measured dose distribution showed that the absorbed dose to the eye lenses was high compared to the other parts of the head, which stresses the importance of wearing protective eyewear. However, many models of eyewear were found to be deficient as the radiation could slip through at several places, e.g. at the cheek. The relationship between the absorbed dose to the lens and the kerma-area-product (P KA ) delivered to the patient was also studied.

  17. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  18. Glandularity estimation in Japanese women by using a breast model made from mammographic findings of European women

    International Nuclear Information System (INIS)

    Kawaguchi, Ai; Matsunaga, Yuta; Chida, Koichi; Asada, Yasuki; Suzuki, Shoichi

    2016-01-01

    This study aimed to estimate breast glandularity in Japanese women using patient exposure conditions and tissue-equivalent materials by a conventional method. Typical glandularities in Japanese women were compared with those in European women to verify the validity of the average glandular dose estimation manual based on the EUREF protocol. Glandularity was estimated from the data of 600 patients and the model breast of the tissue-equivalent materials which had various amounts of glandular contents and thicknesses. The model breasts were measured to examine the relationships between the thickness of the glandular contents and tube loading by using an automatic exposure control system. Then, equations were established to determine glandularity from patient data. The mean glandularity in the highest compressed breast thickness (CBT) group of 36–45 mm was 72%. The mean CBT of the 184 (31%) patients with glandularities exceeding 100% was 31 mm. Glandularities in patients with CBT of 30–70 mm in the present study were higher compared to those in European women by approximately 10–20%. The results suggest that the model breast of European women might not be a suitable reference standard for more than 30% of Japanese women, who have breasts with lower CBT. (author)

  19. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  20. Evaluation of the absorbed dose in odontological computerized tomography

    International Nuclear Information System (INIS)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da; Khoury, Helen J.

    2011-01-01

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  1. Real-time measurement and monitoring of absorbed dose for electron beams

    Science.gov (United States)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  2. Real-time measurement and monitoring of absorbed dose for electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-10-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  3. Real-time measurement and monitoring of absorbed dose for electron beams

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-01-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators

  4. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  5. Electrical behavior research of silicon photo-cell used in online monitoring absorbed dose rate of γ-ray

    International Nuclear Information System (INIS)

    Yang Guixia; Li Xiaoyan; Fu Lan; Wu Wenhao; An You; Zeng Fansong

    2015-01-01

    The real-time online monitoring system for γ-ray absorbed dose rate was established to study the relationship between the photocurrent of semi-conductive silicon photo-cell BBZSGD-4 and γ-ray absorbed dose rate under the open circuit. The radioactive experiments in "6"0Co γ radiation field show that photo-cell BBZSGD-4 has good response to "6"0Co γ-ray, and their relationship accords with the linear law. The photocurrent of photo-cell can be up to 1.26 μA when the absorbed dose rate is 94.54 Gy/min. The relationship between photocurrent and the absorbed dose accords with exponential law when absorbed dose rate is 50 Gy/min, and the attenuation of photocurrent is 1% when the absorbed dose is 5445.8 Gy. Thus photo-cell BBZSGD-4 has the potential to be a real-time detector to detect low absorbed dose rate in "6"0Co γ radiation field. (authors)

  6. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  7. Absorbed dose measurement by the MIRD system in the 131-I treated Thyroid Cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woon; Lim, Sang Mu; Kim, Chang Hui; Kim, Ki Sub; Cho, Jong Sio; Jeong, Jin Sung; Park, Heung Kyu; Kwon, Oh Jin [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    Medical Internal Radiation Dose(MIRD) schema was developed for calculating the absorbed dose from the administrated radiopharmaceuticals. With the biological distribution data and physical properties of the radionuclide, we can estimated the absorbed dose by the MIRD schema. For the thyroid cancer patients received high dose 131-I therapy, the absorbed dose to the bone marrow is limiting factor to the administered dose and the duration of admission is determined by the retained activity in the whole body. To the monitoring of whole body radioactivity, we used Eberline Smart 200 system using ionization chamber as a detector. With the time activity (Author).

  8. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  9. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Torres, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J.; Andres, U.; Mendez, G.

    2003-01-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137 Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  10. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  11. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  12. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  13. Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz (IR)

    International Nuclear Information System (INIS)

    Riabi, H. A.; Mehnati, P.; Mesbahi, A.

    2010-01-01

    This study was aimed at evaluating the mean glandular dose (MGD) and affecting factors during mammography examinations by a full-field digital mammography unit. An extensive quality control program was performed to assure that the unit is properly working. Required information including compressed breast thickness (CBT), breast parenchymal pattern and technical factors used for imaging were recorded. An entrance skin exposure measurement was also performed using slabs of polymethylmethacrylate with 2-8 cm thickness. On the basis of recorded information and measured data, the MGD was estimated for 1145 mammography examinations obtained from 298 patients. Mean CBTs of 4.9 and 5.8 cm and MGDs of 2 and 2.4 mGy were observed for cranio-caudal and medio-lateral oblique views, respectively. Significant correlation was seen between MGD and CBT, breast parenchymal pattern and applied kVp and mAs. (authors)

  14. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-12-01

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  15. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  16. Morphological differentiation of non-glandular and glandular trichomes on Marrubium vulgare L.

    Directory of Open Access Journals (Sweden)

    Marta Dmitruk

    2014-04-01

    Full Text Available Marrubium vulgare L., commonly known as a white horehound or common horehound, belongs to the plant family Lamiaceae. It is a perennial aromatic herb which grows naturally in Europe, Asia, and America. Since ancient Egypt, this species has been known as a remedy for upper respiratory tract ailments. Nowadays, horehound is used in herbal medicine for treatment of liver diseases, biliary tract disorders, and for increasing the appetite and supporting the function of the stomach. The main biologically active substances in M. vulgare organs are: marrubiin, tannins, essential oils, and ursolic acid. The paper presents micromorphological analyses of non-glandular and glandular trichomes of M. vulgare. The research material was sampled from the plant collection in the Botanical Garden of the Maria Curie-Sklodowska University in Lublin (51°14′ N, 22°34′ E. The above-ground parts of horehound were collected during the flowering period in July 2013. Using light microscopy (LM and scanning electron microscopy (SEM, the types and sizes of trichomes from the stem, leaf, calyx, and corolla were investigated. The results of the microscopic observations show that the surfaces of M. vulgare vegetative and reproductive organs are densely clothed with glandular and non-glandular trichomes. The glandular trichomes are of two main types: peltate and capitate. Peltate trichomes consist of a short stalk cell and a large head with secretory cells arranged in a circle. The height of a mature trichome is about 31.33 μm and the diameter of the head is 31.47 μm. The substance produced by secretory cells passes through the apical walls and accumulates within a space between the cuticle and the cell wall layer. Capitate long trichomes with a basal cell, long stalk, neck cell, and a unicellular head are 36.65 μm long and the diameter of the head is about 15.6 μm. There are two types of short capitate trichomes: with a bicellular head and a unicellular stalk and with

  17. Determination of Absorbed Dose to Water for Leksell Gamma Knife Unit

    International Nuclear Information System (INIS)

    Hrsak, H.

    2013-01-01

    Because of geometry of photon beams in Leksell Gamma Knife Unit (LGK), there are several technical problems in applying standard protocols for determination of absorbed dose to water (Dw). Currently, Dw in LGK unit, measured at the center of spherical plastic phantom, is used for dose calculation in LGK radiosurgery. Treatment planning software (LGP TPS) accepts this value as a measurement in water and since plastic phantom has higher electron density than water, this leads to systematic errors in dose calculation. To reduce these errors, a photon attenuation correction (PAC) method was applied. For that purpose, measurements of absorbed dose in a center of three different plastic phantoms with 16 cm diameter (ABS - acrylonitrile butadiene styrene, PMMA - polymethyl metacrylate, PMMA + teflon - polytetrafluoroethylene 5 mm shell) were made with ionization chamber (Semiflex, PTW Freiburg). For measured dose values, PAC to water was applied based on electron density (ED) and equivalent water depths (EWD) of the plastic phantoms. The relation between CT number and ED was determined by measuring CT number of standard CT to ED phantom (CIRS Model 062 Phantom). Absorbed dose in plastic phantoms was 2.5 % lower than calculated dose in water for ABS phantom and more than 5.5 % lower for PMMA and PMMA+teflon phantom. Calculated dose in water showed more consistent values for all three phantoms (max. difference 2.6 %). EWD for human cranial bones and brain has value close to the EWD of ABS phantom, which makes this phantom most suitable for dose measurements in clinical application. In LGK radiosurgery determination of errors related to the difference of phantom materials should not be neglected and measured dose should be corrected before usage for patient treatment dose calculation.(author)

  18. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  19. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  20. Methods to verify absorbed dose of irradiated containers and evaluation of dosimeters

    International Nuclear Information System (INIS)

    Gao Meixu; Wang Chuanyao; Tang Zhangxong; Li Shurong

    2001-01-01

    The research on dose distribution in irradiated food containers and evaluation of several methods to verify absorbed dose were carried out. The minimum absorbed dose of treated five orange containers was in the top of the highest or in the bottom of lowest container. D max /D min in this study was 1.45 irradiated in a commercial 60 Co facility. The density of orange containers was about 0.391g/cm 3 . The evaluation of dosimeters showed that the PMMA-YL and clear PMMA dosimeters have linear relationship with dose response, and the word NOT in STERIN-125 and STERIN-300 indicators were covered completely at the dosage of 125 and 300 Gy respectively. (author)

  1. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Ryan, J. W.; Harper, P.V.; Stark, V.S.; Peterson, E.L.; Lathrop, K.A.

    1986-01-01

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  2. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Boas, J.F.; Van der Gaast, H.

    1998-05-01

    The arrangements for the maintenance of the Australian standards for 60 Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90 Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90 Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90 Sr is confirmed. The usefulness of 90 Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau

  3. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    Energy Technology Data Exchange (ETDEWEB)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.; Daures, J.; Bordy, J. M., E-mail: jean-marc.bordy@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette F-91191 (France)

    2016-07-15

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAP measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.

  4. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    Daures, J.; Ostrowsky, A.; Chauvenet, B.

    2002-01-01

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  5. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  6. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  7. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  8. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  9. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  10. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  11. Determination of the absorbed dose and dose-distribution in water for low- and medium-energetic photons

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1990-05-01

    The methods to determine the absorbed dose to water for low and medium energy photons were studied. Large differences between the results of these methods exists. So, a research proposition has been made to explain these differences. The goal of this research will be the development of a method to determine the absorbed dose below approximately 400 keV with an ionization chamber calibrated at 60 Co gamma radiation. To explain the differences between the set of methods, some causes were proposed, like the influence of the ionisation chamber on the measurement in water. Also, some methods to determine the factors are proposed. (author). 29 refs

  12. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  13. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    International Nuclear Information System (INIS)

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-01-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed

  14. Metabolic kinetics and absorbed doses of 137Cs in lactating rats and progeny during suckling

    International Nuclear Information System (INIS)

    Lyaginskaya, A.M.; Osipov, V.A.; Dement'ev, S.I.; Ermalitskij, A.P.

    2000-01-01

    The transfer of 137 Cs with maternal milk to progeny was studied in rats The rats were administered with 25 kBq/g of 137 Cs nitrate (pH = 6) in a single oral dose immediately after delivery. Nonpregnant females served as control. Absorbed doses per activity unit to lactating rats were 23 % lover than to nonlactating ones. Over the suckling period absorbed doses to young rats amounted to about 35 % of the absorbed dose to the nursing female. For nonlactating females the internal dose approximately equalled the sum of doses to the nursing female and young rats. Lactating is the effective way for removal of 1 '3 7 Cs from organism of the rats. Content of 1 '3 7 Cs in lactating rat becomes on 42.9 % lower than in organism of nonlactating rat during period of lactating (near 20 days) [ru

  15. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  16. Structure and distribution of glandular and non-glandular trichomes on above-ground organs in Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2014-01-01

    Full Text Available Micromorphology and distribution of glandular and non-glandular trichomes on the above-ground organs of Inula helenium L. were investigated using light and scanning electron microscopy (SEM. Two types of biseriate glandular trichomes, i.e. sessile and stalk hairs, and non-glandular trichomes were recorded. Sessile glandular trichomes were found on all examined I. helenium organs (with their highest density on the abaxial surface of leaves and disk florets, and on stems, whereas stalk glandular trichomes were found on leaves and stems. Sessile trichomes were characterised by a slightly lower height (58–103 μm and width (32–35 μm than the stalk trichomes (62–111 μm x 31–36 μm. Glandular hairs were composed of 5–7 (sessile trichomes or 6–9 (stalk trichomes cell tiers. Apical trichome cell tiers exhibited features of secretory cells. Secretion was accumulated in subcuticular space, which expanded and ruptured at the top, and released its content. Histochemical assays showed the presence of lipids and polyphenols, whereas no starch was detected. Non-glandular trichomes were seen on involucral bracts, leaves and stems (more frequently on involucral bracts. Their structure comprised 2–9 cells; basal cells (1–6 were smaller and linearly arranged, while apical cells had a prozenchymatous shape. The apical cell was the longest and sharply pointed. Applied histochemical tests revealed orange-red (presence of lipids and brow colour (presence of polyphenols in the apical cells of the trichomes. This may suggest that beside their protective role, the trichomes may participate in secretion of secondary metabolites.

  17. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  18. Comparision between the IAEA's protocols (TRS-277 and TRS-398) for absorbed dose determination

    International Nuclear Information System (INIS)

    Bero, M.; Anjak, O.

    2007-12-01

    The aim of this study is to compare between two IAEA's Protocols [IAEA-TRS-277 (1987) and IAEA-TRS-398 (2000)] for Absorbed Dose Determination. Five types (5 Chamber) of commonly used cylindrical ionization chambers (Farmer type, 0.6 cc) were used to check the difference in absorbed dose to water determination for Co-60 beams under reference condition. TLD dosimeter was also used for inter-comparison with IAEA's SSDL. The mean values of the measured absorbed dose were found to be similar in both cases and the relative error D (TRS-398)/D (TRS-277) is found to be approximately less than 0.5% for all chambers used in this study.(authors)

  19. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry

    International Nuclear Information System (INIS)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre

    2016-01-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  20. Experimental studies on absorbed dose in radiation sterilization of pharmaceutical preparation

    International Nuclear Information System (INIS)

    Ohnishi, Tokuhiro; Okamoto, Shinichi; Kimura, Syojiro; Taimatsu, Meiko.

    1991-01-01

    For radiation sterilization, it is necessary to decide the irradiation conditions considering a balance between sterilization efficiency and chemical changes of samples by irradiation. These effects may be estimated by the product of two factors (D 10 and G value) and absorbed dose. In this work, it has been found experimentally by using Fricke dosimeter that the absorbed doses of the samples in vessels different in size, material, volume, etc. are not equal under the same gamma-ray irradiation condition. The correction factor from exposure to absorbed dose was estimated to be 6-7% for organic vessels (a polyethylene bag and a polystyrene vial) and a 20-ml glass vial, 9% for a 10-ml glass vial, and 10% for the 5-ml glass vial. These values of the correction factor were confirmed by using the changes of enzymic activity of saccharated powder pepsin preparation. In the cases of using organic vessels and the 10-ml glass vial, G-values for the change of the enzymic activity were calculated to show similar values in the range from 0.79 to 0.82. However, in the case of a small glass vial (5-ml), the value was 0.93. (author)

  1. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  2. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  3. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  4. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  5. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  6. Evaluation of absorbed dose-distribution in the X-ray or gamma-irradiator for blood products

    International Nuclear Information System (INIS)

    Moriyama, Satoshi; Kurihara, Katsuhiko; Yokokawa, Nobuhiko; Satake, Masahiro; Juji, Takeo

    2001-01-01

    Irradiation of blood products abrogates the proliferation of lymphocytes present in cellular component, which is currently the only accepted methodology to prevent transfusion-associated graft versus host disease (TA-GVHD). A range of irradiation dose levels between 15 Gy and 50 Gy is being used, but the majority of facilities are employing 15 Gy. It should, however, be recognized that the delivered dose in the instrument canister might differ from the actual dose absorbed by the blood bag. This study have evaluated the actual dose distribution under practical conditions where a container was loaded with blood products or water bags, or filled with distilled water. This approach provides data that the maximum attenuation occurred when the container was completely filled with a blood-compatible material. Thus, an error of approximately 20 percent should be considered in the dose measured in the in-air condition. A dose calibration in an in-air condition may lead to substantial underexposure of the blood products. A dose distribution study using adequately prearranged exposure period verified that the absorbed dose of 15 Gy was attained at any point in the container for both linear accelerator and gamma-irradiator. The maximal difference in the absorbed dose between measured points was 1.5- and 1.6-fold for linear accelerator and gamma-irradiator, respectively. In conclusion, using blood-compatible materials, a careful dose calibration study should be employed in which the absorbed dose of 15 Gy is obtained at the point where the lowest dose could be expected. (author)

  7. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  8. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR

    International Nuclear Information System (INIS)

    Wieser, A.

    2012-01-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. (author)

  9. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    Science.gov (United States)

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  10. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  11. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  12. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  13. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  14. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  15. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1989-08-01

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  16. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  17. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  18. Image quality, threshold contrast and mean glandular dose in CR mammography

    International Nuclear Information System (INIS)

    Jakubiak, R R; Gamba, H R; Neves, E B; Peixoto, J E

    2013-01-01

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both

  19. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  20. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2017-10-01

    Full Text Available Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT. Material and Methods: The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD in 18 anatomical points of the phantom. Results: The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Conclusions: Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5:705–713

  1. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  2. Peculiarities of absorbed dose forming in some wild animals in Chornobyl,y exclusion zone

    International Nuclear Information System (INIS)

    Gaychenko, V.A.; Krainiuk, O.Yu.

    2015-01-01

    Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, identified the peculiarities of formation absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. Was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Was displayed data about the importance of different types of irradiation according to the period of stay the animals in the ground, in burrows and nests. Was reviewed the questions about value of external and internal radiation in absorbed dose of different types of wildlife. Was shown the results of the calculation of the absorbed dose of bird embryos from egg shell

  3. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  4. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  5. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  6. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  7. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  8. Current in-pile absorbed dose measurements at the Boris Kidric Institute of nuclear sciences - Vinca, Status report

    Energy Technology Data Exchange (ETDEWEB)

    Draganic, G I [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    So far in-pile absorbed dose measurements have been limited only to experiments in the RA reactor at the Boris Kidric Institute of Nuclear Sciences at Vinca (6.5 D{sub 2}O moderated and 2% enriched uranium). The methods used for absorbed dose and neutron flux measurements were 1,2 discussed in some earlier reports at the IAEA meetings. The purpose of the present report is to illustrate the further development of methods of determining in-pile absorbed doses (author)

  9. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  10. Comparison of anode/filter combinations in digital mammography with respect to the average glandular dose

    International Nuclear Information System (INIS)

    Uhlenbrock, D.F.; Mertelmeier, Thomas

    2009-01-01

    To investigate the average glandular dose (AGD) applied for clinical digital mammograms acquired with the anode/filter combinations molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh), and tungsten/rhodium (W/Rh). Using the method of Dance, the AGD was evaluated from the exposure data of 4867 digital mammograms at two sites equipped with a full-field digital mammography (FFDM) system based on an amorphous selenium detector. 1793 images were acquired and analyzed with Mo/Mo, 643 with Mo/Rh, and 2431 with W/Rh. In the Mo/Mo cases the mean compressed breast thickness was 46 ± 10 mm with an average AGD of 2.29 ± 1.31 mGy. For the Mo/Rh cases with a mean compressed thickness of 64 ± 9 mm, we obtained 2.76 ± 1.31 mGy. The W/Rh cases with a mean compressed thickness of 52 ± 13 mm resulted in 1.26 ± 0.44 mGy. The image quality was assessed as normal and adequate for diagnostic purposes in all cases. (orig.)

  11. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  12. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  13. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  14. Dedicated breast CT: radiation dose for circle-plus-line trajectory

    International Nuclear Information System (INIS)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Noo, Frederic

    2012-01-01

    Purpose: Dedicated breast CT prototypes used in clinical investigations utilize single circular source trajectory and cone-beam geometry with flat-panel detectors that do not satisfy data-sufficiency conditions and could lead to cone beam artifacts. Hence, this work investigated the glandular dose characteristics of a circle-plus-line trajectory that fulfills data-sufficiency conditions for image reconstruction in dedicated breast CT. Methods: Monte Carlo-based computer simulations were performed using the GEANT4 toolkit and was validated with previously reported normalized glandular dose coefficients for one prototype breast CT system. Upon validation, Monte Carlo simulations were performed to determine the normalized glandular dose coefficients as a function of x-ray source position along the line scan. The source-to-axis of rotation distance and the source-to-detector distance were maintained constant at 65 and 100 cm, respectively, in all simulations. The ratio of the normalized glandular dose coefficient at each source position along the line scan to that for the circular scan, defined as relative normalized glandular dose coefficient (RD g N), was studied by varying the diameter of the breast at the chest wall, chest-wall to nipple distance, skin thickness, x-ray beam energy, and glandular fraction of the breast. Results: The RD g N metric when stated as a function of source position along the line scan, relative to the maximum length of line scan needed for data sufficiency, was found to be minimally dependent on breast diameter, chest-wall to nipple distance, skin thickness, glandular fraction, and x-ray photon energy. This observation facilitates easy estimation of the average glandular dose of the line scan. Polynomial fit equations for computing the RD g N and hence the average glandular dose are provided. Conclusions: For a breast CT system that acquires 300-500 projections over 2π for the circular scan, the addition of a line trajectory with equal

  15. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    International Nuclear Information System (INIS)

    Bjerke, H.

    2002-01-01

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm 3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of

  16. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  17. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  18. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  19. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  20. Determination of high level absorbed dose in a 60Co gamma ray field with ionization chambers

    International Nuclear Information System (INIS)

    Zhongying Li; Benjiang Mao; Lu Zhang

    1995-01-01

    This paper relates to the principles and methods for determining the absorbed dose of high energy photons radiation with ionization chambers, and its shows the doserate results of high level 60 Co γ-rays in water measured with Farmer chambers. The results with two kinds of chambers at a same point are consistent within 0.3%, and the total uncertainty is less than ± 4%. In the domestic intercomparison on determining high level absorbed dose in which 12 laboratories participated, the deviation of our result from the mean result of the intercomparison is -0.04% [Chen Yundong (1992). Summing up report on a high level absorbed dose intercomparison (in Chinese)]. (author)

  1. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs

    International Nuclear Information System (INIS)

    Carrizales, L.; Carreno, S.

    1998-01-01

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  2. Proceedings of the workshop 'Absorbed dose in water and air'

    International Nuclear Information System (INIS)

    Rapp, Benjamin; Bordy, Jean-Marc; Camacho Caldeira, Margarida Isabela; Sochor, Vladimir; Celarel, Aurelia; Cenusa, Constentin; Cenusa, Ioan; Donois, Marc; Dusciac, Dorin; Iliescu, Elena; Ostrowsky, Aime; Bercea, Sorin; Blideanu, Valentin; Bordy, Jean-Marc; Steurer, Andrea; Tiefenboeck, Wilhelm

    2017-05-01

    The project 'Absorbed dose in water and air' (Absorb) is aimed at sharing and improving the knowledge on the design of Primary Standards (calorimeter, cavity ionization chambers, free air ionization chambers) for 'dose' measurements in radiation therapy and diagnostic, the harmonization of calibration procedures, the determination of uncertainty and harmonization of uncertainty budgets. Within the framework of this project a workshop was organized at the LNE (Laboratoire National de metrologie et d'Essais) in Paris from February, 29 to March, 2 2016. This report is the proceeding of this workshop. It includes a state of the art of two bilateral collaborations, launched to go beyond the framework of Absorb, between CEA LIST (LNE) LNHB and in one hand IFIN-HH (Romania), and in the other hand IST-LPSR-LMRI (Portugal) to build primary cavity ionization chambers for photons emitted by cobalt-60 and Cesium-137. Absorb is a Joint Research Project of the European Metrology Programme for Innovation and Research (EMPIR) which is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

  3. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  4. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  5. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies

    International Nuclear Information System (INIS)

    Mejia, A.A.; Nakamura, T.; Masatoshi, I.; Hatazawa, J.; Masaki, M.; Watanuki, S.

    1991-01-01

    Radiation absorbed doses due to intravenous administration of fluorine-18-fluorodeoxyglucose in positron emission tomography (PET) studies were estimated in normal volunteers. The time-activity curves were obtained for seven human organs (brain, heart, kidney, liver, lung, pancreas, and spleen) by using dynamic PET scans and for bladder content by using a single detector. These time-activity curves were used for the calculation of the cumulative activity in these organs. Absorbed doses were calculated by the MIRD method using the absorbed dose per unit of cumulated activity, 'S' value, transformed for the Japanese physique and the organ masses of the Japanese reference man. The bladder wall and the heart were the organs receiving higher doses of 1.2 x 10(-1) and 4.5 x 10(-2) mGy/MBq, respectively. The brain received a dose of 2.9 x 10(-2) mGy/MBq, and other organs received doses between 1.0 x 10(-2) and 3.0 x 10(-2) mGy/MBq. The effective dose equivalent was estimated to be 2.4 x 10(-2) mSv/MBq. These results were comparable to values of absorbed doses reported by other authors on the radiation dosimetry of this radiopharmaceutical

  6. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  7. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  8. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.

    1977-01-01

    The purpose of the study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which used Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input (i.e., the source routine) to the modified Monte Carlo codes which were used to calculate organ doses in children. Experimental work included the fabrication of child phantoms to match the existing mathematical models. These phantoms were constructed of molded lucite shells filled with differing materials to simulate lung, skeletal, and soft-tissue regions. The skeleton regions of phantoms offered the opportunity to perform meaningful measurements of absorbed dose to bone marrow and bone. Thirteen to fourteen sites in various bones of the skeleton were chosen for placement of TLDs. These sites represented important regions in which active bone marrow is located. Sixteen typical radiographic examinations were performed representing common pediatric diagnostic procedures. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms. For selected radiological exposures, the risk factors of leukemia, thyroid cancer, and genetic death are estimated for one-year- and five-year-old children

  9. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    Roth, P.; Werner, E.; Henrichs, K.; Elsasser, U.; Kaul, A.

    1986-01-01

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59 Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  10. Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel

    International Nuclear Information System (INIS)

    Gambarini, G.; Gomarasca, G.; Marchesini, R.; Pecci, A.; Pirola, L.; Tomatis, S.

    1999-01-01

    We describe a technique to obtain three-dimensional (3-D) imaging of an absorbed dose by optical transmittance measurements of phantoms composed by agarose gel in which a ferrous sulphate and xylenol orange solution are incorporated. The analysis of gel samples is performed by acquiring transmittance images with a system based on a CCD camera provided with an interference filter matching the optical absorption peak of interest. The proposed technique for 3-D measurements of an absorbed dose is based on the imaging of phantoms composed of sets of properly piled up gel slices. The slice thickness was optimized in order to obtain a good image contrast as well as a good in-depth spatial resolution. To test the technique, a phantom has been irradiated with a collimated γ-beam and then analysed. Proper software was adapted in order to visualise the images of all slices and to attain the 2-D profiles of the dose absorbed by each slice

  11. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  12. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  13. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  14. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  15. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  16. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  17. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  18. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  19. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  20. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    International Nuclear Information System (INIS)

    Markovic, V.

    1961-12-01

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  1. Model of the absorbed dose on a small sphere into a gamma irradiation field

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)

  2. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  3. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    Science.gov (United States)

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the

  4. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  5. Enhancement of lymphocyte proliferation by mouse glandular kallikrein.

    Science.gov (United States)

    Hu, Z Q; Murakami, K; Ikigai, H; Shimamura, T

    1992-03-01

    Mouse glandular kallikrein (mGK) strongly enhanced the spontaneous and mitogen-induced proliferation of lymphocytes. Both blast formation and 3H-TdR incorporation were dose-dependently enhanced at the same time many cells were killed. The enhancing activity was independent of EGF, because EGF-binding proteins (mGK-9 in mGK-6,9 mixture and mGK-13), renal kallikrein (mGK-6) and human kallikrein all displayed the same enhancement. A serine proteinase inhibitor, diisopropyl fluorophosphate, could block the enhancement by mGK. The new function suggests that mGK is important in the immune system as a regulatory molecule.

  6. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  7. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    International Nuclear Information System (INIS)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V.

    2014-08-01

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  8. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  9. Robotic stereotactic radioablation of breast tumors: Influence of beam size on the absorbed dose distributions

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2016-01-01

    Robotic stereotactic radioablation (RSR) therapy for breast tumors has been shown to be an effective treatment strategy when applied concomitantly with chemotherapy, with the purpose of reducing the tumor volume thus making it more amenable for breast conserving surgery. In this paper we used Monte Carlo simulation within a realistic patient model to determine the influence that the variation in beam collimation radius has on the resultant absorbed dose distributions for this type of treatment. Separate optimized plans were obtained for treatments using 300 circular beams with radii of 0.5 cm, 0.75 cm, 1.0 cm and 1.5 cm. Cumulative dose volume histograms were obtained for the gross, clinical and planning target volumes as well as for eight organs and structures at risk. Target coverage improves as the collimator size is increased, at the expense of increasing the volume of healthy tissue receiving mid-level absorbed doses. Interestingly, it is found that the maximum dose imparted to the skin is highly dependent on collimator size, while the dosimetry of other structures, such as both the ipsilateral and contralateral lung tissue are basically unaffected by a change in beam size. - Highlights: • Stereotactic body radiation therapy of breast tumors is analyzed using Monte Carlo simulation. • The influence of beam collimation on the absorbed dose distributions is determined. • Large field sizes increase target dose uniformity and midlevel doses to healthy structures. • Skin dose is greatly affected by changes in beam collimation.

  10. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  11. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  12. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  13. Absorbed doses to the main parts of eyeball due to use 90Sr + 90Y ophthalmic applicator

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-05-01

    The ophthalmic radiotherapy dosimetry and some affecting factors are introduced. The distributions of absorbed doses to the main parts of a fresh eyeball such as the cornea, sclera, lens and anterior chamber, during the radiotherapy by using a 90 Sr + 90 Y ophthalmic applicator are presented. An tissue-equivalent extrapolation ionization chamber was used in the dose measurement. The reasonable doses during ophthalmic radiotherapy for different depths have been obtained. Therefore, the absorbed dose to the lens, the most sensitive organ, can be given. These data are useful for radiation protection in ophthalmic radiotherapy

  14. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  15. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi

    2005-01-01

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  16. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography.

    Science.gov (United States)

    Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi; Tsujii, Hideo; Yamamoto, Tomoyuki

    2005-12-20

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols.

  17. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki [Kanazawa Univ., Hospital, Kanazawa, Ishikawa (Japan); Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi [Kanazawa Univ., Graduate School of Medical Sciences, Kanazawa, Ishikawa (Japan)

    2005-12-15

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  18. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  19. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  20. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  1. Evaluation of the absorbed doses in conditions of external and internal contamination with radionuclides

    International Nuclear Information System (INIS)

    Milivojevic, K.; Stojanovic, D.; Markovic, P.

    1981-01-01

    In experimental conditions of contamination with radionuclides of the skin and skin injuries, an evaluation of the degree of local irradiation in decontamined region and doses absorbed in organs of selective accumulating was carried out by use of mathematical models and tissue-equivalent thermoluminescent dosemeters. The evaluation of the absorbed doses based on conception, that in adequate analyses of decontamination effect, as a most efficient medico-prophilactic measure from local and total irradiation, should be taken into account the total body burden of the penetrated radionuclide, selective accumulating in critical organs or tissues, as well as the residual radioactivity in decontaminated region. (author)

  2. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  3. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia; Pereira, Aline Garcia

    2011-01-01

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  4. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  5. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  6. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    Science.gov (United States)

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2008-01-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  8. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  9. Concentration activities of natural radionuclides in three fish species in Brazilian coast and their contributions to the absorbed doses

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Kelecom, Alphonse

    2009-01-01

    Activity concentrations of U-238, Ra-226, Pb-210, Th-232 e Ra-228 were analysed in three fish species at the Brasilian Coast. The fish 'Cubera snapper' (Lutjanus cyanopterus, Cuvier, 1828), in the region of Ceara and 'Whitemouth croaker' (Micropogonias furnieri, Desmarest, 1823) and 'Lebranche mullet' (Mugil liza, Valenciennes, 1836) in the region of Rio de Janeiro. These concentrations were transformed in absorbed dose rate using a dose conversion factor in unit of gray per year (μGy y -1 ), per becquerel per kilogram (Bq kg -1 ). Only the absorbed dose due to intake of radionuclides was examined, and the contributions due to radionuclides present in water and sediment were disregarded. The radionuclides were considered to be uniformly distributed in the fish body. The limit of the dose rate used, proposed by the Department of Energy of the USA, is equal to 3.65 10 03 mGy y -1 . The average dose rate due to the studied radionuclides is equal to 6.09 10 00 μGy y -1 , a value minor than 0.1% than the limits indicated by DOE, and quite similar to that found in the literature for 'benthic' fish. The most important radionuclides were the alpha emitters Ra-226 having 61 % of absorbed dose rate. U-238 and Th-232, each contributes with approximately 20 % of the absorbed dose rate. These three radionuclides are responsible for almost 100% of the dose rate received by the studied organisms. The beta emitters Ra-228 and Pb-210 account for approximately 1 % of the absorbed dose rate. (author)

  10. Estimation of glandular content rate and statistical analysis of the influence of age group and compressed breast thickness on the estimated value

    International Nuclear Information System (INIS)

    Ohmori, Naoki; Ashida, Kenji; Fujita, Osamu

    2003-01-01

    Because the glandular content rate is an important factor in evaluating breast cancer detection and average glandular dose, it is important in mammography research to estimate and analyze this rate. The purpose of this study was to obtain a formula for statistical estimation of the glandular content rate, to clarify statistically the influence of age group and compressed breast thickness (CBT) on estimating the glandular content rate, and to show statistically the general relation between glandular content rate and the factors of age and CBT. The subjects were 740 Japanese women aged 20-91 years (mean±SD: 48.3±12.8 years) who had undergone mammography. In our study, the glandular content rate was statistically estimated from age group, mAs-value, and CBT when subjects underwent mammography, from a phantom simulation, and from MR images of the breast. In addition, multivariate analysis was carried to examine statistically the influence of age group and CBT on glandular content rate. The mean glandular content rate as estimated by age group was as follows: 35.6% for those in their 20s, 33.4% in the 30s, 27.5% in the 40s, 23.8% in the 50s, and 21.8% in those 60 and over. The rate for the subjects as a whole was 27.1%. This study indicated that overestimation occurred if the estimated value of the glandular content rate was not corrected in the 3D-measurement by MRI. In addition, this study showed that the statistical influence on glandular content rate was significantly larger for CBT than age. (author)

  11. A comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE

    Directory of Open Access Journals (Sweden)

    Kathy Willowson

    2018-06-01

    Full Text Available Objective(s: To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177LuDOTATATE (Lutate for treatment of neuroendocrine tumours (NETs. Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after injection. Planar data were corrected for attenuation using transmission data, and were converted to units of absolute activity via two methods, using either a calibration standard in the field of view or relative to pre-voiding image total counts. Hand drawn regions of interest were used to generate time activity curves and kidney absorbed dose estimates in OLINDA-EXM. Fully quantitative SPECT data were generated using CT-derived corrections for both scatter and attenuation, before correction for dead time and application of a camera specific sensitivity factor to convert data to units of absolute activity. Volumes of interest were defined for kidney using the co-registered x-ray CT, before time activity curves and absorbed dose measures were generated in OLINDA-EXM, both with and without corrections made to the model for patient specific kidney volumes. Quantitative SPECT data were also used to derive dose maps through dose kernel convolution (DKC, which was treated as the gold standard. Results: A total of 50 studies were analysed, corresponding to various cycles of treatment from 21 patients. Planar absorbed dose estimates were consistently higher than SPECT derived estimates by, on average, a factor of 3. Conclusion: Quantitative SPECT is considered the gold standard approach for organ specific dosimetry however often relies on in house software. As such planar methods for estimating absorbed dose are much more widely available, and in particular, are often the only source of reference in previously published data. For the case of Lutate dosimetry, planar

  12. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    International Nuclear Information System (INIS)

    Bankvall, G.; Hakansson, H.A.

    1982-01-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  13. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  14. Validation of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil

    International Nuclear Information System (INIS)

    Beraldo O, B.; Paixao, L.; Donato da S, S.; Araujo T, M. H.; Nogueira, M. S.

    2014-08-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Ho logic Selen ia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (D G ) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate D G values for different breast thicknesses provided by a Ho logic Selen ia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90 X 5-6M-model Radcal ionization chamber. D G values were derived from the incident air kerma (K i ) measurements and tabulated conversion coefficients that are dependent on the half value layer (HVL) of the X-ray spectrum. Voltage and tube loading values were recorded in irradiations using W/Al anode/filter combination, automatic exposure control mode and polymethyl methacrylate (PMMA) slabs which simulate different breast thicknesses. For K i measurements, the ionization chamber was positioned at 655 mm from the focus and the same radiographic technique values were selected with the manual mode. D G values for a complete procedure ranged from 0.9 ± 0.1 to 3.7 ± 0.4 mGy. The results for different breast thicknesses are in accordance with values obtained by DBT images and with acceptable levels established by the Commission of the European Communities (Cec) and the International Atomic Energy Agency (IAEA). This work contributes to

  15. Validation of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Beraldo O, B.; Paixao, L.; Donato da S, S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations Minerals and Materials, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil); Araujo T, M. H. [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil); Nogueira, M. S., E-mail: bbo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil)

    2014-08-15

    Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Ho logic Selen ia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (D{sub G}) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate D{sub G} values for different breast thicknesses provided by a Ho logic Selen ia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90 X 5-6M-model Radcal ionization chamber. D{sub G} values were derived from the incident air kerma (K{sub i}) measurements and tabulated conversion coefficients that are dependent on the half value layer (HVL) of the X-ray spectrum. Voltage and tube loading values were recorded in irradiations using W/Al anode/filter combination, automatic exposure control mode and polymethyl methacrylate (PMMA) slabs which simulate different breast thicknesses. For K{sub i} measurements, the ionization chamber was positioned at 655 mm from the focus and the same radiographic technique values were selected with the manual mode. D{sub G} values for a complete procedure ranged from 0.9 ± 0.1 to 3.7 ± 0.4 mGy. The results for different breast thicknesses are in accordance with values obtained by DBT images and with acceptable levels established by the Commission of the European Communities (Cec) and the International Atomic Energy Agency (IAEA

  16. Experimental verification of the air kerma to absorbed dose conversion factor Cw,u.

    Science.gov (United States)

    Mijnheer, B J; Wittkämper, F W; Aalbers, A H; van Dijk, E

    1987-01-01

    In a recently published code of practice for the dosimetry of high-energy photon beams, the absorbed dose to water is determined using an ionization chamber having an air kerma calibration factor and applying the air kerma to absorbed dose conversion factor Cw,u. The consistency of these Cw,u values has been determined for four commonly employed types of ionization chambers in photon beams with quality varying between 60Co gamma-rays and 25 MV X-rays. Using a graphite calorimeter, Cw,u has been determined for a graphite-walled ionization chamber (NE 2561) for the same qualities. The values of Cw,u determined with the calorimeter are within the experimental uncertainty equal to Cw,u values determined according to any of the recent dosimetry protocols.

  17. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    International Nuclear Information System (INIS)

    Nakamura, K.; Ishiguchi, T.; Maekoshi, H.; Ando, Y.; Tsuzaka, M.; Tamiya, T.; Suganuma, N.; Ishigaki, T.

    1996-01-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs

  18. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  19. Absorbed dose by thyroid in case of nuclear accidents

    International Nuclear Information System (INIS)

    Campos, Laelia; Attie, Marcia Regina Pereira; Amaral, Ademir

    2011-01-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ( 131 I, 132 I, 133 I, 134 I and 135 I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  20. A numerical analysis of aspects of absorbed dose in the vicinity of the interface of different materials

    Energy Technology Data Exchange (ETDEWEB)

    Tada, J [Tsukuba Univ., (Japan); Hirayama, H [National Lab. High Enregy Phys. (Japan); Katoh, K [Ibaraki Pref. Univ. Health Sci., (Japan)

    1997-12-31

    In the measurement and/or evaluation of the absorbed dose where the charged particle distribution is far from equilibrium, knowledge on the microscopic spatial distribution of the charged particle fluence is important. Spatial distribution of secondary electrons in the vicinity of an interface of materials and the values of the absorbed dose in these regions are investigated with a monte-Carlo simulation code EGS 4. There were experiments on spatial variation of the absorbed dose in the vicinity of an interface of materials. However, the behaviour of secondary electrons were discussed only broadly and qualitatively. In this study, behaviour of the secondary electrons was analysed to clarify contribution of ruling interactions to generate secondary electrons, and influence of the interface on the energy spectra of secondary electrons. 11 figs.

  1. TU-F-18C-05: Evaluation of a Method to Calculate Patient-Oriented MGD Coefficients Using Estimates of Glandular Tissue Distribution

    International Nuclear Information System (INIS)

    Porras-Chaverri, M; Galavis, P; Bakic, P; Vetter, J

    2014-01-01

    Purpose: Evaluate mammographic mean glandular dose (MGD) coefficients for particular known tissue distributions using a novel formalism that incorporates the effect of the heterogeneous glandular tissue distribution, by comparing them with MGD coefficients derived from the corresponding anthropomorphic computer breast phantom. Methods: MGD coefficients were obtained using MCNP5 simulations with the currently used homogeneous assumption and the heterogeneously-layered breast (HLB) geometry and compared against those from the computer phantom (ground truth). The tissue distribution for the HLB geometry was estimated using glandularity map image pairs corrected for the presence of non-glandular fibrous tissue. Heterogeneity of tissue distribution was quantified using the glandular tissue distribution index, Idist. The phantom had 5 cm compressed breast thickness (MLO and CC views) and 29% whole breast glandular percentage. Results: Differences as high as 116% were found between the MGD coefficients with the homogeneous breast core assumption and those from the corresponding ground truth. Higher differences were found for cases with more heterogeneous distribution of glandular tissue. The Idist for all cases was in the [−0.8 − +0.3] range. The use of the methods presented in this work results in better agreement with ground truth with an improvement as high as 105 pp. The decrease in difference across all phantom cases was in the [9 − 105] pp range, dependent on the distribution of glandular tissue and was larger for the cases with the highest Idist values. Conclusion: Our results suggest that the use of corrected glandularity image pairs, as well as the HLB geometry, improves the estimates of MGD conversion coefficients by accounting for the distribution of glandular tissue within the breast. The accuracy of this approach with respect to ground truth is highly dependent on the particular glandular tissue distribution studied. Predrag Bakic discloses current

  2. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    International Nuclear Information System (INIS)

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-01-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation

  3. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  4. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    International Nuclear Information System (INIS)

    Kang, A Ram; Ahn, Sung Min; Lee, In Ja

    2017-01-01

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied

  5. Results of a 2011 national questionnaire for investigation of mean glandular dose from mammography in Japan.

    Science.gov (United States)

    Asada, Y; Suzuki, S; Minami, K; Shirakawa, S

    2014-03-01

    Diagnostic reference levels (DRLs) for mammography have yet to be created in Japan. A national questionnaire investigation into radiographic conditions in Japan was carried out for the purpose of creating DRLs. Items investigated included the following: tube voltage; tube current; current-time product; source-image distance; craniocaudal view; automatic exposure control (AEC) settings; name of mammography unit; image receptor system (computed radiography (CR), flat panel detector (FPD), or film/screen (F/S)); and supported or unsupported monitor diagnosis (including monitor resolution). Estimation of the mean glandular dose (MGD) for mammography was performed and compared with previous investigations. The MGD was 1.58(0.48) mGy, which did not significantly differ from a 2007 investigation. In relation to image receptors, although no difference in average MGD values was observed between CR and FPD systems, F/S systems had a significantly decreased value compared to both CR and FPDs. Concerning digital systems (FPDs), the MGD value of the direct conversion system was significantly higher than the indirect conversion system. No significant difference in MGD value was evident concerning type of monitor diagnosis for either the CR or the FPD digital systems; however, hard copies were used more often in CR. No significant difference in the MGD value was found in relation to monitor resolution. This report suggests ways to lower the doses patients undergoing mammography receive in Japan, and serves as reference data for 4.2 cm compressed breast tissue of 50% composition DRLs. Furthermore, our findings suggest that further optimisation of FPD settings can promote a reduction in the MGD value.

  6. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography

    International Nuclear Information System (INIS)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-01-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO"R phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500"R, ProMax"R 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax"R 3D with shielding, the ED was 149 μSv, and for the examination protocol without shielding 148 μSv (SD = 0.31 μSv). For the CS 9500"R, the ED was 88 and 86 μSv (SD = 0.95 μSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. (authors)

  7. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  8. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV

    International Nuclear Information System (INIS)

    Gudowska, I.; Brahme, A.; Andreo, P.; Gudowski, W.; Kierkegaard, J.

    1999-01-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm 3 . The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)±0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3 He and 4 He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15±0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60 Co radiation. (author)

  9. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  10. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  11. Radiation absorbed doses at radiographic examination of third molars.

    Science.gov (United States)

    Rehnmark-Larsson, S; Stenström, B; Julin, P; Richter, S

    1982-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. In the maxilla three, and in the mandible four different projections were used; also an extraoral lateral view. The greatest thyroid dose, 35 muGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. the thyroid dose from an extraoral lateral view with high sensitivity screens was 3.7 muGy. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. The corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50%. the Ekta-Speed film required approximately 40% lower exposure than the Ultra-Speed film. Without shielding the gonadal doses from a complete examination of four third molars were of the same order of magnitude as from a full survey with intraoral films, i.e. 3-7 muGy. A horizontal radiation shield reduced the thyroid doses by between 12 and 46% and the gonadal doses by between 50 and 95%. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses by between 15 and 42% and the gonadal doses by two orders of magnitude.

  12. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-10-15

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  13. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu

    2014-01-01

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  14. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  15. Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor

    International Nuclear Information System (INIS)

    Cheon, Geum Seong; Kim, Chang Uk; Kim, Hoi Nam; Heo, Gyeong Hun; Song, Jin Ho; Hong, Joo Yeong; Jeong, Jae Yong

    2010-01-01

    Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two different modalities. The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head and neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. In case of comparing both simple summation absorbed dose and integration absorbed dose, the

  16. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  17. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won

    2014-01-01

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  18. Breast Glandularity in Malaysian Women from a Full-Field Digital Mammography System

    International Nuclear Information System (INIS)

    Noriah Jamal; Humairah Samad Cheung; Siti Selina Abdul Hamid; Juliana Mahamad Napiah

    2014-01-01

    This study is undertaken to estimate breast glandularity in Malaysian women from a Full-Field Digital mammography System. This study involved 223 women (Malay=100;Chinese=101 and Indian=22) underwent voluntary screening mammography at Breast Centre, International Islamic University Malaysia (IIUM Breast Centre) for the first quarter of year 2009. Those are women aged between 31 to 69 years old (median age, 49 years). Data on miliampere-seconds, kilo voltage and compressed breast thickness for each cranio caudal view are used to estimate breast glandularity for an individual breast. Breast glandularity is calculated using the fitted equation reported earlier. The difference in breast glandularity among ethnic groups was tested for significance using the nonparametric Kruskal-Wallis test. The average breast glandularity estimated in our study, using FFDM system is 52.94±27.63 %. No significant difference was seen in breast glandularity among the ethnic groups (p>0.05, Kruskan Wallis test). Breast glandularity decrease as age increases, up to 60 years old. (author)

  19. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.

    Science.gov (United States)

    Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio

    2017-07-01

    The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P density median values from FFDM are, respectively, 8% and 77% higher than DBT estimations. Both algorithms classify 35% and 55% of breasts into BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.

  20. Absorbed dose determination in high energy photon beams using new IAEA TRS - 398 Code of Practice

    International Nuclear Information System (INIS)

    Suriyapee, S.; Srimanoroath, S.; Jumpangern, C.

    2002-01-01

    The absorbed dose calibration of 6 and 10 MV X-ray beams from Varian Clinac 1800 at King Chulalongkorn Memorial Hospital Bangkok, Thailand were performed using cylindrical chamber 0.6 cc NE2571 Serial No. 1633 with graphite wall and Delrin build up cap and lonex Dosemaster NE 2590 Serial No. 223. The absorbed dose determination followed the IAEA code of practice TRS-277. The new IAEA code of practice TRS-398 have been studied to compare the result with the IAEA TRS-277

  1. Evaluation of the absorbed dose to the kidneys due to Tc99m (DTPA) / Tc99m (Mag3) and Tc99m (Dmsa)

    International Nuclear Information System (INIS)

    Vasquez A, M.; Murillo C, F.; Castillo D, C.; Rocha J, J.; Sifuentes D, Y.; Sanchez S, P.; Idrogo C, J.; Marquez P, F.

    2015-10-01

    The absorbed dose in the kidneys of adult patients has been assessed using the biokinetics of radiopharmaceuticals containing Tc 99m (DTPA) / Tc 99m (Mag3) or Tc 99m (Dmsa).The absorbed dose was calculated using the formalism MIRD and the Cristy-Eckerman representation for the kidneys. The absorbed dose to the kidneys due to Tc 99m (DTPA) / Tc 99m (Mag3), are given by 0.00466 mGy.MBq -1 / 0.00339 mGy.MBq -1 . Approximately 21.2% of the absorbed dose is due to the bladder (content) and the remaining tissue, included in biokinetics of Tc 99m (DTPA) / Tc 99m (Mag3). The absorbed dose to the kidneys due to Tc 99m (Dmsa) is 0.17881 mGy.MBq -1 . Here, 1.7% of the absorbed dose is due to the bladder, spleen, liver and the remaining tissue, included in biokinetics of Tc 99m (Dmsa). (Author)

  2. Absorbed dose determination in photon fields using the tandem method

    International Nuclear Information System (INIS)

    Marques Pachas, J.F.

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90 Sr- 90 Y, calibrated with the energy of 60 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF 2 : Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  3. Kinetics of the absorbed dose formation and the effect of chronic β-irradiation on the cytogenetic characteristics and harvest of barley plants

    International Nuclear Information System (INIS)

    Zyablitskaya, E.Ya.; Kal'chenko, V.A.; Aleksakhin, R.M.; Zuev, N.D.

    1984-01-01

    A study was made of the kinetics of the absorbed dose formation, of the cytogenetic effects and the yield of barley plants growing in the experimental fields artificially contaminated with 90 Sr- 90 Y. It was shown that 70% of the dose absorbed during the vegetation period fall on the 1st and the and stages of organogenesis. The dose absorbed was shown to increase the cytogenetic effects. As calculated per 1 Gy the cytogenetic effects had an inverse relation to the dose rate

  4. Calibration of ionization chambers and determination of the absorbed doses

    International Nuclear Information System (INIS)

    RANDRIANTSEHENO, H.F

    1996-01-01

    In order to further improve the accuracy of dosimetric measurements in radiation therapy, the IAEA and WHO supported the establishment of Secondary Standard Dosimetry Laboratory (SSDLs). These SSDLs bridge the gap between the primary measurement standards and the user of ionizing radiation by providing the latter with calibrations against the SSDLs' secondary standards and by giving technical advice and assistance. However, a properly calibrated dosimeter is just necessary first condition for the determination of the dose. It has been demonstrated that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and that this should not vary by more than a few per cent from described values. [fr

  5. Measurements of X ray absorbed doses to dental patients in two dental X ray units in Nigeria

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Oni, O.M.; Balogun, F.A.

    2002-01-01

    Measurements of absorbed doses from radiographic examinations to various anatomical sites in the head and neck of patients with an average age of 45 years using intra-oral dental radiography have been carried out. LiF (TLD-100) dosemeters were used for the measurements of the absorbed dose. The measured absorbed doses to the various anatomical sites in the two units are reported, discussed and compared with results from the literature. Quality control measurements were also performed using a Victoreen quality control test device on the X ray units. The tube voltage accuracies for the two units were found to be within acceptable limits (less than ±10%). On the other hand the exposure time accuracies for these units have large deviations (>20%). These results and those that have been reported in the literature may be an indication that high patient doses are common in most dental X ray centres and countries. As a result of this, regular compliance and performance checks of dental diagnostic X ray equipment are essential in order to ensure proper performance and to minimise unnecessary patient and operator doses. (author)

  6. Analysis of absorbed dose in cervical spine scanning by computerized tomography using simulator objects

    International Nuclear Information System (INIS)

    Lyra, Maria Henriqueta Freire

    2015-01-01

    The Computed tomography (CT) has become an important diagnostic tool after the continued development of Multidetector CT (MDCT), which allows faster acquisition of images with better quality than the previous technology. However, there is an increased radiation exposure, especially in examinations that require more than one acquisition, as dynamic exams and enhancement studies in order to discriminate low contrast soft tissue injury from normal tissue. Cervical spine MDCT examinations are used for diagnosis of soft tissue and vascular changes, fractures, dysplasia and other diseases with instability, which guide the patient treatment and rehabilitation. This study aims at checking the absorbed dose range in the thyroid and other organs during MDCT scan of cervical spine, with and without bismuth thyroid shield. In this experiment a cervical spine MDCT scan was performed on anthropomorphic phantoms, from the occipital to the first thoracic vertebra, using a 64 and a 16 – channel CT scanners. Thermoluminescent dosimeters were used to obtain the absorbed dose in thyroid, lenses, magnum foramen and breasts of the phantom. The results show that the thyroid received the highest dose, 60.0 mGy, in the female phantom, according to the incidence of the primary X-ray beam. The absorbed doses in these tests showed significant differences in the evaluated organs, p value < 0.005, except for the magnum foramen and breasts. With the bismuth thyroid shield applied on the female phantom, the doses in the thyroid and in the lenses were reduced by 27% and 52%, respectively. On the other hand, a reduction of 23.3% in the thyroid and increasing of 49.0% in the lens were measured on the male phantom. (author)

  7. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  8. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment

    International Nuclear Information System (INIS)

    Torres B, M.B.; Ayra P, F.E.; Garcia R, E.; Cornejo D, N.; Yoriyaz, H.

    2006-01-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm 2 to 250 cm 2 keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  10. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  11. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose

    International Nuclear Information System (INIS)

    Hashimoto, T.; Yokosaka, K.; Habuki, H.

    1987-01-01

    The TL spectrometry of natural quartz exposed to a gamma radiation dose of 8.8 kGy proved that the red TL, mainly from volcanically originated quartz, has a broad emission band with a peak around 620 nm, while the blue TL from plutonically originated quartz also has a broad emission band giving a peak around 470 nm. These typical red or blue intrinsic colours were also confirmed on the thermoluminescence colour images (TLCI). Exceptionally, a pegmatite quartz changed its TLCI colour from red to blue when the absorbed dose was increased. By using colour filter assemblies, all these quartz samples were shown to emit mainly blue and red TLs, which have distinctly different TL responses to the absorbed dose; the blue invariably showed a supralinearity relation between 1 and 10 kGy dose. For the purpose of dating, the use of red TL, is preferable. The red TL component is related to the impurity Eu content in quartz minerals. (author)

  12. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo; Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da; Mourao FIlho, Arnaldo Prata

    2014-01-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18 F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18 F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  13. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    Science.gov (United States)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  14. Evaluation of the influence of parameters that determine the mean glandular dose in mammography using different detectors

    International Nuclear Information System (INIS)

    Costa, K.; Nogueira, M. S.

    2015-10-01

    Full text: Mammography is a test used for early detection of breast cancer. The mean glandular dose (MGD) is dosimetric greatness accepted as indicative of carcinogenic risk induced by ionizing radiation in the breasts of women undergoing mammography exams. MGD value is estimated from the incident air kerma (k i), associated with conversion factors which depend on the half-value layer (HVL), the breast composition and thickness compressed breast. This study aims to evaluate the influence of the parameters used to determine the MGD using different measurement detectors. Measurements were performed on a Siemens Mammomat Model 300 Nova mammography equipment; this has the combinations Anode/Filter of Mo/Mo, Mo/Rh and W/Rh. Detectors used were the ionization chamber Model 10X6-6M manufactured by Radcal Co., two solid-state detectors, one Model AGMS-M manufactured by Radcal Co. and other Model Xi Mammo manufactured by UNFORS. The detectors measures were compared and the MGD value was estimated; differences between measurements and the reference values were higher in HVL and k i parameters. The results are displayed according to other published works. (Author)

  15. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  16. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  17. Estimation of organ-absorbed radiation doses during 64-detector CT coronary angiography using different acquisition techniques and heart rates: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Koshida, Kichiro; Kawashima, Hiroko (Dept. of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa Univ., Kanazawa (Japan)), email: matsuk@mhs.mp.kanazawa-u.ac.jp; Noto, Kimiya; Takata, Tadanori; Yamamoto, Tomoyuki (Dept. of Radiological Technology, Kanazawa Univ. Hospital, Kanazawa (Japan)); Shimono, Tetsunori (Dept. of Radiology, Hoshigaoka Koseinenkin Hospital, Hirakata (Japan)); Matsui, Osamu (Dept. of Radiology, Faculty of Medicine, Kanazawa Univ., Kanazawa (Japan))

    2011-07-15

    Background: Though appropriate image acquisition parameters allow an effective dose below 1 mSv for CT coronary angiography (CTCA) performed with the latest dual-source CT scanners, a single-source 64-detector CT procedure results in a significant radiation dose due to its technical limitations. Therefore, estimating the radiation doses absorbed by an organ during 64-detector CTCA is important. Purpose: To estimate the radiation doses absorbed by organs located in the chest region during 64-detector CTCA using different acquisition techniques and heart rates. Material and Methods: Absorbed doses for breast, heart, lung, red bone marrow, thymus, and skin were evaluated using an anthropomorphic phantom and radiophotoluminescence glass dosimeters (RPLDs). Electrocardiogram (ECG)-gated helical and ECG-triggered non-helical acquisitions were performed by applying a simulated heart rate of 60 beats per minute (bpm) and ECG-gated helical acquisitions using ECG modulation (ECGM) of the tube current were performed by applying simulated heart rates of 40, 60, and 90 bpm after placing RPLDs on the anatomic location of each organ. The absorbed dose for each organ was calculated by multiplying the calibrated mean dose values of RPLDs with the mass energy coefficient ratio. Results: For all acquisitions, the highest absorbed dose was observed for the heart. When the helical and non-helical acquisitions were performed by applying a simulated heart rate of 60 bpm, the absorbed doses for heart were 215.5, 202.2, and 66.8 mGy for helical, helical with ECGM, and non-helical acquisitions, respectively. When the helical acquisitions using ECGM were performed by applying simulated heart rates of 40, 60, and 90 bpm, the absorbed doses for heart were 178.6, 139.1, and 159.3 mGy, respectively. Conclusion: ECG-triggered non-helical acquisition is recommended to reduce the radiation dose. Also, controlling the patients' heart rate appropriately during ECG-gated helical acquisition with

  18. Development of fluorescent, oscillometric and photometric methods to determine absorbed dose in irradiated fruits and nuts

    International Nuclear Information System (INIS)

    Kovacs, A.; Foeldiak, G.; Hargittai, P.; Miller, S.D.

    2001-01-01

    To ensure suitable quality control at food irradiation technologies and for quarantine authorities, simple routine dosimetry methods are needed for absorbed dose control. Taking into account the requirements at quarantine locations these methods would require nondestructive analysis for repeated measurements. Different dosimetry systems with different analytical evaluation methods have been tested and/or developed for absorbed dose measurements in the dose range of 0.1-10 kGy. In order to use the well accepted ethanolmonochlorobenzene dosimeter solution and the recently developed aqueous alanine solution in small volume sealed vials, a new portable, digital, and programmable oscillometric reader was developed. To make use of the availability of the very sensitive fluorimetric evaluation method, liquid and solid inorganic and organic dosimetry systems were developed for dose control using a new routine, portable, and computer controlled fluorimeter. Absorption or transmission photometric methods were also applied for dose measurements of solid or liquid phase dosimeter systems containing radiochromic dye agents, which change colour upon irradiation. (author)

  19. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    Science.gov (United States)

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    International Nuclear Information System (INIS)

    Park, Myeong Hwan; Kim, Do Sung

    2000-01-01

    In this study, the highly sensitive CaSO 4 : Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO 4 : Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm 2 ) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO 4 : Tm-PTFE TLDs. The ranges determined were R 100 =3D14.5mm, R 50 =3D24.1mm and R p =3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO 4 : Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  1. A comparison of mean glandular dose diagnostic reference levels within the all-digital irish national breast screening programme and the Irish symptomatic breast services

    International Nuclear Information System (INIS)

    O'Leary, D.; Rainford, L.

    2013-01-01

    Data on image quality, compression and radiation dose were collected from symptomatic breast units within the Republic of Ireland. Quantitative and qualitative data were analysed using SPSS. Recommendations of mean glandular dose (MGD) diagnostic reference levels were made at various levels for film-screen and full field digital mammography units to match levels published worldwide. MGDs received by symptomatic breast patients within Ireland are higher than those received in the all-digital Irish Breast Screening service; 55-65 mm breast: 1.75 mGy (screening) vs. 2.4 mGy (symptomatic) at the 95. percentile; various reasons are proposed for the differences. MGDs achieved in the screening service may be lower because of the exacting requirements for radiographer training, characteristics of the patients and equipment quality assurance levels. More precise imaging guidelines, standards and training of symptomatic radiographers performing mammography are suggested to remediate MGDs delivered to the breasts of Irish women attending the symptomatic breast services. (authors)

  2. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  3. Absorbed dose distributions in patients with bone metastases from hormone refractory prostate cancer treated with Re-186 HEDP

    International Nuclear Information System (INIS)

    Denis Bacelar, A.M.; Dearnaley, D.P.; Divoli, A.; Chittenden, S.; Du, Y.; Flux, G.D.; O'Sullivan, J.M.

    2015-01-01

    Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution

  4. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  5. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-04-17

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  6. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    Science.gov (United States)

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  7. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism

    International Nuclear Information System (INIS)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L.; Bertelli Neto, L.

    1999-01-01

    The dose absorbed by organs of patients with hyperthyroidism treated with 131 I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of 131 I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach

  8. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  9. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  10. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder.

    Science.gov (United States)

    Vail, Eric; Zheng, Xiaoyong; Zhou, Ming; Yang, Ximing; Fallon, John T; Epstein, Jonathan I; Zhong, Minghao

    2015-10-01

    Glandular lesions of the urinary bladder include a broad spectrum of entities ranging from completely benign to primary and secondary malignancies. The accurate diagnosis of these lesions is both important and challenging. Recently, studies suggest that telomerase reverse transcriptase (TERT) promoter mutations could be a biomarker for urothelial carcinoma (UC). We hypothesized that these mutations can distinguish UC with glandular differentiation from nephrogenic adenoma, primary adenocarcinoma of the urinary bladder (PAUB), or secondary malignancies. Twenty-five cases of benign glandular lesions (including nephrogenic adenoma); 29 cases of UC with glandular differentiation; 10 cases of PAUB; and 10 cases each of metastatic colon cancer, prostatic carcinoma, and carcinoma from Mullerian origin were collected. Slides were reviewed and selected to make sure the lesion was at least 10% to 20% of all tissue. Macrodissection was performed in some of cases, and genomic DNA was extracted from the tissue. Telomerase reverse transcriptase promoter mutations were determined by standard polymerase chain reaction sequencing. Twenty-one cases (72%) of UC with glandular differentiation were positive for TERT promoter mutations. However, none of the remaining cases (total 65 cases of benign lesions, PAUB, and metastatic carcinomas) was positive for TERT promoter mutation. Telomerase reverse transcriptase promoter mutations were highly associated with UC including UC with glandular differentiation but not other glandular lesions of bladder. Therefore, in conjunction with morphologic features, Immunohistochemistry stain profile, and clinical information, TERT promoter mutations could distinguish UC with glandular differentiation from other bladder glandular lesions. In addition, lack of TERT promoter mutations in primary adenocarcinoma of bladder suggests that this entity may have different origin or carcinogenesis from those of UC. Published by Elsevier Inc.

  11. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  12. Radiation doses in mammography as planning parameters for premature breast cancer tracking programs

    International Nuclear Information System (INIS)

    Souza Ferreira, Rubemar de.

    1994-01-01

    Radiation doses are the main parameters applied to the evaluation of mammographic radiological impact. This study, for a sample of 407 women, were analyzed, through the thermoluminescent dosimetry, radiation doses in the surface of skin and glandular absorbed doses for cranio-caudal view. The results show the presence of a large dose range to the same mammographic procedure, which, analyzed enclosed with 585 facilities, suggest be necessary the standardization of the mammographic technique. From that results, with the additive model, the excess of breast cancer (radioinduced) and lifetime loss risk, for age groups between 30 and 70 years were estimated. Is demonstrated that the benefits from dedicated mammography, overcome the relationship among the epidemiological aspects of breast cancer and ionizing radiation as an harmful agent, which may show an important correlation for large exposed populations, point out the importance of the continuous risk and benefit evaluation to the new technologies introduced. (author). 86 refs., 40 figs., 14 tabs

  13. Radiation doses in mammography as planning parameters for premature breast cancer tracking programs; Doses de radiacao em mamografias como parametros de planejamento para programas de rastreamento do cancer precoce da mama

    Energy Technology Data Exchange (ETDEWEB)

    Souza Ferreira, Rubemar de

    1994-12-31

    Radiation doses are the main parameters applied to the evaluation of mammographic radiological impact. This study, for a sample of 407 women, were analyzed, through the thermoluminescent dosimetry, radiation doses in the surface of skin and glandular absorbed doses for cranio-caudal view. The results show the presence of a large dose range to the same mammographic procedure, which, analyzed enclosed with 585 facilities, suggest be necessary the standardization of the mammographic technique. From that results, with the additive model, the excess of breast cancer (radioinduced) and lifetime loss risk, for age groups between 30 and 70 years were estimated. Is demonstrated that the benefits from dedicated mammography, overcome the relationship among the epidemiological aspects of breast cancer and ionizing radiation as an harmful agent, which may show an important correlation for large exposed populations, point out the importance of the continuous risk and benefit evaluation to the new technologies introduced. (author). 86 refs., 40 figs., 14 tabs.

  14. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    International Nuclear Information System (INIS)

    Powers, W.J.

    1996-01-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1- 11 C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1- 11 C]-glucose is comparable to that reported for 2-deoxy-[2- 18 F]-glucose. 43 refs., 1 fig., 4 tabs

  15. Hematological toxicity in radioimmunotherapy is predicted both by the computed absorbed whole body dose (cGy) and by the administered dose (mCi)

    International Nuclear Information System (INIS)

    Marquez, Sheri D.; Knox, Susan J.; Trisler, Kirk D.; Goris, Michael L.

    1997-01-01

    Purpose/Objective: Radioimmunotherapy (RIT) has yielded encouraging response rates in patients with recurrent non-Hodgkin's lymphoma, but myelotoxicity remains the dose limiting factor. Dose optimization is theoretically possible, since a pretreatment biodistribution study with tracer doses allows for a fairly accurate estimate of the whole body (and by implication the bone marrow) dose in patients. It has been shown that the radiation dose as a function of the administered dose varies widely from patient to patient. The pretreatment study could therefore be used to determine the maximum tolerable dose for each individual patient. The purpose of this study was to examine whether the administered dose or the estimated whole body absorbed radiation dose were indeed predictors of bone marrow toxicity. Materials and Methods: We studied two cohorts of patients to determine if the computed integral whole body or marrow dose is predictive of myelotoxicity. The first cohort consisted of 13 patients treated with Yttrium-90 labeled anti-CD20 (2B8) monoclonal antibody. Those patients were treated in a dose escalation protocol, based on the administered dose, without correction for weight or body surface. The computed whole body dose varied from 41 to 129 cGy. The second cohort (6 patients) were treated with Iodine-131 labeled anti-CD20 (B1) antibody. In this group the administered dose was tailored to deliver an estimated 75 cGy whole body dose. The administered dose varied from 54 to 84 mCi of Iodine-131. For each patient, white blood cell count with differential, hemoglobin, hematocrit, and platelet levels were measured before and at regular intervals after RIT was administered. Using linear regression analysis, a relationship between administered dose, absorbed dose and myelotoxicity was determined for each patient cohort. Results: Marrow toxicity was measured by the absolute decrease in white blood cell (DWBC), platelet (DPLAT), and neutrophil (DN) values. In the Yttrium

  16. Structure and histochemistry of the glandular trichomes on the ...

    African Journals Online (AJOL)

    The glandular trichomes were classified into two subpopulations, namely the peltate and capitate glandular trichomes. The former was characterized by a short stalk and a large four-celled secretory head, while the latter was further subdivided into two groups; one has a short unicellular stalk and two-cellular head (type I), ...

  17. Clinical dosimetry with plastic scintillators - Almost energy independent, direct absorbed dose reading with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Fluehs, D [Department of Radiotherapy, Essen (Germany). Div. of Clinical Radiation Physics; Fluehs, D; Kolanoski, H [Dortmund Univ. (Germany). Inst. fuer Physik

    1996-08-01

    Clinical dosimetry is still far behind the goal to measure any spatial or temporal distribution of absorbed dose fast and precise without disturbing the physical situation by the dosimetry procedure. NE 102A plastic scintillators overcome this border. These tissue substituting dosemeter probes open a wide range of new clinical applications of dosimetry. This versatile new dosimetry system enables fast measurement of the absorbed dose to water in water also in regions with a steep dose gradient, close to interfaces, or in partly shielded regions. It allows direct reading dosimetry in the energy range of all clinically used external photon and electron beams, or around all branchytherapy sources. Thin detector arrays permit fast and high resolution measurements in quality assurance, such as in-vivo dosimetry or even afterloading dose monitoring. A main field of application is the dosimetric treatment planning, the individual optimization of brachytherapy applicators. Thus, plastic scintillator dosemeters cover optimally all difficult fields of clinical dosimetry. An overview about its characteristics and applications is given here. 20 refs, 1 fig.

  18. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  19. The design of a calorimetric standard of ionising radiation absorbed dose

    International Nuclear Information System (INIS)

    Huntley, R.B.

    1981-05-01

    The design of a calorimetric working standard of ionising radiation absorbed dose is discussed. A brief history of the appropriate quantities and units of measurement is given. Detailed design considerations follow a summary of the relevant literature. The methods to be used to relate results to national standards of measurement are indicated, including the need for various correction factors. A status report is given on the construction and testing program

  20. 90Y/90 Sr electron induced damages in an essential eucalyptus oil related to the absorbed dose

    International Nuclear Information System (INIS)

    Heredia Cardona, J.A.; Diaz Rizo, O.; Martinez Luzardo, F.; Quert, R.

    2007-01-01

    A good irradiation geometry was achieved in order to carry out the irradiation of an essential eucalyptus oil with a 90 Y/ 90 Sr electron source. The Monte Carlo simulation code MCNP-4C was employed to determine the absorbed doses in this particular experimental configuration. It also helped us to understand which electrons (from an energetic point of view) were responsible for the damages. In order to identify the induced damages, the irradiated samples were studied by mass spectrometry. The obtained results were related to the absorbed doses determined by the computational simulation

  1. Measurement of the radiation dose and assessment of the risk in mammography screening for early detection of cancer of the breast, in Israel

    International Nuclear Information System (INIS)

    Broisman, A.; Schlesinger, T.; Alfassi, Z. B.

    2011-01-01

    The mean glandular doses to samples of women attending for mammographic screening are measured routinely at screening centres in Israel. As at present, no detailed and systematic data have been collected regarding the average glandular dose in mammography screening procedures carried out in Israel for the last 20 y. Especially data are lacking related to the glandular dose (GD) involved in mammography with the new digital mammography systems. In this work, partial results of the measurements are presented to asses the radiation dose to the breast and to the glandular tissue within the Israeli national mammography programme updated to year 2009. (authors)

  2. Three-dimensional absorbed dose determinations by N.M.R. analysis of phantom-dosemeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Birattari, C.; Fumagalli, M.L.; Vai, A.; Monti, D.; Salvadori, P.; Facchielli, L.; Sichirollo, A.E.

    1996-01-01

    Magnetic resonance imaging of a tissue-equivalent phantom is a promising technique for three-dimensional determination of absorbed dose from ionizing radiation. A reliable method of determining the spatial distribution of absorbed dose is indispensable for the planning of treatment in the presently developed radiotherapy techniques aimed at obtaining high energy selectively delivered to cancerous tissues, with low dose delivered to the surrounding healthy tissue. Aqueous gels infused with the Fricke dosemeter (i.e. with a ferrous sulphate solution), as proposed in 1984 by Gore et al., have shown interesting characteristics and, in spite of some drawbacks that cause a few limitations to their utilisation, they have shown the feasibility of three-dimensional dose determinations by nuclear magnetic resonance (NMR) imaging. Fricke-infused agarose gels with various compositions have been analysed, considering the requirements of the new radiotherapy techniques, in particular Boron Neutron Capture Therapy (B.N.C.T.) and proton therapy. Special attention was paid to obtain good tissue equivalence for every radiation type of interest. In particular, the tissue equivalence for thermal neutrons, which is a not simple problem, has also been satisfactorily attained. The responses of gel-dosemeters having the various chosen compositions have been analysed, by mean of NMR instrumentation. Spectrophotometric measurements have also been performed, to verify the consistence of the results. (author)

  3. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons

    International Nuclear Information System (INIS)

    Hirayama, H.

    1994-01-01

    The general-purpose electron gamma shower Monte Carlo code EGS4 has been used to calculate absorbed doses at 0.07, 3.0 and 10.0 mm depths per unit fluence for broad parallel beams of monoenergetic electrons impinging at an incident angle α on a slab phantom (30 cm x 30 cm x 15 cm) of polymethyl methacrylate (PMMA), water and ICRU 4-element tissue required by EURADOS WG4 for a revision of ICRP Publication 51. Absorbed doses at 7, 300 and 1000 mg.cm -2 were also calculated for PMMA. The electron kinetic energy range covered is 50 keV to 10 MeV. The incident angle (α) varies from 0 o to 75 o with an increment of 15 o . The calculated results are presented as tables. The depth against absorbed dose curves and dependence of the absorbed dose at each depth on the incident electron energy, incident angle and phantom material are also presented and discussed. (author)

  4. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  5. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  6. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams

    International Nuclear Information System (INIS)

    Paiva, F.G.

    2017-01-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification

  7. Functional results of radioiodine therapy with a 300-GY absorbed dose in Graves' disease

    International Nuclear Information System (INIS)

    Willemsen, U.F.; Knesewitsch, P.; Kreisig, T.; Pickardt, C.R.; Kirsch, C.M.

    1993-01-01

    The aim of this study was to assess the results of high-dose radioiodine therapy given to 43 patients with recurrent hyperthyroidism due to Graves' disease between 1986 and 1992. We chose an intrathyroidal absorbed dose of 300 Gy and determined the applied activity individually, which ranged from 240 to 3120 MBq with a median of 752 MBq. Hperthyroidism was eliminated in 86% of cases after 3 months and in 100% after 12 months. No patient required a second radioiodine treatment. The incidnece of hyperthyroidism was 63% after 3 months and 93% after 18 months. Neither the pretherapeutic thyroid-stimulating immunoglobulin level nor the degree of co-existing endocrine ophthalmopathy was correlated with the time at which hypothyroidism developed. Patients with previous radioiodine therapy developed hypothyroidism earlier than patients with previous thyroid surgery. The results show that ablative radioiodine therapy with a 300-Gy absorbed dose is a very effective treatment of hyperthyroidism in Graves' disease, but it should be restricted to patients with recurrent hyperthyroidism combined with severe co-existing disorders or episodes of unfavourable reactions to antithyroid drugs. (orig.)

  8. Glandular Trichomes and Essential Oil of Thymus quinquecostatus

    Directory of Open Access Journals (Sweden)

    Ping Jia

    2013-01-01

    Full Text Available The distribution and types of glandular trichomes and essential oil chemistry of Thymus quinquecostatus were studied. The glandular trichomes are distributed on the surface of stem, leaf, rachis, calyx and corolla, except petiole, pistil and stamen. Three morphologically distinct types of glandular trichomes are described. Peltate trichomes, consisting of a basal cell, a stalk cell and a 12-celled head, are distributed on the stem, leaf, corolla and outer side of calyx. Capitate trichomes, consisting of a unicellular base, a 1–2-celled stalk and a unicellular head, are distributed more diffusely than peltate ones, existing on stem, leaf, rachis and calyx. Digitiform trichomes are just distributed on the outer side of corolla, consisting of 1 basal cell, 3 stalk cells and 1 head cell. All three types of glandular trichomes can secrete essential oil, and in small capitate trichomes of rachis, all peltate trichomes and digitiform trichomes, essential oil is stored in a large subcuticular space, released by cuticle rupture, whereas, in other capitate trichomes, essential oil crosses the thin cuticle. The essential oil of T. quinquecostatus is yellow, and its content is highest in the growth period. 68 constituents were identified in the essential oils. The main constituent is linalool.

  9. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication

    International Nuclear Information System (INIS)

    Soundy, R.G.; Simpson, J.D.; Ross, H.M.; Merrick, M.V.

    1982-01-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[ 75 Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/μCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/μCi. The activity likely to be used in routine clinical practice is 10 μCi. Where a whole-body counter is used, an activity of 1 μCi has proved adequate. Even at an administered activity of 25 μCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract

  10. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication

    International Nuclear Information System (INIS)

    Soundy, R.G.; Simpson, J.D.; Ross, H.M.; Merrick, M.V.

    1982-01-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[75Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/microCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/microCi. The activity likely to be used in routine clinical practice is 10 microCi. Where a whole-body counter is used, an activity of 1 microCi has proved adequate. Even at an administered activity of 25 microCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract

  11. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    Science.gov (United States)

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  12. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  13. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  14. Absorbed dose/melting heat dependence studies for the PVDF homopolymer

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Gual, Maritza R.; Pereira, Claubia

    2013-01-01

    Differential Scanning Calorimetry (DSC) of gamma irradiated Poly (vinylidene Fluoride) [PVDF] homopolymer has been studied in connection with the use of material in industrial high gamma dose measurement. Interaction between gamma radiation and PVDF leads to the radio-induction of C=O and conjugated C=C bonds, as it can be inferred from previous infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometric data. These induced defects result in a decrease of the polymer crystallinity that can be followed with DSC scans, by measuring the latent heat during the melting transition (Hmelt). After a systematic investigation, we have found that Hmelt is unambiguously related to the delivered doses ranging from 100 to 2,000 kGy of gamma radiation. One the other hand, further fading investigation analysis has proved that the Hmelt x Dose relationship can be fitted by an exponential function that remains constant for several months. Both the very large range of dose measurement and also the possibility of evaluating high gamma doses until five months after irradiation make PVDF homopolymers very good candidates to be investigated as commercial high gamma dose dosimeters. The high gamma dose irradiation facilities in Brazil used to develop high dose dosimeters are all devoted to industrial and medical purposes. Therefore, in view of the uncertainties involved in the dose measurements related to the electronic equilibrium correction factors and backscattering in the isodose curves used at the irradiation setup, a validation process is required to correctly evaluate the delivered absorbed doses. The sample irradiations were performed with a Co-60 source, at 12kGy/h and 2,592 kGy/h, in the high gamma dose facilities at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The comparison of the curve of the Hmelt vs Dose is presented in this paper. (author)

  15. Absorbed dose estimation of gonads resulting from fault work of staff during injection of radiopharmaceuticals to the patients

    International Nuclear Information System (INIS)

    Maleki, M.; Karimian, A.

    2012-01-01

    Radiopharmaceuticals are used in nuclear medicine in a variety of diagnostic and therapeutic procedures and generally delivered to the patient via intravenous injection. 201 Tl and 99m Tc are the two most used radiopharmaceuticals in nuclear medicine. The maximum activity injected to the patient in nuclear medicine for 201 Tl and 99m Tc is 5 and 20-25 mCi respectively. In this research by using Monte Carlo method and MCNPX code the absorbed dose to Gonads due to drop of radiopharmaceutical on foot thigh during injection to the patient has been calculated. The activity of 201 Tl and 99m Tc has been considered 1 and 5mCi respectively. The amount of absorbed dose in gonads for 99m Tc for male and female during 8 hours of work has been measured 0.37 and 0.055 μSv respectively. Also the amount of absorbed dose for 201 Tl during working hours at first day, second day and third day after work fault for male has been measured 0.387, 0.308 and 0.246 μSv and for female 0.06, 0.048 and 0.038 μSv respectively. The total dose in these three working days for male and female has been 0.941 and 0.146 μSv respectively. Since absorbed dose of gonads was far enough from the limits of ICRP, so it can be concluded that if a fault work occurs and even staff does not be aware there is no need to treat him. (authors)

  16. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  17. Absorbed dose determination in water in medium energy x-ray beam

    International Nuclear Information System (INIS)

    Nisevic, G.; Spasic-Jokic, V.

    1998-01-01

    Absorbed dose determination in water phantom in medium energy X-ray beam, according to IAEA recommendations is given. This method is applied on Radiotherapy department of Military Academy Hospital in Belgrade. Reference points of measurements are on depth of 5 cm and 2 cm as it recommended in ref. Experimental results are shown in aim to introduce new dosimetric concept based on air kerma calibration factor recommended for application in our radiotherapy centers (author)

  18. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Studies of the sensitivity dependence of float zone silicon diodes on gamma absorbed dose

    International Nuclear Information System (INIS)

    Pascoalino, K.C.S.; Santos, T.C. dos; Barbosa, R.F.; Camargo, F. de; Goncalves, J.A.C.; Bueno, C.C.

    2011-01-01

    Full text: Several advantages of silicon diodes which include small size, low cost, high sensitivity and wide availability, make them suitable for dosimetry and for radiation field mapping. However, the small radiation tolerance of ordinary silicon devices has imposed constraints on their application in intense radiation fields such as found in industrial radiation processes. This scenario has been changed with the development of radiation hard silicon devices to be used as track detectors in high-energy physics experiments. Particularly, in this work it is presented the dosimetric results obtained with a batch of nine junction silicon diodes developed, in the framework of CERN RD50 Collaboration, as good candidates for improved radiation hardness. These diodes were produced with 300 micrometer n-type silicon substrate grown by standard float zone technique and processed by the Microelectronics Center of Helsinki University of Technology. The samples irradiation was performed using a Co-60 irradiator (Gammacell 220) which delivers a dose-rate of 2 kGy/h. During the irradiation, the unbiased diodes were connected through low-noise coaxial cables to the input of a KEITHLEY 617 electrometer, in order to monitor the devices photocurrent as a function of the exposure time. To study the response uniformity of the batch of nine diodes as well the sensitivity dependence on the absorbed dose, they were irradiated with different doses from 5 kGy up to 50 kGy. The sensitivity response of each device was investigated through the on-line measurements of the current signals as a function of the exposure time. For doses up to 5 kGy, all diodes exhibited a current decay of almost six percent in comparison with the value registered at the start-time of the irradiation. However, this decrease in the current sensitivity is much smaller than those observed with ordinary diodes for the same absorbed dose. The dose-response curves of the devices were also investigated through the plot

  20. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  1. Higher glandular trichome density in tomato leaflets and repellence to spider mites Alta densidade de tricomas glandulares em tomateiro e aumento da repelência a ácaros rajados

    Directory of Open Access Journals (Sweden)

    Wilson Roberto Maluf

    2007-09-01

    Full Text Available The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII, and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence to spider mites.O objetivo deste trabalho foi avaliar a eficiência da seleção para maior densidade de tricomas glandulares na resistência (repelência ao ácaro Tetranychus urticae, em populações de tomate derivadas do cruzamento interespecífico Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Foram avaliados 19 genótipos quanto à densidade de tricomas, que incluíram 12 derivados de populações avançadas de retrocruzamentos, obtidos a partir do cruzamento original L. esculentum x L. hirsutum var. glabratum PI 134417. Nas faces abaxial e adaxial dos folíolos, realizaram-se as contagens e os tricomas foram classificados em glandulares tipo IV e VI, outros glandulares (tipo I e VII e não glandulares. A repelência aos ácaros foi medida pela distância média, percorrida pelo

  2. Quality Control in Mammography: Image Quality and Patient Doses

    International Nuclear Information System (INIS)

    Ciraj Bjelac, O.; Arandjic, D.; Boris Loncar, B.; Kosutic, D.

    2008-01-01

    Mammography is method of choice for early detection of breast cancer. The purpose of this paper is preliminary evaluation the mammography practice in Serbia, in terms of both quality control indicators, i.e. image quality and patient doses. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Mean glandular doses ranged from 0.12 to 2.8 mGy, while reference optical density ranged from 1.2 to 2.8. Correlation between image contrast and mean glandular doses was demonstrated. Systematic implementation of quality control protocol should provide satisfactory performance of mammography units and maintain satisfactory image quality and keep patient doses as low as reasonably practicable. (author)

  3. The absorbed dose in air of photons generated from secondary cosmic rays at sea level at Nagoya, Japan

    International Nuclear Information System (INIS)

    Akhmad, Y.R.

    1995-01-01

    Investigations have been carried out to determine the absorbed dose in air of photons generated from secondary cosmic radiation at sea level at Nagoya, Japan. To isolate the contribution from cosmic photons, the pulse-height distributions due to μ particles and electrons were eliminated from the observed pulse-height distribution of a measurement with a 3'' diam. spherical NaI(Tl) detector. The pulse height due to μ particles and electrons was inferred from the coincidence technique using two types of scintillation detectors with different sensitivities to photons. To obtain the photon fluence rate for further dose calculation, the pulse-height distribution of cosmic photons was unfolded by the iterative method. The mean and its standard deviation of the absorbed dose in air and fluence rate due to cosmic photons calculated from a one year observation are 2.86±0.05 nGy.h -1 and 0.1342±0.0015 photons.cm -2 .s -1 , respectively. The absorbed dose in air from cosmic photons was 0.5% lower during autumn to winter and 0.6% higher during spring to summer than the mean taken over the year. (author)

  4. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    Science.gov (United States)

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout.

  5. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several northern Marshall Islands

    International Nuclear Information System (INIS)

    Musolino, S.V.; Hull, A.P.; Greenhouse, N.A.

    1997-01-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. Current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137 Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. External exposures and 137 Cs Soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. 30 refs., 2 figs., 10 tabs

  6. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    International Nuclear Information System (INIS)

    Helmrot, E.; Alm Carlsson, G.

    1996-01-01

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)

  7. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...... of the method was studied using the newly developed radiochromic dye films as well as already existing ones. (C) 2000 Elsevier Science Ltd. All rights reserved....

  8. Absorbed dose to the human adrenals from iodomethylnorcholesterol (I-131) NP-59: concise communication

    International Nuclear Information System (INIS)

    Carey, J.E.; Thrall, J.H.; Freitas, J.E.; Beierwaltes, W.H.

    1979-01-01

    During the past 2 yrs, adrenal uptake percentage values were measured in more than 40 patients, using an external counting technique. They suggest that the absorbed dose to the adrenals is significantly less than the 150 rads/mCi previously estimated using concentration values from animal adrenals. The measured combined uptake percentage for both adrenals ranged from 0.15% to 0.52% in 21 patients without evidence of adrenal disease, with a mean of 0.33% +- 0.1%; also from 0.22% to 1.5% in 22 patients with Cushing's disease, with a mean uptake of 0.78% +- 0.35%. The absorbed dose to the adrenals was estimated to be 25 rads/mCi for patients without evidence of adrenal disease, and 57 rads/mCi for patients with Cushing's disease. Both values are calculated for the respective mean uptake percentages by using the MIRD formalism

  9. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  10. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  11. RBE/absorbed dose relationship of d(50)-Be neutrons determined for early intestinal tolerance in mice

    International Nuclear Information System (INIS)

    Gueulette, J.; Wambersie, A.

    1978-01-01

    RBE/absorbed dose relationship of d(50)-Be neutrons (ref.: 60 Co) was determined using intestinal tolerance in mice (LD50) after single and fractionated irradiation. RBE is 1.8 for a single fraction (about 1000 rad 60 Co dose); it increases when decreasing dose and reaches the plateau value of 2.8 for a 60 Co dose of about 200 rad. This RBE value is used for the clinical applications with the cyclotron 'Cyclone' at Louvain-la-Neuve [fr

  12. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co 60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  13. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  14. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  15. Radiation doses from mammography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Young, B.F.; Young, J.G.; Tingey, D.R.C.

    1991-05-01

    During 1989-90 the Australian Radiation Laboratory conducted a postal survey of at least 90% of the mammographic facilities in Australia. The primary aim of the survey was to measure the mean glandular dose (MGD) and the X-ray beam half value layer (HVL) for a typical mammograph. The MGD and HVL were measured with a specially designed tissue equivalent monitor. In all, 258 mammographic centres were surveyed. It was found that for centres using film-screen imaging, the average mean glandular dose was 1.83 mGy for centres using grids and 0.84 mGy for centres not using grids. In addition to the MGD and HVL, comprehensive statistical information was collected and data is presented on the types of equipment and techniques used, the number and age of patients and demographic distribution of centres. Results indicate that the use of a grid is the major factor determining dose and several other factors appear to have minor effects. In view of the distribution of MGD, it is recommended that the mean glandular dose per image, for a 5 cm compressed breast thickness, should not exceed 2.0 mGy when a grid is used and 1.0 mGy without a grid. 63 refs., 11 tabs., 15 figs

  16. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  17. Evaluation of absorbed doses at the interface solid surfaces - tritiated water solutions

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    Studies concerning the isotopic exchange H/D/T in the system elemental hydrogen -- water and in the presence of platinum metals on hydrophobic supports as catalysts were carried out at ICSI (Institute of Cryogenics and Isotope Separations) - Rm. Valcea, Romania. Due to the very low energy of β-radiation emitted by tritium, the direct measurements of dose absorbed by the isotopic exchange catalyst using classical methods is practically impossible. For this purpose an evaluation model was developed. The volume of tritiated water which can irradiate the catalyst was represented by a hemisphere with the radius equal to the maximal rate of β-radiation emitted by tritium. The catalyst surface is represented by a circle with a 0.2 μm radius and the same centre as the circle of the hemisphere secant plane. Flow rate of absorbed dose is calculated with the relation: d (1/100)(Φ·E m /m), where d = dose flow rate, in rad/s, Φ total radiation flux interacting with the catalyst surface, expressed in erg and m = catalyst weight, in grams. Total flux of available radiation, Φ, was determined as a function of three parameters: a) total flow of tritium β-radiation emitted in the hemisphere of tritiated water, dependent on the volume and radioactive concentration; b) emission coefficient in the direction of the catalyst surface; c) attenuation coefficient (due to self-absorption) of the tritium β-radiation in the tritiated water body. (authors)

  18. Absorbed dose calculation from beta and gamma rays of 131I in ellipsoidal thyroid and other organs of neck with MCNPX code

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2012-09-01

    Full Text Available Background: The 131I radioisotope is used for diagnosis and treatment of hyperthyroidism and thyroid cancer. In optimized Iodine therapy, a specific dose must be reached to the thyroid gland with minimum radiation to the cervical spine, cervical vertebrae, neck tissue, subcutaneous fat and skin. Dose measurement inside the alive organ is difficult therefore the aim of this research was dose calculation in the organs by MCNPX code. Materials and Methods: First of all, the input file for MCNPX code has been prepared to calculate F6 and F8 tallies for ellipsoidal thyroid lobes with long axes is tow times of short axes which the 131I is distributed uniformly inside the lobes. Then the code has been run for F6 and F8 tallies for variation of lobe volume from 1 to 25 milliliters. From the output file of tally F6, the gamma absorbed dose in ellipsoidal thyroid, spinal neck, neck bone, neck tissue, subcutaneous fat layer and skin for the volume lobe variation from 1 ml to 25 ml have been derived and the graphs are drew. As well as, form the output of F8 tally the absorbed energy of beta in thyroid and soft tissue of neck is obtained and listed in the table and then absorbed dose of bate has been calculated. Results: The results of this research show that for constant activity in thyroid, the absorbed dose of gamma decreases about 88.3% in thyroid, 6.9% at soft tissue, 19.3% in adipose layer and 17.4% in skin, but it increases 32.1% in spinal of neck and 32.3% in neck bone when the lobe volume varied from 1 to 25 milliliters. For the same situation, the beta absorbed dose decreases 95.9% in thyroid and 64.2% in soft tissue. Conclusion: For the constant activity in thyroid by increasing the thyroid volume, absorbed dose of gamma in thyroid and soft tissue of neck, adipose layer under the skin and skin of neck decreased, but it increased at spinal of neck and neck bone. Also, by increasing of the lobe volume in constant activity, the beta absorbed dose

  19. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  20. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  1. An approach to calculating absorbed doses to organs of high radiation sensitivity in diagnostic radioisotope examinations in vivo

    International Nuclear Information System (INIS)

    Staniszewska, M.A.; Jankowski, J.

    1984-01-01

    A method is presented of dose calculations for internal exposures of organ-sources and organ-targets. Variations of absorbed doses depending on sex and age of the patients investigated with the use of radionuclides are discussed. Definitions of the effective and collective dose equivalents are also given. 8 refs., 1 tab. (author)

  2. Caracterização e ontogenia dos tricomas glandulares de Ocimum selloi Benth. - Lamiaceae Characterization and ontogeny of the glandular trichomes of Ocimum selloi Benth. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Letícia de Almeida Gonçalves

    2010-12-01

    Full Text Available Ocimum selloi Benth. (Lamiaceae é uma espécie nativa da América do Sul e na medicina popular tem sido usada devido suas propriedades analgésica, anti-inflamatória e antiespasmódica. O objetivo do presente trabalho foi identificar os tipos de tricomas glandulares que ocorrem nos órgãos vegetativos e reprodutivos de O. selloi e determinar a ontogenia desses tricomas. Ramos laterais em início de formação, folhas totalmente expandidas, flores em diferentes estádios de diferenciação, amostras de caule e do eixo das inflorescências foram analisados em microscopias de luz e eletrônica de varredura. Tricomas glandulares do tipo peltado e capitado subséssil foram observados no caule, nas folhas, no eixo da inflorescência e na superfície adaxial das sépalas. Nas sépalas foi encontrado, além dos tricomas secretores peltados e capitados subsésseis, o tricoma glandular capitado pedunculado. A ontogenia inicia-se com a expansão de uma célula protodérmica que, de acordo com a seqüência de divisões periclinais e anticlinais (ora simétricas, ora assimétricas, dá origem aos tricomas. A diferenciação dos tricomas glandulares peltados e capitados não é sincrônica e ocorre muito cedo no desenvolvimento da folha, do caule e do eixo floral.Ocimum selloi Benth. (Lamiaceae is native to South America and in traditional medicine has been used due to its analgesic, anti-inflammatory, and antispasmodic properties. The aim of this study was to identify the types of glandular trichomes that occur on the vegetative and reproductive organs of O. selloi and to determine trichome ontogeny. Lateral branches at the initial formation phase, fully opened leaves, flowers at different differentiation stages, and stem and inflorescence axes were analyzed under light and scanning electron microscopy. Glandular trichomes of the peltate and subsessile capitate types were observed on the stem, leaves, inflorescence axis and the adaxial surface of the

  3. Functional results of radioiodine therapy with a 300-GY absorbed dose in Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Willemsen, U.F. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Knesewitsch, P. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Kreisig, T. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Pickardt, C.R. (Dept. of Internal Medicine, Muenchen Univ. (Germany)); Kirsch, C.M. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany))

    1993-11-01

    The aim of this study was to assess the results of high-dose radioiodine therapy given to 43 patients with recurrent hyperthyroidism due to Graves' disease between 1986 and 1992. We chose an intrathyroidal absorbed dose of 300 Gy and determined the applied activity individually, which ranged from 240 to 3120 MBq with a median of 752 MBq. Hperthyroidism was eliminated in 86% of cases after 3 months and in 100% after 12 months. No patient required a second radioiodine treatment. The incidnece of hyperthyroidism was 63% after 3 months and 93% after 18 months. Neither the pretherapeutic thyroid-stimulating immunoglobulin level nor the degree of co-existing endocrine ophthalmopathy was correlated with the time at which hypothyroidism developed. Patients with previous radioiodine therapy developed hypothyroidism earlier than patients with previous thyroid surgery. The results show that ablative radioiodine therapy with a 300-Gy absorbed dose is a very effective treatment of hyperthyroidism in Graves' disease, but it should be restricted to patients with recurrent hyperthyroidism combined with severe co-existing disorders or episodes of unfavourable reactions to antithyroid drugs. (orig.)

  4. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.; Ninkovic, M.

    1988-11-01

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  5. Estimation of absorbed dose in cell nuclei due to DNA-bound /sup 3/H

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M; Ishida, M R; Streffer, C; Molls, M

    1985-04-01

    The average absorbed dose due to DNA-bound /sup 3/H in a cell nucleus was estimated by a Monte Carlo simulation for a model nucleus which was assumed to be spheroidal. The volume of the cell nucleus was the major dose-determining factor for cell nuclei which have the same DNA content and the same specific activity of DNA. This result was applied to estimating the accumulated dose in the cell nuclei of organs of young mice born from mother mice which ingested /sup 3/H-thymidine with drinking water during pregnancy. The values of dose-modifying factors for the accumulated dose due to DNA-bound /sup 3/H compared to the dose due to an assumed homogenous distribution of /sup 3/H in organ were found to be between about 2 and 6 for the various organs.

  6. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics

    International Nuclear Information System (INIS)

    Robertson, J.S.; Price, R.R.; Budinger, T.F.; Fairbanks, V.F.; Pollycove, M.

    1983-01-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease

  7. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  8. Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry

    International Nuclear Information System (INIS)

    Cintra, Felipe B. de; Yoriyaz, Helio

    2009-01-01

    The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10 -9 g up to 10 -3 g immersed in an infinite water medium (density of 1g/cm 3 ) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm 3 . The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10 -4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)

  9. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d- glucose using whole-body positron emission tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Deloar, H.M.; Fujiwara, Takehiko; Shidahara, Miho; Nakamura, Takashi; Watabe, Hiroshi; Narita, Yuichiro; Itoh, Masatoshi; Miyake, Masayasu; Watanuki, Shoichi

    1998-01-01

    The purpose of this study was to measure the cumulated activity and absorbed dose in organs after i.v. administration of 18 F-FDG using whole-body PET and MRI. Whole-body dynamic emission scans for 18 F-FDG were performed in six normal volunteers after transmission scans. The total activity of a source organ was obtained from the activity concentration of the organ measured by whole-body PET and the volume of that organ measured by whole-body T1-weighted MRI. The cumulated activity of each source organ was calculated from the time-activity curve. Absorbed doses to the individuals were estimated by the MIRD (medical internal radiation dosimetry) method. Another calculation of cumulated activities and absorbed doses was performed using the organ volumes from the MIRD phantom and the ''Japanese reference man'' to investigate the discrepancy of actual individual results against the phantom results. The cumulated activities of 18 source organs were calculated, and absorbed doses of 27 target organs estimated. Among the target organs, bladder wall, brain and kidney received the highest doses for the above three sets of organ volumes. Using measured individual organ volumes, the average absorbed doses for those organs were found to be 3.1 x 10 -1 , 3.7 x 10 -2 and 2.8 x 10 -2 mGy/MBq, respectively. The mean effective doses in this study for individuals of average body weight (64.5 kg) and the MIRD phantom of 70 kg were the same, i.e. 2.9 x 10 -2 mSv/MBq, while for the Japanese reference man of 60 kg the effective dose was 2.1 x 10 -2 mSv/MBq. The results for measured organ volumes derived from MRI were comparable to those obtained for organ volumes from the MIRD phantom. Although this study considered 18 F-FDG, combined use of whole-body PET and MRI might be quite effective for improving the accuracy of estimations of the cumulated activity and absorbed dose of positron-labelled radiopharmaceuticals.(orig./MG) (orig.)

  10. Higher glandular trichome density in tomato leaflets and repellence to spider mites

    International Nuclear Information System (INIS)

    Maluf, Wilson Roberto; Inoue, Irene Fumi; Ferreira, Raphael de Paula Duarte; Gomes, Luiz Antonio Augusto; Castro, Evaristo Mauro de; Cardoso, Maria das Gracas

    2007-01-01

    The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII), and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI) decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence) to spider mites. (author)

  11. Evaluation of the dose absorbed by the thyroid of patients undergoing treatment of Graves disease;Avaliacao da dose absorvida pela tireoide de pacientes submetidos ao tratamento da doenca de Graves

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Tiago L.; Filho, Joao A. [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Fisica; Silva, Jose M.F. da [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2009-07-01

    The radioiodine is used as complementary treatment of thyroid cancer and as first choice for the treatment of Graves' disease, being efficient, safe and easy administration, but without there is a protocol defined. This work was evaluated the thyroid absorbed dose from its mass and maximum uptake of I-131 obtained in the examination of diagnostic radiology of radiotherapeutic patients undergoing treatment of Graves' disease. Based on the results, it is observed that the thyroid absorbed dose, as much in terms of mass as the maximum uptake of I-131 for different values of administered activity, varies significantly. The analysis of these parameters is an excellent indicator for the pre-define quantity of radionuclide that is administered to the patient in terms of the radiation dose required to achieve an efficient therapeutic treatment. Moreover, it was observed that the thyroid absorbed dose depends on the degree of pathology of the disease, its mass and of the maximum uptake of I-131. (author)

  12. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    International Nuclear Information System (INIS)

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O.

    1989-01-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage

  13. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    International Nuclear Information System (INIS)

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung

    2001-01-01

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  14. Absorbed decay-photon dose analysis of the IVVS/GDC plug in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D.; Serikov, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. for Neutron Physics and Reactor Technology (INR)

    2011-07-01

    The In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit share a common port at the equatorial level of the ITER tokamak. The plug consists mainly of the IWS probe, capable of performing the laser-based in-vessel viewing and metrology, the GDC electrode, capable of producing glow discharge in the vacuum vessel during intermediate maintenance and wall conditioning periods, and their respective deployment systems to move the electrodes. The plug extends over a length of about 11 m from the GDC tip to the rear end at the bioshield level. At the present stage of the conceptual design a neutronics analysis has been requested to provide valuable input to the design strategy. To this end, a first assessment has been performed focusing on operational loads on the GDC electrode head in the so-called shielding position and on absorbed decay-photon dose rate levels in the structural components of the entire system. In this contribution we are reporting on the absorbed dose rates after the ITER life time irradiation at several cooling times. Gamma sources from activated materials of the IVVS/GDC and surrounding structures, like blanket, vacuum vessel, toroidal and poloidal field coils, have been taken into account. (orig.)

  15. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality

    Science.gov (United States)

    Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne

    2018-02-01

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  16. Radiation absorbed dose estimate for Rb-82 using in vivo measurements in man

    International Nuclear Information System (INIS)

    Ryan, J.; Harper, P.; Stark, V.; Peterson, E.; Lathrop, K.

    1984-01-01

    Radiation absorbed doses from intravenous Rb-82 (t 1/2 = 75 sec) were calculated by conjugate counting in 2 healthy adult men aged 27 and 23. Following an i.v. injection of a carefully calibrated amount of Rb-82, an organ of interest was imaged with a gamma camera equipped with a rotating tungsten collimator and data were collected in 10 second frames. Counts in the region of interest were corrected for adjacent background. Imaging was repeated from the opposite side of the body after a second injection. A calibrated reference source of Ge-68 placed on the body over the organ was similarly imaged in the absence of the rubidium activity. The integrated time activity curve in uCi-hours was obtained by comparing the observed kidney net conjugate counts with the reference source conjugate counts which represented a known number of uCi-hours. The organ self doses to the kidneys, liver, lungs, heart, and testes were determined by this technique which eliminated the effects of attenuation. Total absorbed doses to organs from all sources were calculated using the MIRD formulation and the averages of the 2 determinations (mrads/mCi) are as follows: heart (walls) 6.6; kidneys 31.3; liver 4.4; lungs 7.3; testes (1 subject only) 2.4; red marrow 1.7; and whole body 1.9. The highest dose is to the kidneys, but in an older subject (68 yr old man) the measured self dose to the left kidney was 16 mrads/mCi. These data are consistent with the decline in renal blood flow which occurs with increasing age and decreases renal exposure in older patients at increased risk of acute coronary disease who undergo myocardial perfusion imaging with Rb-82

  17. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Freitas, Marcelo Baptista de

    2000-01-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 μGy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and LAT

  18. A calibration approach to glandular tissue composition estimation in digital mammography

    International Nuclear Information System (INIS)

    Kaufhold, J.; Thomas, J.A.; Eberhard, J.W.; Galbo, C.E.; Trotter, D.E. Gonzalez

    2002-01-01

    The healthy breast is almost entirely composed of a mixture of fatty, epithelial, and stromal tissues which can be grouped into two distinctly attenuating tissue types: fatty and glandular. Further, the amount of glandular tissue is linked to breast cancer risk, so an objective quantitative analysis of glandular tissue can aid in risk estimation. Highnam and Brady have measured glandular tissue composition objectively. However, they argue that their work should only be used for 'relative' tissue measurements unless a careful calibration has been performed. In this work, we perform such a 'careful calibration' on a digital mammography system and use it to estimate breast tissue composition of patient breasts. We imaged 0%, 50%, and 100% glandular-equivalent phantoms of varying thicknesses for a number of clinically relevant x-ray techniques on a digital mammography system. From these images, we extracted mean signal and noise levels and computed calibration curves that can be used for quantitative tissue composition estimation. In this way, we calculate the percent glandular composition of a patient breast on a pixelwise basis. This tissue composition estimation method was applied to 23 digital mammograms. We estimated the quantitative impact of different error sources on the estimates of tissue composition. These error sources include compressed breast height estimation error, residual scattered radiation, quantum noise, and beam hardening. Errors in the compressed breast height estimate contribute the most error in tissue composition--on the order of ±7% for a 4 cm compressed breast height. The spatially varying scattered radiation will contribute quantitatively less error overall, but may be significant in regions near the skinline. It is calculated that for a 4 cm compressed breast height, a residual scatter signal error is mitigated by approximately sixfold in the composition estimate. The error in composition due to the quantum noise, which is the limiting

  19. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of Ho-166 Microspheres in Liver Radioembolization

    NARCIS (Netherlands)

    Seevinck, Peter R.; van de Maat, Gerrit H.; de Wit, Tim C.; Vente, Maarten A. D.; Nijsen, Johannes F. W.; Bakker, Chris J. G.

    2012-01-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional Ho-166 activity distribution to estimate radiation-absorbed dose distributions in Ho-166-loaded poly (L-lactic acid) microsphere (Ho-166-PLLA-MS) liver radioembolization.

  20. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H.M.B. [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  1. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    International Nuclear Information System (INIS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-01-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed. - Highlights: • Optimization of the image quality in digital breast tomosynthesis. • Calculation of photon energies that maximize the signal difference to noise ratio. • Projections images and dose calculations through the Monte Carlo (MC) method. • Tumor masses and microcalcifications included in the MC model. • A dose saving of about 30% can be reached if optimal photon energies are used

  2. Intensity of the absorbing dose of the gamma rays in the air of Krusevac during and after nuclear accident in Chernobil

    International Nuclear Information System (INIS)

    Fortuna, D.

    1997-01-01

    In this paper are compared overage daily values of the intensity of the absorbing doses of the gamma rays in the air of Krusevac, during and after nuclear accident in Cernobil. Average daily values of intensity of the absorbing doses of gamma rays in the air of Krusevac, immediately after nuclear accident in Cernobil were, three to seven time higher than of the average daily values of the natural rays. (author)

  3. Determination of the Absorbed Doses in Shanks of Interventional Radiologists

    International Nuclear Information System (INIS)

    Golnik, N.; Szczepanski, K.; Tulik, P.; Obryk, B.

    2008-01-01

    Complicated procedures of interventional radiology require usually a much longer investigation time, comparing to the conventional radiography. Moreover, interventional radiology procedures require the presence of the medical staff next to the patient in order to perform the procedure. This results in higher risk for health professionals. Even though these persons reasonably keep away from the primary X ray beam, they are under the effects of scatter radiation due to the interaction of the primary beam with the patient. The protection aprons, thyroid protectors and shielding glasses are used in order to minimize the doses for the staff, but lower parts of legs remain usually unprotected and the absorbed doses in shanks are not recorded. The paper presents the measured values of the absorbed dose in lower extremities of medical staff, involved in the procedures of interventional radiology, completed with the measurements of air kerma under the patient table. Measurements were performed in one of big hospitals in Warsaw during all the procedures performed in six weeks. Majority of the procedures constituted angioplasty or angioplasty with vascular stenting, uterine fibroid embolization and cholangiography. In the angioplasty procedure, imaging techniques are used to guide a balloon-tipped catheter into an artery and advance it to where the vessel is narrow or blocked. The balloon is then inflated to open the vessel, deflated and removed. In vascular stenting, which is often performed with angioplasty, a small wire mesh tube (a stent) is permanently placed in the newly opened artery to help it remain open. In a uterine fibroid embolization procedure, the image guidance is used in order to place an embolic agent (synthetic material) inside one or more of the blood vessels that supply the fibroid tumors with blood. As a result, these vessels become occluded, or closed off, and the fibroid tissue shrinks. Percutaneous transhepatic cholangiography is a way of examining

  4. Genetic architecture of capitate glandular trichome density in florets of domesticated sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Capitate glandular trichomes (CGT), one type of glandular trichomes, are most common in Asteraceae species. Capitate glandular trichomes can produce various secondary metabolites such as sesquiterpene lactones (STLs) and provide durable resistance to insect pests. In sunflower, CGT-based host resist...

  5. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de

    2004-01-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO 4 :Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {(10 ? 10) cm 2 field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of ± 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  6. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3-octreotate and 177Lu–Tyr3-octreotate conjugated to gold nanoparticles

    International Nuclear Information System (INIS)

    Azorín-Vega, E.P.; Zambrano-Ramírez, O.D.; Rojas-Calderón, E.L.; Ocampo-García, B.E.; Ferro-Flores, G.

    2015-01-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals 177 Lu–Tyr 3 -octreotate (monomeric) and 177 Lu–Tyr 3 -octreotate–gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112 Gy-multimeric vs. 43 Gy-monomeric). - Highlights: • Fibrosis increases the radiation absorbed dose to the tumor. • Fibrosis increases the radiopharmaceutical residence time in the tumor. • The multimeric nature of the radiopharmaceuticals enhances the radiopharmaceutical retention

  7. Application of polystyrene - water calorimeter in determination of absorbed dose. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F A [Nuclear Materials Authority, Maadi, Cairo (Egypt); Ashry, H A; El-Behay, A Z; Abdou, S [National Center, for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The polystyrene-water calorimeter was investigated as a modification of the water calorimeter, where the polystyrene has a low specific heat and negligible known heat defect. This calorimeter was designed, constructed and calibrated for measurement of radiation absorbed dose. The system utilizes a thermistor to detect the radiation-induced temperature rise in the polystyrene absorber at certain point from the radiation source. A temperature stability of as low as 0.0018 degree C/min in a 42.0 degree C environment, and a gamma-radiation sensitivity of as high as 1.9720 ohm/Gy were obtained. Comparisons of the results obtained by using the polystyrene-water calorimeter with those obtained by applying other types of calorimeters i.e., water and graphite calorimeters were also done to aid in the possible realization of an accurate and efficient instrument for use under widely different irradiation conditions. 4 figs., 1 tab.

  8. Dose absorbed in x-rays toraxicas executed in hospitals of the city of Sao Paulo Brazil

    International Nuclear Information System (INIS)

    Freitas, M.B.; Yoshimura, E.M.

    1998-01-01

    With the objective of evaluating the contribution of radiography exams in the dose received by the population of the city of Sao Paulo (Brazil), we made mensurations of the doses absorbed in toraxicas x-rays (projections PA and LAT) taken in several teams of rays X used in hospitals. The work is supplemented with demography data and the knowledge of the quantity of exams executed in each team

  9. Absorbed Doses and Risk Estimates of {sup 211}At-MX35 F(ab'){sub 2} in Intraperitoneal Therapy of Ovarian Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cederkrantz, Elin [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Andersson, Håkan [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Bernhardt, Peter; Bäck, Tom [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Hultborn, Ragnar [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jacobsson, Lars [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jensen, Holger [PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen (Denmark); Lindegren, Sture [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden); Magnander, Tobias; Palm, Stig [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Albertsson, Per, E-mail: per.albertsson@oncology.gu.se [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden)

    2015-11-01

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At

  10. The use of Fricke dosimeter to determine the absorbed dose from brachytherapy equipment in the Northeastern Brazil

    International Nuclear Information System (INIS)

    Souza, Vivianne Lucia B.; Cunha, Manuela S.; Figueiredo, Marcela D.C.; Santos, Carla D.A.; Rodrigues, Kelia R.G.; Lira, Gabriela B.S.; Silva, Danubia B.; Melo, Roberto T.

    2011-01-01

    This paper describes the practical results of an assessment of the situation of brachytherapy services throughout the Northeast. A Fricke dosimetry system capable of verifying the dose absorbed in water, prepared by researchers from the Regional Center of Nuclear Sciences was brought to public hospitals in the Northeast. The system not only evaluates if the applied (measured) dose is close to the calculated (prescribed) dose, but is also capable of verifying human errors and/or mechanical or the International Atomic Energy Agency (IAEA) standards regarding the percentage of allowed difference between the prescribed dose and dose measurement. (author)

  11. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    International Nuclear Information System (INIS)

    Bouwman, R W; Van Engen, R E; Den Heeten, G J; Broeders, M J M; Veldkamp, W J H; Young, K C; Dance, D R; Schopphoven, S; Jeukens, C R L P N

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83–1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms. (paper)

  12. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  13. A Stochastic Polygons Model for Glandular Structures in Colon Histology Images.

    Science.gov (United States)

    Sirinukunwattana, Korsuk; Snead, David R J; Rajpoot, Nasir M

    2015-11-01

    In this paper, we present a stochastic model for glandular structures in histology images of tissue slides stained with Hematoxylin and Eosin, choosing colon tissue as an example. The proposed Random Polygons Model (RPM) treats each glandular structure in an image as a polygon made of a random number of vertices, where the vertices represent approximate locations of epithelial nuclei. We formulate the RPM as a Bayesian inference problem by defining a prior for spatial connectivity and arrangement of neighboring epithelial nuclei and a likelihood for the presence of a glandular structure. The inference is made via a Reversible-Jump Markov chain Monte Carlo simulation. To the best of our knowledge, all existing published algorithms for gland segmentation are designed to mainly work on healthy samples, adenomas, and low grade adenocarcinomas. One of them has been demonstrated to work on intermediate grade adenocarcinomas at its best. Our experimental results show that the RPM yields favorable results, both quantitatively and qualitatively, for extraction of glandular structures in histology images of normal human colon tissues as well as benign and cancerous tissues, excluding undifferentiated carcinomas.

  14. Radiation absorbed dose to the lens in dacryoscintigraphy with /sup 99m/TcO4-1

    International Nuclear Information System (INIS)

    Robertson, J.S.; Brown, M.L.; Colvard, D.M.

    1979-01-01

    Calculations of the radiation dose to the lens for /sup 99m/TcO 4 - in dacryoscintigraphy are developed in some detail. The results indicate that the absorbed dose to the germinal epithelium of the lens is 2.2 x 10 -5 to 1.4 x 10 -4 rad/μCi (5.9 x 10 -12 to 3.8 x 10 -11 Gy/Bq) /sup 99m/TcO 4 - under physiological conditions. With blockage of the lacrimal drainage apparatus, the dose to the lens could increase to 4 x 10 -3 rad/μCi

  15. Theoretical estimation of absorbed dose to organs in radioimmunotherapy using radionuclides with multiple unstable daughters

    International Nuclear Information System (INIS)

    Hamacher, K.A.; Sgouros, G.

    2001-01-01

    The toxicity and clinical utility of long-lived alpha emitters such as Ac-225 and Ra-223 will depend upon the fate of alpha-particle emitting unstable intermediates generated after decay of the conjugated parent. For example, decay of Ac-225 to a stable element yields four alpha particles and seven radionuclides. Each of these progeny has its own free-state biodistribution and characteristic half-life. Therefore, their inclusion for a more accurate prediction of absorbed dose and potential toxicity requires a formalism that takes these factors into consideration as well. To facilitate the incorporation of such intermediates into the dose calculation, a previously developed methodology (model 1) has been extended. Two new models (models 2 and 3) for allocation of daughter products are introduced and are compared with the previously developed model. Model 1 restricts the transport to a function that yields either the place of origin or the place(s) of biodistribution depending on the half-life of the parent radionuclide. Model 2 includes the transient time within the bloodstream and model 3 incorporates additional binding at or within the tumor. This means that model 2 also allows for radionuclide decay and further daughter production while moving from one location to the next and that model 3 relaxes the constraint that the residence time within the tumor is solely based on the half-life of the parent. The models are used to estimate normal organ absorbed doses for the following parent radionuclides: Ac-225, Pb-212, At-211, Ra-223, and Bi-213. Model simulations are for a 0.1 g rapidly accessible tumor and a 10 g solid tumor. Additionally, the effects of varying radiolabled carrier molecule purity and amount of carrier molecules, as well as tumor cell antigen saturation are examined. The results indicate that there is a distinct advantage in using parent radionuclides such as Ac-225 or Ra-223, each having a half-life of more than 10 days and yielding four alpha

  16. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    International Nuclear Information System (INIS)

    Toni, M.P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-01-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d 0 = 1 cm, D w , 1 cm, is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure D w , 1 cm due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under 'wall-less air chamber' conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of D w , 1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on D w , 1 cm is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125 I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant 1 cm, traceable to the D w , 1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on 1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature. (authors)

  17. Absorbed dose by thyroid in case of nuclear accidents; Dose absorvida pela tireoide em casos de acidentes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Attie, Marcia Regina Pereira [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Amaral, Ademir [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ({sup 131}I, {sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  18. Measurement of patient skin absorbed dose in ablation of paroxysmal atrial fibrillation, and examination of treatment protocol

    International Nuclear Information System (INIS)

    Shohji, Tomokazu; Hiramatsu, Masaki; Hasome, Hideki

    2005-01-01

    The ablation for atrial fibrillation minute movement done in our hospital is 250 minutes or less, within an average time of 150 minutes during a fluoroscopic time of about 7 hours, with very large average inspection times numerical values. However, the skin-absorbed dose could be understood only from the numerical value of the area dosimeter. It was considered that the total dose that reached the threshold was sufficient, although radiation injury would not be reported from the ablation currently done at our hospital. Therefore, we aimed to examine the inspection protocol in this hospital, and to request the patient be given an inspection dose that was the average skin-absorbed dose by using the acryl board. The amount of a total dose for an inspection of 150 minutes of fluoroscopic time was about 2.7 Gy. Moreover, a value of 1.5 Gy was indicated in the hot spot as a result of repetition in some exposure fields. However, it was thought that the possibility of exceeding the threshold of 2 Gy depending on the inspection situation in the future and other factors was tolerable because these measurements were done so as not to overvalue it more than the necessary. (author)

  19. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  20. Evaluation of the influence of parameters that determine the mean glandular dose in mammography using different detectors; Evaluacion de la influencia de los parametros que determinan la dosis glandular media en Mamografia utilizando diferentes detectores

    Energy Technology Data Exchange (ETDEWEB)

    Costa, K.; Nogueira, M. S., E-mail: katicostabh@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Pos-graduacao em Ciencias e Tecnologia das Radiacoes, Minerais e Materiais / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Mammography is a test used for early detection of breast cancer. The mean glandular dose (MGD) is dosimetric greatness accepted as indicative of carcinogenic risk induced by ionizing radiation in the breasts of women undergoing mammography exams. MGD value is estimated from the incident air kerma (k i), associated with conversion factors which depend on the half-value layer (HVL), the breast composition and thickness compressed breast. This study aims to evaluate the influence of the parameters used to determine the MGD using different measurement detectors. Measurements were performed on a Siemens Mammomat Model 300 Nova mammography equipment; this has the combinations Anode/Filter of Mo/Mo, Mo/Rh and W/Rh. Detectors used were the ionization chamber Model 10X6-6M manufactured by Radcal Co., two solid-state detectors, one Model AGMS-M manufactured by Radcal Co. and other Model Xi Mammo manufactured by UNFORS. The detectors measures were compared and the MGD value was estimated; differences between measurements and the reference values were higher in HVL and k i parameters. The results are displayed according to other published works. (Author)

  1. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  2. CALDoseX: a software tool for absorbed dose calculations in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R.; Khourya, H.J.; Vieira, J.W.

    2008-01-01

    Conversion coefficients (CCs) between absorbed dose to organs and tissues at risk and measurable quantities commonly used in X-ray diagnosis have been calculated for the last 30 years mostly with mathematical MIRD5-type phantoms, in which organs are represented by simple geometrical bodies, like ellipsoids, tori, truncated cylinders, etc. In contrast, voxel-based phantoms are true to nature representations of human bodies. The purpose of this study is therefore to calculate CCs for common examinations in X-ray diagnosis with the recently developed MAX06 (Male Adult voXel) and FAX06 (Female Adult voXel) phantoms for various projections and different X-ray spectra and to make these CCs available to the public through a software tool, called CALDose X (CALculation of Dose for X-ray diagnosis). (author)

  3. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  4. Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Perry B; Bahadori, Amir A [Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Eckerman, Keith F [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Lee, Choonsik [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892 (United States); Bolch, Wesley E, E-mail: wbolch@ufl.edu [Nuclear and Radiological/Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R{sup 2} = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  5. Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.; Shevchenko, V.A.; Tenishev, A.Eh.; Titov, D.V.; Uvarov, V.L.

    2016-01-01

    The conditions of the contact-free absorbed dose monitoring at industrial product processing by electron beam are investigated. The method is based on analysing the collected charge in a stack monitor (SM) mounted down-stream of irradiated object. Using computer simulation on the basis of a modified transport code PENELOPE-2008, it is shown that by placing a filter of low-energy electrons before SM it is possible to obtain the one-to-one correlation dependence between the monitor charge and absorbed energy of radiation in the processed object. At a certain surface density of the filter, this dependence takes on the form similar to linear. The possibility to use an air gap between the object and SM as such a filter has been demonstrated. For the conditions of radiation plant with an electron accelerator LU-10 of NSC KIPT, the optimum distance of the SM location has been established. For the practical range of the electron energy, beam scan width and surface density of the irradiated product, the constants of ''product absorbed energy-to- SM charge '' linear dependence have been determined. The capability to establish the average absorbed dose in the object moving trough the irradiation zone on the SM current is shown. The calculation data are in satisfactory agreement with the results of measurements.

  6. CALDoseX-a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R; Khoury, H J; Vieira, J W

    2008-01-01

    CALDose X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  7. Evaluation of patient absorbed dose in a PET-CT test

    International Nuclear Information System (INIS)

    Guerra P, F.; Mourao F, A. P.; Santana, P. C.

    2017-10-01

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg 18 F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the 18 F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  8. Evaluation of patient absorbed dose in a PET-CT test

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Mourao F, A. P. [Federal University of Minas Gerais, Department of Nuclear Engineering, Av. Antonio Carlos 6627, CEP 31270-901, Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P. C., E-mail: fgpaiva92@gmail.com [Federal University of Minas Gerais, Medical School, Av. Prof. Alfredo Balena 190, CEP 30123970, Santa Efigenia, Belo Horizonte, Minas Gerais (Brazil)

    2017-10-15

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg {sup 18}F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the {sup 18}F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  9. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-01

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60 Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  10. Biodistribution parameters and radiation absorbed dose estimates for radiolabeled human low density lipoprotein

    International Nuclear Information System (INIS)

    Hay, R.V.; Ryan, J.W.; Williams, K.A.; Atcher, R.W.; Brechbiel, M.W.; Gansow, O.A.; Fleming, R.M.; Stark, V.J.; Lathrop, K.A.; Harper, P.V.

    1992-01-01

    The authors propose a model to generate radiation absorbed dose estimates for radiolabeled low density lipoprotein (LDL), based upon eight studies of LDL biodistribution in three adult human subjects. Autologous plasma LDL was labeled with Tc-99m, I-123, or In-111 and injected intravenously. Biodistribution of each LDL derivative was monitored by quantitative analysis of scintigrams and direct counting of excreta and of serial blood samples. Assuming that transhepatic flux accounts for the majority of LDL clearance from the bloodstream, they obtained values of cumulated activity (A) and of mean dose per unit administered activity (D) for each study. In each case highest D values were calculated for liver, with mean doses of 5 rads estimated at injected activities of 27 mCi, 9 mCi, and 0.9 mCi for Tc-99m-LDL, I-123-LDL, and In-111-LDL, respectively

  11. Error in assessing the absorbed dose from the EPR signal from dental enamel

    International Nuclear Information System (INIS)

    Kleshchenko, E.D.; Kushnereva, K.K.

    1997-01-01

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  12. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  13. Reconstruction of absorbed dose by methods biological dosimetry inhabitans living in Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Abildinova, G.

    2010-01-01

    As a result perennial overland and atmospheric test the nucleus weapon on Semipalatinsk nucler test site (NTS) about 1,2 ml person were subjected to frequentative sharp and chronic irradiation in different range of doses. Besides a significant number of battle radioactive matters tests with radionuclei dispersion on soil surface and an atmosphere was realized also. All this activity has caused the significant radioactive contamination and damage to an environment, and the local population has received extra exposure to radiation. These circumstances have essentially complicated the economy development of the given region. Aim: Reconstruction of absorbed dose by modern methods biological dosimetry beside inhabitants living in region of influence Semipalatinsk NTS. The cytogenetically examination of population Semipalatinsk region, living in different zones radiation risk: s. Dolon, s. Sarzhal, s. Mostik. Installed that total frequency of chromosome aberrations forms 4,8/100; 2,1/100; 2,5/100 cells, accordingly. High level of chromosome aberrations is conditioned to account radiations markers - acentric fragments (2,1/100 cells in s. Dolon; 1,09/100 cells in s. Sarzhal; 0,79/100 cells in s. Mostik); dysenteric and ring chromosomes (0,6; 0,2; 0,11) and stable type chromosome aberrations (1,02; 0,3; 1,0, accordingly). Frequency and spectrum of chromosome aberrations are indicative of significant mutation action ionizing radiations on chromosome device of somatic cells. Studied dependency an cytogenetically of effects from dose of irradiation within before 0,5 Gr in vitro for calibrated curve standard when undertaking reconstruction efficient dose at the time of irradiations examined group of population. Dependency is described the model a*cos(x) 1 + sin (x), where x - correlation a dysenteric and ring chromosomes to acentric fragments. Dependence of cytogenetic parameters upon ESR-doses had been studied. Had been received dependences: for the total frequency of

  14. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Bowen, B.M.; Chen, A.I.; Olsen, W.A.; Van Etten, D.M.

    1985-01-01

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 12 0 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  15. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    Science.gov (United States)

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  16. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  17. Distribution of absorbed dose in human eye simulated by SRNA-2KG computer code

    International Nuclear Information System (INIS)

    Ilic, R.; Pesic, M.; Pavlovic, R.; Mostacci, D.

    2003-01-01

    Rapidly increasing performances of personal computers and development of codes for proton transport based on Monte Carlo methods will allow, very soon, the introduction of the computer planning proton therapy as a normal activity in regular hospital procedures. A description of SRNA code used for such applications and results of calculated distributions of proton-absorbed dose in human eye are given in this paper. (author)

  18. A first order approximation of the tumor absorbed dose prior to treatment with Sr-89

    International Nuclear Information System (INIS)

    Manetou, A.; Toubanakis, N.; Lyra, M.; Lymouris, G.

    1994-01-01

    A new technique developed for the estimation of the absorbed dose prior to treatment with Sr-89 is presented. This technique implies that patient undergoes bone scanning with Tc-99m-MDP, two days before the administration of Sr-89. A number of sequential quantitative images are to be obtained over the first 8 hours after the Tc-99m-MDP injection and data are used to derive St-89 time retention curve. For the development of this technique a simplified model for the kinetics of both Sr-89 and Tc-99m-MDP was assumed. Data on the time retention of the two radiopharmaceuticals for a compartment including bone surface and bone space of trabecular and cortical bone for normal adults were combined together. A linear relationship was derived between the time required for the same percentage uptake of the two radiopharmaceuticals after single injection. The absorbed dose in the principal metastases and normal bone, of the same type and volume with the metastases, for two patients who were treated with Sr-89 for metastasized prostatic carcinoma are reported. (authors)

  19. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  20. Dose and risk evaluation in digital mammography using computer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de, E-mail: scorrea@nuclear.ufrj.b, E-mail: emonteiro@nuclear.ufrj.b [Centro Universitario Estadual da Zona Oeste (CCMAT/UEZO), Rio de Janeiro, RJ (Brazil); Silva, Humberto de Oliveira, E-mail: hbetorj@gmail.co [Universidade Federal do Rio de Janeiro IF/UFRJ, RJ (Brazil). Inst. de Fisica; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b, E-mail: smagalhaes@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2010-07-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  1. Dose and risk evaluation in digital mammography using computer modeling

    International Nuclear Information System (INIS)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de; Silva, Humberto de Oliveira; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga

    2010-01-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  2. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  3. Células glandulares atípicas e câncer de colo uterino: revisão sistemática Atypical glandular cells and cervical cancer: systematic review

    Directory of Open Access Journals (Sweden)

    Juliana Pedrosa de Holanda Marques

    2011-04-01

    Full Text Available Atipias de células glandulares em esfregaços cervicovaginais é um achado citológico na rotina de rastreamento do câncer cervical, que aumentou nas últimas décadas. Sua constatação é importante clinicamente, pois é alta a percentagem de casos associados com doença cervical e endometrial de alto grau e câncer. Este trabalho avaliou, por meio de uma revisão sistemática, estudos que investigaram o perfil das lesões de colo uterino em avaliações histológicas de seguimento de pacientes já diagnosticadas com células glandulares atípicas. Foram excluídos os estudos cuja investigação diagnóstica não incluísse o diagnóstico histopatológico. Realizou-se uma busca abrangente de publicações no período de 1966 a 2009, nas bases do LILACS, SciELO, PubMed/Medline e Old Medline. Os artigos omitidos na busca eletrônica também foram incluídos. Estavam de acordo com os critérios de inclusão 19 artigos, que foram selecionados. Este estudo tem como objetivo avaliar se a atipia celular glandular observada inicialmente na citologia relacionava-se histologicamente com a presença de lesões benignas, pré-neoplásicas ou neoplásicas. Dos 19 estudos selecionados, 11 mostraram maior correlação entre atipia glandular com patologias benignas e seis com lesões escamosas pré-malignas.Atypical glandular cells are a common finding in cervical cytology in cervical cancer screening and its occurrence has increased in the last decades. The identification of these cells is clinically very important due to its association with cervical and endometrial dysplasic lesions and cancer. Using a systematic approach, this article reviewed studies investigating cervical lesions that are characteristic in patients previously diagnosed as having atypical glandular cells. Studies in which diagnostic investigation did not include histopathological diagnosis were excluded. A comprehensive search for available material in LILACS, SciELO, PubMed/ Medline

  4. Phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.).

    Science.gov (United States)

    Deschamps, Cícero; Simon, James E

    2010-01-01

    Basil (Ocimum basilicum L.) essential oil phenylpropenes are synthesized and accumulate in peltate glandular trichomes and their content and composition depend on plant developmental stage. Studies on gene expression and enzymatic activity indicate that the phenylpropene biosynthetic genes are developmentally regulated. In this study, the methylchavicol accumulation in basil leaves and the enzyme activities and gene expression of both chavicol O-methyltransferase (CVOMT) and eugenol O-methyltransferase (EOMT) were investigated in all leaves at four plant developmental stages. Methylchavicol accumulation decreased over time as leaves matured. There was a significant correlation between methylchavicol accumulation and CVOMT (r(2) = 0.88) enzyme activity, suggesting that the levels of biosynthetic enzymes control the essential oil content. CVOMT and EOMT transcript expression levels, which decreased with leaf age, followed the same pattern in both whole leaves and isolated glandular trichomes, providing evidence that CVOMT transcript levels are developmentally regulated in basil glandular trichomes themselves and that differences in CVOMT expression observed in whole leaves are not solely the result of differences in glandular trichome density.

  5. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Berlyand, V.; Bregadze, Y.; Korostin, S.

    2003-09-01

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  6. Standardized methods to verify absorbed dose in irradiated food for insect control. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants

  7. Evaluation of the population dose to the UK population from the National Health Service breast screening programme

    International Nuclear Information System (INIS)

    Faulkner, K.; Wallis, M. G.; Neilson, F.; Whitaker, C. J.

    2008-01-01

    In the United Kingdom National Health Service Breast Screening Programme (NHSBSP), women aged between 50 and 70 y are invited for mammography every 3 y. Screening histories for each woman, over four screening rounds, were analysed. Data from five screening programmes were used to select 57 425 women into the study. Cases were selected on the basis of being between the ages of 50 and 53 at the start of the NHSBSP (i.e. between 1989 and 1992). Assessment of the outcome for each screening round for each woman involved assigning a simple outcome code. Each of the possible pathways through the four screening rounds was analysed. This comprises of 500 possible pathways. This data enabled the following information to be determined: (i) The number of times a woman attended the screening programme. (ii) The number of women referred for assessment at each screening round. This information may be used to deduce the population dose to this group of women averaged over four screening rounds. Patient doses have been monitored since the programme's inception and are typically 4.5 mGy for two-view screening. It is possible to determine the mean glandular dose received by this cohort of women over four screening rounds by multiplying the number of examinations by the mean glandular dose for a typical woman. Allowance has to be made for the number of projections taken at each screening round. Once a woman has been screened, she may be invited back for further assessment if an abnormality is found on her mammogram. A stereotactic attachment is used to determine where to place the biopsy device. Although the dose received during a normal screening mammogram is well known, the dose for a stereotactic procedure and other assessment procedures is less well known, partly because only a small part of the breast is directly irradiated during stereo-taxis. However, the woman may have multiple exposures during this stage. A prospective survey of doses was completed to deduce the mean

  8. Estimation of absorbed dose for poor shields under conditions of near-earth space flight

    International Nuclear Information System (INIS)

    Konyukov, V.V.; Krajnyukov, V.I.; Trufanov, A.I.

    1995-01-01

    Estimation of electron absorbed dose in materials of a space vehicle for poor shields under conditions of near-earth space flight is carried out. Impact of power and angular distribution of incidence electrons and radiation scattering processes under conditions of complex geometry and multitude of materials of flight vehicle elements and nodes is studied through simulator model by example of isolating layer of aluminium-polyethylene assembly. 3 refs.; 2 figs

  9. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  10. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    International Nuclear Information System (INIS)

    Delaunay, F.; Gouriou, J.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.; Kapsch, R.P.; Illemann, J.; Krauss, A.

    2012-01-01

    During the Euramet project JRP7 'External Beam Cancer Therapy', PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm * 10 cm and 3 cm * 3 cm while LNE-LNHB used graphite calorimeters in 6MV and 12MV beams for field sizes of 10 cm * 10 cm, 4 cm * 4 cm and 2 cm * 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60 Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60 Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% ( 60 Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm * 10 cm down to 2 cm * 2 cm and for beams of 6 MV to 10 MV. (authors)

  11. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  12. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  13. Patient radiation dose during mammography procedures

    International Nuclear Information System (INIS)

    Mohamed, Swsan Awd Elkriem

    2015-11-01

    The objectives of this study were to estimate the patient dose in term of mean glandular dose and assist in optimization of radiation protection in mammographic procedures in Sudan. A total number of 107 patients were included. Four mammographic units were participated. Only one center was using automatic exposure control (AEC). The mean doses in (mGy) for the CC projection were 3.13, 1.24, 2.45 and 0.98 and for the MLO projection was 2.13, 1.26, 1.99 and 1.02 for centers A, B, C, and D, respectively. The total mean dose per breast from both projections was 5.26, 2.50, 4.44 and 1.99 mGy for centers A, B, C and D, respectively. The minimum mean glandular dose was found between the digital system which was operated under AEC and one of the manual selected exposure factors systems, this highlight possible optimization of radiation protection in the other manual selected systems. The kilo volt and the tube current time products should be selected correctly according to the breast thickness in both centers A and C. (author)

  14. Determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy

    International Nuclear Information System (INIS)

    Verhey, L.J.; Koehler, A.M.; McDonald, J.C.; Goitein, M.; Ma, I.C.; Schneider, R.J.; Wagner, M.

    1979-01-01

    Four methods are described by which absorbed dose has been measured in a proton beam extracted from the 160-MeV Harvard cyclotron. The standard dosimetry, used to determine doses for patient treatments, is based upon an absolute measurement of particle flux using a Faraday cup. Measurements have also been made using a parallel-plate ionization chamber; a thimble ionization chamber carying a 60 Co calibration traceable to NBS; and a tissue-equivalent calorimeter. The calorimeter, which provides an independent check of the dosimetry, agreed with the standard dosimetry at five widely different depths within a range from 0.8 to 2.6%

  15. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  16. DOSE-Analyzer. A computer program with graphical user interface to analyze absorbed dose inside a body of mouse and human upon external neutron exposure

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Shigemori, Yuji; Sakamoto, Kensaku

    2010-06-01

    DOSE-Analyzer is a computer program to retrieve the dose information from a database and generate a graph through a graphical user interface (GUI). The database is constructed for absorbed dose, fluence, and energy distribution inside a body of mouse and human exposed upon external neutrons, which is calculated by our developed Monte-Carlo simulation method using voxel-based phantom and particle transport code PHITS. The input configurations of irradiation geometry, subject, and energy are set by GUI. The results are tabulated at particle types, i.e. electron, proton, deuteron, triton, and alpha particle, and target organs on a data sheet of Microsoft Office Excel TM . Simple analysis to compare the output values for two subjects is also performed on DOSE-Analyzer. This report is a user manual of DOSE-Analyzer. (author)

  17. The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants.

    Science.gov (United States)

    Steiner, Ulrike; Kucht, Sabine Hellwig neé; Ahimsa-Müller, Mahalia A; Grundmann, Nicola; Li, Shu-Ming; Drewke, Christel; Leistner, Eckhard

    2015-04-16

    Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.

  18. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    International Nuclear Information System (INIS)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs

  19. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  20. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  1. DOSIS: a computer program for the calculation of absorbed dose in photon and electron beams from ionization measurements in a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, P [Kungliga Karolinska Mediko-Kirurgiska Inst., Stockholm (Sweden). Radiofysiska Institutionen; Zaragoza Univ. (Spain). Dept. de Radiologia)

    1983-06-15

    A computer program has been developed to facilitate the calculation of the absorbed dose in photon and electron beams from measurements with an ionization chamber in a phantom. The generalized Bragg-Gray theory, introduced in the latest recommendations of the Nordic Association of Clinical Physics (NACP), is used throughout the code, including more updated parameter values than those included in the NACP protocol. The calibration factor of the ionization chamber in units of absorbed dose in the air of the cavity can be derived for most of the chambers available today by using experimental data or fitted relations to Monte Carlo results.

  2. Towards a determination of the absorbed dose to water in water for low-energy photon-emitting brachytherapy seeds

    International Nuclear Information System (INIS)

    Schneider, T.; Lange, B.; Selbach, H.J.

    2007-01-01

    An accurate determination of the dose produced by brachytherapy seeds emitting low-energy photons is an important component of the radiotherapeutic process. As yet, the output of these seeds has usually been specified in terms of the air kerma rate. The desired quantity in radiation therapy is, however, the absorbed dose to water inside a water phantom, for which primary standards are not available. For this reason, developments are under way in the Physikalisch - Technische Bundesanstalt to establish a primary standard to determine the absorbed dose to water within a phantom. As a fundamental step towards this aim, a method will be introduced in this publication to determine the water kerma inside a graphite phantom housing an extrapolation chamber. Experimental results will be presented and compared with water kerma values obtained from air kerma measurements in free air and applying a conversion factor to water kerma for the conditions of the experiment. First estimates indicate that the relative uncertainty is of the order of 1% (k 1). (authors)

  3. Células glandulares atípicas em esfregaços cervicovaginais: significância e aspectos atuais Atypical glandular cells in cervical smears: significance and current aspects

    Directory of Open Access Journals (Sweden)

    Adriana Bittencourt Campaner

    2007-02-01

    Full Text Available Células glandulares atípicas (AGC em esfregaços cervicovaginais são achados citológicos raros, porém de significado representativo. Sua incidência varia, na literatura, de 0,08% a 0,81%. O sistema Bethesda de 2001 classifica estas lesões glandulares como AGCs sem outras especificações, AGCs provavelmente neoplásicas, adenocarcinoma cervical in situ (AIS e adenocarcinoma invasivo. Das mulheres portadoras de AGC, grande parte não apresentará qualquer tipo de alteração histológica em avaliação subseqüente. Entretanto, em 17,4% a 62,2% dos casos serão encontradas lesões histológicas significativas, como neoplasias intra-epiteliais cervicais, AIS, neoplasias escamosas e glandulares, cervicais e endometriais, bem como neoplasias de outras localizações. O risco de doença significativa está relacionado à subdivisão de AGC encontrada. Em virtude da elevada probabilidade de anormalidades histológicas significativas em casos de AGC, a simples repetição citológica é insuficiente para o seguimento dessa condição. Esta atualização descreve a epidemiologia, a avaliação e a conduta das pacientes portadoras dessa anormalidade citológica.Atypical glandular cells (AGC on cervical smears are unusual but important cytologic diagnosis. The incidence of AGC ranges from 0.08% to 0.81 % of all cervical smears tests. The 2001 Bethesda System nomenclature classifies these glandular lesions as AGC not otherwise specified, AGC favor neoplasia, endocervical adenocarcinoma in situ (AIS and invasive adenocarcinoma. Of women with AGC smears, a great number will have no histologic abnormalities on further evaluation. However, 17.4% to 62.2% are found to have significant histologic lesions such as cervical intraepithelial neoplasia, AIS, squamous and glandular cancers from sites farther the cervix and endometrium. The risk of significant disease is related to the AGC subclassification that was found. Because of the high likelihood that AGC

  4. Mammographic dose survey in the Czech Republic

    International Nuclear Information System (INIS)

    Novak, Leos; Rada, Jiri

    2006-01-01

    At present, it is generally accepted that the average dose to the glandular tissue is the most reasonable dose descriptor in mammography with regard to the risk of breast cancer induced by ionizing radiation. It is advantageous to use the quantity mean glandular dose M.G.D. for setting of diagnostic reference levels (D.R.L.) as well, although the quantity is not directly measurable as it is the case of D.R.L. quantities for other imaging modalities. The reason is that a directly measurable quantity suitable for mammography, incident air kerma Ki, depends a lot on a beam quality. The influence of the beam quality (expressed by tube voltage, half value layer and combination of anode/filter material) is already included in calculation of mean glandular dose. To assess a radiation burden of patients due to mammography at a national level a representative dose survey is needed to carry out. Such a study provides statistically significant dose data for setting of the national diagnostic reference levels. National Radiation Protection Institute is performing the study in the Czech Republic since the year 2005.On a basis of presented data, it could be concluded, that the situation in the Czech Republic with respect to patient doses in mammography is encouraging and that the requirements of European Commission are well fulfilled. However, it is obvious, that the obtained results can not be considered as statistically significant at the moment, because the data were not collected from a representative sample of centers, which should observe a distribution of X-ray unit types, type of a mammographic center (screening/non screening ones) and also a locality of a center. The dose survey still continues to cover the whole Czech Republic with the main task to determine new national diagnostic reference levels and to find out optimized standards for carrying out the examinations with respect to patient doses and image quality. (authors)

  5. Mammographic dose survey in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Leos [National Radiation Protection Institute, Prague (Czech Republic); Rada, Jiri [National Radiation Protection Institute, Ostrava (Czech Republic)

    2006-07-01

    At present, it is generally accepted that the average dose to the glandular tissue is the most reasonable dose descriptor in mammography with regard to the risk of breast cancer induced by ionizing radiation. It is advantageous to use the quantity mean glandular dose M.G.D. for setting of diagnostic reference levels (D.R.L.) as well, although the quantity is not directly measurable as it is the case of D.R.L. quantities for other imaging modalities. The reason is that a directly measurable quantity suitable for mammography, incident air kerma Ki, depends a lot on a beam quality. The influence of the beam quality (expressed by tube voltage, half value layer and combination of anode/filter material) is already included in calculation of mean glandular dose. To assess a radiation burden of patients due to mammography at a national level a representative dose survey is needed to carry out. Such a study provides statistically significant dose data for setting of the national diagnostic reference levels. National Radiation Protection Institute is performing the study in the Czech Republic since the year 2005.On a basis of presented data, it could be concluded, that the situation in the Czech Republic with respect to patient doses in mammography is encouraging and that the requirements of European Commission are well fulfilled. However, it is obvious, that the obtained results can not be considered as statistically significant at the moment, because the data were not collected from a representative sample of centers, which should observe a distribution of X-ray unit types, type of a mammographic center (screening/non screening ones) and also a locality of a center. The dose survey still continues to cover the whole Czech Republic with the main task to determine new national diagnostic reference levels and to find out optimized standards for carrying out the examinations with respect to patient doses and image quality. (authors)

  6. A first order approximation of the tumor absorbed dose prior to treatment with Sr-89

    Energy Technology Data Exchange (ETDEWEB)

    Manetou, A [NIMITS Hospital, Medical Physics Unit, Athens (Greece); Toubanakis, N; Lyra, M; Lymouris, G [Areteion University Hospital, Radiology Department, Athens (Greece)

    1994-12-31

    A new technique developed for the estimation of the absorbed dose prior to treatment with Sr-89 is presented. This technique implies that patient undergoes bone scanning with Tc-99m-MDP, two days before the administration of Sr-89. A number of sequential quantitative images are to be obtained over the first 8 hours after the Tc-99m-MDP injection and data are used to derive St-89 time retention curve. For the development of this technique a simplified model for the kinetics of both Sr-89 and Tc-99m-MDP was assumed. Data on the time retention of the two radiopharmaceuticals for a compartment including bone surface and bone space of trabecular and cortical bone for normal adults were combined together. A linear relationship was derived between the time required for the same percentage uptake of the two radiopharmaceuticals after single injection. The absorbed dose in the principal metastases and normal bone, of the same type and volume with the metastases, for two patients who were treated with Sr-89 for metastasized prostatic carcinoma are reported. (authors). 23 refs,3 figs, 2 tabs.

  7. Micromorphology of glandular structures in Echium vulgare L. flowers

    Directory of Open Access Journals (Sweden)

    Elżbieta Weryszko-Chmielewska

    2012-12-01

    Full Text Available The micromorphology of selected elements of Echium vulgare L. flowers was investigated, with special attention to the structure of the nectaries and the stigma of the pistil as well as types of trichomes occurring on the surface of the calyx. The nectary had the shape of an uneven disc located around the lower region of the four-parted ovary of the pistil. The glandular cells formed a tier with a height of 330 μm and a radial width of 144 μm. Nectar was secreted onto the nectary surface through anomocytic stomata located at the level of other epidermal cells. Most of the stomata were open, with a different dimension of the pore. Their largest number was observed at the base of the nectary, and 462 stomata were noted on the whole surface of the nectary. The cuticle on the surface of the guard cells formed fine, circular striae. The subsidiary cells formed striated cuticular ornamentation, with the striae arranged radially in the direction of the stoma, whereas on the surface of other epidermal cells the striae formed an arrangement with different directions. The epidermis on the surface of the stigma formed regularly arranged papillae with a fan-shaped, expanded upper part which had corrugated outer walls, whereas the base of the cell formed a widened small column. The epidermis of the abaxial part of the calyx was covered by numerous non-glandular trichomes of different length which were made up of one or several cells. The glandular trichomes in the epidermis of the calyx grew with smaller density compared to the protective trichomes, and they were composed of a 1-2-celled stalk and a glandular head.

  8. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for {sup 60}Co {gamma} rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Bregadze, Y.; Korostin, S. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2003-09-15

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  9. Forward-scattered radiation from the compression paddle should be considered in glandular dose estimations

    International Nuclear Information System (INIS)

    Hemdal, B.

    2011-01-01

    From major protocols on dosimetry in mammography, there is no doubt that the incident air kerma should be evaluated without backscattered radiation to the dosemeter. However, forward-scattered radiation from the compression paddle is neglected. The aim of this work was to analyse the contribution of forward-scattered radiation for typical air kerma measurements. Measurements of forward-scatter were performed with a plane-parallel ionisation chamber on four mammography units. The forward-scatter contribution to the air kerma was 2-10 % and increased with the compression paddle thickness, but also with the half-value layer value. For incident air kerma in mammography, it can be as important to consider forward scattered as backscattered radiation. If an ionisation chamber is used, the compression paddle should be in contact with the chamber; otherwise the air kerma and absorbed dose will be underestimated. If a dosemeter based on semiconductors with much less sensitivity to scattered radiation is used, it is suggested that a forward-scatter factor (FSF) is applied. Based on the results of this work, FSF=1.06 will lead to a maximum error of ∼4 %. (authors)

  10. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department Radiation Protection and Health, Oberschleissheim (Germany); University of Manchester, The Faculty of Medical and Human Sciences, Manchester (United Kingdom)

    2013-03-15

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays - leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  11. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  12. A Survey On Mean Glandular Dose From Full-Field Digital Mammography Systems, Operate Using Mo/ Mo And W/Rh Target/ Filter Combinations

    International Nuclear Information System (INIS)

    Noriah Jamal; Siti Selina Abdul Hamid; Humairah Samad Cheung; Siti Kamariah Che Mohamed; Ellyda Muhammed Nordin; Radhiana Hassan; Rehir Dahalan

    2013-01-01

    We had conducted a survey on Mean Glandular Dose (MGD) from Full-Field Digital Mammography systems (FFDM) operate using Molybdenum/ Molybdenum (Mo/ Mo) and Tungsten/ Rhodium (W/ Rh) target/ filter combinations. A survey was carried out at two randomly selected mammography centres in Malaysia, namely National Cancer Society and International Islamic University of Malaysia. The first centre operates using a W/ Rh, while the second centre operates using an Mo/ Mo target/ filter combinations. On the basis of recorded information, data on mammographic views, MGD, age and Compressed Breast Thickness (CBT) were recorded for 100 patients, for each mammographic centre respectively. The MGD data were analyzed for variation with age group, with 5 years increment. The MGD data were also analyzed for variation with CBT, with 5 mm increment. We found that for both CC and MLO views, FFDM systems operated using Mo/ Mo and W/ Rh target/ filter combinations present the same trend on MGD. The average MGD decreases as age increases. While average MGD increases with the increasing of CBT. However, FFDM system operates using Mo/ Mo gives higher MGD as compared with FFDM system operates using W/ Rh. (author)

  13. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Jung, Joo Young; Kang, Se Sik

    2010-01-01

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  14. Evaluation of the absorbed dose to the lungs due to Xe{sup 133} and Tc{sup 99m} (MAA); Evaluacion de la dosis absorbida en los pulmones debido al Xe{sup 133} y Tc{sup 99m} (MAA)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Rojas P, E. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima (Peru); Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe{sup 133} or Tc{sup 99m} (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to {sup 133}Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the {sup 133}Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc{sup 99m} (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc{sup 99m} biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  15. Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L.

    Science.gov (United States)

    Kolb, Dagmar; Müller, Maria; Zellnig, Günther; Zechmann, Bernd

    2010-07-01

    Plants cope with cadmium (Cd) stress by complexation with phytochelatins (Pc), metallothioneins and glutathione and sequestration within vacuoles. Especially glutathione was found to play a major role in Cd detoxification as Cd shows a high binding affinity towards thiols and as glutathione is a precursor for Pc synthesis. In the present study, we have used an immunohistochemical approach combined with computer-supported transmission electron microscopy in order to measure changes in the subcellular distribution of glutathione during Cd-stress in mesophyll cells and cells of different glandular trichomes (long and short stalked) of Cucurbita pepo L. subsp. pepo var. styriaca GREB: . Even though no ultrastructural alterations were observed in leaf and glandular trichome cells after the treatment of plants with 50 microM cadmium chloride (CdCl(2)) for 48 h, all cells showed a large decrease in glutathione contents. The strongest decrease was found in nuclei and the cytosol (up to 76%) in glandular trichomes which are considered as a major side of Cd accumulation in leaves. The ratio of glutathione between the cytosol and nuclei and the other cell compartments was strongly decreased only in glandular trichomes (more than 50%) indicating that glutathione in these two cell compartments is especially important for the detoxification of Cd in glandular trichomes. Additionally, these data indicate that large amounts of Cd are withdrawn from nuclei during Cd exposure. The present study gives a detailed insight into the compartment-specific importance of glutathione during Cd exposure in mesophyll cells and glandular trichomes of C. pepo L. plants.

  16. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  17. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds.

    Science.gov (United States)

    Sugano, Kiyohiko

    2011-02-28

    The purpose of the present study was to investigate the prediction accuracy of the fully mechanistic gastrointestinal unified theoretical (GUT) framework for in vivo oral absorption of low solubility drugs. Solubility in biorelevant media, molecular weight, logP(oct), pK(a), Caco-2 permeability, dose and particle size were used as the input parameters. To neglect the effect of the low stomach pH on dissolution of a drug, the fraction of a dose absorbed (Fa%) of undissociable and free acids were used. In addition, Fa% of free base drugs with the high pH stomach was also included to increase the number of model drugs. In total twenty nine structurally diverse compounds were used as the model drugs. Fa% data at several doses and particle sizes in humans and dogs were collated from the literature (total 110 Fa% data). In approximately 80% cases, the prediction error was within 2 fold, suggesting that the GUT framework has practical predictability for drug discovery, but not for drug development. The GUT framework appropriately captured the dose and particle size dependency of Fa% as the particle drifting effect was taken into account. It should be noted that the present validation results cannot be applied for salt form cases and other special formulations such as solid dispersions and emulsion formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  19. A comparison of Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation.

    Science.gov (United States)

    Shortt, K R; Huntley, R B; Kotler, L H; Boas, J F; Webb, D V

    2006-06-01

    Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation have been compared using transfer standard ionization chambers of types NE 2561 and NE 2611A. Whilst the primary standards of air kerma are similar, both being thick-walled graphite cavity chambers but employing different methods to evaluate the Awall correction, the primary standards of absorbed dose to water are quite different. The Australian standard is based on measurements made with a graphite calorimeter, whereas the Canadian standard uses a sealed water calorimeter. The comparison result, expressed as a ratio of calibration coefficients R=N(ARPANSA)/N(NRC), is 1.0006 with a combined standard uncertainty of 0.35% for the air kerma standards and 1.0052 with a combined standard uncertainty of 0.47% for the absorbed dose to water standards. This demonstrates the agreement of the Australian and Canadian radiation dosimetry standards. The results are also consistent with independent comparisons of each laboratory with the BIPM reference standards. A 'trilateral' analysis confirms the present determination of the relationship between the standards, within the 0.09% random component of the combined standard uncertainty for the three comparisons.

  20. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans

    International Nuclear Information System (INIS)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P.

    2013-01-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography

  1. Data for absorbed dose calculations for external sources and for emitters within the body

    International Nuclear Information System (INIS)

    Hep, J.; Valenta, V.

    1976-01-01

    Tables give data for the calculation of absorbed doses from radioactivity sources accumulated in individual body organs. The tables are arranged in such manner that the gamma energy (J) absorbed in 1 kg of target organ (19 organs and total body) are given for 18 source organs (16 different organs, total doby and surrounding air) resulting from 1 decay event, this for more than 250 radioisotopes evenly distributed in the source organ (1 J/kg=100 rad). Also given are the energies of alpha and beta radiations related to one decay. In tables having the surrounding air as the source it is assumed that the intensity of the external source is 1 decay per 1 m 3 of surrounding air which is constant in the entire half-space. The tables are only elaborated for radioisotopes with a half-life of more than 1 min. (B.S.)

  2. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  3. Electrical Conductivity of Gamma Irradiated Aqueous Urea Solution and its Application for Determination of Absorbed Radiation Dose; Sife-Eldeen Dosimeter

    International Nuclear Information System (INIS)

    Sife- Eldeen, Kh.A.

    2008-01-01

    In This Study, the radiation induced electrical conductivity (RIC) of aqueous urea solutions was investigated after gamma radiolysis. It was found that the RIC depends on preirradiation urea concentration, absorbed radiation dose and storage time. At the same absorbed dose, RIC increases as preirradiation urea concentration increases. The RIC change of aqueous urea solutions reaches a maximum value at 3.5 M aqueous urea solutions. RIC of 0.133 and 3.5 M aqueous urea solutions as a function of dose, have been investigated in the range between 2.18 and 119.4 kGy. RIC of the 0.133 and 3.5 M aqueous urea solutions increased linearly with increasing dose (R 2 =0.9963, 0.9972 respectively). The calibration factors was found to be 2.1448 and 9.53 μS/kGy for sets with 0.133 and 3.5 M urea respectively .The coefficient of variation CV %, associated with RIC measurement of 3.5 M aqueous urea solution as a function of absorbed radiation dose was found to be 1.8025% and the uncertainty was found to be 3.6 % and 5.4 % for 95 % and 99 % confidence levels, respectively. The effective atomic number of 3.5 M aqueous urea solutions is 6.58, which indicates tissue equivalency of this system. The RIC values of 3.5 M aqueous urea solutions were found to be relatively stable over storage period of three weeks at 0 degree C. Accordingly, this system could be considered as a promising radiation-sensitive material for dosimetry of gamma rays in both technical and research fields

  4. Absorbed dose beam quality factors for cylindrical ion chambers: Experimental determination at 6 and 15 MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Caporali, C; Guerra, A S; Laitano, R F; Pimpinella, M [ENEA-Casaccia, Inst. Nazionale di Meterologia delle Radiazioni Ionizzanti, Rome (Italy). Dipt. Ambiente

    1996-08-01

    Ion chambers calibrated in terms of absorbed dose to water need an additional factor conventionally designed by k{sub Q} in order to determine the absorbed dose. The quantity k{sub Q} depends on beam quality and chamber characteristics. Rogers and Andreo provided calculations of the k{sub Q} factors for most commercially available ionization chambers for clinical dosimetry. Experimental determinations of the k{sub Q} factors for a number of cylindrical ion chambers have been made and are compared with the calculated values so far published. Measurements were made at 6 MV and 15 MV clinical photon beams at a point in water phantom where the ion chambers and a Fricke dosimeter were alternatively irradiated. The uncertainty on the experimental k{sub Q} factors resulted about {+-} 0.6%. The theoretical and experimental k{sub Q} values are in fairly good agreement. (author). 12 refs, 3 tabs.

  5. Glandular trichomes in Connarus suberosus (Connaraceae: distribution, structural organization and probable functions

    Directory of Open Access Journals (Sweden)

    João Donizete Denardi

    2012-03-01

    Full Text Available Connarus suberosus is a typical species of the Brazilian Cerrado biome, and its inflorescences and young vegetative branches are densely covered by dendritic trichomes. The objective of this study was to report the occurrence of a previously undescribed glandular trichome of this species. The localization, origin and structure of these trichomes were investigated under light, transmission and scanning electron microscopy. Collections were made throughout the year, from five adult specimens of Connarus suberosus near Botucatu, São Paulo, Brazil, including vegetative and reproductive apices, leaves and fruits in different developmental stages, as well as floral buds and flowers at anthesis. Glandular trichomes (GTs occurred on vegetative and reproductive organs during their juvenile stages. The GTs consisted of a uniseriate, multicellular peduncle, whose cells contain phenolic compounds, as well as a multicellular glandular portion that accumulates lipids. The glandular cell has thin wall, dense cytoplasm (with many mitochondria, plastids and dictyosomes, and a large nucleus with a visible nucleolus. The starch present in the plastids was hydrolyzed during the synthesis phase, reducing the density of the plastid stroma. Some plastids were fused to vacuoles, and some evidence suggested the conversion of plastids into vacuoles. During the final activity stages of the GTs, a darkening of the protoplasm was observed in some of the glandular cells, as a programmed cell death; afterwards, became caducous. The GTs in C. suberosus had a temporal restriction, being limited to the juvenile phase of the organs. Their presence on the exposed surfaces of developing organs and the chemical nature of the reserve products, suggest that these structures are food bodies. Field observations and detailed studies of plant-environment interactions, as well as chemical analysis of the reserve compounds, are still necessary to confirm the role of these GTs as feeding

  6. Absorbed energy for radiation crosslinking in stabilized PE systems

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)

  7. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  8. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  9. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    International Nuclear Information System (INIS)

    Angel, Erin; Yaghmai, Nazanin; Jude, Cecilia Matilda; DeMarco, John J; Cagnon, Christopher H; Goldin, Jonathan G; McNitt-Gray, Michael F; Primak, Andrew N; McCollough, Cynthia H; Stevens, Donna M; Cody, Dianna D

    2009-01-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were

  10. Analyse of the international recommendations on the calculation of absorbed dose in the biota

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Universidade Federal Fluminense; Kelecom, Alphonse

    2011-01-01

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  11. Evaluation of the image quality criteria and study of doses in a mammography department

    International Nuclear Information System (INIS)

    Alcantara, Marcela Costa

    2009-01-01

    The mammographic image quality criteria published by European Commission were implemented in three mammography equipment of a same radiology department in a hospital of Sao Paulo city. Among the mammography equipment, two use the screen-film system and one of them uses the indirect digital system. During the data collection, it was noted the need to conduct a study about image rejection in each mammography equipment. Therefore, this study was realized and, after that, the results in each mammography equipment of image rejection and image percentage that present each quality criterion it were compared. At the same time of this studies, it was realized other study about surface entrance dose and average glandular dose. These doses it was estimated based on different methods published by different groups of researcher, for all combinations anode filter available in the equipment. To estimate the surface entrance dose following the methodology published in Avenue's' guide and the average glandular dose following the Wu' methodology, it was developed a phantom, in different thicknesses of acrylic, to simulate a breast. Finally, the image quality it was associated with the dose received by patient. The digital equipment shows better results in the evaluation of quality criteria, lower rate of image rejection and lower values of average glandular dose and surface entrance dose in all methods studied. But it is not sufficient, because is not adequate for patients with great breast. (author)

  12. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  13. Sci-Sat AM: Brachy - 03: Feasibility study of the determination of absorbed dose to water using a fricke based system.

    Science.gov (United States)

    Gamal, I El; Cojocaru, C; Ross, C; Marchington, D; McEwen, M

    2012-07-01

    By measuring the dose to water directly a metrology standard, independent of air kerma, can be developed to make the basis of HDR brachytherapy dosimetry consistent with current dosimetry methods for external radiation beams. The Fricke dosimeter system, a liquid chemical dosimeter, provides a means of measuring the absorbed dose rate to water directly by measuring the radiation-induced change in absorption of the Fricke solution. In an attempt to measure the absorbed dose to water directly for a 192 Ir HDR brachytherapy source a ring shaped Fricke holder was constructed from PMMA, essentially following the work of Austerlitz et al. (Med. Phys. 2008). Benchmark measurements conducted in a 60 Co beam yielded a standard uncertainty in the absorption reading of 0.16 %, comparable with previous results in the literature. Measurements of the standard uncertainty of the control (unirradiated) solution using the holder yielded 0.2 %, indicating good process control and minimal contamination from the holder itself. However, it was found that the holder sealing method (to allow measurements in a water phantom) significantly contaminated the Fricke solution, resulting in an excessive background reading. Irradiations were therefore conducted in air to determine the feasibility of the procedure. Irradiations with a 17 GBq source gave a standard uncertainty of approximately 0.5 %, indicating that the target uncertainty of 1.5% for the measurement of absorbed dose to water using a Fricke-based primary standard is achievable. This would be comparable with calorimeter-based systems currently being developed. © 2012 American Association of Physicists in Medicine.

  14. Intercomparison of absorbed dose to water and air-kerma based dosimetry protocols for photon and electron beams

    International Nuclear Information System (INIS)

    Huq, M.S.

    2002-01-01

    Full text: During the last three decades the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM) and organizations from various countries have published Codes of Practice (CoP) and dosimetry protocols for the calibration of high-energy photon and electron beams. They are based on the air-kerma or exposure calibration factor of an ionization chamber in a 60 Co gamma ray beam and formalism for the determination of absorbed dose to water in reference conditions. In recent years, the IAEA (IAEA TRS-398) and the AAPM (AAPM TG-51) have published new external beam dosimetry protocols that are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. These two new protocols follow those by the German Standard DIN, the British IPSM and the IAEA CoP for plane-parallel chambers, which have discussed and implemented the procedures for the determination of absorbed dose-to-water based on standards of absorbed dose-to-water. Since the publication of these protocols and CoPs, many comparisons, theoretical as well as experimental, between them have been published in the literature providing valuable information about the sources of similarities and discrepancies that exist among them. For example, the differences in the basic data for photon and electron beams included in the various IAEA CoPs are very small for the second edition of TRS-277 for photons, TRS-381 for electrons and TRS-398. In these cases the data changes posed by the adoption of TRS-398 are within about ±0.3% for the most commonly used energies. When implementing TRS-398 in these cases, the main difference will arise from the transition from K air to D w standards. For example, experimental comparison of absorbed doses between TRS-398 and TRS-277 for photons show an average difference of about 0.3% for most commonly used energies with a maximum difference of about 1% at a TPR 20

  15. Comparing calibration methods of electron beams using plane-parallel chambers with absorbed-dose to water based protocols

    International Nuclear Information System (INIS)

    Stewart, K.J.; Seuntjens, J.P.

    2002-01-01

    Recent absorbed-dose-based protocols allow for two methods of calibrating electron beams using plane-parallel chambers, one using the N D,w Co for a plane-parallel chamber, and the other relying on cross-calibration of the plane-parallel chamber in a high-energy electron beam against a cylindrical chamber which has an N D,w Co factor. The second method is recommended as it avoids problems associated with the P wall correction factors at 60 Co for plane-parallel chambers which are used in the determination of the beam quality conversion factors. In this article we investigate the consistency of these two methods for the PTW Roos, Scanditronics NACP02, and PTW Markus chambers. We processed our data using both the AAPM TG-51 and the IAEA TRS-398 protocols. Wall correction factors in 60 Co beams and absorbed-dose beam quality conversion factors for 20 MeV electrons were derived for these chambers by cross-calibration against a cylindrical ionization chamber. Systematic differences of up to 1.6% were found between our values of P wall and those from the Monte Carlo calculations underlying AAPM TG-51, and up to 0.6% when comparing with the IAEA TRS-398 protocol. The differences in P wall translate directly into differences in the beam quality conversion factors in the respective protocols. The relatively large spread in the experimental data of P wall , and consequently the absorbed-dose beam quality conversion factor, confirms the importance of the cross-calibration technique when using plane-parallel chambers for calibrating clinical electron beams. We confirmed that for well-guarded plane-parallel chambers, the fluence perturbation correction factor at d max is not significantly different from the value at d ref . For the PTW Markus chamber the variation in the latter factor is consistent with published fits relating it to average energy at depth

  16. Speculation on improving personal dosimetry in mammography

    International Nuclear Information System (INIS)

    Nicoll, J.J.

    1996-01-01

    The increasing importance of radiation protection of the patient in diagnostic radiology has created an interest in the dose individuals receive from X-ray mammography, although this is an area where the most important aspect of protection is based on the inter comparison of machines using phantoms and standard conditions. In 1987 the ICRP established the critical quantity as being the average absorbed dose to the glandular tissue of the breast, and identified a composition of 50% adipose; 50% glandular tissue as a reference. Several authors have published experimental and monte carlo simulation resuluts to enable the determination of this quantity from output, beam quality and compressed breast thickness. Many centres, including ourselves, have studied the distribution of radiation dose on this basis. The result is however dependant on the assumption made about tissue composition. It is apparently common knowledge among pathologists and frequently mentioned in general anatomy texts, that the amount of glandular tissue is independent of breast size; that is larger breasts will have a higher adipose:glandular tissue ratio. Such a systematic variation would lead to an overestimate of the dose being received by women with larger breasts. I will review the availabe pathology and demonstrate the effect of applying the assumed breast composition on our own data. (author)

  17. Influence of thyroid volume reduction on absorbed dose in "1"3"1I therapy studied by using Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Rahman, Ziaur; Arshed, Waheed; Ahmed, Waheed; Mirza, Sikander M.; Mirza, Nasir M.

    2014-01-01

    A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of "1"3"1I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm"3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (± 6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for "1"3"1I radiotherapy of the thyroid. (authors)

  18. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    International Nuclear Information System (INIS)

    Chen Jing

    2008-01-01

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap

  20. X-ray dosimetry in mammography for W/Mo and Mo/Mo combinations utilizing Compton spectrometry

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Herdade, Silvio B.; Furquim, Tania A.C.

    2009-01-01

    Mean Glandular Dose (MGD) cannot be measured directly in mammography equipment. Therefore, methods based on Compton spectrometry are alternatives to evaluate dose distributions in a standard breast phantom, as well as mean glandular dose. In this work, a CdTe detector was used for the spectrometry measurements of radiation scattered by compton effect, at nearly 90, by a PMMA cylinder. For this, the reconstruction of primary beam spectra from the scattered ones has been made using Klein-Nishina theory and Compton formalism, followed by a determination of incident air kerma, absorbed dose values in the breast phantom and, finally, MGD. Incident and attenuated X-ray spectra and depth-dose distributions in a BR-12 phantom have been determined and are presented for the mammography range (28 to 35kV), showing good agreement with previous literature data, obtained with TLD. (author)