WorldWideScience

Sample records for absorbed gamma dose

  1. Variation of PM-355 properties by high gamma absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Energy Resources Div.; Hala, A.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.; Farhat, M. [Alshifa Medical Syringes Mfg. Co. Ltd., Dammam (Saudi Arabia)

    1997-02-01

    PM-355 super grade nuclear track detectors were exposed to high gamma absorbed doses up to 5 x 10{sup 5} Gy (50 Mrad), with an incremental dose of 2.5 x 10{sup 4} Gy, from a 9.03 PBq (244 kCi) Co-60 source. Results indicate that each of the bulk etch rate (V{sub b}), the track etch rate (V{sub t}) and the sensitivity (V) of the detectors increases with the high gamma absorbed dose, but there is a drop in these parameters at the low gamma absorbed dose. The V{sub b}`s for all gamma absorbed doses decreased while their V{sub t}`s and V increased with increasing etching time. Signs of surface roughness were observed by increasing the gamma absorbed doses and changes in color observed for doses larger than 2 x 10{sup 5} Gy. The temperature of the detectors during irradiation reached 40{sup o}C. The fission fragment tracks (from a Cf-252 source) disappeared quickly within the etching time (minutes), for total absorbed doses greater than 3 x 10{sup 5} Gy, due to their high bulk etch rate. (author).

  2. Determination of. gamma. -ray absorbed dose rates in air above igneous and sedimentary rocks on SW Dartmoor

    Energy Technology Data Exchange (ETDEWEB)

    Day, L.R.; Zumpe, H.H. (North East London Polytechnic (UK))

    1984-01-01

    Calculations have been made to determine the ..gamma..-ray absorbed dose rate in air above different types of rock using a single group radiation attenuation model. The results obtained are then compared with dose rates measured with a compensated environmental Geiger-Muller counter. The measurements were made above granite, slate, and dolerite and also on alluvium overlying granite. The comparison shows good agreement between measured and calculated dose rates taking into account the limitations inherent in both the calculations and measurements.

  3. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized by the B...

  4. Development of a mid-head radiation dose response function. [Phantom determinations of neutron and. gamma. absorbed doses in mid-brain for military applications

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D. K.; Knight, J. R.; Bartine, D. E.; Pace, III, J. V.

    1979-02-01

    Calculations have been made of the incident neutron and gamma-ray absorbed dose response as a function of energy in the mid-head position of a phantom model. The calculations were performed with the DOT discrete ordinates transport code in the adjoint mode using co-axial cylinders to represent the head and torso. Results, given in a coupled 37-neutron-group, 21-gamma-ray-group structure (37/21) and a 22-neutron-group, 18-gamma-ray-group structure (22/18), are compared with previously obtained results. The mid-head response is less than the conventional radiation protection fluence-to-dose factors which are based on maximum phantom values. In the case of a fission source in air the neutron dose is about a factor of 4 less, and the secondary gamma-ray dose is about a factor of 1.5 less. For a fusion source the neutron dose ratio varies from about 1.9 at close range to about 3. The gamma-ray dose ratio is about the same as for the fission source. Tables of the various response functions are presented in the Appendix A.

  5. Absorbed dose calculation from beta and gamma rays of 131I in ellipsoidal thyroid and other organs of neck with MCNPX code

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2012-09-01

    Full Text Available Background: The 131I radioisotope is used for diagnosis and treatment of hyperthyroidism and thyroid cancer. In optimized Iodine therapy, a specific dose must be reached to the thyroid gland with minimum radiation to the cervical spine, cervical vertebrae, neck tissue, subcutaneous fat and skin. Dose measurement inside the alive organ is difficult therefore the aim of this research was dose calculation in the organs by MCNPX code. Materials and Methods: First of all, the input file for MCNPX code has been prepared to calculate F6 and F8 tallies for ellipsoidal thyroid lobes with long axes is tow times of short axes which the 131I is distributed uniformly inside the lobes. Then the code has been run for F6 and F8 tallies for variation of lobe volume from 1 to 25 milliliters. From the output file of tally F6, the gamma absorbed dose in ellipsoidal thyroid, spinal neck, neck bone, neck tissue, subcutaneous fat layer and skin for the volume lobe variation from 1 ml to 25 ml have been derived and the graphs are drew. As well as, form the output of F8 tally the absorbed energy of beta in thyroid and soft tissue of neck is obtained and listed in the table and then absorbed dose of bate has been calculated. Results: The results of this research show that for constant activity in thyroid, the absorbed dose of gamma decreases about 88.3% in thyroid, 6.9% at soft tissue, 19.3% in adipose layer and 17.4% in skin, but it increases 32.1% in spinal of neck and 32.3% in neck bone when the lobe volume varied from 1 to 25 milliliters. For the same situation, the beta absorbed dose decreases 95.9% in thyroid and 64.2% in soft tissue. Conclusion: For the constant activity in thyroid by increasing the thyroid volume, absorbed dose of gamma in thyroid and soft tissue of neck, adipose layer under the skin and skin of neck decreased, but it increased at spinal of neck and neck bone. Also, by increasing of the lobe volume in constant activity, the beta absorbed dose

  6. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  7. [Absorbed doses in dental radiology].

    Science.gov (United States)

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  8. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  9. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  10. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  11. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba; Automatizacion del monitoreo en tiempo real de la tasa de dosis absorbida en aire debido a la radiacion gamma ambiental en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Manzano de Armas, J.F.; Alonso A, D.; Prendes A, M.; Zerquera, J.T.; Caveda R, C.A. [CPHR, Calle 20, No. 4113 e/41 y 47, Playa, La Habana, 11300, A.P. 6195 C.P. 10600 (Cuba); Kalberg, O. [Swedish Radiation Protection Institute (SSI) (Sweden); Fabelo B, O.; Montalvan E, A. [CIAC, Camaguey (Cuba); Cartas A, H. [CEAC, Cienfuegos (Cuba); Leyva F, J.C. [CISAT (Cuba)]. e-mail: orlando@cphr.edu.cu

    2006-07-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  12. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, Universite de Lyon 1, IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne cedex (France); Krimmer, J.; Freud, N.; L' etang, J.M. [Universite de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA - Lyon, Universite Lyon 1, Centre Leon Berard (France); Herault, J.; Amblard, R.; Angellier, G. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  13. Radiation absorbed dose during special extra-oral radiography

    Science.gov (United States)

    Farag, Hamed I.; Abdel Latif, Zeinab A. S.; Hamed, Abdel Fattah A.

    1996-05-01

    The absorbed dose from radiographic examinations of adult patients using extra-oral dental radiography as lateral-oblique and postero-anterior views was examined. The absorbed dose at various sites in the head and neck was measured with thermoluminescent dosimeters (TLD). The maximum absorbed dose for both radiographic views is located at the point of entry. The absorbed doses in the various sites are compared and discussed in both techniques.

  14. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air; Espectrometria gama aerea da provincia uranifera de Lagoa Real (Caetite, BA): aspectos geoambientais e distribuicao da dose absorvida no ar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Esau Francisco Sena

    2006-07-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km{sup 2}. Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h{sup -1}), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  15. The changes in optical absorbance of ZrO{sub 2} thin film with the rise of the absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Abayli, D., E-mail: abayli@itu.edu.tr; Baydogan, N., E-mail: dogannil@itu.edu.tr [Energy Institute, Istanbul Technical University, Ayazaga Campus, 34469, Istanbul (Turkey)

    2016-03-25

    In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  16. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations

    Science.gov (United States)

    Siebers, J. V.; Keall, P. J.; Nahum, A. E.; Mohan, R.

    2000-04-01

    Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while for cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the field for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for 60 Co to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.

  17. Diamond gamma dose rate monitor; Debitmetre gamma en diamant

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A.; Chambaud, P.; Tromson, D.; Bergonzo, P.; Foulon, F.; Joffre, F. [CEA Saclay, Dept. d' Electronique et d' Instrumentation Nucleaire, LETI, 91 - Gif-sur-Yvette (France)

    1999-07-01

    CVD (chemical vapor deposition) diamond detectors for X and gamma dose rate monitoring have been fabricated and tested in the 1 mGy/h to 1 kGy/h range. They show excellent performances in terms of sensitivity and linearity. Radiation hardness measurement under 60-Co gamma rays have demonstrated long term stability for integrated doses up to 500 kGy. (authors)

  18. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially avail...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  19. Absorbed doses in tissue-equivalent spheres above radioactive sources in soil

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, Alexander [Institute for Radiation Protection, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany)

    2014-11-15

    Doses due to external exposure of terrestrial biota are assessed using differential air kerma from radioactive sources in soil and energy-dependent 'absorbed dose-per-air kerma' conversion factors computed for spherical tissue-equivalent bodies. The presented approach allows computing average whole body absorbed dose for terrestrial organisms with body masses from 1 mg to 1,000 kg located at heights from 10 cm to 500 m above ground. Radioactive sources in soil emitting photons with energies from 10 keV to 10 MeV have been considered. Interpolation of the computed quantities over source energy, body mass, and height above ground results in plausible estimates of whole body average absorbed doses for non-human terrestrial biota from gamma-radiation emitted by any radionuclides in contaminated terrain. (orig.)

  20. Comparison of absorbed doses resulting from various intraoral periapical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Ae; Park, Tae Won [Dept. of Oral and Maxillofacial Radiology, Graduate School, Seoul National University, Seoul (Korea, Republic of)

    1995-08-15

    This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film (14 films) and to compare the five periapical techniques. Thermoluminescent crystals (TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X-ray machine was operated at 70 kVp and round collimating film holding device (XCP) and rectangular collimating film holding device (Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The following results obtained; 1. The absorbed dose was the highest in bone marrow of mandibular body (5.656 mGy) and the lowest in brain (0.050 mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangualr collimating film holding device compared to XCP film holding device (p<0.05). 4. No statistically significant reduction in the absorbed dose was found as cylinder length was change (p>0.05).

  1. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  2. Thyroid absorbed dose using TLDs during mammography

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F. (Mexico); Davila M, P., E-mail: biomedica.sst@gmail.com [UNEME-DEDICAM de Ciudad Victoria, Circuito Medico s/n, 87087 Ciudad Victoria, Tamaulipas (Mexico)

    2015-10-15

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  3. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  4. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  5. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  6. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  7. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  8. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  9. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water

    Science.gov (United States)

    Dogan, N.; Siebers, J. V.; Keall, P. J.

    2006-10-01

    Conventional photon radiation therapy dose-calculation algorithms typically compute and report the absorbed dose to water (Dw). Monte Carlo (MC) dose-calculation algorithms, however, generally compute and report the absorbed dose to the material (Dm). As MC-calculation algorithms are being introduced into routine clinical usage, the question as to whether there is a clinically significant difference between Dw and Dm remains. The goal of the current study is to assess the differences between dose-volume indices for Dm and Dw MC-calculated IMRT plans. Ten head-and-neck (H&N) and ten prostate cancer patients were selected for this study. MC calculations were performed using an EGS4-based system. Converting Dm to Dw for MC-based calculations was accomplished as a post-MC calculation process. Dw and Dm results for target and critical structures were evaluated using the dose-volume-based indices. For H&N IMRT plans, systematic differences between dose-volume indices computed with Dw and Dm were up to 2.9% for the PTV prescription dose (D98), up to 5.8% for maximum (D2) dose to the PTV and up to 2.7% for the critical structure dose indices. For prostate IMRT plans, the systematic differences between Dw- and Dm-based computed indices were up to 3.5% for the prescription dose (D98) to the PTVs, up to 2.0% for the maximum (D2) dose to the PTVs and up to 8% for the femoral heads due to their higher water/bone mass stopping power ratio. This study showed that converting Dm to Dw in MC-calculated IMRT treatment plans introduces a systematic error in target and critical structure DVHs. In some cases, this systematic error may reach up to 5.8% for H&N and 8.0% for prostate cases when the hard-bone-containing structures such as femoral heads are present. Ignoring differences between Dm and Dw will result in systematic dose errors ranging from 0% to 8%.

  10. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  11. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections.

    Science.gov (United States)

    Berge, T I; Wøhni, T

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  12. A descriptive and broadly applicable model of therapeutic and stray absorbed dose from 6 to 25 MV photon beams.

    Science.gov (United States)

    Schneider, Christopher W; Newhauser, Wayne D; Wilson, Lydia J; Schneider, Uwe; Kaderka, Robert; Miljanić, Saveta; Knežević, Željka; Stolarcyzk, Liliana; Durante, Marco; Harrison, Roger M

    2017-07-01

    To develop a simple model of therapeutic and stray absorbed dose for a variety of treatment machines and techniques without relying on proprietary machine-specific parameters. Dosimetry measurements conducted in this study and from the literature were used to develop an analytical model of absorbed dose from a variety of treatment machines and techniques in the 6 to 25 MV interval. A modified one-dimensional gamma-index analysis was performed to evaluate dosimetric accuracy of the model on an independent dataset consisting of measured dose profiles from seven treatment units spanning four manufacturers. The average difference between the calculated and measured absorbed dose values was 9.9% for those datasets on which the model was trained. Additionally, these results indicate that the model can provide accurate calculations of both therapeutic and stray radiation dose from a wide variety of radiotherapy units and techniques. We have developed a simple analytical model of absorbed dose from external beam radiotherapy treatments in the 6 to 25 MV beam energy range. The model has been tested on measured data from multiple treatment machines and techniques, and is broadly applicable to contemporary external beam radiation therapy. © 2017 American Association of Physicists in Medicine.

  13. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...

  14. Dose absorbed by technologists in positron emission tomography procedures with FDG

    Directory of Open Access Journals (Sweden)

    Ademir Amaral

    2007-09-01

    Full Text Available The objective of this work was to evaluate radiation doses delivered to technologists engaged in different tasks involving positron emission tomography (PET studies with FDG (fluorodeoxyglucose. This investigation was performed in two French nuclear medicine departments, which presented significant differences in their arrangements and radiation safety conditions. Both centers administered about 300 MBq per PET/CT study, although only one of them is a dedicated clinical PET center. Dose equivalent Hp(10 and skin dose Hp(0.07 were measured using Siemens electronic personnel dosimeters. For assessment dose absorbed by hands during drawing up of tracer and injection into the patient, a Polimaster wristwatch gamma dosimeter was employed. Absorbed dose and the time spent during each investigated task were recorded for a total of 180 whole-body PET studies. In this report, the methodology employed, the results and their radioprotection issues are presented as well as discussed.O objetivo deste trabalho foi o de avaliar doses absorvidas por profissionais de saúde em diferentes tarefas relacionadas à tomografia por emissão de pósitrons com [18F]-FDG (fluordesoxiglicose. Esta pesquisa foi realizada em dois centros de medicina nuclear na França, os quais apresentavam diferenças significativas em sua organização e radioproteção. Esses centros aplicavam aproximadamente 300 MBq por exame PET/CT, embora apenas um deles correspondesse a um serviço de medicina nuclear dedicado a exames por PET. A dose equivalente (Hp(10 e a dose na pele Hp(0,07 foram medidas usando dosímetros eletrônicos (Siemens. Para avaliação da dose nas mãos do tecnologista durante a preparação do radiofármaco e durante injeção no paciente, um dosímetro tipo relógio de pulso (Polimaster foi empregado. A dose absorvida e o tempo empregado durante cada tarefa foram registrados para um total de 180 exames de corpo inteiro através da PET. Neste trabalho, a metodologia

  15. Dose assessment due to terrestrial gamma radiation in Ibadan ...

    African Journals Online (AJOL)

    The activities of primordial radionuclides in surface soil at Ibadan, South-Western Nigeria have been measured with a 7.6cm x 7.6cm NaI(TL) detector. The mean absorbed dose rate, annual effective dose and the collective effective dose at Ibadan were evaluated from measurement of 40K; 238U; 232Th activities and their ...

  16. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.H. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: shs_barc@yahoo.com; Mukherjee, T. [Radiation Safety Systems Division, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2007-02-15

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10{sup -4}moldm{sup -3} and xylenol orange with 2.5x10{sup -1}moldm{sup -3} of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%.

  17. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  18. Evaluation of absorbed dose and image quality in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hemdal, Bengt

    2009-07-01

    Mammography refers to the X-ray examination of the human breast, and is considered the single most important diagnostic tool in the early detection of breast cancer, which is by far the most common cancer among women. There is good evidence from clinical trials, that mammographic screening can reduce the breast cancer mortality with about 30%. The side effects include a small and age related risk of carcinogenesis due to the exposure of the glandular tissues in the breast to ionising radiation. As for all X-ray examinations, and of special importance when investigating large populations of asymptomatic women, the relationship between radiation risk and diagnostic accuracy in mammography must be optimised. The overall objective of this thesis was to investigate and improve methods for average glandular dose (AGD) and image quality evaluation in mammography and provide some practical guidance. Dose protocols used for so-called reference dose levels in Sweden 1989 (Nordic) and 1998 (European) were compared in a survey of 32 mammography units. The study showed that the AGD values for a 'standard breast' became 5+-2% (total variation 0-9%) higher at clinical settings, when estimated according to the European protocol. For the Sectra MDM, a digital mammography (DM) unit with a scanning geometry, it was impossible to follow procedures for characterisation of the X-ray beam (HVL=half value layer) specified in the European protocol. In an experimental setup, it was shown that non-invasive measurements of HVL can be performed accurately with a sensitive and well collimated semiconductor detector with simultaneous correction for the energy dependence. AGD values could then be estimated according to 3 different dose protocols. A dosimetry system based on radioluminescence and optically stimulated luminescence from Al2O3:C crystals was developed and tested for in vivo absorbed dose measurements. It was shown that both entrance and exit doses could be measured and that

  19. Absorbed dose determination in photon fields using the tandem method

    CERN Document Server

    Marques-Pachas, J F

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF sub 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with sup 9 sup 0 Sr- sup 9 sup 0 Y, calibrated with the energy of sup 6 sup 0 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than ...

  20. Evaluation using GEANT4 of the transit dose in the Tunisian gamma irradiator for insect sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Mannai, K. [Unite de Recherche de Physique Nucleaire et des Hautes energies, Departement de Physique, Faculte des Sciences de Tunis, El-Manar 2092 (Tunisia); Askri, B. [Unite de Recherche de Physique Nucleaire et des Hautes energies, Departement de Physique, Faculte des Sciences de Tunis, El-Manar 2092 (Tunisia); Loussaief, A. [Unite de Recherche de Physique Nucleaire et des Hautes energies, Departement de Physique, Faculte des Sciences de Tunis, El-Manar 2092 (Tunisia); Trabelsi, A. [Unite de Recherche de Physique Nucleaire et des Hautes energies, Departement de Physique, Faculte des Sciences de Tunis, El-Manar 2092 (Tunisia); Centre National des Sciences et Technologies Nucleaires, Technopole de Sidi-Thabet 2020 (Tunisia); E-mail: adel.trabelsi@cern.ch

    2007-06-15

    A simulation study of the Tunisian Gamma Irradiation Facility for sterile insects release programs has been realized using the GEANT4 Monte Carlo code of CERN. The dose was calculated and measured for high and low dose values inside the irradiation cell. The calculated high dose was in good agreement with measurements. However, a discrepancy between calculated and measured values occurs at dose levels commonly used for sterilization of insects. We argue that this discrepancy is due to the transit dose absorbed during displacement of targets from their initial position towards their irradiation position and displacement of radiation source pencils from storage towards their irradiation position. The discrepancy is corrected by taking into account the transit dose.

  1. Dose-Response Curve of Chromosome Aberrations in Human Lymphocytes Induced by Gamma-Rays

    Directory of Open Access Journals (Sweden)

    Y. Lusiyanti

    2013-12-01

    Full Text Available Chromosome aberration is a biomarker to predict the level of cell damage caused by exposure to ionizing radiation on human body. Dicentric chromosome is a specific chromosome aberration caused by ionizing radiation and is used as a gold standard biodosimetry of individuals over exposed to ionizing radiation. In radiation accident the dicentric assays has been applied as biological dosimetry to estimate radiation absorbed dose and also to confirm the radiation dose received to radiation workers.The purpose of this study was to generate a dose response curve of chromosome aberration (dicentric in human lymphocyte induced by gamma radiation. Peripheral blood samples from three non smoking healthy volunteers aged between 25-48 years old with informed consent were irradiated with dose between 0.1-4.0 Gy and a control using gamma teletherapy source. The culture procedure was conducted following the IAEA standard procedures with slight modifications. Analysis of dose-response curves used was LQ model Y = a + αD + βD2. The result showed that α and β values of the curve obtained were 0.018 ± 0.006 and 0.013 ± 0.002, respectively. Dose response calibration curve for dicentric chromosome aberrations in human lymphocytes induced by gamma-radiation fitted to linear quadratic model. In order to apply the dose response curve of chromosome aberration disentric for biodosimetry, this standar curve still need to be validated.

  2. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  3. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  4. ABSORBANCE AND CONDUCTIVITY OF ANILINE HYDROCHLORIDE/ POLYVINYL ALCOHOL FILMS (AN/PVA FOR HIGHH LEVEL GAMMA RADIATION DOSIMETRY FROM 2 kGY UP TO 10 kGY

    Directory of Open Access Journals (Sweden)

    AHMED OMAR

    2014-08-01

    Full Text Available The changes of optical and electrical properties of aniline hydrochloride/polyvinyl alcohol films (AN/PVA influenced by gamma radiation for the purpose of gamma dosimetry are presented in this work. Optically, by exposing films to doses of gamma radiation from 0 to 10 kGy, films showed visually apparent gradual change in color from violet to yellow green with increase of absorbance at 424 nm. Electrical conductivity also was increased regularly in the same dose range. It can be suggested that aniline hydrochloride in the AN/PVA form may be used for dosimetry for the mentioned dose range.

  5. Spectroscopic gamma camera for use in high dose environments

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  6. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  7. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    Science.gov (United States)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  8. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Vettese, F.; Donichak, C.; Bourgeault, P. [DGA/Centre d`etudes du Bouchet/DPN, 31 - Toulouse (France)

    1995-12-31

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.). 10 refs.

  9. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  10. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  11. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  12. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  13. Natural radioactivity in some building materials in Cuba and their contribution to the indoor gamma dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Brigido Flores, Osvaldo; Barreras Caballero, Aldo A.; Montalvan Estrada, Alberto; Queipo Garcia, Maite [Ministerio de Ciencia, Tecnologia y Medio Ambiente, Camaguey (Cuba). Centro de Atencion a la Actividad Nuclear. Lab. de Vigilancia Radiologica Ambiental]. E-mail: sean@caonao.cmw.inf.cu; Zerquera, Juan Tomas [Ministerio de Ciencia, Tecnologia y Medio Ambiente, La Habana (Cuba). Agencia de Energia Nuclear. Centro de Proteccion y Higiene de las Radiaciones

    2001-07-01

    The natural radioactivity of some building materials commonly used in Cuba was measured by gamma spectrometry. Typical concentrations, so far encountered, are in the ranges: 47 to 2511 Bq.kg{sup -1} for {sup 40} K; 9 to 71 Bq.kg{sup -1} for {sup 226} Ra; and 2 to 38 Bq.kg{sup -1} for {sup 232} Th. The external gamma ray absorbed doses in indoor air, and the corresponding effective dose equivalents in a typical dwelling are presented in this work. (author)

  14. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms.

    Science.gov (United States)

    Choi, E; Ford, N L

    2015-01-01

    Design and construct child and adolescent head phantoms to measure the absorbed doses imparted during dental CBCT and compare with the absorbed dose measured in an adult phantom. A child phantom was developed to represent the smallest patients receiving CBCT, usually for craniofacial developmental concerns, and an adolescent phantom was developed to represent healthy orthodontic patients. Absorbed doses were measured using a thimble ionization chamber for the custom-built child and adolescent phantoms and compared with measurements using a commercially available adult phantom. Imaging was performed with an i-CAT Next Generation (Imaging Sciences International, Hatfield, PA) CBCT using two different fields of view covering the craniofacial complex (130 mm high) or maxilla/mandible (60 mm high). Measured absorbed doses varied depending on the location of the ionization chamber within the phantoms. For CBCT images obtained using the same protocol for all phantoms, the highest absorbed dose was measured in all locations of the small child phantom. The lowest absorbed dose was measured in the adult phantom. Images were obtained with the same protocol for the adult, adolescent and child phantoms. A consistent trend was observed with the highest absorbed dose being measured in the smallest phantom (child), while the lowest absorbed dose was measured in the largest phantom (adult). This study demonstrates the importance of child-sizing the dose by using dedicated paediatric protocols optimized for the imaging task, which is critical as children are more sensitive to harmful effects of radiation and have a longer life-span post-irradiation for radiation-induced symptoms to develop than do adults.

  15. Two Dimensional Verification of the Dose Distribution of Gamma Knife Model C using Monte Carlo Simulation with a Virtual Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.

  16. Influence of lead apron shielding on absorbed doses from panoramic radiography

    National Research Council Canada - National Science Library

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom...

  17. Influence of lead apron shielding on absorbed doses from panoramic radiography

    National Research Council Canada - National Science Library

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO® full body phantom...

  18. Absorbed dose evaluations in retrospective dosimetry: Methodological developments using quartz

    DEFF Research Database (Denmark)

    Bailiff, I.K.; Bøtter-Jensen, L.; Correcher, V.

    2000-01-01

    Dose evaluation procedures based on luminescence techniques were applied to 50 quartz samples extracted from bricks that had been obtained from populated or partly populated settlements in Russia and Ukraine downwind of the Chernobyl NPP. Determinations of accrued dose in the range similar to 30...

  19. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  20. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  1. The Distribution of Neutron Absorbing Time in the Neutron Detector of the GAMMA-400 Space Observatory

    Science.gov (United States)

    Gnezdilov, I. I.; Mukhin, V. I.; Demichev, M. A.

    The neutron detectors (ND) have been designed for the future GAMMA-400 space observatory with 3He-counters and 6LiF/ZnS(Ag) scintillation screens. The ND contribution in the rejection factor for protons in the GAMMA-400 is considered with significantly different number of neutrons generated in the electromagnetic and hadronic cascades. The ND is predominantly made from polyethylene, it has sizes of 100×100×10 cm3. GEANT4 simulation was obtained by the differential distribution of neutron absorbing time as the function of the registration time for different 3He, 6Li concentration. Nomograms were constructed for determining neutrons miscount depending on the number of neutrons crossing the ND and time resolution of the ND. The simulation results showed that the ND with 33 3He-counters detected the neutron fluence 0.23 n/cm2 without neutrons miscount.

  2. Variations of radon concentration in the atmosphere. Gamma dose rate

    Science.gov (United States)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  3. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  4. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  5. A Proposal for the Absorbed Dose to Water Dosimetry for Flattening Filter-free Beams.

    Science.gov (United States)

    Katayose, Tetsurou; Kawachi, Toru; Miyasaka, Ryohei; Kodama, Takumi; Takase, Nobuhiro; Iriyama, Eri; Chang, Weishan; Saitoh, Hidetoshi

    2016-01-01

    Flattening filter-free (FFF) beams generated by linear accelerators have been widely adopted in many hospitals recently for radiation therapy. FFF technology can provide higher dose rates so that shortening of the treatment time and less intra-fraction motion error are expected.In Japan, the current way of determining absorbed dose to water for FFF beams is to follow the Standard Dosimetry 12 protocol which was developed for flattened beams. Since it has been reported that the flattened beams and FFF beams have different beam properties, it is necessary to evaluate the usefulness of Standard Dosimetry 12 protocol for FFF beam dosimetry.This report reviews physical and dosimetric properties of FFF beams especially in terms of the effect on absorbed dose to water dosimetry using an ionization chamber. From the review, it became evident that the absorbed dose to water is underestimated by volume averaging effect of the ionization chamber. On the other hand, the absorbed dose to water is overestimated by using the beam-quality specifier TPR 20,10 to predict the restricted mass collision stopping power ratio for FFF beams. Therefore, an alternative method was proposed for absorbed dose to water dosimetry of FFF beams based on Standard Dosimetry 12.

  6. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  7. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    Science.gov (United States)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  8. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  9. Absorbed dose calculations using mesh-based human phantoms and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2010-07-01

    Full text. Health risks attributable to ionizing radiation are considered to be a function of the absorbed dose to radiosensitive organs and tissues of the human body. However, as human tissue cannot express itself in terms of absorbed dose, exposure models have to be used to determine the distribution of absorbed dose throughout the human body. An exposure model, be it physical or virtual, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the absorbed dose to organ and tissues of interest. Female Adult meSH (FASH) and the Male Adult meSH (MASH) virtual phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools. Representing standing adults, FASH and MASH have organ and tissue masses, body height and mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which transports photons, electrons and positrons through arbitrary media. This presentation reports on the development of the FASH and the MASH phantoms and will show dosimetric applications for X-ray diagnosis and for prostate brachytherapy. (author)

  10. The absorbed doses from each exposure program of the Orthopos panoramic machine

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Lee, Sul Mi [Seoul National Univ. College of Dentistry, Seoul (Korea, Republic of)

    2001-12-15

    The objective of this study was to estimate the radiation absorbed doses in certain critical organs in the head and neck region with 16 imaging programs available on the Orthopos panoramic machine. A Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses were measured at the thyroid gland, the submandibular gland, the parotid gland, the mouth floor, the maxillary sinus, the brain, the mandibular body, the mandibular ramus, the 2nd cervical spine and the skin over TMJ area. The overall absorbed doses with imaging programs available on the Orthopos panoramic machine were much less than that of standard program (program 1) except program 8, 11, and 16. Generally, the absorbed doses to the bone marrow of the mandibular ramus and the parotid gland were high, but the absorbed doses to the bone marrow in the mandibular body, brain, maxillary sinus, and, especially, the thyroid gland were very low. The modified imaging programs available on the Orthopos panoramic can be effectively used in aspect of radiation protection.

  11. Optical fiber sensor for low dose gamma irradiation monitoring

    Science.gov (United States)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  12. Gamma Knife radiosurgery with CT image-based dose calculation.

    Science.gov (United States)

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-08

    The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution

  13. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  14. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-09-15

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines.

  15. Absorbed dose in the full-mouth periapical radiography, panoramic radiography, and zonography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Choi, Hang Moon [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1999-02-15

    The objective of this study was to evaluate the possibility of substitution of the zonography for the full-mouth periapical radiography in aspect of radiation protection. Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses at brain, skin above the TMJ, parotid gland, bone marrow in the mandibular body, and thyroid gland during the full-mouth periapical radiography, panoramic radiography, and zonography were measured. From the zonography, the absorbed doses to the brain, the skin over the TMJ, and the parotid gland were relatively high, but the absorbed doses to the bone marrow in the mandibular body and, especially, the thyroid gland were very low. The zonography can be an alternative to the full-mouth periapical radiography in aspect of radiation protection.

  16. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  17. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    Science.gov (United States)

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  18. Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.

    Science.gov (United States)

    Ponto, James A

    2014-12-01

    In response to U.S. Pharmacopeia general chapter standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P radiopharmacy clean room, absorbed radiation doses to body and extremities increased by 26% and 18%, respectively, even after normalizing for procedure volume. Because absorbed radiation doses from other activities, such as patient dose administration and patient imaging, are assumed to remain relatively constant, these increases in absorbed radiation doses to

  19. Absorber-coupled lumped element kinetic inductance detectors for gamma-rays

    Science.gov (United States)

    Naruse, Masato; Miyamoto, Noriaki; Taino, Tohru; Myoren, Hiroaki

    2017-10-01

    We propose gamma-ray detectors based on superconducting resonators that can be largely multiplexed and show potential for quick response time, high spatial resolution, and high energy resolution. The resonators were fabricated with a niobium film on a silicon wafer. Eight out of ten detectors could be operated at 0.3 K. The detectors were coupled to a 2-mm-thick lead absorber and examined with a cesium 137 source. The pulse decay time was 3.6 μs and energy resolution was 3.8 keV at 662 keV. We also describe the resonant properties of each detector. The proposed detectors are suitable for use as food-screening systems.

  20. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  1. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    Directory of Open Access Journals (Sweden)

    Hiramatsu K.

    2017-01-01

    Full Text Available Accelerator based neutron sources (ABNS are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  2. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    Science.gov (United States)

    Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.

    2017-09-01

    Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  3. Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Brigido Flores, O. [Department of Applied Nuclear Techniques and Environmental Monitoring, Environmental Engineering Centre of Camagoeey, Ave. Finlay km 2.5, Esquina Circunvalacion, Rpto. Puerto Principe, Camagueey 8, CP 70800, Camagueey (Cuba)], E-mail: o.brigido@ciac.cmw.inf.cu; Montalvan Estrada, A.; Rosa Suarez, R. [Department of Applied Nuclear Techniques and Environmental Monitoring, Environmental Engineering Centre of Camagoeey, Ave. Finlay km 2.5, Esquina Circunvalacion, Rpto. Puerto Principe, Camagueey 8, CP 70800, Camagueey (Cuba); Tomas Zerquera, J. [Centre for Radiation Protection and Hygiene, 20 St. No. 4109, Miramar, PO Box 6195, Havana 6, Havana City (Cuba); Hernandez Perez, A. [Environmental Radiological Monitoring Laboratory, Centre for Environmental Studies of Holguin, Pachuco Feria No. 46, Rpto. Peralta, Holguin (Cuba)

    2008-12-15

    An extensive research project to investigate the radioactive properties of Cuban building materials was carried out because there is a lack of information on the radioactivity of such materials in Cuba. In the framework of this project 44 samples of commonly used raw materials and building products were collected in five Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values were in the ranges: 9-857 Bq kg{sup -1} for {sup 40}K; 6-57 Bq kg{sup -1} for {sup 226}Ra; and 1.2-22 Bq kg{sup -1} for {sup 232}Th. The radium equivalent activity in the 44 samples varied from 4 Bq kg{sup -1} (wood) to 272 Bq kg{sup -1} (brick). A high pressure ionisation chamber was used to measure the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 nGy h{sup -1} (Holguin) to 73 nGy h{sup -1} (Camagueey) and the corresponding population-weighted annual effective dose due to external gamma radiation was estimated to be 145 {+-} 40 {mu}Sv. This value is 51% lower than the effective dose due to internal exposure from inhalation of decay products of {sup 222}Rn and {sup 220}Rn and it is 16% higher than the calculated value for the typical room geometry of a Cuban house.

  4. Development of autonomous gamma dose logger for environmental monitoring.

    Science.gov (United States)

    Jisha, N V; Krishnakumar, D N; Surya Prakash, G; Kumari, Anju; Baskaran, R; Venkatraman, B

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify (41)Ar, proving its utility for real-time plume tracking and source term estimation.

  5. Improved estimates of the radiation absorbed dose to the urinary bladder wall.

    Science.gov (United States)

    Andersson, Martin; Minarik, David; Johansson, Lennart; Mattsson, Sören; Leide-Svegborn, Sigrid

    2014-05-07

    Specific absorbed fractions (SAFs) have been calculated as a function of the content in the urinary bladder in order to allow more realistic calculations of the absorbed dose to the bladder wall. The SAFs were calculated using the urinary bladder anatomy from the ICRP male and female adult reference computational phantoms. The urinary bladder and its content were approximated by a sphere with a wall of constant mass, where the thickness of the wall depended on the amount of urine in the bladder. SAFs were calculated for males and females with 17 different urinary bladder volumes from 10 to 800 mL, using the Monte Carlo computer program MCNP5, at 25 energies of mono-energetic photons and electrons ranging from 10 KeV to 10 MeV. The decay was assumed to be homogeneously distributed in the urinary bladder content and the urinary bladder wall, and the mean absorbed dose to the urinary bladder wall was calculated. The Monte Carlo simulations were validated against measurements made with thermoluminescent dosimeters. The SAFs obtained for a urine volume of 200 mL were compared to the values calculated for the urinary bladder wall using the adult reference computational phantoms. The mean absorbed dose to the urinary wall from (18)F-FDG was found to be 77 µGy/MBq formales and 86 µGy/MBq for females, while for (99m)Tc-DTPA the mean absorbed doses were 80 µGy/MBq for males and 86 µGy/MBq for females. Compared to calculations using a constant value of the SAF from the adult reference computational phantoms, the mean absorbed doses to the bladder wall were 60% higher for (18)F-FDG and 30% higher for (99m)Tc-DTPA using the new SAFs.

  6. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...... determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...

  7. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  8. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  9. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  10. Beta and gamma dose calculations for PWR and BWR containments

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  11. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  12. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter

    Directory of Open Access Journals (Sweden)

    Sunil D Sharma

    2012-01-01

    Conclusion: The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  13. Characterization of Ca So{sub 4}:Dy thermoluminescent dosimeters with graphite for absorbed doses evaluation of X-radiation and gamma radiation; Caracterizacao de dosimetros termoluminescentes de CaSo{sub 4}:Dy com grafite para avaliacao de dose absorvida de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Daros, Kellen Adriana Curci; Rodrigues, Leticia Lucente Campos; Medeiros, Regina Bitelli [Universidade Federal de Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    1996-12-31

    Dosimeters of Ca So{sub 4}:Dy are investigated in pellets with different thickness (0.2 to 0.8 mm) and with graphite contents between 0 and 20% by weight (0; 0.5; 3; 5; 10 and 20%). It is reported that these dosimeters can be used in dose measurements in mixed beta-photons fields. Previous TL results, for these pellets in beta fields are shown. The best results of sensitivity and energy dependence for photons are presented 3 refs., 2 figs.

  14. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    CERN Document Server

    Scaff, L A M

    2001-01-01

    Physical factors associated to total body irradiation using sup 6 sup 0 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this wo...

  15. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    Science.gov (United States)

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  17. Skin Absorbed Doses from Full Mouth Standard Intraoral Radiography in Bisecting Angle and Paralleling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo; Kim, Ae Ji [Dept. of Oral Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of); Doh, Shi Hong [Dept. of Applied physics . National Fisheries University of Pusan Department of Radiotherapy, Pusan (Korea, Republic of); Kim, Hyun Ja [Dept. of Oral Radiology, Baptist Hospital, Pusan (Korea, Republic of); Yoo, Meong Jin [Dept. of Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    1990-08-15

    This study was performed to measure the skin absorbed doses from full mouth standard intraoral radiography(14 exposures) in bisecting angle and paralleling techniques. Thermoluminescent dosimeters were used in a phantom. Circular tube collimator (60 mm in diameter, 20 cm in length) and rectangular collimator (35 mm X 44 mm, 40 cm in length) were set for bisecting angle and paralleling techniques respectively. All measurement sites were classified into 8 groups according to distance from each point of central rays. The results were as follows: 1. The skin absorbed doses from the paralleling technique were significantly decreased than those from the bisecting technique in both points at central ray and points away from central ray. The percentage rats of decrease were greater at points away from central ray than those at central ray. 2. The skin absorbed doses at the lens of eye, parotid gland, submandibular gland and thyroid region were significantly decreased in paralleling technique, but those of the midline of palate remained similar in both techniques. 3. The highest doses were measured at the site 20 mm above the point of central ray for the mandibular premolars in bisecting angle technique and at the point of central ray for the mandibular premolars in paralleling techniques. The lowest doses were measured at the thyroid region in both techniques.

  18. Study of the clinical thermoluminescent dosimeter in the direct measurement of radiation absorbed dose for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, R.K.; Wessels, B.W.; Woodson, Mildred; Limas, Catherine (Veterans Affairs Medical Center, Minneapolis, MN (USA) George Washington Univ. Medical Center, Washington, DC (USA). Div. of Radiation Oncology and Biophysics)

    1991-01-01

    One of the major obstacles facing radioimmunotherapy (RIT) is the lack of a device to measure directly tumor and normal tissue radiation absorbed dose. Calculations based on the clearance and imaging scans have several limitations; hence we design and fabricate a sheathed clinical thermoluminescent dosimeter (TLD) for the measurement of absorbed dose by implantation in humans. Preclinical studies are performed in nine normal rabbits. Complete blood count, body temperature monitoring, clinical observation and necropsy show no untoward effects from the TLD. Consistent bone marrow radiation doses are noted in the four rabbits receiving {sup 131}I-labeled monoclonal antibody A6H. By using up to 20 clinical TLDs in one sheath, it will be possible to determine macroscopic heterogeneities in organs undergoing RIT. (author).

  19. Fetal and maternal absorbed dose estimates for positron-emitting molecular imaging probes.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2014-09-01

    PET and hybrid (PET/CT and PET/MR) imaging currently play a pivotal role in clinical diagnosis, staging and restaging, treatment, and surveillance of several diseases. As such, limiting the radiation exposure of special patients, such as pregnant women, from PET procedures is an important challenge that needs to be appropriately addressed because of the high sensitivity of the developing embryo/fetus to ionizing radiation. Therefore, accurate radiation dose calculation for the embryo/fetus and pregnant patient from common positron-emitting radiotracers is highly desired. To obtain representative estimates of radiation dose to the human body, realistic biologic and physical models should be used. In this work, we evaluate the S values of 9 positron-emitting radionuclides ((11)C, (13)N, (15)O, (18)F, (64)Cu, (68)Ga, (82)Rb, (86)Y, and (124)I) and the absorbed and effective doses for 21 positron-emitting labeled radiotracers using realistic anthropomorphic computational phantoms of early pregnancy and at 3-, 6-, and 9-mo of gestation and the most recent biokinetic data available. The Monte Carlo N-Particle eXtended general-purpose Monte Carlo code was used for radiation transport simulation. The absorbed dose to the pregnant model is less influenced by the gestation for most organs or tissues, but the anatomic changes of the maternal body increases the effective dose for some radiotracers. For (18)F-FDG, the estimated absorbed doses to the embryo/fetus are 3.05E-02, 2.27E-02, 1.50E-02, and 1.33E-02 mGy/MBq at early pregnancy and 3-, 6-, and 9-mo gestation, respectively. The absorbed dose is nonuniformly distributed in the fetus and would be 1.03-2 times higher in the fetal brain than in other fetal soft tissues. The generated S values can be exploited to estimate the radiation dose delivered to pregnant patients and the embryo/fetus from various PET radiotracers used in clinical and research settings. The generated dosimetric database of radiotracers using new

  20. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  1. Comparison of the neutron ambient dose equivalent and ambient absorbed dose calculations with different GEANT4 physics lists

    Science.gov (United States)

    Ribeiro, Rosane Moreira; Souza-Santos, Denison

    2017-10-01

    A comparison between neutron physics lists given by GEANT4, is made in the calculation of the ambient dose equivalent, and ambient absorbed dose, per fluence conversion coefficients (H* (10) / ϕ and D* (10) / ϕ) for neutrons in the range of 10-9 MeV to 15 MeV. Physics processes are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles. Results obtained for QBBC, QGSP_BERT, QGSP_BIC and Neutron High Precision physics lists are compared with values published in ICRP 74 and previously published articles. Neutron high precision physics lists showed the best results in the studied energy range.

  2. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  3. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  4. Absorbed fraction and dose conversion coefficients of alpha particles for radon dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nikezic, D. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Faculty of Sciences, University of Kragujevac, Kragujevac (Yugoslavia); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2001-07-01

    The sensitivity to different relevant parameters of the absorbed fraction of alpha particles emitted from the {sup 222}Rn chain in sensitive cells of the tracheo-bronchial tree have been investigated. The structure of the airway wall given by ICRP (ICRP66) has been adopted and employed in the present calculations. The source thickness (mucous gel and sol + cilia), target layer thickness and the depth of the sensitive layers have been varied within reasonable ranges around the default values recommended by ICRP66. The results have shown that the depth of the sensitive layers is the most important parameter in calculating the absorbed fraction. In addition, dose conversion coefficients were calculated and presented along with the absorbed fractions. (author)

  5. X-ray absorbed doses evaluation on patients under radiological studies; Avaliacao das doses de radiacao X recebidas por pacientes em estudos radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Regina Bitelli; Daros, Kellen A.C. [Universidade Federal de Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    1996-12-31

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  6. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better

  7. Comparison of cone beam CT and conventional CT in absorbed and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Yeon; Han, Jin Woo; Park, In Woo [Department of Oral and Maxillofacial Radiology, College of Dentistry, Kangnung National University and Reseach Institute of Oral Science, Gangneung (Korea, Republic of)

    2008-03-15

    This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Cranex 3+ (Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy1, 0.70 mGy for Cranex 3+. Effective doses (E2005draft) were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023 mSv). Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost motive to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  8. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans.

    Science.gov (United States)

    Miró-Casas, E; Covas, M-I; Fitó, M; Farré-Albadalejo, M; Marrugat, J; de la Torre, R

    2003-01-01

    To investigate the absorption of tyrosol and hydroxytyrosol from moderate and sustained doses of virgin olive oil consumption. The study also aimed to investigate whether these phenolic compounds could be used as biomarkers of virgin olive oil intake. Ingestion of a single dose of virgin olive oil (50 ml). Thereafter, for a week, participants followed their usual diet which included 25 ml/day of the same virgin olive oil as the source of raw fat. Unitat de Recerca en Farmacologia. Institut Municipal d'Investigació Mèdica (IMIM). Seven healthy volunteers. An increase in 24 h urine of tyrosol and hydroxytyrosol, after both a single-dose ingestion (50 ml) and short-term consumption (one week, 25 ml/day) of virgin olive oil (P<0.05) was observed. Urinary recoveries for tyrosol were similar after a single dose and after sustained doses of virgin olive oil. Mean recovery values for hydroxytyrosol after sustained doses were 1.5-fold those obtained after a single 50 ml dose. Tyrosol and hydroxytyrosol are absorbed from realistic doses of virgin olive oil. With regard to the dose-effect relationship, 24 h urinary tyrosol seems to be a better biomarker of sustained and moderate doses of virgin olive oil consumption than hydroxytyrosol.

  9. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Powers, W.J. [Washington School of Medicine, St. Louis, MO (United States)]|[Lillian Strauss Institute for Neuroscience of the Jewish Hospital, St. Louis, MO (United States)

    1996-10-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1-{sup 11}C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1-{sup 11}C]-glucose is comparable to that reported for 2-deoxy-[2-{sup 18}F]-glucose. 43 refs., 1 fig., 4 tabs.

  10. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Directory of Open Access Journals (Sweden)

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  11. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  12. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F., E-mail: jodinilson@cnen.gov.b, E-mail: fflima@cnen.gov.b, E-mail: jasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide, E-mail: santos_neide@yahoo.com.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  13. Optimization algorithm for absorbed dose calculation during single intake of 131І to rats

    Directory of Open Access Journals (Sweden)

    I. P. Drozd

    2016-02-01

    Full Text Available Original calculation algorithms are proposed for absorbed doses in the thyroid gland and thymus of rats at single income of 131I that enable to simplify the calculations and at the same time ensure high reliability of results in the range of input activities of 1 - 115000 Bq. According to the algorithms, the program is developed in the MATLAB environment, adapted for use on Windows running PC. Relative error of calculations is ±2 %.

  14. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    Science.gov (United States)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  15. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Pereira, Aline Garcia, E-mail: aalinegp@gmail.co [Sinan Project - Sistema de Informacao de Agravos de Notificacao, Florianopolis, SC (Brazil)

    2011-03-15

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  17. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    Science.gov (United States)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  18. Absorbed dose by thyroid in case of nuclear accidents; Dose absorvida pela tireoide em casos de acidentes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Attie, Marcia Regina Pereira [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Amaral, Ademir [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ({sup 131}I, {sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  19. Preliminary Study on the Quantitative Value Transfer Method of Absorbed Dose to Water in 60Co γ Radiation

    Directory of Open Access Journals (Sweden)

    SONG Ming-zhe

    2015-01-01

    Full Text Available Absorbed dose to water in 60Co γ radiation is the basic physics quantity in the quantitative value system of radiation therapy, it is very necessary for radiation therapy. The study on the quantitative value transfer method of absorbed dose to water in 60Co γ Radiation could provide important technical support to the establishment of Chinese absorbed dose to water quantity system. Based on PTW-30013 ionization chamber, PMMA water phantom and 3D mobile platform, quantitative value transfer standard instrument was established, combined with the requirement of IAEA-TRS398, developed preliminary study of 60Co absorbed dose to water quantity value transfer method. After the quantity value transfer, the expanded uncertainty of absorbed dose to water calibration factor of PTW-30013 was 0.90% (k=2, the expanded uncertainty of absorbed dose to water of 60Co γ reference radiation in Radiation Metrology Center (SSDL of IAEA was 1.4% (k=2. The results showed that, this value transfer method can reduce the uncertainty of 60Co absorbed dose to water effectively in Secondary Standard Dosimetry Laboratory.

  20. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    Science.gov (United States)

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  1. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C. (Environmental Science Division); (Westlakes Scientific Consulting Ltd.); (Inst. de Radioprotection et de Surete Nucleaire); (Centre for Ecology & Hydrology); (Norwegian Radiation Protection Authority); (State Office for Nuclear Safety); (Korea Atomic Energy Research Institute); (Visible Information Centre Inc.); (Belgian Nuclear Research Centre); (University of Liverpool)

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  2. The effect of Low-dose Gamma Radiation on the Bio-chemical ...

    African Journals Online (AJOL)

    Low-dose gamma radiation has been applied to intravenous fluids to enhance the sterility assurance levels. This study was undertaken to determine the stability of gamma irradiated 2.5 % dextrose, 2.5 % dextrose in saline, Ringers lactate and Gastrointestinal replacement fluid at doses of 0, 2, 4, 6, 8, 10 and 20 kGy.

  3. Dose coefficients for ICRP reference pediatric phantoms exposed to idealised external gamma fields.

    Science.gov (United States)

    Chang, Lienard A; Simon, Steven L; Jorgensen, Timothy J; Schauer, David A; Lee, Choonsik

    2017-03-20

    Organ and effective dose coefficients have been calculated for the International Commission on Radiological Protection (ICRP) reference pediatric phantoms externally exposed to mono-energetic photon radiation (x- and gamma-rays) from 0.01 to 20 MeV. Calculations used Monte Carlo radiation transport techniques. Organ dose coefficients, i.e., organ absorbed dose per unit air kerma (Gy/Gy), were calculated for 28 organs and tissues including the active marrow (or red bone marrow) for 10 phantoms (newborn, 1 year, 5 year, 10 year, and 15 year old male and female). Radiation exposure was simulated for 33 photon mono-energies (0.01-20 MeV) in six irradiation geometries: antero-posterior (AP), postero-anterior, right lateral, left lateral, rotational, and isotropic. Organ dose coefficients for different ages closely agree in AP geometry as illustrated by a small coefficient of variation (COV) (the ratio of the standard deviation to the mean) of 4.4% for the lungs. The small COVs shown for the effective dose and AP irradiation geometry reflect that most of the radiosensitive organs are located in the front part of the human body. In contrast, we observed differences in organ dose coefficients across the ages of the phantoms for lateral irradiation geometries. We also observed variation in dose coefficients across different irradiation geometries, where the COV ranges from 18% (newborn male) to 38% (15 year old male) across idealised whole body irradiation geometries for the major organs (active marrow, colon, lung, stomach wall, and breast) at the energy of 0.1 MeV. Effective dose coefficients were also derived for applicable situations, e.g., radiation protection or risk projection. Our results are the first comprehensive set of organ and effective dose coefficients applicable to children and adolescents based on the newly adopted ICRP pediatric phantom series. Our tabulated organ and effective dose coefficients for these next-generation phantoms should provide more

  4. A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

    Science.gov (United States)

    Cho, Jae Hun; Kang, Joo Eun; Park, Pyong Eun; Kim, Jae Hun; Lim, Jeong Ae; Kim, Hae Kyoung; Woo, Nam Sik

    2011-01-01

    Background Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians. PMID:22220241

  5. Dosimetric effect by the low-dose threshold levels in gamma analysis on VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Hye; Kim, Min Joo; Park, So Hyun; Lee, Seu Ran; Lee, Min Young; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Lee, Dong Soo [Dept. of Radiation Oncology, Uijeongbu St. Mary' s Hospital, Uijeongbu (Korea, Republic of)

    2015-10-15

    Based on a survey by Nelms and Simon, more than 70% of institutions use a low-dose threshold between 0% and 10% for gamma analysis. However, there are no clinical data to quantitatively demonstrate the impact of the low-dose threshold on the gamma index. Therefore, we performed a gamma analysis with low-dose thresholds of 0%, 5%, 10%, and 15% according to both global and local normalization and different acceptance criteria: 3%/3 mm, 2%/2 mm, and 1%/1 mm. Applying low-dose threshold in the global normalization does not have critical effect to judge patient-specific QA results.

  6. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Ishiguchi, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Maekoshi, H. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Ando, Y. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Tsuzaka, M. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Tamiya, T. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Suganuma, N. [Department of Obstetrics and Gynecology, Branch Hospital, Nagoya University School of Medicine, Nagoya (Japan); Ishigaki, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan)

    1996-08-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs.

  7. Influence of low dose gamma-ray irradiation on the performance and degradation of PVDF ultrafiltration membrane

    Science.gov (United States)

    Yu, Suping; Zhang, Xue; Li, Fuzhi; Zhao, Xuan

    2017-07-01

    Poly vinylidene fluoride (PVDF) UF membranes in water were exposed to gamma rays irradiation from 0 to 100 kGy using a cobalt source. The absorbed dose provoked the rupture of C-F bonds, giving 0.02-0.38 mg of free F- ion per gram membrane. Increasing the absorbed dose led to a more hydrophilic membrane surface, more fissures in the membrane, and a lower of water permeability. The pure water flux of a membrane irradiated at 100 kGy was reduced by 44% compared to the pristine membrane. During filtration of low level radioactive wastewater that contained surfactants, the flux decreased at a slower rate for the irradiated membrane than for the pristine membrane. The retention of most ions remained stable. SEM images of the fouled membranes show a decrease in salt crystal contents on the fouling layer with increasing absorbed dose. Lower levels of salt deposits may contribute to a decrease in Ag(I) retention. Overall, upon exposure to low levels of irradiation, the membrane pure water flux was reduced, and membrane fouling was alleviated. These factors should be considered in membrane system design.

  8. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2–14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0–4 years old) were a factor of 2.4 greater than those of the older, larger patients (8–12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  9. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy.

    Science.gov (United States)

    Gallagher, Kyle J; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J

    2018-01-11

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients' computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients' image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients' data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed

  10. Internal absorbed dose estimation by a TLD method for -FDG and comparison with the dose estimates from whole body PET

    Science.gov (United States)

    Deloar, Hossain M.; Fujiwara, Takehiko; Shidahara, Miho; Nakamura, Takashi; Yamadera, Akira; Itoh, Masatoshi

    1999-02-01

    The thermoluminescent dosimeter (TLD) method has been proposed as a useful tool for estimating internal radiation absorbed dose in nuclear medicine. An efficient approach to verify the accuracy of the TLD method has been performed in this study. Under the standard protocol for 2-[F-18]fluoro-2-deoxy-D-glucose , whole body PET experiments and simultaneous body surface dose measurements by TLDs were performed on six normal volunteers. By using the body surface dose measured with TLDs, the cumulated activities of nine source organs were estimated with a mathematical unfolding technique for three different initial guesses. The accuracy of the results obtained by the TLD method was investigated by comparison with the actual cumulated activity of the same source organs measured by whole body PET. The cumulated activities of the source organs obtained by the TLD method and whole body PET show a significant correlation (correlation coefficient, , level of confidence, ) with each other. The mean effective doses in this study are obtained from the TLD method and obtained from the whole body PET. Good agreement between the results of the TLD method and whole body PET was observed.

  11. FLUKA predictions of the absorbed dose in the HCAL Endcap scintillators using a Run1 (2012) CMS FLUKA model

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Estimates of absorbed dose in HCAL Endcap (HE) region as predicted by FLUKA Monte Carlo code. Dose is calculated in an R-phi-Z grid overlaying HE region, with resolution 1cm in R, 1mm in Z, and a single 360 degree bin in phi. This allows calculation of absorbed dose within a single 4mm thick scintillator layer without including other regions or materials. This note shows estimates of the cumulative dose in scintillator layers 1 and 7 during the 2012 run.

  12. {sup 99m}Tc Auger electrons - Analysis on the effects of low absorbed doses by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Adriana Alexandre S., E-mail: adriana_tavares@msn.co [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.p [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal)

    2011-03-15

    We describe here the use of computational methods for evaluation of the low dose effects on human fibroblasts after irradiation with Technetium-99m ({sup 99m}Tc) Auger electrons. The results suggest a parabolic relationship between the irradiation of fibroblasts with {sup 99m}Tc Auger electrons and the total absorbed dose. Additionally, the results on very low absorbed doses may be explained by the bystander effect, which has been implicated on the cell's effects at low doses. Further in vitro evaluation will be worthwhile to clarify these findings.

  13. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    Directory of Open Access Journals (Sweden)

    Sudha Rana

    2010-01-01

    Full Text Available Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation.

  14. Absorbed dose distribution visualization for superficial treatments through the Fricke Xylenol Gel dosimeter (FXG)

    Energy Technology Data Exchange (ETDEWEB)

    Alva, M; Sampaio, F G A; Moreira, M V; Petchevist, P C D; De Almeida, A, E-mail: dalmeida@ffclrp.usp.b

    2010-11-01

    Electrons, orthovoltage X-rays and betas are used for superficial treatments. It has been shown that it is practical to measure these three types of radiation using gel dosimetry, which is an accurate dosimetric tool, from which one can infer the absorbed dose. The Fricke Xylenol Gel (FXG) dosimeter has presented adequate results due to its spatial resolution, effective atomic number and density that are near to those of soft tissue. The aim of this work is to compare three types of radiation for skin treatments like orthovoltage (X-rays), brachytherapy (beta rays) and megavoltage (electrons) using the FXG-CCD dosimetric system to determine the calibration curves (CC), beam profiles (BP) and percentage depth dose curves (PDD), evidencing why for clinical applications a specific type of radiation is selected for superficial treatment. From the results obtained we can infer that the FXG-CCD system is adequate for linear, area and volume measurements.

  15. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  16. Assessment of the absorbed dose to organs from bone mineral density scan by using TLDS and the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Nowadays, dual energy X-ray absorptiometry is used in bone mineral density systems to assess the amount of osteoporosis. The purpose of this research is to evaluate patient organ doses from dual X-ray absorptiometry by thermoluminescence dosimeters chips and Monte Carlo method. To achieve this goal, in the first step, the surface dose of the cervix, kidney, abdomen region, and thyroid were measured by using TLD-GR 200 at various organ locations. Then, to evaluate the absorbed dose by simulation, the BMD system, patient's body, X-ray source and radiosensitive tissues were simulated by the Monte Carlo method. The results showed, for the spine (left femur bone mineral density scan by using thermoluminescence dosimeters, the absorbed doses of the cervix and kidney were 4.5 (5.64 and 162.17 (3.99(mGy, respectively. For spine (left femur bone mineral density scan in simulation, the absorbed doses of the cervix and kidney were 4.19 (5.88 and 175 (3.68(mGy, respectively. The data obtained showed that the absorbed dose of the kidney in the spine scan is noticeable. Furthermore, because of the small relative difference between the simulation and experimental results, the radiation absorbed dose may be assessed by simulation and software, especially for internal organs, and at different depths of otherwise inaccessible organs which is not possible in experiments.

  17. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  18. Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, Keith F [ORNL; Bolch, W E [University of Florida, Gainesville; Zankl, M [Institute of Radiation Protection, GSF-National Reserach Center for Environ; Petoussi-Henss, N [Institute of Radiation Protection, GSF-National Reserach Center for Environ

    2007-01-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.

  19. Response functions for computing absorbed dose to skeletal tissues from photon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K.F. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6480 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Zankl, M.; Petoussi-Henss, N. [GSF-National Research Center for Environment and Health, Institute of Radiation Protection, Ingolstaedter Landstr, 1, 85764 Neuherberg (Germany)

    2007-07-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualized in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteo-progenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 {mu}m of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 {mu}m of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose-response functions. This paper outlines the development of such response functions for photons. (authors)

  20. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  1. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  2. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  3. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-12-15

    In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.

  5. Measurement of the absorbed dose distribution near an 192Ir intravascular brachytherapy seed using a high-spatial-resolution gel dosimetry system

    Science.gov (United States)

    Massillon-JL, G.; Minniti, R.; Mitch, M. G.; Soares, C. G.

    2012-06-01

    The absorbed dose distribution at sub-millimeter distances from the Best single 192Ir intravascular brachytherapy seed was measured using a high-spatial-resolution gel dosimetry system. Two gel phantoms from the same batch were used; one for the seed irradiation and one for calibration. Since the response of this gel is energy independent for photons between 20 and 1250 keV, the gel was calibrated using a narrowly collimated 60Co gamma-ray beam (cross-sectional area ˜1 cm2). A small format laser computed tomography scanner was used to acquire the data. The measurements were carried out with a spatial resolution of 100 µm in all dimensions. The seed was calibrated at NIST in terms of air-kerma strength. The absorbed dose rate as well as the radial dose function, gL(r), was measured for radial distances between 0.6 and 12.6 mm from the seed center. The dose rate constant was measured, yielding a value of Λ = (1.122 ± 0.032) cGy h-1 U-1, which agrees with published data within the measurement uncertainty. For distances between 0.6 and 1.5 mm, gL(r) decreases from a maximum value of 1.06 down to 1.00; between 1.5 and 6.7 mm, an enhancement is clearly observed with a maximum value around 1.24 and beyond 6.7 mm, gL(r) has an approximately constant value around 1.0, which suggests that this seed can be considered as a point source only at distances larger than 6.7 mm. This latter observation agrees with data for the same seed reported previously using Gafchromic film MD-55-2. Additionally, published Monte Carlo (MC) calculations have predicted the observed behavior of the radial dose function resulting from the absorbed dose contributions of beta particles and electrons emitted by the 192Ir seed. Nonetheless, in the enhancement region, MC underestimates the dose by approximately 20%. This work suggests that beta particles and electrons emitted from the seed make a significant contribution to the total absorbed dose delivered at distances near the seed center (less

  6. Determination of differential dose rates in a mixed beta and gamma field using shielded Al2O3:C : Results of Monte Carlo modelling

    DEFF Research Database (Denmark)

    Aznar, M.C.; Nathan, R.; Murray, A.S.

    2003-01-01

    most of the beta radiation to reach the chip); the other in a beta-thick package (which would absorb most beta radiation, hence leaving the chip to record only gamma radiation). The design of the encapsulation is developed using Monte Carlo simulations, and this approach is also used to investigate......Mixed beta and gamma heterogeneous radiation fields are found in many circumstances, ranging from retrospective dosimetry to medical therapy treatments. It can be very important to provide a direct measurement of the contribution to dose rate from beta particles and gamma rays separately...... outline the results of our modelling of the most appropriate encapsulation for Al2O3: C luminescence dosimeters when used to measure the dose rate from natural radiation fields. We consider a configuration where one Al2O3: C chip of a pair is enclosed in a beta-thin light-tight package (which would allow...

  7. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  8. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  9. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  10. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  11. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    Science.gov (United States)

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  12. Effect of gamma-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Pradeep K. [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Department of Management Science, U.P. Technical University, Lucknow 226021 (India); Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Toxicology Laboratory, Department of Zoology, Ch. C.S. University, Meerut 200005 (India); Gupta, B.L. [CH3/56 Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai-410 210 (India); Guha, Sujoy K., E-mail: guha_sk@yahoo.co [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-05-15

    Functional necessity to use a particular range of dose rate and total dose of gamma-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min gamma-dose rate and 2.0-2.4 kGy gamma-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  13. Criticality prompt gamma and neutron dose equations validated by Monte Carlo analyses and compared to known criticality accident doses

    Science.gov (United States)

    Hochhalter, Eugene

    The United States (US) Department of Energy [DOE] and the Nuclear Regulatory Commission [NRC] have provided the nuclear industry with requirements, goals, and objectives for the preparation of safety analysis and the finalization of that safety analysis in the form of a documented safety analysis (DSA) and technical safety requirements (TSRs). The deterministic guidance provided by the NRC in Regulatory Guide (RG) 3.33 for calculating the prompt gamma and neutron doses from a criticality has a number of potential issues associated with the semi-empirical equations, which make these equations potentially out dated. The NRC guidance for estimating the prompt gamma and neutron doses to a facility worker due to an accidental criticality was withdrawn without newer deterministic guidance being issued. This research project determined the original basis for the RG prompt gamma and neutron equations, evaluated the potential issues associated with the RG 3.33 prompt gamma and neutron equations, and modified the RG 3.33 point source prompt gamma and neutron equations to calculate the doses for the selected set of criticality accidents. The criticality accidents addressed by this dissertation include: 1. U-235, Pu-239, and Pu-241 point source criticality, 2. U-235, Pu-239, and Pu-241 sphere source criticality, 3. Uranyl nitrate and plutonium nitrate solutions in a cylindrical process vessel and 4. Low level waste in 55-gallon and 30-gallon drums. The prompt gamma and neutron equation doses (RG 3.33/3.34/3.35) are compared to actual nuclear industry criticality accident worker doses to assess the conservatism of the RG equations. Finally, the RG 3.33 prompt gamma and neutron dose equations are compared to MCNP5 results to investigate consistency with respect to the modified prompt gamma and neutron dose equations and the representative dose estimates for each of the criticality configurations (point source, spherical source, and cylindrical source). Knowledge and accurate

  14. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  15. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  16. Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose {sup 131}I Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Kim, Kyeong Min; Woo, Sang Keun; Choi, Tae Hyun; Kang, Hye Jin; Oh, Dong Hyun; Kim, Byeong Il; Choen, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-02-15

    We assessed the absorbed dose to the tumor (Dose tumor) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with {sup 131}I rituximab for NHL. Patients with NHL (n=4) were administered a therapeutic dose of {sup 131}I rituximab. Serial WB planar images after RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROIs were drawn on the region of tumor (n=7) and left medial thigh as background, and Dosetumor was calculated. The correlation between Dosetumor and the CT-based tumor volume change after RIT was analyzed. The differences of Dosetumor and the tumor volume change according to the number of RIT were also assessed. The values of absorbed dose were 397.7{+-}646.2cGy (53.0{approx}2853.0cGy). The values of CT-based tumor volume were 11.3{+-}9.1 cc (2.9{approx}34.2cc), and the % changes of tumor volume before and after RIT were -29.8{+-}44.3% (-100.0%{approx}+42.5%), respectively. Dosetumor and the tumor volume change did not show the linear relationship (p>0.05). Dosetumor and the tumor volume change did not correlate with the number of repeated administration (p>0.05). We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

  17. Gamma-radiation-induced corrosion of aluminum alloy: low dose effect

    Science.gov (United States)

    Kanjana, K.; Ampornrat, P.; Channuie, J.

    2017-06-01

    Gamma-radiation-induced corrosion of aluminium alloy 6061 (AA6061) immersed in demineralized water was studied at radiation dose up to 206 kGy using a Co-60 gamma radiation source. The surface morphology and chemical composition of the oxide produced on the post-irradiated samples were investigated using SEM-EDS. The electrochemical corrosion potentials (Ecorr ) of the post-irradiated samples were measured. The corrosion behavior of AA6061 appeared to be dose dependent under the experimental conditions. A dramatic change in surface morphology was observed in the samples exposed to gamma radiation at 206 kGy. At this radiation dose the aluminium oxide scale developed can be clearly seen. The results from electrochemical corrosion tests have shown that the corrosion potentials (Ecorr ) can be undoubtedly decreased by gamma irradiation, giving corrosion rate of 7 × 10-4 mm/yr.

  18. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  19. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    Science.gov (United States)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  20. Measurement of ionization chamber absorbed dose k(Q) factors in megavoltage photon beams.

    Science.gov (United States)

    McEwen, Malcolm R

    2010-05-01

    Absorbed dose beam quality conversion factors (k(Q) factors) were obtained for 27 different types of ionization chamber. The aim was to obtain objective evidence on the performance of a wide range of chambers currently available, and potentially used for reference dosimetry, and to investigate the accuracy of the k(Q) calculation algorithm used in the TG-51 protocol. Measurements were made using the 60Co irradiator and Elekta Precise linac facilities at the National Research Council of Canada. The objective was to characterize the chambers over the range of energies applicable to TG-51 and determine whether each chamber met the requirements of a reference-class instrument. Chamber settling, leakage current, ion recombination and polarity, and waterproofing sleeve effects were investigated, and absorbed dose calibration coefficients were obtained for 60Co and 6, 10, and 25 MV photon beams. Only thimble-type chambers were considered in this investigation and were classified into three groups: (i) Reference chambers ("standard" 0.6 cm3 Farmer-type chambers and their derivatives traditionally used for beam output calibration); (ii) scanning chambers (typically 0.1 cm3 volume chambers used for beam commissioning with 3-D scanning phantoms); and (iii) microchambers (very small volume ion chambers (measured and calculated k(Q) factors was within 0.4%; for some chambers, differences of more than 1% were seen that may be related to the recombination/polarity results. Use of such chambers could result in significant errors in the determination of reference dose in the clinic. Based on the experimental evidence obtained here, specification for a reference-class ionization chamber could be developed that would minimize the error in using a dosimetry protocol with calculated beam quality conversion factors. The experimental k(Q) data obtained here for a wide range of thimble chambers can be used when choosing suitable detectors for reference dosimetry and are intended to be

  1. High-Resolution Gamma-Ray Spectrometers using Bulk Absorbers Coupled to Mo/Cu Multilayer Superconducting Transition-Edge Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chow, D.T.; Loshak, A.; Van Den Berg, M.L.; Frank, M.; Barbee Jr., T.W.; Labov, S.E.

    2000-07-04

    In x-ray and gamma-ray spectroscopy, it is desirable to have detectors with high energy resolution and high absorption efficiency. At LLNL, we have developed superconducting tunnel junction-based single photon x-ray detectors with thin film absorbers that have achieved these goals for photon energies up to 1 keV. However, for energies above 1 keV, the absorption efficiency of these thin-film detectors decreases drastically. We are developing the use of high-purity superconducting bulk materials as microcalorimeter absorbers for high-energy x-rays and gamma rays. The increase in absorber temperature due to incident photons is sensed by a superconducting transition-edge sensor (TES) composed of a Mo/Cu multilayer thin film. Films of Mo and Cu are mutually insoluble and therefore very stable and can be annealed. The multilayer structure allows scaling in thickness to optimize heat capacity and normal state resistance. We measured an energy resolution of 70 eV for 60 keV incident gamma-rays with a 1 x 1 x 0.25 mm{sup 3} Sn absorber. We present x-ray and gamma-ray results from this detector design with a Sn absorber. We also propose the use of an active negative feedback voltage bias to improve the performance of our detector and show preliminary results.

  2. Influence of thermoplastic masks on absorbed skin dose for head and neck radiotherapy; Influence des masques thermoformes de contention sur la dose a la peau en radiotherapie des tumeurs des voies aerodigestives superieures

    Energy Technology Data Exchange (ETDEWEB)

    Amiel Halm, E.; Tamri, A.; Bridier, A.; Wibault, P.; Eschwege, F. [Institut Gustave Roussy, 94 - Villejuif (France); Amiel Halm, E. [Centre Medico-Chirurgical, 15 - Aurillac (France)

    2002-09-01

    The influence of thermoplastic masks used in clinical routine for patient immobilization in head and neck radiotherapy treatment on the absorbed skin dose has been investigated at Gustave-Roussy Institute. The measurements were performed in {sup 60}Co {gamma}-rays, 4 and 6 MV X-rays and in 8 and 10 MeV electron beams. Initially, the measurements were performed with thermoluminescent dosimeters (LiF) and a NACP chamber on a polystyrene phantom in order to study the influence of physical parameters (distance, field size, energy...) on first millimeters depth variation dose. The study was completed with in vivo measurements on 14 patients using various dosimeters (thermoluminescent detectors, diodes) in order to assess the increase of dose on first millimeters depth and to verify the delivered dose during treatment sessions (quality control). In treatment conditions, masks lead to an important increase of dose on the first millimeter in {sup 60}Co {gamma}-rays beams (dose value normalized to maximum of dose increase from 57.1% to 77.7% for 0.5 mm-water depth and from 78.5% to 88% for l mm-water depth); its contribution is less important in 4 and 6 MV X-rays beams (dose value normalized to maximum of dose increase from 49.5% to 63.2% for 0.5 mm-water depth and from 59% to 70.1 % for 1 mm-water depth). Concerning 8 and 10 MeV electron beams, the normalized dose value increase respectively from 78.4% to 81.7% and from 82.2% to 86.1% for 0.5 mm-water depth. In vivo dosimetry enabled the quality control of delivered dose during treatment. Measured dose is in agreement within {+-} 5% with the prescribed dose for 92.3% of cases. In routine, in vivo dosimetry allowed to quantify the increase of skin dose induced by thermoplastic masks for various energies of photon and electron beams as well as quality control. (authors)

  3. Angular and energy dependence of radiation protection monitors to the quantity ambient dose equivalent for gamma radiation;Dependencia angular e energetica de monitores de radioprotecao para medidas de equivalente de dose ambiental para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Carvalho, Valdir S.; Diniz, Raphael E.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    In Brazil, most of the equipment used for monitoring area is just used in the quantities exposure and absorbed dose, with the need of adjustment to the ambient dose equivalent, H{sup *}(10). In this work, 19 Geiger-Mueller detectors and 7 ionization chambers were calibrated in the Calibration Laboratory of the Instituto de Pesquisas Energeticas Nucleares, IPEN. The energy dependence of these radiation detectors was studied for gamma radiation ({sup 137}Cs e {sup 60}Co) and the angular dependence, for {sup 137}Cs radiation. (author)

  4. Terrestrial gamma dose rates and physical-chemical properties of ...

    African Journals Online (AJOL)

    The soil samples were analyzed for radioactivity levels due to 226Ra, 232Th and 40K using gamma-ray spectroscopy while physical-chemical parameters were determined using standard methods. Most of the physical and chemical properties of farm soils indicated low values in heavy mined area (Bitsichi) and relatively ...

  5. Calculation of Dose Gamma Ray Build up Factor in Some ...

    African Journals Online (AJOL)

    The gamma ray buildup factor was calculated by analyzing the narrow- beam and broad-beam geometry equations using Taylor's formula for isotropic sources and homogeneous materials. The buildup factor was programmed using MATLAB software to operate with any radiation energy (E), atomic number (Z) and the ...

  6. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    CERN Document Server

    Shamma, M A; Sharabi, N

    2002-01-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays.

  7. Population dose from indoor gamma exposure in the dwellings around Kudankulam nuclear power plant.

    Science.gov (United States)

    Brahmanandhan, G M; Selvasekarapandian, S; Malathi, J; Khanna, D; Jose, M T; Meenakshisundaram, V

    2008-01-01

    To assess the population dose due to the natural background radiation around the upcoming Kudankulam nuclear power plant, a systematic investigation has been carried out by measuring the indoor gamma dose. In total, 159 dwellings have been selected around the Kudankulam nuclear power plant area i.e. in Radhapuram and Nanguneri taluk (sub-districts) for the measurement. The geometric mean value of indoor gamma dose rate is 305 +/- 48 nGy h(-1) and 273 +/- 50 nGy h(-1) in Radhapuram and Nanguneri taluks (sub-districts), respectively. The annual effective dose due to indoor gamma radiation to the population has been found to be 1.5 mSv and 1.36 mSv in Radhapuram and Nanguneri taluks, respectively.

  8. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  9. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  10. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  11. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ary A. [Universidade Estadual de Londrina-Depto de Fisica, Rodovia Celso Garcia Cid, km 38, 086051-990 Londrina (Brazil); Vieira, Jose M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Hamada, Margarida M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN/CNEN-SP, Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-900 Sao Paulo (Brazil)], E-mail: mmhamada@ipen.br

    2010-04-15

    A 1 cm{sup 3} cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a {sup 60}Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  12. High gamma dose induced damage on two types of discrete JFET transistors

    Energy Technology Data Exchange (ETDEWEB)

    Assaf, J. [Department of Scientific Services, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)], E-mail: scientific@aec.org.sy

    2009-01-15

    The effect of high Gamma ray dose on two types of commercial transistors having different DC specifications has been investigated. The transistors were discrete N-JFETs intended as front-end component in nuclear read-out systems. They were exposed to different Gamma doses with a maximum of 10,000 kGy. The irradiation influence was represented by the analysis of the DC and the induced noise characteristics. The results show that the noise was more sensitive to irradiation than the DC parameters, and the radiation effect depends on the original DC specifications. It was also found that the first dose induces noise more than the next doses. Similar effects were observed either if the irradiation is done by one single dose or by many successive accumulated doses.

  13. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    Energy Technology Data Exchange (ETDEWEB)

    Bankvall, G.; Hakansson, H.A.

    1982-05-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted.

  14. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations.

    Science.gov (United States)

    Granlund, Christina; Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-10-01

    During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19-75 μSv, depending on the panoramic equipment used. The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk-benefit profile of this technique must be assessed for the individual patient. The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used.

  15. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    Science.gov (United States)

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  16. Absorbed dose in ion beams: comparison of ionisation- and fluence-based measurements.

    Science.gov (United States)

    Osinga, Julia-Maria; Brons, Stephan; Bartz, James A; Akselrod, Mark S; Jäkel, Oliver; Greilich, Steffen

    2014-10-01

    A direct comparison measurement of fluorescent nuclear track detectors (FNTDs) and a thimble ionisation chamber is presented. Irradiations were performed using monoenergetic protons (142.66 MeV, ϕ=3×10(6) cm(-2)) and carbon ions (270.55 MeV u(-1), ϕ=3 × 10(6) cm(-2)). It was found that absorbed dose to water values as determined by fluence measurements using FNTDs are, in case of protons, in good agreement (2.4 %) with ionisation chamber measurements, if slower protons and Helium secondaries were accounted for by an effective stopping power. For carbon, however, a significant discrepancy of 4.5 % was seen, which could not be explained by fragmentation, uncertainties or experimental design. The results rather suggest a W-value of 32.10 eV ± 2.6 %. Additionally, the abundance of secondary protons expected from Monte-Carlo transport simulation was not observed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Changes in deviation of absorbed dose to water among users by chamber calibration shift.

    Science.gov (United States)

    Katayose, Tetsurou; Saitoh, Hidetoshi; Igari, Mitsunobu; Chang, Weishan; Hashimoto, Shimpei; Morioka, Mie

    2017-07-01

    The JSMP01 dosimetry protocol had adopted the provisional 60Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X. After that, the absorbed dose to water D w standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w. The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.

  18. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  19. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  20. Exposure to low dose of gamma radiation enhances the excision repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, K.; Verma, N.C. [Bhabha Atomic Research Centre, Mumbai (India)

    1998-08-01

    The effect of low doses of ionizing and nonionizing radiation on the radiation response of yeast Saccharomyces cerevisiae toward ionizing and nonionizing radiation was studied. The wild-type strain D273-10B on exposure to 54 Gy gamma radiation (resulting in about 10% cell killing) showed enhanced resistance to subsequent exposure to UV radiation. This induced UV resistance increased with the incubation time between the initial gamma radiation stress and the UV irradiation. Exposure to low doses of UV light on the other hand showed no change in gamma or UV radiation response of this strain. The strains carrying a mutation at rad52 behaved in a way similar to the wild type, but with slightly reduced induced response. In contrast to this, the rad3 mutants, defective in excision repair, showed no induced UV resistance. Removal of UV-induced pyrimidine dimers in wild-type yeast DNA after UV irradiation was examined by analyzing the sites recognized by UV endonuclease from Micrococcus luteus. The samples that were exposed to low doses of gamma radiation before UV irradiation were able to repair the pyrimidine dimers more efficiently than the samples in which low gamma irradiation was omitted. The nature of enhanced repair was studied by scoring the frequency of induced gene conversion and reverse mutation at trp and ilv loci respectively in strain D7, which showed similar enhanced UV resistance induced by low-dose gamma irradiation. The induced repair was found to be essentially error-free. These results suggest that irradiation of strain D273-10B with low doses of gamma radiation enhances its capability for excision repair of UV-induced pyrimidine dimers. (author)

  1. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  2. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  3. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    Science.gov (United States)

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  4. Evaluation of skin absorbed doses during manipulation of radioactive sources: a comparison between VARSKIN code and Monte Carlo simulations.

    Science.gov (United States)

    Amato, Ernesto; Italiano, Antonio

    2017-12-13

    The evaluation of skin doses during manipulation of radioactive sources can be a critical issue, worth using the most accurate calculation strategies available. The aim of this work was to compare the results of the analytical approach used in VARSKIN with the simulation of radiation transport and interaction by Monte Carlo calculations in GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations), and to provide an accurate and versatile tool for the evaluation of skin doses from radionuclide sources of any realistic shape (e.g. cylindrical, parallelepiped), even in the presence of multiple interposed absorber layers. A set of twenty radionuclides (pure β, β-γ, Auger and γ emitters) was selected for comparison, which are among the most frequently employed in nuclear medicine and laboratory practices. We studied a point-like and a cylindrical source, also in the presence of varying thicknesses of absorbing layers. We found a general agreement for most nuclides when the source was directly in contact with skin or in the presence of a thin layer of absorbing material. However, when the absorber thickness increased, significant differences were found for several nuclides. In these cases, the proposed method based on a dedicated Monte Carlo simulation could give more accurate results in reasonable times, which could optimise accuracy when assessing skin doses in routine as well as in incidental exposure scenarios. © 2017 IOP Publishing Ltd.

  5. The effect of low doses of gamma radiation on the electrophysical properties of mesoporous silicon

    Science.gov (United States)

    Bilenko, D. I.; Galushka, V. V.; Zharkova, E. A.; Sidorov, V. I.; Terin, D. V.; Khasina, E. I.

    2017-02-01

    The effect of low exposure doses (5-40 kR) of gamma radiation on the electrical properties of structures based on a mesoporous silicon (SiMP) layer is investigated. It is demonstrated that the conductivity of the SiMP layer increases, the Fermi level shifts, and the trap density changes in gamma-irradiated Al/SiMP/ p-Si/Al structures. Long-term stable switched-state memory in the region of the I-V curve hysteresis is revealed. This effect is controlled by the irradiation dose.

  6. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Science.gov (United States)

    Schneider, T.

    2011-06-01

    The application of more and more low-energy photon radiation in brachytherapy—either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes—has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  7. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  8. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    Science.gov (United States)

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Terrestrial gamma radiation dose measurement and health hazard along river Alaknanda and Ganges in India

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2014-10-01

    Full Text Available Direct measurement of absorbed dose rate in air due to exposure from outdoor terrestrial γ radiation and assessment of consequent public health hazard continues to be of environmental and public concern. Present study was aimed to establish a baseline data of annual effective dose and to assess the associated health risk from outdoor terrestrial γ radiation along the river Alaknanda and Ganges of India. Terrestrial γ radiation exposure doses (excluding cosmic radiation were measured using a Plastic Scintillation Counter. Absorbed dose rates in air were measured at eight designated locations from Nandprayag to Allahabad along the river. From the average absorbed dose rates, annual effective dose (AED and excess life time cancer risks (ELCR were calculated by standard method. Results showed that absorbed dose rates in air ranged between 81.33 ± 2.34 nSv.h−1 and 144 ± 5.77 nSv.h−1 and calculated AED ranged between 0.10 ± 0.012 mSv.y−1 to 0.18 ± 0.007 mSv.y−1 at the designated locations along these rivers. Calculated ELCR were found in the range of 0.375 × 10−3 to 0.662 × 10−3. Present study measured the outdoor γ radiation levels along the rivers. The calculated annual effective doses and life time cancer risk were found higher than the world average value at higher altitudes. But the measured doses and calculated risks at plains were close to that of reported average values.

  10. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    Science.gov (United States)

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  11. Assessment of absorbed dose and therapeutic response of tumor in repeated high-dose I-131 anti-CD20 monoclonal antibody (rituximab) radioimmunotherapy for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Lim, Sang Moo; Kim, Kyeong Min [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    We assessed the therapeutic dose absorbed to the tumor and response in repeated RIT with I-131 rituximab for NHL. Patients with NHL (n=6) were administered a therapeutic dose of I-131 rituximab (192.527.0 mCi). The number of repeated administration was 3 for all patients. Total 12 measurable tumor regions were assessed at the time of each RIT. Whole-body (WB) planar images with anterior and posterior views were acquired sequentially at 5 min, 5hr, 24hr, 48hr, and 72hr post-injection using gamma camera. F-18-FDG PET/CT was performed before (within 7 days) and after (on Day 30) RIT. From PET/CT image acquired before RIT, maximum intensity projection (MIP) image of coronal view was acquired. Serial WB planar images were overlaid to the coronal MIP PET image, respectively, by means of registration using 4 fiducial marks (bilateral shoulder and buttock) implemented in AMIDE software. On registered MIP PET and WB planar images, both 2D-ROIs were drawn on the region of tumor and background nearby tumor. The shape of 2D-ROI of tumor was determined from the MIP PET image. The volume of tumor was measured from the CT image, the % change of tumor volume before and after RIT was used in evaluation of the therapeutic response. The values of CT-based tumor volume were 8.216.3cc. The values of absorbed dose for tumor and the % changes of tumor volume before and after RIT were 231.8603.0rad, and 55.548.7%, respectively, and did not show the linear relationship (r=0.2787). The values of absorbed dose for tumor and the % changes of tumor volume did not correlate with the number of repeated administration (p>0.05, ANOVA). Aligning PET and planar images could estimate the quantitative values of absorbed dose to tumor. The data suggest that repeated RIT with I-131 rituximab is necessary for NHL, because single-RIT is insufficient to achieve remission of disease.

  12. MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi,; Li, W; Chung, C; Jaffray, D [Princess Margaret Cancer Centre and University Health Network, Toronto, Ontario (Canada); Aleman, D [University of Toronto, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target, and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta

  13. GLODEP2: a computer model for estimating gamma dose due to worldwide fallout of radioactive debris

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, L.L.; Harvey, T.F.; Peterson, K.R.

    1984-03-01

    The GLODEP2 computer code provides estimates of the surface deposition of worldwide radioactivity and the gamma-ray dose to man from intermediate and long-term fallout. The code is based on empirical models derived primarily from injection-deposition experience gained from the US and USSR nuclear tests in 1958. Under the assumption that a nuclear power facility is destroyed and that its debris behaves in the same manner as the radioactive cloud produced by the nuclear weapon that attached the facility, predictions are made for the gamma does from this source of radioactivity. As a comparison study the gamma dose due to the atmospheric nuclear tests from the period of 1951 to 1962 has been computed. The computed and measured values from Grove, UK and Chiba, Japan agree to within a few percent. The global deposition of radioactivity and resultant gamma dose from a hypothetical strategic nuclear exchange between the US and the USSR is reported. Of the assumed 5300 Mton in the exchange, 2031 Mton of radioactive debris is injected in the atmosphere. The highest estimated average whole body total integrated dose over 50 years (assuming no reduction by sheltering or weathering) is 23 rem in the 30 to 50 degree latitude band. If the attack included a 100 GW(e) nuclear power industry as targets in the US, this dose is increased to 84.6 rem. Hotspots due to rainfall could increase these values by factors of 10 to 50.

  14. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    Science.gov (United States)

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility.

  15. Influence of lead apron shielding on absorbed doses from panoramic radiography.

    Science.gov (United States)

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA(®) three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax(®) 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = -0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding.

  16. Establishment and validation of a dose-effect curve for {gamma}-rays by cytogenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barquinero, Joan F.; Caballin, Maria Rosa [Unitat d`Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Barrios, Leonardo; Ribas, Montserrat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular i Fisiologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Miro, Rosa [Institut de Biologia Fondamental `Vicent Villar Palasi`, Universitat Autonoma de Barcelona, Barcelona (Spain); Egozcue, Josep [Servei d`Oncologia, Hospital de la Santa Crue i Sant Pau, Universitat Autonome de Barcelona, Barcelona (Spain)

    1995-01-01

    A dose-effect curve obtained by analysis of dicentric chromosomes after irradiation of peripheral blood samples, from one donor, at 11 different doses of {gamma}-rays is presented. For the elaboration of this curve, more than 18,000 first division metaphases have been analyzed. The results fit very well to the linear-quadratic model. To validate the curve, samples from six individuals (three controls and three occupationally exposed persons) were irradiated at 2 Gy. The results obtained, when compared with the curve, showed that in all cases the 95% confidence interval included the 2 Gy dose, with estimated dose ranges from 1.82 to 2.19 Gy.

  17. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  18. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    Science.gov (United States)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  19. Low-dose radiation modifies skin response to acute gamma-rays and protons.

    Science.gov (United States)

    Mao, Xiao Wen; Pecaut, Michael J; Cao, Jeffrey D; Moldovan, Maria; Gridley, Daila S

    2013-01-01

    The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the Gamma and Proton groups received 2 Gy (0.9 Gy/min and 1.0 Gy/min, respectively). Assays were performed 56 days after exposure. Skin samples from all irradiated groups had activated caspase-3, indicative of apoptosis. The significant (pGamma and Proton groups were not present when LDR pre-exposure was included. However, the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay for DNA fragmentation and histological examination of hematoxylin and eosin-stained sections revealed no significant differences among groups, regardless of radiation regimen. The data demonstrate that caspase-3 activation initially triggered by both forms of acute radiation was greatly elevated in the skin nearly two months after whole-body exposure. In addition, LDR γ-ray priming ameliorated this response.

  20. CALCULATIONS OF FISSION-PRODUCT GAMMA-RAY DOSES IN SINGLE-COMPARTMENT ABOVE GROUND CONCRETE STRUCTURES,

    Science.gov (United States)

    effectiveness of above-ground concrete structures against the initial nuclear radiation produced by the detonation of a nuclear weapon. Energy and...Coefficients (absorbed dose at receiver per unit free-field absorbed dose) were computed for receivers positioned within concrete structures with an

  1. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Imaging of gamma and neutron dose distributions at LVR-15 epithermal beam by means of FGLDs

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G., E-mail: grazia.gambarini@mi.infn.it [Department of Physics, Universita degli Studi, Milan (Italy)] [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Bartesaghi, G. [Department of Physics, Universita degli Studi, Milan (Italy)] [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Carrara, M. [The Fondazione IRCCS ' Istituto Nazionale Tumori' , Milan (Italy); Negri, A. [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Paganini, L. [Department of Physics, Universita degli Studi, Milan (Italy); Vanossi, E. [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Burian, J.; Marek, M.; Viererbl, L.; Klupak, V.; Rejchrt, J. [Department of Reactor Physics, NRI Rez, plc (Czech Republic)

    2011-12-15

    Gamma and fast neutron dose spatial distributions have been measured at the collimator exit of the epithermal neutron beam of LVR-15 reactor (Rez). Measurements were performed by means of optically analyzed Fricke-gel-layer detectors. The separation of the two dose contributions has been achieved by suitable pixel-to-pixel elaboration of the light transmittance images of Fricke-gel-layer detectors prepared with water and heavy water.

  3. Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data.

    Science.gov (United States)

    Kumagai, K; Ookubo, H; Kimura, H

    2015-11-01

    In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detector systems in the low dose rate range. The background dose rate varies mainly as a result of the deposition of (222)Rn progeny in precipitation and shielding of the ground by snow cover. Increments in the environmental dose rate due to radionuclides released from nuclear facilities must be separated from these background variations. The method in the present study corrects for the dose rate variations from natural sources by multiple regression analysis based on the γ-ray counting rates of single-channel analysers opened in the energy ranges of γ-rays emitted by (214)Bi and (208)Tl. Assuming a normal distribution of the results and using the one-sided type I error of 0.01 while ignoring the type II error, the detection limit of the γ-ray dose rate from artificial sources was 0.77 nGy h(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A computational study to evaluate indoor gamma dose-rate on the basis of outdoor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nuccetelli, C.; Menghi, E.; Bochicchio, F. [Istituto Superiore di Sanita, Roma (Italy)

    2006-07-01

    A new method to estimate the indoor gamma dose rate has been developed. This method is based on outdoor gamma dose rate measurements and a computational model that requires the knowledge of some structural and geometrical characteristics of the dwelling. It can be a very useful tool in situations in which it is impossible entering the dwellings to measure the indoor gamma dose rate, such as epidemiological studies and other surveys. To validate the method, estimates and actual indoor measurements have been compared for a sample of dwellings. In a first phase, indoor gamma dose rate estimates were obtained using the detailed dwelling information contained in questionnaire filled-in during the indoor measurements. This first comparison gave excellent results. A more general and less site dependent approach has now been implemented, assuming average values for many indoor parameters instead of using questionnaire data, in order to evaluate the predictive characteristics of this method for a practical use. In this paper, the new procedure is presented and the results obtained till now are summarized. (authors)

  5. Direct comparison of extrapolation chamber measurements of the absorbed dose rate for beta radiation between PTB (Germany) and VNIIM (Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R. [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, (Germany); Fedina, S.; Oborin, A. [D I Mendeleyev Institute for Metrology (VNIIM), 198005 St Petersburg, (Russian Federation)

    2011-07-01

    An intercomparison of the absorbed dose rate in tissue, Dt(0.07), at radiation protection levels for beta dosimetry was performed between two national metrology institutes, the D I Mendeleyev Institute for Metrology (VNIIM) in St Petersburg (Russia) and the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig (Germany), from 2009 to 2010. For this comparison, radiation sources of both institutes were calibrated using the primary standard measuring devices (extrapolation chambers) of both institutes, i.e. no transfer instrument was used as both primary standards were directly compared. The values of the absorbed dose rates in tissue agree within 1.2% for two different {sup 90}Sr/{sup 90}Y sources, within 1.0% for one {sup 85}Kr source and within 1.5% and 4.2% for two different {sup 147}Pm sources. All these deviations are within 1 to 2 times the corresponding standard deviations. (authors)

  6. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 and Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was

  7. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging.

    Science.gov (United States)

    Hellén-Halme, Kristina; Nilsson, Mats

    2013-01-01

    Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs. The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic(®) film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV. The patient receives approximately 40 - 50% higher (mean and integral) absorbed dose when a tube voltage of 70 kV is used. The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  8. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and {sup 60}Co γ-rays

    Energy Technology Data Exchange (ETDEWEB)

    Vadrucci, M., E-mail: monia.vadrucci@enea.it; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)–Application of Radiations Technical Unit, Via E. Fermi 45, Frascati, Rome 00044 (Italy); Esposito, G.; De Angelis, C. [Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome I-00161, Italy and INFN, Sezione di Roma1, Gruppo Collegato Sanità, Rome 00100 (Italy); Cherubini, R. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro, Padova I-35020 (Italy); Pimpinella, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA–INMRI), Via Anguillarese 301, Rome 00123 (Italy)

    2015-08-15

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference {sup 60}Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a {sup 60}Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to {sup 60}Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose

  9. Determination of the absorbed radiation dose in urograms according to equipment technical characteristics and quality control results; Determinacao da dose absorvida em exames de urografia excretora a partir das caracteristicas tecnologicas do equipamento e dos resultados do controle de qualidade

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Regina Bitelli; Daros, Kellen Adriana Curci; Idagawa, Marcos Hideki [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    2000-02-01

    The radiation dose absorbed by the patient on the skin during urograms was determined using thermoluminescent dosimeters (Ca SO{sub 4}:Dy). The measure dose values were compared to the results of the radiological equipment quality control program. Consequently, an equation to calculate the absorbed dose was proposed as a function of the dose rate associated with the X-rays output (m C/kg.m As). This allows calculation of the absorbed dose in urogramsin any radiological center provided that operational conditions are known through the quality control program and the applied technique is compared to the one used in this study. (author)

  10. Analyse of the international recommendations on the calculation of absorbed dose in the biota; Analise das recomendacoes internacionais sobre calculo de dose absorvida na biota

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b [Industrias Nucleares do Brasil (UTM/INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Universidade Federal Fluminense (LARARA/UFF), Niteroi, RJ (Brazil). Lab. de Radiobiologia e Radiometria; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Ciencia Ambiental

    2011-10-26

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  11. Retrospective reconstruction on individual and collective external gamma doses of population evacuated after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Likhtarev, I.A.; Chumack, V.V.; Repin, V.S. [Ukrainian Scientific Center of Radiation Medicine, Kiev (Ukraine)

    1994-06-01

    About 90,000 citizens of Ukraine, who were residents of the near zone of the Chernobyl nuclear power plant were evacuated during the first weeks after the accident due to the heavy contamination of the environment. Doses of this cohort were unknown. Retrospective reconstruction of external gamma exposure doses, based on the results of direct dose rate measurements performed during the accident and individual behavior/migration histories of the evacuees, was performed. Individual doses were reconstructed for 30,586 evacuees from the city of Prip`at and the settlements of the 30-km zone. The average effective dose H{sup E} due to external irradiation for this cohort was estimated to be 15 mSv, although individual values vary in an extremely wide range from 0.1 to 383 mSv. The collective dose of the whole evacuated population was found to be 1,300 person-Sv. 10 refs., 9 figs., 5 tabs.

  12. Retrospective reconstruction of individual and collective external gamma doses of population evacuated after the Chernobyl accident.

    Science.gov (United States)

    Likhtarev, I A; Chumack, V V; Repin, V S

    1994-06-01

    About 90,000 citizens of Ukraine, who were residents of the near zone of the Chernobyl nuclear power plant were evacuated during the first weeks after the accident due to the heavy contamination of the environment. Doses of this cohort were unknown. Retrospective reconstruction of external gamma exposure doses, based on the results of direct dose rate measurements performed during the accident and individual behavior/migration histories of the evacuees, was performed. Individual doses were reconstructed for 30,586 evacuees from the city of Prip'at and the settlements of the 30-km zone. The average effective dose H(E) due to external irradiation for this cohort was estimated to be 15 mSv, although individual values vary in an extremely wide range from 0.1 to 383 mSv. The collective dose of the whole evacuated population was found to be 1,300 person-Sv.

  13. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  14. Effect of particle size in the TL response of natural quartz sensitized with high gamma dose

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A B Jr; Guzzo, P L; Sullasi, H L; Khoury, H J, E-mail: alvarobcjr@yahoo.com.b

    2010-11-01

    The aim of this study is to investigate the effect of particle size in the thermoluminescence (TL) response of natural quartz sensitized with high gamma dose. For this, fragments of a single crystal taken from the Solonopole district (Brazil) were crushed and classified into ten size fractions ranging from 38 {mu}m to 5 mm. Aliquots of each size fraction were sensitized with 25 kGy of gamma dose of {sup 60}Co and heat-treated in a muffle furnace at 400{sup o}C. The non-sensitized samples were exposed to test doses between 50 Gy and 5 kGy and the sensitized samples were exposed to a unique test dose equal to 50 mGy. For non-sensitized samples, the TL peak near 325 {sup 0}C increases with the particle size decreasing. However, in the case of sensitized samples, the TL output near 280 {sup 0}C increases with the increasing of particle size up to mean grain size equal to 308 {mu}m. Above 308 {mu}m, an abrupt reduction in the TL intensity was noticed. These effects are discussed in relation to the specific surface area and the different interaction of high gamma doses with fine and coarse particles of quartz.

  15. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  16. Effect of high gamma-doses in the sensitization of natural quartz for thermoluminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, H.J.; Guzzo, P.L.; Brito, S.B. [Universidade Federal de Pernambuco, 50740-540 Recife PE (Brazil)

    2006-07-01

    Sensitization is an important effect in radiation dosimetry using thermoluminescent (TL materials where the enhancement of sensitivity is a desirable feature. Until known, the investigation of sensitization in quartz has been restricted to its first glow peak appearing around 110 C. In addition, the sensitization process has been essentially produced by heat-treatments in powdered quartz. The aim of this study is to investigate the sensitization process in the second glow peak of crystalline quartz using high doses of gamma irradiation. For this, five lots of samples were prepared from quartz single crystals issued from different geologies in Brazil. Chips of 5 x 5 x 1 mm{sup 3} (60 mg) were cut and lapped parallel to the (0001) plane. The specimens were initially irradiated with doses of gamma radiation of {sup 137} Cs in the range of 10 mGy to 10 Gy in order to determine its TL response curve. After that, the specimens were submitted to successive high doses of gamma-irradiation with {sup 60} Co from 25 kGy to 350 kGy. After each irradiation, the TL response curves to gamma radiation of {sup 137} Cs were determined for each quartz lot irradiated in the range of 2 to 20 mGy. The TL measurements were carried out with a 2800M Victoreen reader using the step mode. The step parameters were set in 10 s from 30 to 160 C (first region) and in 20 s from 160 to 320 C (second region). The absolute TL signal used to obtain the calibration curves represented the sum of electric charges under the glow peak appearing in the second region. The results showed that the TL response of the quartz studied increased with the dose sensitization, so that the TL response for 10mGy of {sup 137} Cs radiation varied from 0.05 nC/mg for the quartz without sensitization to 10 nC/mg after a sensitization with 50 kGy of gamma radiation of {sup 60} Co. The effect of sensitization with high doses of gamma irradiation was clearly observed for three quartz lots and it was observed that the high

  17. MCz diode response as a high-dose gamma radiation dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, F. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Caixa Postal 11049 - 05422 970 Sao Paulo/SP (Brazil); Goncalves, J.A.C. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Caixa Postal 11049 - 05422 970 Sao Paulo/SP (Brazil); Depto. de Fisica, Pontificia Universidade Catolica de Sao Paulo-PUC/SP, Rua Marques de Paranagua no 111-01303 050 Sao Paulo/SP (Brazil); Khoury, H.J. [Nuclear Energy Department, Universidade Federal de Pernambuco-UFPE, Av. Prof. Luiz Freire no 1000-50740 540 Recife/PE (Brazil); Napolitano, C.M. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Caixa Postal 11049 - 05422 970 Sao Paulo/SP (Brazil); Haerkoenen, J. [Helsinki Institute of Physics-HIP, University of Helsinki, 00014 Helsinki (Finland); Bueno, C.C. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Caixa Postal 11049 - 05422 970 Sao Paulo/SP (Brazil); Depto. de Fisica, Pontificia Universidade Catolica de Sao Paulo-PUC/SP, Rua Marques de Paranagua no 111-01303 050 Sao Paulo/SP (Brazil)], E-mail: ccbueno@ipen.br

    2008-02-15

    This work presents the preliminary results obtained with a high-resistivity magnetic Czochralski (MCz) silicon diode processed at the Helsinki Institute of Physics as a high-dose gamma dosimeter in radiation processing. The irradiation was performed using a {sup 60}Co source (Gammacell 220, MDS Nordion) within total doses from 100 Gy up to 3 kGy at a dose rate of 3 kGy/h. In this interval, the dosimetric response of the diode is linear with a correlation coefficient (r{sup 2}) higher than 0.993. However, without any irradiation procedure, the device showed a small sensitivity dependence on the accumulated dose. For total dose of 3 kGy, the observed decrease was about 2%. To clarify the origin of this possible radiation damage effect, some studies are under way.

  18. Verification by the FISH translocation assay of historic doses to Mayak workers from external gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sotnik, Natalia V.; Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Darroudi, Firouz [Leiden University Medical Center, Department of Toxicogenetics, Leiden (Netherlands); College of North Atlantic, Department of Health Science, Centre for Human Safety and Environmental Research, Doha (Qatar); Ainsbury, Elizabeth A.; Moquet, Jayne E.; Lloyd, David C.; Hone, Pat A.; Edwards, Alan A. [Public Health England, Chilton, Oxfordshire (United Kingdom); Fomina, Janna [Leiden University Medical Center, Department of Toxicogenetics, Leiden (Netherlands)

    2015-11-15

    The aim of this study was to apply the fluorescence in situ hybridization (FISH) translocation assay in combination with chromosome painting of peripheral blood lymphocytes for retrospective biological dosimetry of Mayak nuclear power plant workers exposed chronically to external gamma radiation. These data were compared with physical dose estimates based on monitoring with badge dosimeters throughout each person's working life. Chromosome translocation yields for 94 workers of the Mayak production association were measured in three laboratories: Southern Urals Biophysics Institute, Leiden University Medical Center and the former Health Protection Agency of the UK (hereinafter Public Health England). The results of the study demonstrated that the FISH-based translocation assay in workers with prolonged (chronic) occupational gamma-ray exposure was a reliable biological dosimeter even many years after radiation exposure. Cytogenetic estimates of red bone marrow doses from external gamma rays were reasonably consistent with dose measurements based on film badge readings successfully validated in dosimetry system ''Doses-2005'' by FISH, within the bounds of the associated uncertainties. (orig.)

  19. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities.

    Science.gov (United States)

    Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A

    2014-08-01

    The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  20. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, M., E-mail: marta.bueno@upc.edu; Duch, M. A. [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Carrasco, P.; Jornet, N. [Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i de Sant Pau, 08025 Barcelona (Spain); Muñoz-Montplet, C. [Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia—Girona, 17007 Girona (Spain)

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  1. Determination of gamma dose and thermal neutron fluence in BNCT beams from the TLD-700 glow curve shape

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G., E-mail: grazia.gambarini@mi.infn.i [Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Bartesaghi, G. [Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Agosteo, S.; Vanossi, E. [Politecnico di Milano, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Carrara, M.; Borroni, M. [Fondazione IRCCS, Istituto Nazionale dei Tumori, Medical Physics Unit, via Venezian 1, 20133 Milano (Italy)

    2010-03-15

    The measurement of both gamma dose and thermal neutron fluence in a BNCT gamma-neutron mixed-field can be achieved by means of a single thermoluminescence dosimeter (TLD-700), exploiting the shape of the glow-curve (GC). The method is based on simple algorithms containing parameters obtained from the TLD-700 GC and requires the gamma calibration GC (for gamma dose measurement) or the thermal neutron calibration GC (for neutron fluence measurement) and moreover the GC of a TLD-600 exposed to a BNCT field, uncalibrated. Some results are reported, showing the potentiality of the method.

  2. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  3. Cytogenetic dose-response in vitro for biological dosimetry after exposure to high doses of gamma-rays.

    Science.gov (United States)

    Vinnikov, Volodymyr A; Maznyk, Nataliya A

    2013-04-01

    The dose response for dicentrics plus centric rings and total unstable chromosome-type aberrations was studied in the first mitoses of cultured human peripheral blood lymphocytes irradiated in vitro to doses of ∼2, 4, 6, 8, 10, 16 and 20 Gy of acute (60)Со gamma-rays. A dose-dependent increase of aberration yield was accompanied by a tendency to the underdispersion of dicentrics and centric rings among cells distributions compared with Poisson statistics at doses ≥6 Gy. The formal fitting of the data to a linear-quadratic model resulted in an equation with the linear and quadratic coefficients ranged 0.098-0.129×cell(-1)×Gy(-1) and 0.039-0.034×cell(-1)×Gy(-2), respectively, depending on the fitting method. The actual radiation-induced aberration yield was markedly lower than expected from a calibration curve, generated earlier within a lower dose range. Interlaboratory variations in reported dicentric yields induced by medium-to-high radiation doses in vitro are discussed.

  4. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    Science.gov (United States)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  5. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  6. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  7. Evaluation of gamma dose effect on PIN photodiode using analytical model

    Science.gov (United States)

    Jafari, H.; Feghhi, S. A. H.; Boorboor, S.

    2018-03-01

    The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.

  8. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M., E-mail: meigikos@if.uff.br [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); Juri Ayub, J. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil); GEA-Instituto de Matematica Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, CCT-San Luis, Ej. de los Andes 950, D5700HHW San Luis (Argentina); Cid, A.S.; Cardoso, R.; Lacerda, T. [LARA - Laboratorio de Radioecologia, Instituto de Fisica, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoata, 24210-340 Niteroi, RJ (Brazil)

    2011-11-15

    Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of {sup 232}Th, {sup 226}Ra, and {sup 40}K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg{sup -1}, 4.9-160 Bq kg{sup -1} and 190-2029 Bq kg{sup -1}, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m x 4.0 m area, 2.8 m height) was found to be 120 nGy h{sup -1}, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h{sup -1} due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of {sup 226}Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h{sup -1}) will be lower than 100 Bq m{sup -3}, value recommended as a reference level by the World Health Organization. - Highlights: > We used indirect methods to predict external gamma dose rate and radon concentration. > The gamma-ray dose rate was estimated by a Monte Carlo simulation method. > The results were validated by in-situ measurements with a NaI spectrometer. > Radon concentrations in the room were estimated by a simple mass balance equation. > Radon concentration in the room ventilated adequately will be lower than 100 Bq m{sup -3}.

  9. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  10. Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M. [Departamento de Anatomia e Imagem - IMA, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, MG (Brazil); Gual, Maritza R.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Av. Antonio Carlos 6627, C.P. 941, 31270-901, Belo Horizonte, MG (Brazil); Lima, Claubia P.B. [Departamento de Engenharia Nuclear - DEN, Universidade Federal de Minas Gerais - UFMG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil)

    2015-07-01

    Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)

  11. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    DEFF Research Database (Denmark)

    Helle, K.B.; Müller, T.O.; Astrup, Poul

    2014-01-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often ch....... The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally. © 2014 Elsevier Ltd. All rights reserved...

  12. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  13. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    Science.gov (United States)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  14. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: emanz@cantera.reduaz.mx; Guzman E, L.J. [Unidad Academica de Biologia Experimental, Guadalupe, Zacatecas (Mexico); Garcia T, M. [LIBRA, Centro I and D, Campus Miguel Delibes, Valladolid 47011 (Spain)

    2004-07-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a {sup 137} Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  15. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    Science.gov (United States)

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  16. Low-dose {gamma}-irradiation enhances the proliferation of myeloid leukemia (M1) cells

    Energy Technology Data Exchange (ETDEWEB)

    Ibuki, Yuko; Suzuki, Akifumi; Goto, Rensuke [Shizuoka Univ. (Japan). Graduate School of Nutritional and Environmental Sciences

    2001-10-01

    We examined the effect of low-dose {gamma}-irradiation on proliferation of myeloid leukemia, M1 cells. M1 cells irradiated with 4 cGy showed increased proliferation as determined by cell number, alamar Blue metabolism and DNA synthesis. The increase by low-dose irradiation was observed at every concentration of serum from 1% to 10%, showing the decrease of the serum requirement in irradiated cells. Furthermore, survival days of SL mice inoculated intraperitoneally with low-dose irradiated M1 cells were shorter than those with sham-irradiated cells. These results shown as the decrease of serum requirement and increase of transplantation ability, indicated the augmentation of leukemia malignancy by low-dose irradiation. (author)

  17. The effect of backscattering on the beta dose absorbed by individual quartz grains

    DEFF Research Database (Denmark)

    Autzen, Martin; Guérin, G.; Murray, A. S.

    2017-01-01

    We describe the effect on dose rates and over-dispersion (OD) of changing the spectrum of energies to which grains of various shapes and volumes are exposed during beta irradiation, either by changing the backscattering medium or attenuating the incident spectrum. Dose rates are found to increase...

  18. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A., E-mail: camila_fmedica@hotmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  19. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  20. Absorbed and effective dose from newly developed cone beam computed tomography in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Nyeong; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absolved and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposure. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  1. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding.

    Science.gov (United States)

    Alonso, Thessa C; Mourão, Arnaldo P; Santana, Priscila C; da Silva, Teógenes A

    2016-11-01

    During a lung computed tomography (CT) examination, breast and nearby radiosensitive organs are unnecessarily irradiated because they are in the path of the primary beam. The purpose of this paper is to determine the absorbed dose in breast and nearby organs for unshielded and shielded exposures with bismuth. The experiment was done with a female anthropomorphic phantom undergoing a typical thoracic CT scan, with TLD-100 thermoluminescent detectors insert at breast, lung and thyroid positions. Results showed that dose reduction due to bismuth shielding was approximately 30% and 50% for breast and thyroid, respectively; however, the influence of the bismuth on the image quality needs to be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Absorbed dose measurements in mammography using Monte Carlo method and ZrO{sub 2}+PTFE dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Duran M, H. A.; Hernandez O, M. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83190 Hermosillo, Sonora (Mexico); Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Pinedo S, A.; Ventura M, J.; Chacon, F. [Hospital General de Zona No. 1, IMSS, Interior Alameda 45, 98000 Zacatecas (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F.(Mexico)], e-mail: hduran20_1@hotmail.com

    2009-10-15

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO{sub 2}+PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  3. Gamma knife radiosurgery for vestibular schwannomas: results of hearing preservation in relation to the cochlear radiation dose.

    NARCIS (Netherlands)

    Timmer, F.C.A.; Hanssens, P.E.; Haren, A.E. van; Mulder, J.J.S.; Cremers, C.W.R.J.; Beynon, A.J.; Overbeeke, J.J. van; Graamans, K.

    2009-01-01

    OBJECTIVES/HYPOTHESIS: This study was designed to evaluate hearing preservation after gamma knife radiosurgery (GKRS) and to determine the relation between hearing preservation and cochlear radiation dose in patients with a sporadic vestibular schwannoma (VS). METHODS: Prospective study involving

  4. Protection of Melanized Cryptococcus neoformans from Lethal Dose Gamma Irradiation Involves Changes in Melanin's Chemical Structure and Paramagnetism

    Science.gov (United States)

    Khajo, Abdelahad; Bryan, Ruth A.; Friedman, Matthew; Burger, Richard M.; Levitsky, Yan; Casadevall, Arturo; Magliozzo, Richard S.; Dadachova, Ekaterina

    2011-01-01

    Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown. PMID:21966422

  5. Protection of melanized Cryptococcus neoformans from lethal dose gamma irradiation involves changes in melanin's chemical structure and paramagnetism.

    Directory of Open Access Journals (Sweden)

    Abdelahad Khajo

    Full Text Available Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans, which uses L-3,4-dihydroxyphenylalanine (L-DOPA to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi(+3 binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown.

  6. Novel Concrete Chemistry Achieved with Low Dose Gamma Radiation Curing and Resistance to Neutron Activation

    Science.gov (United States)

    Burnham, Steven Robert

    As much as 50% of ageing-related problems with concrete structures can be attributed to con-struction deficiencies at the time of placement. The most influential time affecting longevity of concrete structures is the curing phase, or commonly the initial 28 days following its placement. A novel advanced atomistic analysis of novel concrete chemistry is presented in this dissertation with the objective to improve concrete structural properties and its longevity. Based on experiments and computational models, this novel concrete chemistry is discussed in two cases: (a) concrete chemistry changes when exposed to low-dose gamma radiation in its early curing stage, thus improving its strength in a shorter period of time then curing for the conventional 28 days; (b) concrete chemistry is controlled by its atomistic components to assure strength is not reduced but that its activation due to long-term exposure to neutron flux in nuclear power plants is negligible. High dose gamma radiation is well documented as a degradation mechanism that decreases concrete's compressive strength; however, the effects of low-dose gamma radiation on the initial curing phase of concrete, having never been studied before, proved its compressive strength increases. Using a 137 Cs source, concrete samples were subjected to gamma radiation during the initial curing phase for seven, 14, and 28 days. The compressive strength after seven days is improved for gamma cured concrete by 24% and after 14 days by 76%. Concrete shows no improvement in compressive strength after 28 days of exposure to gamma radiation, showing that there is a threshold effect. Scanning Electron Microscopy is used to examine the microstructure of low-dose gamma radiation where no damage to its microstructure is found, showing no difference between gamma cured and conventionally cured concrete. Molecular dynamics modeling based on the MOPAC package is used to study how gamma radiation during the curing stage improves

  7. Comparative dosimetry of GammaMed Plus high-dose rate Ir brachytherapy source.

    Science.gov (United States)

    Patel, N P; Majumdar, B; Vijayan, V

    2010-07-01

    The comparative dosimetry of GammaMed (GM) Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm) and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°). The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (Λ), radial dose function g(L)(r) and anisotropy function F(r, θ) of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study.

  8. TL kinetics parameters of MWCVD diamond films at different gamma dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E.; Furetta, C. [ICN, UNAM, A.P. 70-543, 04510 Mexico D.F. (Mexico); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP800, Via E Fermi 21020, Ispra, VA (Italy); Gastelum, S.; Melendrez, R.; Barboza F, M. [CIF, Universidad de Sonora, A.P. 5-088, 83190 Hermosillo, Sonora (Mexico)

    2007-07-01

    Full text: Microwave chemically vapour deposited (MWCVD) diamond films have been successfully used in dosimetric applications including radiotherapy and industrial dose assessments. Dose measurements were determined by integration of the TL glow curve of a MWCVD diamond films previously exposed to an ionizing radiation beam. A good quality MWCVD diamond films thermoluminescent dosimeter (TLD) should be independent of the irradiation dose rate used. In the present work the TL kinetics parameters of the MWCVD diamond films of 6 and 12 lm thickness, exposed to different {sup 60}Co gamma dose rates of 2.4, 5.94 and 13.1 Gy/min were calculated through a Computerized Glow Curve Deconvolution (CGCD) method. The TL glow curves feature a single peak at different dose rates with asymmetric shape typical of a first order kinetics process. The experimental TL glow curves were fitted using first-order kinetics and the best fit showed FOM values around 2-3 % range indicating the goodness of the fit. Slight dose rate effects on the TL properties were observed as compared to higher dose rates TL dependences reported elsewhere. (Author)

  9. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient

  10. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  11. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Fatma; Tekin, Niket; Erkan, Sevin; Gueven, Olgun (Hacettepe Univ., Ankara (Turkey). Dept. of Chemistry)

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of [gamma]-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements. (author).

  12. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  13. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Science.gov (United States)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  14. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  15. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  16. Long-lived gamma emitting radionuclides in palm dates and estimates of annual effective doses.

    Science.gov (United States)

    Alrefae, Tareq

    2015-05-01

    An investigation of long-lived gamma emitting radionuclides in palm dates was performed. The palm date samples originated from eight countries, namely India, Iran, Jordan, Libya, Pakistan, Saudi Arabia, Tunisia, and the United Arab Emirates. Among the samples were the palm date types Sukari, Wanana, Umkhuber, Rashudiya, Libana, Madjool, Gumaizi, Anbar, Braim, Ajwa, Khadri, Munafee, Mabroom, Daglanoor, Sulag, and Khalas. Gamma spectrometry revealed activity concentrations of (AVG ± STD) 0.983 ± 0.457, 0.469 ± 0.229, and 287.078 ± 41.871 Bq kg(-1) dry weight for 226Ra, 228Ra, and 40K, respectively. Annual average effective dose was estimated to be 32 μSv from the consumption of palm dates. Comparing these findings with values reported in the literature, it was concluded that consumption of palm dates is safe for the presence of the investigated radionuclides.

  17. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator

    Science.gov (United States)

    Flores-Martinez, Everardo; Malin, Martha J.; DeWerd, Larry A.

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  18. Gene expression in Catla catla (Hamilton) subjected to acute and protracted doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Anbumani, S., E-mail: aquatox1982@gmail.com; Mohankumar, Mary N., E-mail: marynmk@gmail.com

    2016-09-15

    Highlights: • Gamma radiation induced up- and down- regulation of cell cycle genes. • Protracted dose-rate induced gene up-regulation to facilitate cell survival. • bcl-2 gene facilitates repair at protracted dose and cell death at acute exposures. • gadd45α, cdk1 and bcl-2 genes work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells. - Abstract: Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90 day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α – r = 0.85, p = 0.0073; cdk1 – r = 0.86, p = 0.0053; bcl-2 – r = 0.89, p = 0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote ‘repair’ and ‘death’ circuitries in fish blood cells.

  19. Avoidance behaviour and anxiety in rats irradiated with a sublethal dose of gamma-rays.

    Science.gov (United States)

    Tomášová, Lenka; Smajda, B; Bona, M

    2011-12-01

    The aim of this study was to assess, whether a sublethal dose of gamma-rays will influence the avoidance behaviour and anxiety in rats and whether the response to radiation depends on time of day of its application. Adult male Wistar rats were tested in elevated plus-maze, in hot plate test and in the light/dark box in 4 regular intervals during a day. After two weeks the animals were irradiated with a whole-body dose 6 Gy of gamma-rays. One day after irradiation the animals were repeatedly tested in the same way, as before irradiation. In the plus-maze test an increased level of anxiety was established. The irradiation significantly decreased the locomotor activity of rats, but the extent of exploratory and comfortable behaviour were not altered. After irradiation, an elevated aversion to the thermal stimulus was observed in the hot plate test. The effects of radiation were more pronounced in the light period of the day, than in the dark one. No significant differences in aversion to light were detected after irradiation. The obtained results indicate, that sublethal doses of ionizing radiation can markedly influence the reactivity of animals to adverse stimuli, their motoric activity and emotional status, as well.

  20. Evaluation of Absorbed Dose of Critical Organ in Rando Phantom under Head, Abdomen and Pelvis Spiral CT Scan by Thermo Luminescent Dosimetery - TLD

    Directory of Open Access Journals (Sweden)

    Gholamhosein Haddadi

    2011-12-01

    Full Text Available Background & Objectives: Computed tomography (CT represents 11% of all diagnostic radiology procedures but it contributes to almost 67% of the total effective dose to the human population. In head and neck CT which consist of 1/3 of total CT scans, other critical organs such as lenses and thyroid are in the radiation field. Also in the abdomen and pelvis scan, irradiation of ovaries is unavoidable. Because of high sensitivity of these organs, the probability of abnormality and cancer in these organs has increased. Therefore the dose assessment in these organs is very important. The aim of this study is to estimate the absorbed dose in critical organ of patient undergoing common head, neck, abdomen and pelvic spiral CT scan. Materials & Methods: In this study, Lithium fluoride thermo luminescent dosimeters (TLD-100, Harshaw were used to determine the absorbed dose of critical organ of tissue equivalent rando phantom (Alderson research industries, Inc, Stanford, Conn, U.S.A. The phantom was sectional in design and manufactured with a 2.5 cm slab thickness. Each section contained some holes that allowed accommodation of TLDs. At least two crystals were placed in each hole. The average value of the TLD readings was taken as the organ dose. Readouts were obtained on a Harshaw 4500 reader (Harshaw, Ohio, USA. For calibration, the annealed dosimeters were exposed to an X-ray beam resulting from 120 kVp tube voltage and calibration curve was plotted. Results: result of this study showed during head CT scan the maximum absorbed dose belongs to occipital bones skin. Which were about 11.45 mGy and the minimum absorbed dose belong to thyroid gland which was 0.5 mGy. During abdomen & pelvic spiral CT, the maximum absorbed dose of abdomen skin was 23.32 mGy and the minimum absorbed dose in the eye region was 0.15 mGy. The readout results are correlated with the results of spiral CT detector with the “ALARA” principle, we recommend suitable techniques

  1. Optimization of Parameters in 16-slice CT-‌‌scan Protocols for Reduction of the Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Shahrokh Naseri

    2014-08-01

    Full Text Available Introduction In computed tomography (CT technology, an optimal radiation dose can be achieved via changing radiation parameters such as mA, pitch factor, rotation time and tube voltage (kVp for diagnostic images. Materials and Methods In this study, the brain, abdomen, and thorax scaning was performed using Toshiba 16-slice scannerand standard AAPM and CTDI phantoms. AAPM phantom was used for the measurement of image-related parameters and CTDI phantom was utilized for the calculation of absorbed dose to patients. Imaging parameters including mA (50-400 mA, pitch factor (1 and 1.5 and rotation time (range of 0.5, 0.75, 1, 1.5 and 2 seconds were considered as independent variables. The brain, abdomen and chest imaging was performed multi-slice and spiral modes. Changes in image quality parameters including contrast resolution (CR and spatial resolution (SR in each condition were measured and determined by MATLAB software. Results After normalizing data by plotting the full width at half maximum (FWHM of point spread function (PSF in each condition, it was observed that image quality was not noticeably affected by each cases. Therefore, in brain scan, the lowest patient dose was in 150 mA and rotation time of 1.5 seconds. Based on results of scanning of the abdomen and chest, the lowest patient dose was obtained by 100 mA and pitch factors of 1 and 1.5. Conclusion It was found that images with acceptable quality and reliable detection ability could be obtained using smaller doses of radiation, compared to protocols commonly used by operators.

  2. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease

    DEFF Research Database (Denmark)

    la Cour, Jeppe Lerche; Hedemann-Jensen, Per; Søgaard-Hansen, Jens

    2013-01-01

    External fractionated radiotherapy of cancer increases the risk of cardio- and cerebrovascular events, but less attention has been paid to the potential side effects on the arteries following internal radiotherapy with radioactive iodine (RAI), i.e. 131-iodine. About 279 per million citizens...... in the western countries are treated each year with RAI for benign thyroid disorders (about 140,000 a year in the EU), stressing that it is of clinical importance to be aware of even rare radiation-induced side effects. In order to induce or accelerate atherosclerosis, the dose to the carotid arteries has...

  3. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Ma, Yingwu [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan (China); Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China)

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  4. Effect of gamma irradiation at intermediate doses on the performance of reverse osmosis membranes

    Science.gov (United States)

    Combernoux, Nicolas; Labed, Véronique; Schrive, Luc; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe

    2016-07-01

    The goal of this study is to explain the degradation of Polyamide (PA) composite reverse osmosis membrane (RO) in function of the irradiation dose. Irradiations were performed with a gamma 60Co source in wet conditions and under oxygen atmosphere. For different doses of 0.2 and 0.5 MGy with a constant dose rate of 0.5 kGy h-1, RO membranes performances (NaCl retention, permeability) were studied before and after irradiation. ATR-FTIR, ion chromatography and gas chromatography were used to characterize structural modification. Results showed that the permeability of RO membranes irradiated at 0.2 MGy exhibited a small decrease, related to scissions of the PVA coating. However, retention did not change at this dose. At 0.5 MGy, permeability showed a large increase of a factor around 2 and retention began to decrease from 99% to 95%. Chromatography measurements revealed a strong link between permselectivity properties variation, ion leakage and oxygen consumption. Add to ATR-FTIR observations, these results emphasized that the cleavages of amide and ester bonds were observed at 0.5 MGy, more precisely the loss of hydrogen bonds between polyamide chains. By different analysis, modifications of the polysulfone layer occur until a dose of 0.2 MGy.

  5. Determination of Radon Level in Drinking Water in Mehriz Villages and Evaluation the Annual Effective Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-03-01

    Results: Radon concentrations of samples ranged from 0.187 BqL-1 to 14.8 BqL-1.These results were related to samples No.12 and 9 and also to aqueducts of Tang-e-chenar and Malekabad village respectively. Based on the amount of radon in the sample, the lowest annual effective absorbed dose through drinking water or breathing(In an environment where water was used was 0.0005msv/y and the maximum amount was 0.04msv/y. Conclusion: Apart from samples No.9 and 16 that were elated to the aqueduct of Malekabad village and a private well in Dare Miankoohvillagehaving48 persons as total population, Radon concentrations of other samples used by people of Mehriz villages as drinking water was low and less than permitted limit set by the Environmental Protection Agency of United States of America.

  6. Determination of the absorbed dose rate to a person exposed to a spent source of {sup 60}Co for radiotherapy; Determinacion de la rapidez de dosis absorbida a una persona expuesta a una fuente gastada de {sup 60}Co para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Angeles C, A.; Benitez, J. A.; Ruiz C, M. A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Departamento de Proteccion Radiologica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In this work the analysis of absorbed dose rate to a person in made due to the exposure to a spent source of {sup 60}Co of radiotherapy, which has been removed from its shielding clandestinely to sell the shielding as scrap. During the removal of the source of their shielding the people were necessarily exposed to the field of gamma radiation. The activity of the source is considered to be 2595 Ci at the exposure time and to determine the rate of absorbed dose to different organs and the velocity of effective absorbed dose to which the person (s) who manipulated the source of {sup 60}Co were considered three plausible scenarios of manipulation of the source , through modeling with MCNP5. For the execution of the scenarios and the determination of the absorbed doses, two different phantoms are considered. The results obtained for each scenario show that the dose rates to which the people who manipulated the source without the shielding were exposed are extremely high, and in short time the lethal dose is reached. (Author)

  7. The ferrous ammonium sulfate solid system, as dosemeter for processes at low temperatures and high doses of gamma radiation; El sistema sulfato ferroso amoniacal solido, como dosimetro para procesos a bajas temperaturas y altas dosis de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Juarez C, J.M.; Ramos B, S.; Negron M, A. [ICN-UNAM, 04510 Mexico D.F. (Mexico)

    2005-07-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and dose from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is Fe{sup 3+} and molar concentration of ferric ion was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosemeter, at low temperatures and high dose. (Author)

  8. Effect of high-dose gamma irradiation on (U)HMWPE neutron shielding materials

    Science.gov (United States)

    Kömmling, Anja; von der Ehe, Kerstin; Wolff, Dietmar; Jaunich, Matthias

    2018-01-01

    High and ultra-high molecular weight polyethylenes were gamma-irradiated with doses up to 600 kGy. The changes in the material properties were analysed using DSC, DMA, IR spectroscopy, as well as measurements of density and insoluble content. The irradiation led to an increase of the degree of crystallinity because of chain scissions during irradiation, leading to shorter and thus more mobile chains. Both the plateau value of the shear modulus G‧ and the insoluble content increased with irradiation dose, indicating the formation of additional crosslinks. Furthermore, IR spectroscopy revealed irradiation induced oxidation and the formation of double bonds, indicating that some of the hydrogen atoms responsible for the neutron shielding capability have been released.

  9. Gamma spectrum, count rate, and dose rate measurements of the Columbia riverbank from Vernita to Sacajawea

    Energy Technology Data Exchange (ETDEWEB)

    Grande, L.A.

    1966-01-31

    The purpose of this study was to evaluate radiological conditions that exist on the riverbank of the Columbia River. Included was a comparative study of the suitability of three instruments to measure the dose rates. These instruments were a NaI (T1) scintillation counter normally used for aerial monitoring, a bioplastic scintillation counter normally used as a road monitor, and a portable 40 liter ionization chamber normally used to measure very low gamma dose rates. The selection of representative sites for the comparative study was based on an initial GM survey of the general areas in question. Seven sites were studied--from Vernita Ferry Landing above the Hanford project to Sacajawea Park below Pasco.

  10. Equipment to study the gamma total dose effects on components of microcomputing systems

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, F.; Buisson, J.; Mijuin, D.; Brunet, J.P.; Marceau, M.; Perrault, M.

    1991-12-31

    Robotics in hostile environment is affected by the effects of the gamma total dose on microcomputing electronic components. A dose of 1000 Gy is expected particularly for the CMOS technology. A test equipment adapted to these components is developed by CEA/DEIN in order to investigate their irradiation hardness assurance. The purpose of this paper is to describe the test equipment. The three following methods are got down to work: test after irradiation, test on line and nominal running test on line. Different results obtained for numerous components are presented to compare the methods and to determine which components have reached the objectif. To conclude, the future prospects to a more adapted test structure and the orientation of new test equipment for other very interesting electronic components are discussed.

  11. Determination of environmental radiation flux and organ doses using in-situ gamma spectroscopy

    Science.gov (United States)

    Al-Ghamdi, Abdulrahman S.

    Contamination of buildings represent a unique problem during Decontamination and Decommissioning (D&D) of nuclear facilities. It is necessary to determine the long-lived radionuclides and their respective specific activities in building materials before the right D&D decision can be made. At the same time, radiation risk of workers or potential occupants in the facility must be assessed as part of the D&D process. The goal of this project was to develop a methodology of obtaining gamma radiation flux and organ doses from in-situ gamma spectroscopy. Algorithms were developed to simulate the response functions of the HPGe detector and to convert the spectra into photon fluences. A Monte Carlo code, MCNP4C, was used to simulate HPGe detector response and to develop the conversion algorithm. The simulated spectra obtained for an HPGe detector were converted to flux using the algorithm for various different geometries. The response functions of the detector are presented in this document for the gamma energies from 60 keV to 2.2 MeV. Published fluence-to-dose conversion coefficients were used to calculate organ doses and effective dose equivalent. We then tested the theory at a 100-MeV linear electron accelerator at Rensselaer Polytechnic Institute (RPI). Samples of the activated concrete walls and floor in the target room of the Linac facility as well as some steel samples were taken to quantify the specific activities of the structures. The results show that the most important long-lived radionuclides include 22 Na, 46Sc, 54 Mn, 57Co, 60 Co, 65Zn, 152 Eu and 154Eu, depending on the location and composition of the material. The specific activities at the Linac facility range from 1.15E-01 to 765.31 muCi/Kg. The annual effective dose equivalent was assessed to be 2.44 mSv y-1 (0.244 rem y-1 ), which is about 5% of the Annual EDE limits to workers.

  12. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  13. Spatial analysis of ambient gamma dose equivalent rate data by means of digital image processing techniques.

    Science.gov (United States)

    Szabó, Katalin Zsuzsanna; Jordan, Gyozo; Petrik, Attila; Horváth, Ákos; Szabó, Csaba

    2017-01-01

    A detailed ambient gamma dose equivalent rate mapping based on field measurements at ground level and at 1 m height was carried out at 142 sites in 80 × 90 km area in Pest County, Hungary. Detailed digital image processing analysis was carried out to identify and characterise spatial features such as outlying points, anomalous zones and linear edges in a smoothed TIN interpolated surface. The applied method proceeds from the simple shaded relief model and digital cross-sections to the more complex gradient magnitude and gradient direction maps, 2nd derivative profile curvature map, relief map and lineament density map. Each map is analysed for statistical characteristics and histogram-based image segmentation is used to delineate areas homogeneous with respect to the parameter values in these maps. Assessment of spatial anisotropy is implemented by 2D autocorrelogram and directional variogram analyses. The identified spatial features are related to underlying geological and tectonic conditions using GIS technology. Results show that detailed digital image processing is efficient in revealing the pattern present in field-measured ambient gamma dose equivalent rates and they are related to regional scale tectonic zones and surface sedimentary lithological conditions in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Estimation of organ-absorbed radiation doses during 64-detector CT coronary angiography using different acquisition techniques and heart rates: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Koshida, Kichiro; Kawashima, Hiroko (Dept. of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa Univ., Kanazawa (Japan)), email: matsuk@mhs.mp.kanazawa-u.ac.jp; Noto, Kimiya; Takata, Tadanori; Yamamoto, Tomoyuki (Dept. of Radiological Technology, Kanazawa Univ. Hospital, Kanazawa (Japan)); Shimono, Tetsunori (Dept. of Radiology, Hoshigaoka Koseinenkin Hospital, Hirakata (Japan)); Matsui, Osamu (Dept. of Radiology, Faculty of Medicine, Kanazawa Univ., Kanazawa (Japan))

    2011-07-15

    Background: Though appropriate image acquisition parameters allow an effective dose below 1 mSv for CT coronary angiography (CTCA) performed with the latest dual-source CT scanners, a single-source 64-detector CT procedure results in a significant radiation dose due to its technical limitations. Therefore, estimating the radiation doses absorbed by an organ during 64-detector CTCA is important. Purpose: To estimate the radiation doses absorbed by organs located in the chest region during 64-detector CTCA using different acquisition techniques and heart rates. Material and Methods: Absorbed doses for breast, heart, lung, red bone marrow, thymus, and skin were evaluated using an anthropomorphic phantom and radiophotoluminescence glass dosimeters (RPLDs). Electrocardiogram (ECG)-gated helical and ECG-triggered non-helical acquisitions were performed by applying a simulated heart rate of 60 beats per minute (bpm) and ECG-gated helical acquisitions using ECG modulation (ECGM) of the tube current were performed by applying simulated heart rates of 40, 60, and 90 bpm after placing RPLDs on the anatomic location of each organ. The absorbed dose for each organ was calculated by multiplying the calibrated mean dose values of RPLDs with the mass energy coefficient ratio. Results: For all acquisitions, the highest absorbed dose was observed for the heart. When the helical and non-helical acquisitions were performed by applying a simulated heart rate of 60 bpm, the absorbed doses for heart were 215.5, 202.2, and 66.8 mGy for helical, helical with ECGM, and non-helical acquisitions, respectively. When the helical acquisitions using ECGM were performed by applying simulated heart rates of 40, 60, and 90 bpm, the absorbed doses for heart were 178.6, 139.1, and 159.3 mGy, respectively. Conclusion: ECG-triggered non-helical acquisition is recommended to reduce the radiation dose. Also, controlling the patients' heart rate appropriately during ECG-gated helical acquisition with

  15. Radioactivity measurements in soils surrounding four coal-fired power plants in Serbia by gamma-ray spectrometry and estimated dose

    Directory of Open Access Journals (Sweden)

    Vukašinović Ivana Ž.

    2014-01-01

    Full Text Available The study of spatial distribution of activity concentration of 238U, 226Ra, 210Pb, 232Th, 40K, and 137Cs radionuclides in the surface soil samples (n = 42 collected in the vicinity of four coal-fired power plants in Serbia is presented. Radioactivity measurements in soils performed by gamma-ray spectrometry showed values [Bqkg-1] in the range: 15-117 for 238U, 21-115 for 226Ra, 33-65 for 210Pb, 20-69 for 232Th, 324-736 for 40K, and 2-59 for 137Cs. Surface soil radio-activity that could have resulted from deposition of radionuclides from airborne discharges or resuspension of ash from disposal sites showed no enhanced levels. It was found that variation of soil textural properties, pH values, and carbonate content influenced activity levels of natural radionuclides while radiocesium activities were associated with soil organic matter content. Modification of some soil properties was observed in the immediate vicinity (<1 km of power plants where the soil was more alkaline with coarser particles (0.2-0.05 mm and carbonates accumulated. Calculated average values of the absorbed gamma dose rate and annual external effective dose originating from the terrestrial radionuclides were 69.4 nGy/h and 0.085 mSv, respectively. [Projekat Ministarstva nauke Republike Srbije, br. 4007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  16. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  17. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q.; Fernández-Varea, José M.; Kartsonaki, Christiana; Stuchbery, Andrew E.; Kibédi, Tibor; Vallis, Katherine A.

    2017-03-01

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  18. Three years of seasonal dose assessment from outdoors gamma exposure in Sao Paulo city, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Betti, Flavio; Pecequilo, Brigitte R.S., E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Measurements of external (outdoors) gamma exposure from natural background radiation have been used to estimate the average annual doses in Sao Paulo city. Twelve monitoring stations were placed in different regions of the town including both urban (where building materials are present) and outskirts areas. Seasonally surveys observing the four seasons from 2008 to 2010 have been carried out. The data were drawn from a 3-month sampling using the thermoluminescent dosimetry. The effective doses values are quite similar (slightly higher during the winter), so it can be considered that these results are not under significant influence (or variability) of seasonal environmental conditions like temperature, wind or rain. Dose values over the three years period, from Vila Carrao district, exclusively an urban location with mostly no green areas, present the highest values, while the lower values were always obtained for Tucuruvi district, near the biggest urban forest, Parque Estadual da Cantareira. Over the assessed period, the mean of the average annual effective doses was 1.3 {+-} 0.1 mSv.y{sup -1}. For the same period, the average annual background from nuclear and radioactive facility at IPEN was 0.75 {+-} 0.12 mSv.y{sup -1}. (author)

  19. Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico.

    Science.gov (United States)

    Mireles, F; Dávila, J I; Quirino, L L; Lugo, J F; Pinedo, J L; Ríos, C

    2003-03-01

    The study of natural gamma radioactivity was made to determine the concentrations of natural radionuclides in soil. Twenty soil samples collected in the cities of Zacatecas and Guadalupe and their suburban areas in the Mexican state of Zacatecas were analyzed by gamma-ray spectrometry to determine the activity concentrations of 226Ra, 232Th, and 40K. Gamma-spectrometry measurements were made using a hyperpure germanium detector surrounded with shielding material to reduce the background counting rate. The GammaVision-32 MCA emulation software was used for gamma-ray spectrum analysis and the TRUMP card of 2k as a MCA emulator. Conversion factors were used to calculate the dose to the population from outdoor exposure to terrestrial gamma rays. The measured activity concentration of 226Ra varies from 11 to 38 Bq kg(-1), the activity concentration of 232Th varies from 8 to 38 Bq kg(-1). The activity concentration of 40K is in the range 309-1,049 Bq kg(-1). The overall population mean outdoor terrestrial gamma dose rate is 44.94 nGy h(-1).

  20. Comparison of protein expression profile changes in human fibroblasts induced by low doses of gamma rays and energetic protons

    Science.gov (United States)

    Zhang, Ye; Clement, Jade; Gridley, Diala; Rohde, Larry; Wu, Honglu

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposure of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to more than 200 proteins (or modified proteins) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured till fully confluent and then exposed to 2 cGy of gamma rays at either low (1 cGy/hr) or high (0.2 Gy/min) dose-rate, or to 2 cGy of 150 MeV protons at high dose-rate. The proteins were isolated at 2 and 6 hours after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loaded onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. Comparison of the overall protein expression profiles in gamma-irradiated cells showed significantly higher inductions at the high dose-rate than at the low dose-rate. The protein profile in cells after the proton exposure showed a much earlier induction pattern in comparison to both the high and low dose-rate gamma exposures. The same expression patterns were also found in individual cell signaling cascades. At 6 hours post irradiation, high dose-rate gamma rays induced cellular protein level changes (ratio to control ˜2) mostly in apoptosis, cell cycle and cytoskeleton, while low dose-rate gamma rays induced similar changes with smaller fold-change values. In comparison, protons induced

  1. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  2. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Kyrgyzstan.

    Science.gov (United States)

    Lespukh, E; Stegnar, P; Usubalieva, A; Solomatina, A; Tolongutov, B; Beishenkulova, R

    2013-09-01

    An assessment of the radiological situation due to exposure to gamma radiation, radon and thoron was carried out at the former uranium mining and processing sites in Shekaftar, Minkush and Kadji Sai in Kyrgyzstan. Gamma dose rate measurements were made using various field instruments and radon/thoron measurements were carried out using discriminative radon ((222)Rn)/thoron ((220)Rn) solid state nuclear track detectors (SSNTD). The detectors were exposed for an extended period of time including at least three seasonal periods in a year, in different outdoor and indoor public and residential environments at the selected uranium legacy sites. The results showed that gamma, Rn and Tn doses were in general low, which consequently implies a low/relatively low radiological risk. The major radiation hazard is represented by abandoned radioactive filtration material that was being used as insulation by some Minkush residents for a longer period of time. Annual radiation doses of several hundred mSv could be received as a consequence of using this material in their houses. The radiation doses deriving from external radiation (gamma dose rate), indoor radon and thoron with their short-lived progenies in several cases exceeded national as well as international standards. Current doses of ionizing radiation do not represent any serious hazard to the health of the resident public, but this issue should be adequately addressed to further reduce needless exposure of resident public to ionizing radiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    Science.gov (United States)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  4. A Performance Evaluation of a Notebook PC under a High Dose-Rate Gamma Ray Irradiation Test

    Directory of Open Access Journals (Sweden)

    Jai Wan Cho

    2014-01-01

    Full Text Available We describe the performance of a notebook PC under a high dose-rate gamma ray irradiation test. A notebook PC, which is small and light weight, is generally used as the control unit of a robot system and loaded onto the robot body. Using TEPCO’s CAMS (containment atmospheric monitoring system data, the gamma ray dose rate before and after a hydrogen explosion in reactor units 1–3 of the Fukushima nuclear power plant was more than 150 Gy/h. To use a notebook PC as the control unit of a robot system entering a reactor building to mitigate the severe accident situation of a nuclear power plant, the performance of the notebook PC under such intense gamma-irradiation fields should be evaluated. Under a similar dose-rate (150 Gy/h gamma ray environment, the performances of different notebook PCs were evaluated. In addition, a simple method for a performance evaluation of a notebook PC under a high dose-rate gamma ray irradiation test is proposed. Three notebook PCs were tested to verify the method proposed in this paper.

  5. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after

  6. Absorbed Doses and Risk Estimates of {sup 211}At-MX35 F(ab'){sub 2} in Intraperitoneal Therapy of Ovarian Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cederkrantz, Elin [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Andersson, Håkan [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Bernhardt, Peter; Bäck, Tom [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Hultborn, Ragnar [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jacobsson, Lars [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jensen, Holger [PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen (Denmark); Lindegren, Sture [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden); Magnander, Tobias; Palm, Stig [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Albertsson, Per, E-mail: per.albertsson@oncology.gu.se [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden)

    2015-11-01

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At

  7. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling; Estimativa da dose em operadores durante procedimentos de perfilagem de pocos de petroleo com sondas wireless nucleares atraves de modelagem computacional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil); Correa, Samanda Cristine Arruda, E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil); Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ)., RJ (Brazil). Dept. de Geologia

    2011-10-26

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  8. Dependence of malformation upon gestational age and exposed dose of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Ho; Lee, Jong-Hwan; Oh, Heon; Kim, Se-Ra [Chonnam National Univ., Kwangju (Korea, Republic of). Coll. of Veterinary Medicine; Lee, Cha-Soo; Jo, Sung-Kee; Kim, Tae-Hwan; Lee, Yun-Sil

    2001-09-01

    In order to evaluate the importance of gestational age and the dose-incidence relationship by gamma radiation, pregnant ICR mice at gestational days from 2.5 to 15.5 days post-coitus (p.c.) were exposed to a single dose of 2.0 Gy and also at day 11.5 after conception, which was the most sensitive stage for the induction of major congenital malformations. The animals were sacrificed on day 18 of gestation and the fetuses were examined for mortality, growth retardation, changes in head size and other morphological abnormalities. The only demonstrable effect of irradiation during the pre-implantation period was an increase in prenatal mortality. Resorptions were maximal on exposure at day 2.5 after conception. The pre-implantation irradiated embryos which survived did not show any major fetal abnormalities. A small head, growth retardation, a cleft palate, dilatation of the cerebral ventricle, a renal pelvis, and abnormalities of the extremities and tail after exposure were prominent during the organogenesis period, especially on day 11.5 of gestation. As for the dose-incidence relationship, the incidence of a small head, growth-retarded fetuses, a cleft palate, dilatation of cerebral ventricle and abnormalities of the extremities in live fetuses rose as the radiation dose increased. The result indicated that the late period of organogenesis in the development of the brain, skull and extremities of a mouse was a particularly sensitive phase. The threshold doses of radiation that induced a cleft palate and dilatation of the cerebral ventricle, and abnormal extremities were between 1.0 and 2.0 Gy, and between 0.5 and 1.0 Gy, respectively. (author)

  9. Gamma knife radiosurgery of the symptomatic brain stem cavernous angioma with low marginal dose.

    Science.gov (United States)

    Kim, Byung Sup; Yeon, Je Young; Kim, Jong-Soo; Hong, Seung-Chyul; Lee, Jung-Il

    2014-11-01

    To analyze the outcome of gamma knife radiosurgery (GKS) using low marginal dose for the symptomatic brain stem cavernous angioma (BSCA). 39 patients (16 males, 23 females) were treated with GKS for BSCA from January 1997 to September 2012. Clinical data were analyzed retrospectively. The mean age was 41.5 years. All patients had a history of symptomatic bleeding once or more before performing GKS. Mean volume of BSCA was 1095.3mm(3) and median prescribed marginal dose was 13 Gy. Mean follow-up period since diagnosis was 4.1 years. The number of hemorrhagic events between initial diagnosis and GKS was 5 over a total of 14.9 patients-years with annual hemorrhagic rate of 33.6%. Following GKS, there were five hemorrhagic events within the first 2 years (8.1%/year) and two after the first 2 years (2.4%/year). The difference was not statistically significant. Neurologic status improved in 24 patients (61.5%), and stationary in eleven (28.2%). 4 patients (10.3%) experienced the exacerbation of symptoms at the last follow-up and none of them were related to the radiation injury. Significant volume reduction after GKS was observed in 24 patients (61.5%). Surgical excision was performed in one patient due to swelling and rebleeding after GKS. Age at presentation, sex, mass size of BSCA, and location, GKS dose did not affect post-GKS hemorrhage. GKS for BSCA using relatively low marginal dose is safe and effective. Long-term prospective study is needed to confirm the optimal dose for BSCA. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy.

    Science.gov (United States)

    Gueth, P; Dauvergne, D; Freud, N; Létang, J M; Ray, C; Testa, E; Sarrut, D

    2013-07-07

    Online dose monitoring in proton therapy is currently being investigated with prompt-gamma (PG) devices. PG emission was shown to be correlated with dose deposition. This relationship is mostly unknown under real conditions. We propose a machine learning approach based on simulations to create optimized treatment-specific classifiers that detect discrepancies between planned and delivered dose. Simulations were performed with the Monte-Carlo platform Gate/Geant4 for a spot-scanning proton therapy treatment and a PG camera prototype currently under investigation. The method first builds a learning set of perturbed situations corresponding to a range of patient translation. This set is then used to train a combined classifier using distal falloff and registered correlation measures. Classifier performances were evaluated using receiver operating characteristic curves and maximum associated specificity and sensitivity. A leave-one-out study showed that it is possible to detect discrepancies of 5 mm with specificity and sensitivity of 85% whereas using only distal falloff decreases the sensitivity down to 77% on the same data set. The proposed method could help to evaluate performance and to optimize the design of PG monitoring devices. It is generic: other learning sets of deviations, other measures and other types of classifiers could be studied to potentially reach better performance. At the moment, the main limitation lies in the computation time needed to perform the simulations.

  11. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    Energy Technology Data Exchange (ETDEWEB)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Olsson, Caroline [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Wilderaeng, Ulrica [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Al-Abany, Massoud [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, Stockholm (Sweden); Tucker, Susan [Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Avall-Lundqvist, Elisabeth [Department of Gynecologic Oncology, Karolinska University Hospital, Stockholm (Sweden); Johansson, Karl-Axel [Department of Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Steineck, Gunnar [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden)

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  12. Activity of natural radionuclides and their contribution to the absorbed dose in the fish cubera snapper (lutjanus cyanopterus, cuvier, 1828 on the coast of Ceara, Brazil

    Directory of Open Access Journals (Sweden)

    Wagner de S. Pereira

    2010-01-01

    Full Text Available A methodology was developed for converting the activity concentration of radionuclides (Bq kg-1 into absorbed dose rate (Gy y-1, aiming an approach to environmental radioprotection based on the concept of standard dose limit. The model considers only the internal absorbed dose rate. This methodology was applied to the cubera snapper fish (Lutjanus cyanopterus, Cuvier, 1828 caught off the coast of Ceará. The natural radionuclides considered were uranium-238, radium-226, lead-210, thorium-232 and radium-228. The absorbed dose rates were calculated for individual radionuclides and the type of emitted radiation. The average dose rate due to these radionuclides was 5.36 µGy y-1, a value six orders of magnitude smaller than the threshold value of absorbed dose rate used in this study (3.65 10³ mGy y-1, and similar to that found in the literature for benthic fish. Ra-226 and U-238 contributed 67% and 22% of the absorbed dose rate, followed by Th-232 with 10%. Ra-228 and Pb-210, in turn, accounted for less than 1% of the absorbed dose rate. This distribution is somewhat different from that reported in the literature, where the Ra-226 accounts for 86% of the absorbed dose rate.Visando a radioproteção ambiental, baseada no conceito de limite de taxa de dose absorvida, foi desenvolvida uma metodologia de conversão da concentração de atividade de radionuclídeos (Bq kg-1 em taxa de dose absorvida (Gy a-1. O modelo considera apenas a taxa de dose absorvida interna. Essa metodologia foi aplicada ao peixe vermelho-caranho (Lutjanus cyanopterus, Cuvier, 1828 capturado na costa do Ceará e aos radionuclídeos naturais: urânio-238, rádio-226, chumbo-210, tório-232 e rádio-228. As taxas de dose absorvidas foram calculadas por radionuclídeo e por tipo de radiação emitida. A taxa de dose média devida a esses radionuclídeos foi de 5.36 µGy a-1, valor seis ordens de grandeza menor que o valor de limite de taxa de dose absorvida utilizada no presente

  13. Low doses of gamma radiation in the management of postharvest Lasiodiplodia theobromae in mangos

    Directory of Open Access Journals (Sweden)

    Alice Maria Gonçalves Santos

    2015-09-01

    Full Text Available The postharvest life of mango is limited by the development of pathogens, especially fungi that cause rot, among which stands out the Lasiodiplodia theobromae. Several control methods have been employed to minimize the damages caused by this fungus, chemical control can leave residues to man and nature; physical control by the use of gamma radiation in combination with modified atmosphere and cold storage. The use of gamma radiation helps to reduce the severity of the pathogen assist in the ripening process of fruits, even at low doses (0.25, 0.35 and 0.45 kGy chemical properties such as pH, soluble solids, acid ascorbic, titratable acidity and also the quality parameters of the pulp showed no damage that are ideal for trade and consumption of mangoes. This treatment can be extended for use in the management of diseases such as natural infections for penducular rot complex that has as one of L. theobroma pathogens involved.

  14. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  15. Determination of scattered gamma radiation in the calibration of environmental dose rate meters

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Hedemann Jensen, P.

    1992-01-01

    Practical free-field and shadow-shield calibration techniques using a variety of environmental dose rate meters were studied, and experimental and theoretical determinations were made of the contribution of scattered photons to the air kerma rate from certificated Cs-137, Co-60 and Ra-226 gamma...... negligibly to the detector response relative to that from ground and air. Shadow-shield measurements were used to deduce the contribution to the response from the scattered radiation in free-field geometries and the experimentally obtained results were found to agree agree extremely well with those...... the detector responses. Insignificant differences of the order of 1 % between the results for the two geometries were found both experimentally and theoretically. It is thus concluded that the scattered radiation from surrounding buildings farther away than around 15 m from a calibration set-up contributes...

  16. Effects of low dose gamma-ray radiation on the seed germination and physiological activity of vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Lee, Y. G. [KAERI, Taejon (Korea, Republic of); Jung, K. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2000-10-01

    To determine the effect of low dose gamma-ray radiation on the germination rate and physiology of germinative seeds of Chinese cabbage(Brassica campestris L. cv. Hanyoreum) and radish(Raphanus sativus L. cv. Chungsukoungzoung). The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate of Chinese cabbage increased at 4 Gy-, 10 Gy- and 50 Gy irradiation group and that of radish increased at 2 Gy-, 6 Gy- and 10 Gy irradiation group. The seedling height of Chinese cabbage and radish increased positively in low dose irradiation group. The seedling height of Chinese cabbage was noticeably higher at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seeds irradiated with low dose gamma-ray radiation was increased compared to that of the control especially at the early stage of induction. The enzyme activity of seeds irradiated with low dose of gamma-ray radiation was increased at 4 Gy and 10 Gy irradiation group. These results suggest that the germination and physiological activity of old seeds could be stimulated promisingly by the low dose gamma-ray radiation.

  17. Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife

    Directory of Open Access Journals (Sweden)

    Tayeb Allahverdi Pourfallah

    2012-03-01

    Full Text Available Introduction Polymer gel dosimeters offer a practical solution to 3D dose verification for conventional radiotherapy as well as intensity-modulated and stereotactic radiotherapy. In this study, EGSnrc calculated and PAGAT polymer gel dosimeter measured dose profiles from single shot irradiation with 18 mm collimator of Gamma Knife in homogeneous and inhomogeneous phantoms were compared with each other. Materials and Methods The head phantom was a custom-built 16 cm diameter plexiglas sphere. Inside the phantom, there were two cubic cutouts for inserting the gel vials and inhomogeneities. Following irradiation with the Gamma Knife unit, the polymer gel dosimeters were scanned with a 1.5 T MRI scanner. For the purpose of simulation the simplified channel of 60Co source of Gamma Knife BEAMnrc and for extracting the 3D dose distribution in the phantom, DOSXYZnrc codes were used. Results Within high isodose levels (>80%, there are dose differences higher than 7%, especially between air inserted and PTFE inserted phantoms, which were obtained using both simulation and experiment. This means that these values exceed the acceptance criterion of conformal radiotherapy and stereotactic radiosurgery (i.e., within some isodose levels, less than 93% of prescription dose are delivered to the target. Conclusion The discrepancies observed between the results obtained from heterogeneous and homogeneous phantoms suggest that Leksell Gamma Knife planning system (LGP predictions which assume the target as a homogeneous material must be corrected in order to take care of the air- and bone-tissue inhomogeneities.

  18. Radionuclide analysis in the soil of Kumaun Himalaya, India, using gamma ray spectrometry

    National Research Council Canada - National Science Library

    R. C. Ramola; V. M. Choubey; Ganesh Prasad; G. S. Gusain; Z. Tosheva; A. Kies

    2011-01-01

    .... The activity concentration and gamma-absorbed dose rates of the terrestrial radionuclides caused by 226Ra, 232Th and 40K were determined in the soil samples collected from the eastern part of Kumaun Himalaya...

  19. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, J. [Radiation Dosimetry Systems of Oak Ridge Inc., Knoxville, TN (United States); Atkins, H. [Brookhaven National Lab., Upton, NY (United States)

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consisted of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.

  20. Comparative response of dogs and monkeys to sublethal acute and continuous low dose-rate gamma-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, J.F.; Holland, L.M.; Johnson, O.S.; LaBauve, P.M.; London, J.E.; Prine, J.R.; Vigil, E.A.

    1977-02-01

    Monkeys (Macaca mulatta) and dogs (beagle) were given thirteen 100-rad gamma-ray doses at 28-day intervals. The comparative response (injury and recovery) of the hematopoietic system of the two species was observed at 7-day intervals during the exposure regime. At 84 days after the thirteenth gamma-ray dose, the 1300-rad conditioned and control dogs and monkeys were challenged continuously with 35 R/day until death to determine the amount of radiation-induced injury remaining in conditioned animals as a reduction in mean survival time. Dogs (50 percent) and monkeys (8 percent) died from injury incurred during the conditioning exposures. Thus, the comparative response of dogs and monkeys to dose protraction by acute dose fractionation was similar to what might be expected from a single acute dose. Mean survival times for nonconditioned dogs and monkeys during continuous exposure at 35 R/day were the same (approximately 1400 h). Thus, hematopoietic response of the two species by this method of dose protraction was not significantly different. Mean survival times of conditioned dogs and monkeys during the continuous 35 R/day gamma-ray challenge exposure were greater than for their control counterparts. Thus, the long-term radiation-induced injury was not measurable by this method. Conditioning doses of more than four times the acute LD/sub 50/-/sub 30/ in dogs and approximately two times that of monkeys served only to increase both mean survival time and variance in a gamma-ray stress environment with a dose rate of 35 R/day.

  1. Study of radiation dose induced by cosmic-ray origin low-energy gamma rays and electrons near sea level

    Science.gov (United States)

    Mrdja, D.; Bikit, I.; Bikit, K.; Slivka, J.; Anicin, I.

    2015-02-01

    For a long time, it has been known that low-energy continuous gamma radiation is present in open air at the Earth's surface. In previous investigations it was assumed that this radiation is produced almost exclusively by gamma photons emitted due to the natural radioactivity, which are backscattered by air above ground. We show that significant amount of this radiation (related to energy region 30-300 keV) that peaks at about 90 keV, is produced by cosmic-rays, with the photon flux of about 3000 m-2 s-1. We find that the contribution of this omnipresent low-energy gamma radiation of cosmic-ray origin, including the corresponding low-energy electron flux, to the doses of general population are non-negligible components of overall doses induced by cosmic rays near sea level.

  2. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi [Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976 (Japan); Kakei, Kiyotaka; Yoshiyama, Fumiaki [Department of Radiotherapy, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto 860-8556 (Japan); Kawamura, Shinji [Department of Radiotherapy, Miyazaki University Hospital, 5200 Kihara Ohaza Kiyotake-Machi, Miyazaki 889-1692 (Japan)

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43

  3. Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels

    CERN Document Server

    Lu Ping; Kulkarni, N S; Brown, K

    1999-01-01

    A CCD Fiber Optic Spectrometer has been used to monitor the gamma ray radiation induced loss in P-doped fibers at different dopant concentrations (1, 5 and 10 mol%) with a light source (an incandescent bulb with a temperature of 2800-3000 K). The range of dose rates is limited to that used in medical applications (cancer treatments), that is 0.1 to 1.0 Gray per minute (Gy/min). At low integral dose level (<2.0 Gy) four absorption peaks were observed (470, 502, 540 and 600 nm) within the visible region. It has been observed that the radiation induced loss at 470 and 600 nm depends strongly on dose rate. At dose rates of 0.2 and 0.5 Gy/min the induced loss shows nonlinear relation to the total dose. However, at high dose rate (1.0 Gy/min) and low dose rate (0.1 Gy/min) it seems to have a linear dependence with total dose. The conversion from NBOHCs to GeX centers was observed during gamma radiation at low dose rates (0.1-0.5 Gy/min). At the wavelength of 502 and 540 nm, the radiation induced losses show exce...

  4. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Helmrot, E. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics; Alm Carlsson, G. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics

    1996-12-31

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING`s theory. They were also found to be proportional to the collision kerma in silver bromide (K{sub c,AgBr}) indicating proportionality between K{sub c,AgBr} and the mean absorbed dose in silver bromide. While GREENING`s theory shows that the quotient of the mean absorbed dose in silver bromide and K{sub c,AgBr} varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K{sub c,AgBr} and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies (<30 keV) and GREENING`s theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by K{sub c,AgBr} (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K{sub c,AgBr} is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP).

  5. Open-source hardware and software and web application for gamma dose rate network operation.

    Science.gov (United States)

    Luff, R; Zähringer, M; Harms, W; Bleher, M; Prommer, B; Stöhlker, U

    2014-08-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'International Atomic Energy Agency' to operate a local area dose rate monitoring test network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs; Dosis absorbida recibida por infantes sometidos a radiografias dentales panoramicas y cefalicas

    Energy Technology Data Exchange (ETDEWEB)

    Carrizales, L.; Carreno, S. [Instituto Venezolano de Investigaciones Cientificas. Laboratorio Secundario de Calibracion Dosimetrica. Carretera Panamericana Km. 11. Apartado Postal 21827, Caracas (Venezuela)

    1998-12-31

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  7. Genetic injury in hybrid male mice exposed to low doses of /sup 60/CO. gamma. -rays or fission neutrons. 1. Response to single doses

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, D.; Carnes, B.A.; Farrington, B.H.; Lee, C.H. (Argonne National Lab., IL (USA))

    1984-11-01

    Young adult male B6CF/sub 1/ mice were exposed to single whole body doses of fission neutrons or /sup 60/Co ..gamma.. rays. Postspermatogonial dominant lethal injury, incidence of reciprocal chromosome translocations induced in spermatogonia, incidence of abnormal epididymal sperm 4-6 weeks after exposure, and testis weight loss 3-6 weeks after exposure were all measured. Significant effects were seen at 1 and 2.5 rad of neutrons consistent with extrapolation from higher doses, with the exception of dominant lethal mutations, which occurred in significant excess of expectation. Dose-response functions were linear or linear-quadratic, depending upon end point, radiation quality, and dose range. For translocation frequencies, the D/sup 2/ term was negative for neutron and positive for ..gamma..-ray irradiations. RBE values varied with dose and end point. For testis weight loss and abnormal sperm over the full dose range, the RBEs were between 5 and 6. They were between 7 and 9 at lower doses (< 10 rad) for translocations. RBEs for postimplantation and total dominant lethal rates were 5-6 above 10 rad and 10-14 below 10 rad. The RBEs for preimplant losses were between 15 and 25 above 10 rad and possibly higher below 10 rad, although the data are statistically 'noisy'.

  8. Effects of low doses of gamma irradiation on pine nuts (Araucaria angustifolia)

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, Debora M.; Silva, Lucia A.C.S.; Arthur, Valter, E-mail: dmmodolo@cena.usp.br, E-mail: lcasilva@cena.usp.br, E-mail: arthur@cena.usp.br [Laboratorio de Radiobiologia e Ambiente, Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C.; Arthur, Paula B.; Arthur, Valter [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Araucaria angustifolia, is known as the Pinheiro-do-Parana, Brazilian pine, Pine, Pine Tree Monkey, emerges as the main representative of the Rain Forest, also known as Araucaria Forest, part of the Atlantic Forest biome (Decree Law 750/1993). A major problem in implementing this plan is to stand the loss of germination of seeds. The storage conditions of the seeds of species, some time have been the subject of studies by various researchers. Several studies have shown that ionizing radiation can increase the germination rate, to break dormancy and plant production, thus appearing as an alternative method to increase the production of economically important crops. Despite the Hormesis Theory have been confirmed in experiments and observations made over the years, relatively few researchers who are dedicated to the study of this phenomenon. Due to losses of germination of pine nut, the aim of this work was to study the effect of low doses of gamma radiation on pine nut. The seeds were bought locally in the city of Piracicaba and irradiated with 0 (control), 0.25, 0.50, 0.75, 10, 12, 5, 15.0 and 17.5 Gy. Subsequently the seeds were planted in a plastic cup containing vermiculite as substrate. Evaluations of the germinated seeds number and measure the size of the plants every 10 days. The results indicated that the dose of 0.25 Gy there was a greater number of plants germinated and irradiation stimulated the growth of these plants. Already a lethal dose of the seeds was 15 Gy. (author)

  9. Forward scatter dose effect at metallic interfaces irradiated by X and gamma ray therapy beams.

    Science.gov (United States)

    Ravikumar, M; Ravichandran, R; Supe, S S

    2001-11-01

    In this study forward scattering effects near different metallic interfaces are measured for Co-60 gamma and 6 and 18 MV photon beams. The studied effects are the transport of secondary electrons across the metallic interface and the scattering of photons by the metallic inhomogeneity. All measurements were carried out with a PTW thin-window, parallel plate ionisation chamber (B 23344-036) and an RDM-1F electrometer with digital readout. Thin sheets of aluminium, mild steel, copper, cadmium and lead were used as inhomogeneities. The inhomogeneities were placed between the polystyrene phantom and the front window of the chamber which was maintained at 100 cm SSD. It was noticed that for a high energy photon beam (18 MV) the forward scatter dose factor (FSDF) increases rapidly as the thickness of the metallic inhomogeneity increases. For low energy photons, there is a sharp initial decrease of the FSDF until a minimum value is reached followed by a slow increase with increasing thickness of the inhomogeneity. It was also noted that the FSDF variation at off-axis distances has slightly more slope compared with the ionization ratio (IR) curves for both 6 MV and 18 MV photons. However, the variation in slope is prominent for 18 MV compared with 6 MV photon beam. The sharp dose decrease observed downstream of a metallic inhomogeneity at relatively low photon energies (Co-60, 6 MV) is attributed to the internal scattering of secondary electrons within the metal. The dose enhancement observed for high energy photon beams is attributed to the domination of the pair production process, increasing with atomic number. Since FSDF is dependent on the photon beam spectra, it can be used as a measure of beam quality across the beam.

  10. Transcriptome analysis of reproductive-stage Arabidopsis plants exposed gamma-ray irradiation at various doses.

    Science.gov (United States)

    Hwang, Sun-Goo; Kim, Dong Sub; Kim, Jin-Baek; Hwang, Jung Eun; Park, Hyun Mi; Kim, Jin Hyuk; Jang, Cheol Seong

    2016-08-01

    Gamma rays (GR) induce significant changes in the structure and expression of genes involved in the regulation of diverse biochemical and physiological processes. Arabidopsis plants exhibit different growth and development patterns in response to exposure to GR. The effects on gene expression of different radiation doses of GR (100 and 800 Gy) administered to Arabidopsis plants were examined at the reproductive stage. We irradiated 26-day-old plants with three replications [developmental stages 5.1-6.0, according to Boyes et al. ( 2001 )] using a GR irradiator (60 Co, ca. 150 TBq capacity, Atomic Energy of Canada Limited, Ontario, Canada) at the Korea Atomic Energy Research Institute. Plants were treated with 100, 200, 300, 400, 800, 1200, 1600, or 2000 Gy, and the doses were made from varying the distance to the source. We conducted a high-throughput screening analysis and detected 883 GR-responsive genes that showed significant changes; these were involved in several putative metabolic pathways related to biotic stress. Additionally, five overrepresented cis-regulatory elements were identified in the 1-kb upstream regions of GR-responsive genes by using motif enrichment analysis. We also detected three GR-responsive genes associated with stamen development and confirmed their co-regulation with functionally interacting genes. This finding suggests that a network-based analysis is a viable approach to identify significant GR-responsive genes associated with the reproductive stage of Arabidopsis. Our results provide further insights into the complex biological systems involved in the response to different doses of GR in plants.

  11. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  12. Inverse modelling of radionuclide release rates using gamma dose rate observations

    Science.gov (United States)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  13. Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N isopropylacrylamide gel

    Energy Technology Data Exchange (ETDEWEB)

    Bavarmegin, Elham; Sadremomtaz, Alireza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Khalafi, Hossein; Kasesaz, Yaser [Dept. of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khajeali, Azim [Medical Education Research Center, Tabriz (Iran, Islamic Republic of)

    2017-02-15

    Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  14. Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel

    Directory of Open Access Journals (Sweden)

    Elham Bavarnegin

    2017-02-01

    Full Text Available Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT. In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  15. Influence of the intensity of the first dose on the extent and duration of the protective effect induced in Saintpaulia ionantha (Wendl. ) leaves irradiated by gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Duron, M. (I.N.R.A., Beaucouze, 49 - Angers (France)); Dixon, B. (Centre regional de Lutte contre le Cancer, 49 - Angers (France))

    1982-09-27

    If a 24 hrs. time interval is left between two gamma-rays doses, first doses ranging from 5 to 30 Gy are efficient to protect the leaves against a challenging letal dose of 70 Gy. The duration of the protective effect increases from 6 to 21 days when the first dose increases from 5 to 30 Gy.

  16. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.

    2011-01-01

    and prediction of the dose for each pellet, beside the results of the measurements, calculations with the Monte Carlo code FLUKA are presented here. For the phantom, as well as for the liver tissue, the measured and calculated dose and flux values are in good agreement. Discussion Alanine dosimeters......, in combination with flux measurements and Monte Carlo calculations with FLUKA, suggest that it is possible to establish a system for monitoring the dose in a mixed neutron and gamma field for BNCT and other applications in radiotherapy....

  17. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  18. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation.

    Science.gov (United States)

    Roche, Marjolaine; Neti, Prasad V S V; Kemp, Francis W; Azzam, Edouard I; Ferraris, Ronaldo P; Howell, Roger W

    2015-11-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays.

  19. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation

    Science.gov (United States)

    Azzam, Edouard I.; Ferraris, Ronaldo P.; Howell, Roger W.

    2015-01-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays. PMID:26484399

  20. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    Science.gov (United States)

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  1. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Van; Little, Mark P. [National Cancer Institute, Radiation Epidemiology Branch, Rockville, MD (United States)

    2017-11-15

    Murine experiments were conducted at the JANUS reactor in Argonne National Laboratory from 1970 to 1992 to study the effect of acute and protracted radiation dose from gamma rays and fission neutron whole body exposure. The present study reports the reanalysis of the JANUS data on 36,718 mice, of which 16,973 mice were irradiated with neutrons, 13,638 were irradiated with gamma rays, and 6107 were controls. Mice were mostly Mus musculus, but one experiment used Peromyscus leucopus. For both types of radiation exposure, a Cox proportional hazards model was used, using age as timescale, and stratifying on sex and experiment. The optimal model was one with linear and quadratic terms in cumulative lagged dose, with adjustments to both linear and quadratic dose terms for low-dose rate irradiation (<5 mGy/h) and with adjustments to the dose for age at exposure and sex. After gamma ray exposure there is significant non-linearity (generally with upward curvature) for all tumours, lymphoreticular, respiratory, connective tissue and gastrointestinal tumours, also for all non-tumour, other non-tumour, non-malignant pulmonary and non-malignant renal diseases (p < 0.001). Associated with this the low-dose extrapolation factor, measuring the overestimation in low-dose risk resulting from linear extrapolation is significantly elevated for lymphoreticular tumours 1.16 (95% CI 1.06, 1.31), elevated also for a number of non-malignant endpoints, specifically all non-tumour diseases, 1.63 (95% CI 1.43, 2.00), non-malignant pulmonary disease, 1.70 (95% CI 1.17, 2.76) and other non-tumour diseases, 1.47 (95% CI 1.29, 1.82). However, for a rather larger group of malignant endpoints the low-dose extrapolation factor is significantly less than 1 (implying downward curvature), with central estimates generally ranging from 0.2 to 0.8, in particular for tumours of the respiratory system, vasculature, ovary, kidney/urinary bladder and testis. For neutron exposure most endpoints, malignant and

  2. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    Science.gov (United States)

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy.

  3. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Lonneville, Sarah [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Delbrouck, Carine [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); ENT-Department, Hospital Erasme, Brussels (Belgium); Benmebarek, Nadir [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Desmedt, Francoise [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Radiophysics, Bordet Institute, Brussels (Belgium); Devriendt, Daniel [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Radiotherapy, Bordet Institute, Brussels (Belgium)

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  4. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  5. Effects of low dose gamma irradiation on the germination and physiological activity of old red pepper (Capsicum annuum L.) seed

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Back, Myung Hwa; Lee, Hae Youn; Lee, Young Keun [KAERI, Daejeon (Korea, Republic of)

    2001-12-15

    To observe the stimulating effects of low dose gamma radiation on the germination and physiological activity of germinating seeds of old red pepper (Capsicum annuum L. cv, Jokwang and cv. Hongkwang), seeds were irradiated at the dose of 2{approx}50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate at 7 days after sowing in Jokwang and Hongkwang cultivar was high as 74% and 11% at 4 Gy and 8 Gy irradiation group, respectively. The seedling height of Jokwang cultivar was noticeably high at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy Irradiation group. The protein contents of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at the late stage of induction and that of Hongkwang cultivar at the early stage of induction. Catalase and peroxidase activities of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy irradiation group.

  6. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha, E-mail: haqnawaz@bzu.edu.pk [Bahauddin Zakariya University, Multan (Pakistan)

    2016-10-15

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  7. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  8. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    Science.gov (United States)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for

  9. Absorbed dose during helical CT acquisition: influence of acquisition parameters; Dose delivree lors d'un examen scanner en acquisition helicoidale influence des parametres d'acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, J.Y.; Sage, J.; Dusserre, A.; Bolla, M.; Kolodie, H. [Centre Hospitalier Universitaire, Service de Cancerologie-Radiotherapie, 38 - Grenoble (France); Taisant, D. [Clinique du Mail, Service de Radiotherapie, 38 - Grenoble (France); Coulomb, M.; Ferretti, G. [Centre Hospitalier Universitaire, Service Central de Radiologie et Imagerie Medicale, 38 - Grenoble (France); Barthelemy, R.; Aumont, B. [Clinique du Mail, Service de Radiologie, 38 - Grenoble (France)

    2001-01-01

    Purpose. European directive 97/43 specifies that the dose delivered to the patient during a radiological procedure should be estimated. In order to prepare for implementation of this new regulation, we have studied the dose delivered during spiral CT acquisition. Materials and methods. We have studied the influence of slice thickness, pitch, tube voltage and intensity, and acquisition volume length. We present measurements for single and dual detector CT scanners. We used a pencil ionization chamber to measure air kerma. We measured absorbed dose in water with a waterproof ionization chamber set in a semi-customized phantom filled with water. Chambers were set on the rotation axis of the CT scanners. We studied the dose outside the acquisition volume. Results. We quantified the influence of each parameter on the absorbed dose. We used our measurements to calculate the dose for different acquisition protocols. Also we evaluated the dose to organs distant from the acquisition area. Conclusion. This study is one step toward a systematic estimation of the dose delivered to patient during helical CT exams. To use these results in daily practice, we have to develop software using our measurements. (authors)

  10. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation; Analise de FT-IR para caracterizacao dosimetrica do poli(fluoreto de vinilideno - hexafluorpropileno) irradiado com altas doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz Oliveira de, E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  11. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    Science.gov (United States)

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; ptracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; ptracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  12. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de [Industrias Nucleares do Brasil S.A. (INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Unidade de Tratamento de Minerios], E-mail: wspereira@inb.gov.br; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Ciencia Ambiental; Py Junior, Delcy de Azevedo [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil). Coordenacao de Protecao Radiologica. Unidade de Concentrado de Uranio], E-mail: Delcy@inb.gov.br

    2007-07-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10{sup 3} {mu}Gy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10{sup 0} {mu}Gy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  13. Forward scatter dose effect at metallic interfaces irradiated by X and gamma ray therapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, M.; Ravichandran, R.; Supe, S.S. [Kidwai Memorial Inst. of Oncology, Bangalore (India). Dept. of Radiation Physics

    2001-11-01

    Aim: In this study forward scattering effects near different metallic interfaces are measured for Co-60 gamma and 6 and 18 MV photon beams. The studied effects are the transport of secondary electrons across the metallic interface and the scattering of photons by the metallic inhomogeneity. Materials and Methods: All measurements were carried out with a PTW thin-window, parallel plate ionisation chamber (B 23344-036) and an RDM-1F electrometer with digital readout. Thin sheets of aluminium, mild steel, copper, cadmium and lead were used as inhomogeneities. The inhomogeneities were placed between the polystyrene phantom and the front window of the chamber which was maintained at 100 cm SSD. Results: It was noticed that for a high energy photon beam (18 MV) the forward scatter dose factor (FSDF) increases rapidly as the thickness of the metallic inhomogeneity increases. For low energy photons, there is a sharp initial decrease of the FSDF until a minimum value is reached followed by a slow increase with increasing thickness of the inhomogeneity. It was also noted that the FSDF variation at off-axis distances has slightly more slope compared with the ionization ratio (IR) curves for both 6 MV and 18 MV photons. However, the variation in slope is prominent for 18 MV compared with 6 MV photon beam. Conclusion: The sharp dose decrease observed downstream of a metallic inhomogeneity at relatively low photon energies (Co-60, 6 MV) is attributed to the internal scattering of secondary electrons within the metal. The dose enhancement observed for high energy photon beams is attributed to the domination of the pair production process, increasing with atomic number. Since FSDF is dependent on the photon beam spectra, it can be used as a measure of beam quality across the beam. (orig.) [German] Ziel: Messung der Vorwaertsstreueffekte von Co-60-Gamma- sowie 6- und 18-MV-Photonenstrahlen in der Umgebung unterschiedlicher Metallgrenzflaechen. Untersuchung des Transports von

  14. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  15. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX; Calculo de dosis absorbida en volumenes esfericos alrededor del Mammosite utilizando el codigo de simulacion Monte Carlo MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2008-07-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  16. Crystal growth and thermoluminescence response of NaZr{sub 2}(PO{sub 4}){sub 3} at high gamma radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Regil, E., E-mail: eduardo.ordonez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Contreras-Ramírez, A., E-mail: aida.contreras@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Depto. de Tecnología de Materiales, Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Facultad de Ciencias, Universidad Autónoma del Estado de México, Unidad Académica el Cerrillo, Piedras Blancas, AP 2-139, CP 50000 Toluca Estado de México (Mexico); Fernández-Valverde, S.M., E-mail: suilma.fernandez@inin.gob.mx [Depto. de Química, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); González-Martínez, P.R., E-mail: pedro.gonzalez@inin.gob.mx [Depto. de Física, Gerencia de Ciencias Básicas, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico); Carrasco-Ábrego, H., E-mail: hector.carrasco@inin.gob.mx [Depto. Aceleradores, Gerencia de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, AP 18-1027, CP 11801 México D.F. (Mexico)

    2013-11-15

    Graphical abstract: -- Highlights: •NaZr{sub 2}(PO{sub 4}){sub 3} exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr{sub 2}(PO{sub 4}){sub 3}. The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr{sub 2}(PO{sub 4}){sub 3} were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr{sub 2}(PO{sub 4}){sub 3} to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported.

  17. Fourth IRMF comparison of calibrations of portable gamma-ray dose- rate monitors 2001-2002 Ionising radiation

    CERN Document Server

    Lewis, V E

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a fourth comparison of calibrations of gamma-ray dose-rate monitors in which fifteen establishments in the UK participated. The exercise involved the circulation of three gamma-ray monitors for calibration in the fields produced using sup 1 sup 3 sup 7 Cs, sup 2 sup 4 sup 1 Am and sup 6 sup 0 Co. The instruments used were an Electra with MC 20 probe, a Mini-Instruments Mini-rad 1000 and a Siemens electronic personal dosemeter Mk 2 (EPD). The responses relative to 'true' dose equivalent rate were calculated by the individual participants and submitted to the for analysis along with details of the facilities and fields employed. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments. However, the participants' treatment of uncertainties needs improvement and demonstrates a need for guidance in this area.

  18. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  19. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    Energy Technology Data Exchange (ETDEWEB)

    Machhour, Hasna [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco); Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); El Hadrami, Ismail [Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); Imziln, Boujamaa [Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Team ((mu)BioToxE, Department of Biology), Cadi Ayyad University, P.O. Box no. 2390, Marrakech 40000 (Morocco); Mouhib, Mohamed [Institut National de la Recherche Agronomique (INRA), Centre Regional de la Recherche Agronomique de Tanger, Unite de Recherche sur les Techniques Nucleaires, l' Environnement et la Qualite (URTNEQ), 78 Boulevard Sidi Mohamed Ben Abdellah, Tanger 90000 (Morocco); Mahrouz, Mostafa, E-mail: mahrouz10@yahoo.f [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco)

    2011-04-15

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  20. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells.

    Science.gov (United States)

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term "bystander effect" is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01-0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.

  1. Characterization by Monte Carlo of the dose after a glass shield lead for gamma ray; Caracterizacion por Monte Carlo de la dosis tras un blindaje de vidrio de plomo para rayos gamma

    Energy Technology Data Exchange (ETDEWEB)

    Esteve Sanchez, S.; Gil Conde, M.; Contreras Gonzalez, J. L.; Rosado, J.; Pazyi, V.

    2013-07-01

    When a gamma-ray beam crosses the border between two media characterized by atomic number very different is they produce effects on the distribution of doses near the border difficult to predict with simple models. The case of rays gamma affecting a lead glass is particularly interesting for its application to shielding of common use. interested in studying the importance of the residual dose after the shield. (Author)

  2. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters; Verificacao das doses de radiacao absorvidas durante a tecnica de irradiacao de corpo inteiro nos transplantes de medula ossea, por meio de dosimetros termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Radioterapia]. E-mail: adelmogiordani@ig.com.br

    2004-10-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO{sub 4}:Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {l_brace}(10 ? 10) cm{sup 2} field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of {+-} 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  3. SU-E-T-679: Retrospective Analysis of the Sensitivity of Planar Dose Measurements To Gamma Analysis Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Elguindi, S; Ezzell, G; Gagneur, J [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: IMRT QA using planar dose measurements is still a widely used method for checking the accuracy of treatment plans. A pass/fail judgment is made using gamma analysis based on a single endpoint. Using more stringent criteria is a way to increase the sensitivity to planning and delivery errors. Before such implementation, it is necessary to understand how the sensitivity to different gamma criteria settings affects gamma passing rates (GPR). Methods: 752 IMRT QA measurements were re-analyzed with varying distance to agreement (DTA) and dose difference (DD) percentages using a Matlab program. Other quantifying information such as the mean dose difference in the treatment target (defined as points that are greater than 80% of maximal dose) were stored in a relational database for retrospective analysis. Results: The average and standard deviation of GPR (%) fell from 99.84 ± (0.43) to 89.61 ± (6.08) when restricting DD from 5 − 1% respectively, as compared to a drop from 99.15 ± (1.19) to 95.00 ± (4.43), when restricting the DTA from 5 − 1 mm respectively. The mean dose difference (%) in the treatment target between measured and calculated dose was −1.96 ± (0. 83), −0.09 ± (0.98), and 1.44 ± (0. 86) for each of our institution’s three matched linear accelerators (LINAC 1, 2, and 3 respectively). For plans that are approximately 2.7 sigma below the mean GPR, an average of 78.4% of those plans were measured on LINAC 1 or 3, while only 48% of the total plans were run on those machines. Conclusion: The data demonstrates that when restricting gamma criterion, such as the DD, the greatest indicator of reduced GPR in our institution is which matched LINAC the plan was measured on. While small, these differences manifest themselves to levels comparable to other treatment related differences and possibly confound the gamma analysis.

  4. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde and low dose of gamma-irradiation.

    Directory of Open Access Journals (Sweden)

    Alexey Moskalev

    signatures pollutants (dioxin, toluene, low dose of gamma-irradiation and common molecular pathways for different kind of stressors.

  5. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging: Implications for CT dosimetry.

    Science.gov (United States)

    Perisinakis, Kostas; Tzedakis, Antonis; Spanakis, Kostas; Papadakis, Antonios E; Hatzidakis, Adam; Damilakis, John

    2018-01-01

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. • Radiation absorption ability of organs/tissues is considerably affected by iodine uptake • Iodinated organ/tissues may absorb up to 100 % higher radiation dose • Compared to non-enhanced, contrast-enhanced CT may deliver higher dose to patient tissues • CT dosimetry of contrast-enhanced CT imaging should encounter tissue iodine uptake.

  6. Evaluation of the dose absorbed by the thyroid of patients undergoing treatment of Graves disease;Avaliacao da dose absorvida pela tireoide de pacientes submetidos ao tratamento da doenca de Graves

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Tiago L.; Filho, Joao A. [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Fisica; Silva, Jose M.F. da [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2009-07-01

    The radioiodine is used as complementary treatment of thyroid cancer and as first choice for the treatment of Graves' disease, being efficient, safe and easy administration, but without there is a protocol defined. This work was evaluated the thyroid absorbed dose from its mass and maximum uptake of I-131 obtained in the examination of diagnostic radiology of radiotherapeutic patients undergoing treatment of Graves' disease. Based on the results, it is observed that the thyroid absorbed dose, as much in terms of mass as the maximum uptake of I-131 for different values of administered activity, varies significantly. The analysis of these parameters is an excellent indicator for the pre-define quantity of radionuclide that is administered to the patient in terms of the radiation dose required to achieve an efficient therapeutic treatment. Moreover, it was observed that the thyroid absorbed dose depends on the degree of pathology of the disease, its mass and of the maximum uptake of I-131. (author)

  7. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  8. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis; Dose absorvida e efetiva em mulheres submetidas a exames de PET-CT para diagnostico oncologico

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo, E-mail: pridili@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mourao FIlho, Arnaldo Prata [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil)

    2014-07-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical {sup 18}F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in {sup 18}F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  9. Comparação entre fatores de calibração em termos de dose absorvida no ar para uma câmara de ionização de placas paralelas Comparison of absorbed dose to air calibration factors for a parallel plate ionization chamber

    Directory of Open Access Journals (Sweden)

    Roseli T. Bulla

    2006-06-01

    Full Text Available OBJETIVO: O objetivo deste trabalho foi realizar uma comparação entre os fatores de calibração em termos de dose absorvida no ar determinados em feixes gama (60Co e de elétrons. MATERIAIS E MÉTODOS: Foram utilizados um irradiador de 60Co e um acelerador linear Varian, modelo Clinac 2100C, com feixes de fótons e de elétrons. Foram testadas uma câmara de ionização cilíndrica e três de placas paralelas. RESULTADOS: Os sistemas de medidas foram submetidos aos testes preliminares (estabilidade de resposta e corrente de fuga, com resultados muito bons. Os fatores de calibração em termos de dose absorvida no ar foram determinados utilizando-se quatro sistemas de medidas e dois tipos de objetos simuladores, com a obtenção de resultados dentro das recomendações internacionais. CONCLUSÃO: Os resultados mostraram que os fatores de calibração em termos de dose absorvida no ar obtidos para câmaras de ionização de placas paralelas, determinados em feixes de 60Co, são no máximo 1,2% mais altos que os valores obtidos em feixes de elétrons de altas energias.OBJECTIVE: The objective of this study was to compare the absorbed dose to air calibration factors determined in gamma (60Co and electron beams. MATERIALS AND METHODS: An irradiator with a 60Co source and a Varian, Clinac 2100C linear accelerator with photon and electron beams were utilized. One thimble-type and three parallel-plate ionization chambers were tested. RESULTS: The measurement systems were submitted to preliminary tests (response stability and leakage current, with quite good results. The absorbed dose to air calibration factors were determined using four measurement systems and two types of phantoms. Results were obtained in compliance with the international recommendations. CONCLUSION: Absorbed dose to air calibration factors obtained for parallel plate ionization chambers, determined in 60Co beams, at maximum, are 1.2% higher than the values obtained in high energy

  10. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Geleijns, J.; Veldkamp, W.J.H. [Leiden University Medical Center, Radiology Department, ZA Leiden (Netherlands); Salvado Artells, M.; Lopez Tortosa, M. [Universitat Rovira i Virgili, Facultat de Medicina i Ciencies de la Salut, Departament de Ciencies Mediques Basiques, Reus, Tarragona (Spain); Calzado Cantera, A. [Universidad Complutense de Madrid, Departamento de Radiologia, Madrid (Spain)

    2006-10-15

    This study aimed at assessment of efficacy of selective in-plane shielding in adults by quantitative evaluation of the achieved dose reduction and image quality. Commercially available accessories for in-plane shielding of the eye lens, thyroid and breast, and an anthropomorphic phantom were used for the evaluation of absorbed dose and image quality. Organ dose and total energy imparted were assessed by means of a Monte Carlo technique taking into account tube voltage, tube current, and scanner type. Image quality was quantified as noise in soft tissue. Application of the lens shield reduced dose to the lens by 27% and to the brain by 1%. The thyroid shield reduced thyroid dose by 26%; the breast shield reduced dose to the breasts by 30% and to the lungs by 15%. Total energy imparted (unshielded/shielded) was 88/86 mJ for computed tomography (CT) brain, 64/60 mJ for CT cervical spine, and 289/260 mJ for CT chest scanning. An increase in image noise could be observed in the ranges were bismuth shielding was applied. The observed reduction of organ dose and total energy imparted could be achieved more efficiently by a reduction of tube current. The application of in-plane selective shielding is therefore discouraged. (orig.)

  11. Combination of hot-water surface pasteurization of whole fruit and low-dose gamma irradiation of fresh-cut cantaloupe.

    Science.gov (United States)

    Fan, Xuetong; Annous, Bassam A; Sokorai, Kimberly J B; Burke, Angela; Mattheis, James P

    2006-04-01

    Improvements in methods for disinfecting fresh-cut cantaloupe could reduce spoilage losses and reduce the risk of foodborne illness from human pathogen contamination. The objective of this study was to investigate the feasibility of using hot-water treatment in combination with low-dose irradiation to reduce native microbial populations while maintaining the quality of fresh-cut cantaloupe. Whole cantaloupes were washed in tap water at 20 or 76 degrees C for 3 min. Fresh-cut cantaloupe cubes, prepared from the washed fruit, were then packaged in clamshell containers, and half the samples were exposed to 0.5 kGy of gamma radiation. Native microflora populations and sensory qualities were evaluated during the subsequent 7 days of storage at 4 degrees C. The hot-water surface pasteurization reduced the microflora population by 3.3 log on the surface of whole fruits, resulting in a lower microbial load on the fresh-cut cubes compared with cubes cut from fruit treated with cold water. Irradiation of cubes prepared from untreated fruit to an absorbed dose of 0.5 kGy achieved a low microbial load similar to that of cubes prepared from hot-water-treated fruit. The combination of the two treatments was able to further reduce the microflora population. During storage, the headspace atmosphere of the packages was not significantly influenced by any of the treatments. Color, titratable acidity, pH, ascorbic acid, firmness, and drip loss were not consistently affected by treatment with irradiation, hot water, or the combination of the two. Cubes prepared from hot-water-treated whole fruit had slightly lower soluble solids content. The combination of hot-water pasteurization of whole cantaloupe and low-dose irradiation of packaged fresh-cut melon can reduce the population of native microflora while maintaining the quality of this product.

  12. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    Science.gov (United States)

    Walsh, Linda

    2013-03-01

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays-leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  13. Comparative toxicity and micronuclei formation in Tribolium castaneum, Callosobruchus maculatus and Sitophilus oryzae exposed to high doses of gamma radiation.

    Science.gov (United States)

    Ahmadi, Mehrdad; Mozdarani, Hossein; Abd-Alla, Adly M M

    2015-07-01

    The effects of gamma radiation on mortality and micronucleus formation in Tribolium castaneum Herbst, Callosobruchus maculatus (F.) and Sitophilus oryzae (L.) genital cells were evaluated. Two groups of healthy and active adult insects 1-3 and 8-10 days old were irradiated with various doses (50-200 Gy) gamma ray. Seven days post-irradiation; mortality rates and micronucleus formation were assessed in genital cells of the irradiated insects. The results show that with increasing gamma doses, the mortality rate of each species increased and T. castaneum and S. oryzae showed the low and high sensitivity respectively. It was shown that the micronucleus appearance in the tested insects had correlation with amount and intensity of radiation doses. Moreover our results indicate different levels in the genotoxicity of gamma radiation among the insects' genital cells under study. The frequency of micronuclei in genital cells of 1-3 days old insects exposed to 50 and 200 Gy were 12.6 and 38.8 Mn/1000 cells in T. castaneum, 20.8 and 46.8 Mn/1000 cells in C. maculatus and 16.8 and 57.2 Mn/1000 cells in S. oryzae respectively. A high sensitivity of the genital cells to irradiation exposure was seen in S. oryzae correlated with its high mortality rate compared with the other two species. These results might be indicative of inflicting chromosomal damage expressed as micronucleus in high mortality rates observed in the pest population; an indication of genotoxic effects of radiation on the studied species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. AN INVESTIGATION ON THE BUD-BREAK AND GROWTH OF CUTTINGS OF 420 A AND 5 BB AMERICAN VINE ROOTSTOCKS IRRADIATED WITH DIFFERENT GAMMA DOSES

    Directory of Open Access Journals (Sweden)

    Alper DARDENIZ

    2006-02-01

    Full Text Available Viticulture is an important and intensive agricultural branch in Çanakkale province and also in Turkey. Different American vine rootstocks are widely used against phylloxera in our country. Plant breeders have been using gamma radiation for creating new varieties of crops and for obtaining broad genetic diversity for years. In this study, four different doses of gamma rays were applied to 420 A and 5 BB American vine rootstocks when the buds on the cuttings were at the dormant stage. Then, effects of different gamma radiation doses on the cuttings of 420 A and 5 BB American vine rootstocks were investigated. The aim of the research was to study the effect of different gamma radiation doses on some growth parameters of cuttings of 420 A and 5 BB, and to determine the GR50 dose. The results obtained were statistically elaborated by TARIST.

  15. Structural Characteristics of Laminarin, Seaweed Polysaccharide, Degraded by Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongil; Kim, Jaehun; Song, Beomseok; Kim, Jaekyung; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, laminarin was degraded by gamma irradiation, and the changes in its structure and antioxidant property were investigated. Gel permeation chromatography data showed that the average molecular weight of the irradiation dose increased. The absorbance at 290 nm from UV spectra was increased depending on the irradiation dose resulting from the formation of carbonyl groups. The anti oxidative activity was increased in the gamma irradiated laminarin depending on the absorbed dose. It was reasoned by the formed carbonyl groups in gamma irradiated laminarin. Therefore, gamma irradiation could be a promising method for preparing low molecular weight laminarin with enhanced biological activities.

  16. The influence of the patient's posture on organ and tissue absorbed doses caused by radiodiagnostic examinations; Influencia da postura do paciente na dose absorvida em orgaos e tecidos causada por exames radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Cassola, Vagner F.; Kramer, Richard; Khoury, Helen J.; Lira, Carlos A.B.O., E-mail: vagner.cassola@gmail.co [Universidade Federal de Pernambuco (DEN/UFPE), Recife (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Due to the gravitational force, organ positions and subcutaneous fat distribution change when a standing person lies down on her/his back, which is called 'supine posture'. Both postures, standing and supine, are very common in X-ray diagnosis, however, phantoms used for the simulation of patients for organ and tissue absorbed dose assessments normally represent humans either in standing or in supine posture. Consequently, the exposure scenario simulated sometimes does not match the real X-ray examination with respect to the patient's posture. Using standing and supine versions of mesh-based female and male adult phantoms, this study investigates the 'posture-effect' on organ and tissue absorbed doses for radiographs of the pelvis and the lumbar spine in order to find out if the errors from simulating the false posture are significant. (author)

  17. Clinical application of gamma knife dose verification method in multiple brain tumors : modified variable ellipsoid modeling technique.

    Science.gov (United States)

    Hur, Beong Ik; Lee, Jae Min; Cho, Won Ho; Kang, Dong Wan; Kim, Choong Rak; Choi, Byung Kwan

    2013-02-01

    The Leksell Gamma Knife® (LGK) is based on a single-fraction high dose treatment strategy. Therefore, independent verification of the Leksell GammaPlan® (LGP) is important for ensuring patient safety and minimizing the risk of treatment errors. Although several verification techniques have been previously developed and reported, no method has ever been tested statistically on multiple LGK target treatments. The purpose of this study was to perform and to evaluate the accuracy of a verification method (modified variable ellipsoid modeling technique, MVEMT) for multiple target treatments. A total of 500 locations in 10 consecutive patients with multiple brain tumor targets were included in this study. We compared the data from an LGP planning system and MVEMT in terms of dose at random points, maximal dose points, and target volumes. All data was analyzed by t-test and the Bland-Altman plot, which are statistical methods used to compare two different measurement techniques. No statistical difference in dose at the 500 random points was observed between LGP and MVEMT. Differences in maximal dose ranged from -2.4% to 6.1%. An average distance of 1.6 mm between the maximal dose points was observed when comparing the two methods. Statistical analyses demonstrated that MVEMT was in excellent agreement with LGP when planning for radiosurgery involving multiple target treatments. MVEMT is a useful, independent tool for planning multiple target treatment that provides statistically identical data to that produced by LGP. Findings from the present study indicate that MVEMT can be used as a reference dose verification system for multiple tumors.

  18. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  19. Monte Carlo Evaluation of Gamma Knife Dose Profile in Real Brain Phantom

    Directory of Open Access Journals (Sweden)

    Ali Aghaebrahimian

    2016-03-01

    The calculation of the real phantom showed that water and polystyrene could function similarly, while evaluating dosimetry parameters in the Gamma Knife system; thus, water and polystyrene are not appropriate phantom matters for this purpose.

  20. Characterisation of a clothing material for gamma dosimetry in mixed neutron-gamma fields

    Energy Technology Data Exchange (ETDEWEB)

    Benabdesselam, M.; Iacconi, P.; Lapraz, D. [LPES-CRESA, Universite de Nice-Sophia Antipolis, Nice (France); Serbat, A.; Dhermain, J. [DGA/CEB, Arcueil (France); Laugier, J. [DGA/CEB, Centre d`Etudes du Bouchet, Vert-le-Petit (France)

    1997-09-01

    When an irradiation accident occurs, it is very important for medical treatment to be able to reconstruct the cartography of the dose absorbed by the irradiated person. A cotton textile coated with an {alpha}-alumina dosimetric powder is suitable to clothe persons subjected to irradiation risks. With some precautions, the dose may be measured by thermoluminescence (TL). Responses of the aluminised cotton textile relative to the absorbed dose are shown for different ratios of D{sub {gamma}}/D{sub n} and relative to the photon energy. (author).

  1. SU-E-T-30: Absorbed Doses Determined by Texture Analysis of Gafchromic EBT3 Films Using Scanning Electron Microscopy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, S [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, H [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, S [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon (Korea, Republic of)

    2014-06-01

    Purpose: The texture analysis method is useful to estimate structural features of images as color, size, and shape. The study aims to determine a dose-response curve by texture analysis of Gafchromic EBT3 film images using scanning electron microscopy (SEM). Methods: The uncoated Gafchromic EBT3 films were prepared to directly scan over the active surface layer of EBT3 film using SEM. The EBT3 films were exposed at a dose range of 0 to 10 Gy using a 6 MV photon beam. The exposed film samples were SEM-scanned at 100X, 1000X, and 3000X magnifications. The four texture features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) derived from the SEM images at each dose. To validate a correlation between delivered doses and texture features, an R-squared value in linear regression was tested. Results: The results showed that the Correlation index was more suitable as dose indices than the other three texture features due to higher linearity and sensitivity of the dose response curves. Further the Correlation index of 3000X magnified SEM images with 9 pixel offsets had an R-squared value of 0.964. The differences between the delivered doses and the doses measured by this method were 0.9, 1.2, 0.2, and 0.2 Gy at 5, 10, 15, and 20 Gy, respectively. Conclusion: It seems to be feasible to convert micro-scale structural features of {sub χ}t{sub χχχ}he EBT3 films to absorbed doses using the texture analysis method.

  2. Evaluation of the absorbed dose, half-thickness layer and the yield of X-ray an diagnostic equipment; Evaluacion de la dosis absorbida, capa semirreductora y del rendimento en equipos de rayos X diagnosticos

    Energy Technology Data Exchange (ETDEWEB)

    Benito C, Luis R. [Universidad Nacional del Callao (UNAC), (Peru). Facultad de Ciencias Naturales y Matematica]. E-mail: luilink_222@yahoo.com; Marquez P, Fernando [Universidad Nacional Mayor de San Marcos (UNMSM), Lima (Peru). Facultad de Ciencias Fisicas; Instituto de Enfermedades Neoplasicas (INEN), Lima (Peru). Servicio de Fisica Medica

    2004-07-01

    This work develops parametrization methods for evaluation the absorbed doses, the half-thickness and the effectiveness of a X-ray beams from a Shimadzu Radiotex and a SRO 2550 Philips models equipment.

  3. A Minute Dose of 14C-b-Carotene is Absorbed and Converted to Retinoids in Humans

    Science.gov (United States)

    We dosed 8 adults with 14C-all-trans [10,10',11,11'-14C]-B-carotene (1.01 nmol) to quantify its absorption and metabolism. We used accelerator mass spectrometry (AMS) to measure 14C eliminated in feces over 14 days, in urine over 30 days, and that was retained in plasma over 166 days since dose. We...

  4. Code intercomparison and benchmark for muon fluence and absorbed dose induced by an 18-GeV electron beam after massive iron shielding

    CERN Document Server

    Fassò, Alberto; Ferrari, Anna; Mokhov, Nikolai V.; Müller, Stefan E.; Nelson, Walter Ralph; Roesler, Stefan; Sanami, Toshiya; Striganov, Sergei I.; Versaci, Roberto

    2015-01-01

    In 1974, Nelson, Kase, and Svenson published an experimental investigation on muon shielding using the SLAC high energy LINAC. They measured muon fluence and absorbed dose induced by a 18 GeV electron beam hitting a copper/water beam dump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical mode ls available at the time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results will then be compared between the codes, and with the SLAC data.

  5. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A. [SLAC; Ferrari, A. [CERN; Ferrari, A. [HZDR, Dresden; Mokhov, N. V. [Fermilab; Mueller, S. E. [HZDR, Dresden; Nelson, W. R. [SLAC; Roesler, S. [CERN; Sanami, t.; Striganov, S. I. [Fermilab; Versaci, R. [Unlisted, CZ

    2016-12-01

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.

  6. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil; Doses absorvidas pelos pacientes submetidos a radiografias toracicas em hospitais do municipio de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Marcelo Baptista de

    2000-07-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 {mu}Gy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and

  7. Terrestrial gamma radiation dose (TGRD) levels in northern zone of Jos Plateau, Nigeria: Statistical relationship between dose rates and geological formations

    Science.gov (United States)

    Abba, Habu Tela; Hassan, Wan Muhamad Saridan Wan; Saleh, Muneer Aziz; Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi

    2017-11-01

    In- situ measurement of terrestrial gamma radiation dose rates (TGRD) was conducted in northern zone of Jos Plateau and a statistical relationship between the TGRD and the underlying geological formations was investigated. The TGRD rates in all the measurements ranged from 40 to 1265 nGy h-1 with a mean value of 250 nGy h-1. The maximum TGDR was recorded on geological type G8 (Younger Granites) at Bisitchi, and the lowest TGDR was recorded on G6 (Basaltic rocks) at Gabia. One way analysis of variance (ANOVA) statistical test was used to compared the data. Significantly, the results of this study inferred a strong relationship between TGRD levels with geological structures of a place. An isodose map was plotted to represent exposure rates due to TGRD. The results of this investigation could be useful for multiple public interest such as evaluating public dose for the area.

  8. Cell size matters in gamma-H2AX assay for low-dose alpha particle effect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ui seob; Kim, Eun Hee [Seoul National University, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma-H2AX assay is an immuno-fluorescence experiment that enables detecting the location and number of DNA double strand breaks (DSBs) in cells. Under uniform radiation beam intensity, cells would respond with similar numbers of gamma-H2AX if they are similar in cross section. If cells are not represented by a common size, however, a larger cell has a greater chance of radiation exposure and has a better chance of counting a greater number of foci. In other words, the cell size distribution would be reflected in the FPC distribution. In the conventional gamma-H2AX assay, the mean FPC value solely indicates the level of cellular damage under a certain radiation exposure. The purpose of this study is to investigate the FPC distribution in connection with the cell size distribution. The high-LET alpha beam was employed for radiation exposure so that a single track of radiation leaves a meaningful amount of energy in the cell. Gamma-H2AX is a powerful tool for investigating the cellular response at low-dose exposure. If the gamma-H2AX assay is performed with cells of the same size, 'the average number of foci per cell' may accord with the overall response of sample cells to radiation exposure. With cells of non-uniform size, however, one should be cautious in taking the value as an index of the severity in cellular effect of radiation exposure. According to our experiments, a portion of sample cells carried DSBs of more than 5 times greater number than the mean FPC value and might play a critical role in radio-response.

  9. Committed effective dose determination in cereal flours by gamma-ray spectrometry; Determinacao das doses efetivas por ingestao de farinhas de cereais atraves da espectrometria de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Scheibel, Viviane

    2006-07-01

    The health impact from radionuclides ingestion of foodstuffs was evaluated by the committed effective doses determined in commercial samples of South-Brazilian cereal flours (soy, wheat, corn, manioc, rye, oat, barley and rice flour). The radioactivity traces of {sup 228}Th, {sup 228}Ra, {sup 226}Ra, {sup 40}K, {sup 7}Be and {sup 137}Cs were measured by gamma-ray spectrometry employing a 66% relative efficiency HPGe detector. The energy resolution for the 1332.46 keV line of {sup 60}Co was 2.03 keV. The committed effective doses were calculated with the activities analyzed in the present flour samples, the foodstuff rates of consumption (Brazilian Institute of Geography and Statistics) and the ingestion dose coefficients (International Commission of Radiological Protection). The reliability median activities were verified with {chi}{sup 2} tests, assuring the fittings quality. The highest concentration levels of {sup 228}Th and {sup 40}K were 3.5 {+-} 0.4 and 1469 {+-} 17 Bq.kg{sup -1} for soy flour, respectively, with 95% of confidence level. The lower limit of detection for {sup 137}Cs ranged from 0.04 to 0.4 Bq.kg{sup -1}. The highest committed effective dose was 0.36 {mu}Sv.y{sup -1} for {sup 228}Ra in manioc flour (adults). All committed effective doses determined at the present work were lower than the UNSCEAR limits of 140 {mu}Sv.y{sup -1} and much lower than the ICRP (1991) limits of 1 mSv.y{sup -1}, for general public. There are few literature references for natural and artificial radionuclides in foodstuffs and mainly for committed effective doses. This work brings the barley flour data, which is not present at the literature and {sup 7}Be data which is not encountered in foodstuffs at the literature, besides all the other flours data information about activities and committed effective doses. (author)

  10. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  11. Evaluation of the absorbed dose to the lungs due to Xe{sup 133} and Tc{sup 99m} (MAA); Evaluacion de la dosis absorbida en los pulmones debido al Xe{sup 133} y Tc{sup 99m} (MAA)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Rojas P, E. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima (Peru); Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe{sup 133} or Tc{sup 99m} (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to {sup 133}Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the {sup 133}Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc{sup 99m} (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc{sup 99m} biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  12. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    DEFF Research Database (Denmark)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    2015-01-01

    PURPOSE: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence...... dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation...... of (211)At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical...

  13. Absorbed doses by the thyroid follicles due to the short half-lives isotope; Dose absorvida pelos foliculos tireoideanos devido aos isotopos de iodo de meia-vida curta

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Amaral, Ademir; Colas-Linhart, Nicole; Hindie, Elif; Oliveira, Jairo R. de; Oliveira, Pedro A.R. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR); Universite Paris 7, Paris Cedex 18 (France). Faculte de Medecine Xavier Bichat. Lab. de Chimie et Biophysique des Traceurs; Paris Cedex 12 (France). Hopital Saint-Antoine. Service de Medecine Nucleaire; Universidade Federal de Pernambuco UFPE, Recife, PE (Brazil). Dept. de Fisica e Matematica; E-mails: lpbcampos@uol.com.br; amaral@ufpe.br

    2005-11-15

    The aim of this work is to evaluate the contributions of internally deposited short-lived iodines to the dose absorbed by thyroid's follicle, in the case of nuclear accidents . Dose calculation was carried out, at follicular level, for {sup 131} I and short-lived iodines ({sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I), using the code MCNP4C. The thyroid's follicles were modeled as spheres, with different diameters (between 40 to 240 {mu}m), having the same density as for soft tissue ({rho} = 1.04 g.cm{sup -3}). The results showed that the contribution of short-lived iodines for total dose is about 72%. The results reported in this work pointed out that, in case of nuclear accidents, the contributions of the short-lived iodines to the total dose absorbed by thyroid, at follicular level, cannot be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine.(author)

  14. Calibration curve to establish the exposure dose at Co{sup 60} gamma radiation; Curva de calibracion para establecer dosis de exposicion a radiacion gamma de Co{sup 60}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [Departamento de Biologia, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  15. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced MR finding of radiation-induced hepatic injury: relationship to absorbed dose and time course after irradiation.

    Science.gov (United States)

    Okamoto, Daisuke; Nishie, Akihiro; Asayama, Yoshiki; Tajima, Tsuyoshi; Ishigami, Kousei; Kakihara, Daisuke; Nakayama, Tomohiro; Ohga, Saiji; Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Honda, Hiroshi

    2014-07-01

    To evaluate if Gd-EOB-DTPA-enhanced MRI could identify liver tissue damage caused by radiation exposure in patients undergoing external beam radiation therapy. We enrolled 11 patients who underwent Gd-EOB-DTPA-enhanced MRI during or after radiotherapy in which the radiation field included the liver. External beam radiotherapy was delivered through multiple fields using a 10-MV linear accelerator. The hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI were qualitatively evaluated for the presence of a decreased uptake of Gd-EOB-DTPA in the irradiated area in the liver. Next, signal intensity (SI) ratio of the irradiated area to the non-irradiated liver parenchyma was also calculated. The absorbed dose of the irradiated area in the liver was standardized using equivalent dose in 2Gy fraction (EQD2) and biological effective dose (BED). The results of qualitative analysis were compared with EQD2 or BED, and linear regression analysis was performed between EQD2 or BED and SI ratio. Twenty-two irradiated areas were evaluated. Qualitative analysis revealed a decreased uptake of Gd-EOB-DTPA in 14 areas and no decreased uptake of Gd-EOB-DTPA in eight areas. The thresholds of EQD2 and BED causing a decreased uptake of Gd-EOB-DTPA were considered to be 24 to 29Gy and 29 to 35Gy, respectively. Quantitatively, SI ratio decreased as EQD2 or BED increased (r=0.89, pradiotherapy. Gd-EOB-DTPA-enhanced MRI described RLI as a decreased uptake of Gd-EOB-DTPA matching the irradiated area. The occurrence of this finding was significantly correlated with the absorbed dose of the irradiated area in the liver. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez Castillo, J. G., E-mail: jggc59@hotmail.com [Departamento de Física, Hospital de Oncología, IMSS, CMN Siglo XXI, Cuauhtémoc 330 Col. Doctores (Mexico); Álvarez Romero, J. T., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; Calderón, A. Torres, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; M, V. Tovar, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx [SSDL, Departamento de Metrología ININ, Salazar, Estado de México 15245 (Mexico)

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  17. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population

    Directory of Open Access Journals (Sweden)

    Maharana Mandakini

    2010-01-01

    Full Text Available The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238 U, 232 Th, and 40 K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238 U, 232 Th, and 40 K in the surface soil were 53.8, 44.2 and 464.2 Bq kg -1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values.

  18. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population.

    Science.gov (United States)

    Maharana, Mandakini; Krishnan, Narayani; Sengupta, D

    2010-10-01

    The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of (238)U, (232)Th, and (40)K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of (238)U, (232)Th, and (40)K in the surface soil were 53.8, 44.2 and 464.2 Bq kg(-1) respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values.

  19. Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells.

    Science.gov (United States)

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki; Hamasaki, Kanya; Cullings, Harry M; Cordova, Kismet A; Awa, Akio

    2017-10-01

    Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic trends

  20. Effects of low doses of short-term gamma irradiation on growth and development through two generations of Pisum sativum

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, R.; Misset, M.T. [UMR-CNRS 6553 Ecobio, Equipe Evolution des Populations et des Especes, Universite de Rennes 1, Campus de Beaulieu Bat. 14, Rennes Cedex F 35042 (France); Chenal, C. [Laboratoire de Radiobiologie, Universite de Rennes 1, Centre Regional de Lutte contre le Cancer, Rennes Cedex F 35062 (France)

    2004-03-29

    The effects of short-term gamma radiation on pea plants were investigated by exposing 5-day-old seedlings with doses ranging from 0 to 60 Gy, and studying plant growth and development over two generations after irradiation. Doses higher than 6 Gy significantly inhibited the G1 plant growth and productivity, and no seedling survived irradiation with 40 Gy and above. These effects were transmitted and were even more severe in the next generation, G2. Irradiated G1 ({>=}10 Gy) and G2 ({>=}0.4 Gy) plants were significantly smaller than controls. The mean number of pods produced per plant was reduced by at least 20% at all doses in both G1 and G2. In parallel, the mean numbers of ovules and normally developed seeds per pod were significantly reduced after 10 Gy in G1 and after 0.4 Gy in G2, leading to a significant drop in seed production. This effect was correlated with a linear decrease in male fertility linked to abnormal meiosis (tetrads with micronuclei) as a function of doses from 0 to 10 Gy, in G1 and G2 plants. These long-term changes in plant development demonstrate a genomic instability induced by irradiation. However, there were neither quantitative nor qualitative changes in storage proteins in G1 seeds at any of the irradiation doses tested from 0 to 10 Gy.

  1. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans; Avaliacao da variacao da tensao (kV) na dose absorvida em varreduras de TC torax

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P., E-mail: brunabgam@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais (CENEB/CEFET-MG), Belo Horionte, MG, (Brazil)

    2013-07-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography.

  2. Gamma factors of an ambulatory source; Factores gamma de una fuente ambulatoria

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Vega C, H.R.; Manzanares A, E.; Salas L, M.A.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Barquero, R. [Hospital Universitario del Rio Hortega, E-47010 Valladolid (Spain)

    2007-07-01

    Some of the procedures for diagnostic or treatment used in the medicine use radioactive materials as the I{sup 131}. By means of Monte Carlo methods were calculated the doses in the internal organs of a woman, with three months of pregnancy, due to the radioiodine captured by her thyroid, as well as to 1 meter of the gland. A three-dimensional mathematical model of the body of a woman was used and by means of Monte Carlo, the radioiodine photons were transported isotropically from the thyroid toward the whole body and was calculated the absorbed dose by their internal organs, also the Kerma in air (K) was determined and the environmental equivalent dose (H{sup *}(10)) at 1 m of the gland. Two activity factors at dose were determined, Gamma Factors that it allows to estimate the dose that the patient produces to people to its around. Of the gamma radiation that emits the I{sup 131} in the thyroid was found that the thymus receives the biggest dose while the uterus is the organ that smaller dose receives. The determined gamma factors were: {gamma}{sub KAire} = 56 {mu}Gy-m{sup 2}-h{sup -1}-GBq{sup -1}, and {gamma}{sub H}{sup *}{sub (10)} = 73 {mu}Sv-m{sup 2}-h{sup -1}-GBq{sup -1}. The distribution of the absorbed dose by the internal organs is attributed to the relative distance among the thyroid and the other organs, to the inter-organs shielding, its size and to its elementary composition. The {gamma}{sub KAire} and {gamma}{sub H}{sup *}{sub (10)} factors allow to estimate the exposure that the patient produces on the personnel to its around. With this, the nuclear medicus, the medical physicist or the one responsible of the radiological safety in the hospital can give more precise indications on the behavior of people around the patient. (Author)

  3. Effects of lethal dose of. gamma. -irradiation on intestinal enzymes of the pigeons Columba livia intermedia Strickland

    Energy Technology Data Exchange (ETDEWEB)

    Gadhia, P.K. (South Gujarat Univ., Surat (India). Dept. of Biosciences); Shah, V.C. (Gujarat Univ. School of Sciences, Ahmedabad (India))

    1979-09-01

    Effect of ..gamma..-irradiation with lethal dose (1000 rads) on alkaline phosphatase and glucose-6-phosphatase have been studied in two different regions (duodenum and ileum) of small intestine of pigeons. The enzymes were studied at different intervals like 2, 4, 6 and 8 days after irradiation. The sp. activities of enzyme increased significantly both in duodenum and ileum. However, significant increase in alkaline phosphatase and glucose-6-phosphatase were observed at the 2nd and the 4th days post-irradiation respectively. The increase in enzyme activities may present de novo synthesis of these enzymes after lethal dose of irradiation. The histologic picture revealed that after the 4th day of irradiation, the number of goblet cells increased and after the 6th day crypt-villus system was destroyed completely as compared to sham-irradiated pigeons.

  4. Assessment of Brain absorbed X-ray dose during CT- Scan using ImPACT software in Tehran Univeristy hospitals

    Directory of Open Access Journals (Sweden)

    Khalilpour M

    2009-07-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: CT scan was first introduced into clinical practice in 1972, and since then has grown into one of the predominant diagnostic procedures. In 1998, the UK National Radiological Protection Board reported that 20% of the national collective dose from medical X-ray examinations derived from CT-scans, although it represented only 2% of all X- ray examinations the aim of this study was to determine the X-ray dosage received by patients in brain CT scan."n"n Methods: In this work, we have estimated patient dose arising from CT examination of brain in five hospitals in Tehran. Organ and effective doses were estimated for 150 patients who underwent CT examination of brain. "ImPACT" version 0.99v was used to estimate organ and effective dose. Brain examinations were performed with fixed Kvp, mAs and T (slice thickness for each scanner. "n"n Results: Patients, who were scanned by CT of emam Khomeini center (Toshiba Xvision /EX Scanner, received maximum organ dose (brain and minimum organ dose was delivered to patients who were scanned by CT of amir alam center (Toshiba Xvision /EX Scanner. Maximum effective dose was 1.7 mSv acquired in this study for emam Khomeini haspital, smaller than

  5. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M. [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses

  6. Degradation of polylactic acid (Pla) at different doses of gamma radiation; Degradacion del acido polilactico (PLA) a diferentes dosis de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Castillo R, Y.

    2015-07-01

    The excessive use of polymers such as polyethylene (PET), polystyrene (Ps) and recently the polylactic acid (Pla) that take more than 20 years to degrade, have caused great pollution in the environment. In this study the effects of gamma radiation in the Pla to different doses were studied, in order to reduce the degradation time of this polymer. The changes in physico-chemical structure of Pla during radiation were studied by thermo-gravimetric/Mass analysis; differential scanning calorimetry; scanning electron microscopy; X-ray dispersive analysis; infrared spectroscopy; X-ray diffraction and mechanical tests of hardness, elasticity and deformation. With scanning electron microscopy, the morphology of the Pla surface unirradiated was observed, in which an apparently smooth surface was observed, after changes that had the Pla when irradiated also was observed, where the effects of radiation were observed in form of scratch, agglomeration and small fractures. By X-ray dispersive analysis was determined and verified the elemental chemical composition of the Pla; as expected the tests showed only carbon, oxygen and hydrogen. With thermo-gravimetric/Mass analysis the decomposition temperatures of Pla were determined, identifying that the degradation compounds are CO, CO{sub 2} and CH{sub 4}. With infrared spectrometry the major peaks of Pla were observed before and after being irradiated with increasing of radiation dose the intensity of the bands decreased. Also by X-ray diffraction was observed that the polymer is an amorphous material. The mechanical tests indicate that the values of each of the tests decrease significantly with increasing the radiation dose. (Author)

  7. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of "Sweetheart" Passionfruit (Passiflora edulis).

    Science.gov (United States)

    Golding, John B; Blades, Barbara L; Satyan, Shashirekha; Spohr, Lorraine J; Harris, Anne; Jessup, Andrew J; Archer, John R; Davies, Justin B; Banos, Connie

    2015-08-26

    Passionfruit ( Passiflora edulis , Sims, cultivar "Sweetheart") were subject to gamma irradiation at levels suitable for phytosanitary purposes (0, 150, 400 and 1000 Gy) then stored at 8 °C and assessed for fruit quality and total ascorbic acid concentration after one and fourteen days. Irradiation at any dose (≤1000 Gy) did not affect passionfruit quality (overall fruit quality, colour, firmness, fruit shrivel, stem condition, weight loss, total soluble solids level (TSS), titratable acidity (TA) level, TSS/TA ratio, juice pH and rot development), nor the total ascorbic acid concentration. The length of time in storage affected some fruit quality parameters and total ascorbic acid concentration, with longer storage periods resulting in lower quality fruit and lower total ascorbic acid concentration, irrespective of irradiation. There was no interaction between irradiation treatment and storage time, indicating that irradiation did not influence the effect of storage on passionfruit quality. The results showed that the application of 150, 400 and 1000 Gy gamma irradiation to "Sweetheart" purple passionfruit did not produce any deleterious effects on fruit quality or total ascorbic acid concentration during cold storage, thus supporting the use of low dose irradiation as a phytosanitary treatment against quarantine pests in purple passionfruit.

  8. Localization of the gamma-radiation sources using the gamma-visor

    Directory of Open Access Journals (Sweden)

    Ivanov Kirill E.

    2008-01-01

    Full Text Available The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures allowed localizing the new gamma-source.

  9. Estimation of absorbed dose by newborn patients subjected to chest radiographs; Estimativa de dose efetiva para radiografias do torax em pediatria neonatal

    Energy Technology Data Exchange (ETDEWEB)

    Bunick, Ana P. [Faculdades Pequeno Principe, Curitiba, PR (Brazil); Schelin, Hugo R. [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Denyak, Valeriy [Hospital Infantil Pequeno Principe, Curitiba, PR (Brazil)

    2016-07-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose{sub X} software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  10. Effects of low dose {gamma} radiation on early growth and physiological activities of radish (raphanus sativus L.) and the reduction of ultraviolet-B stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Lee, Y. K.; Lee, H. Y.; Baek, M. H.; Yoo, J. C. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The effect of low dose {gamma} radiation on early growth and photosynthesis in radish plant was studied. The seedling height of radish was stimulated in plants grown from seeds irradiated with the low dose of 10 Gy. The O{sub 2} evolution in the 10 Gy irradiation group was 1.2 times greater than in the control. The catalase and peroxidase activity of radish leaves grown from seeds irradiated with {gamma} radiation were increased at 10 Gy irradiation group as the superoxide dismutase activity of leaves was. To investigate the effect of low dose {gamma} radiation on response to UV-B stress, UV-B was given at the intensity of 1 W{center_dot} m{sup -2} to the detached leaves. Pmax was decreased with increasing illumination time by 76% in the control, while decreased by 75% in the 10 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, was decreased with increasing illumination time by 75% after 4 hours while Fv/Fm in the 10 Gy irradiation group was decreased by 69% of inhibition, indicating that the low dose {gamma} radiation retarded the deteriorative effect of UV-B on PSII. The initial fluorescence (Fo) was slightly increased with increasing illumination time, while the maximal fluorescence (Fm) was decreased. These results showed the positive effect of low dose {gamma} radiation on the seedling growth and the reduction of the deteriorative effect of UV-B stress on photosynthesis in radish plant.

  11. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.

    Directory of Open Access Journals (Sweden)

    Simon Horn

    Full Text Available Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body

  12. Total Ionizing Dose Response of Hafnium-Oxide Based MOS Devices to Low-Dose-Rate Gamma Ray Radiation Observed by Pulse CV and On-Site Measurements

    Science.gov (United States)

    Mu, Yifei; Zhao, Ce Zhou; Lu, Qifeng; Zhao, Chun; Qi, Yanfei; Lam, Sang; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2017-01-01

    This paper reports on the low-dose-rate radiation response of Al-HfO2/SiO2-Si MOS devices, where the gate dielectric was formed by atomic layer deposition with 4.7 nm equivalent oxide thickness. The degradation of the devices was characterized by a pulse capacitance-voltage (CV) and on-site radiation response techniques under continuous gamma (γ) ray exposure at a relatively low-dose-rate of 0.116 rad(HfO2)/s. A significant variation of the flat-band voltage shift of up to ± 1.1 V under positive and negative biased irradiation, with the total dose of up to 40 krad (HfO2) and the electric field of 0.5 MV/cm, has been measured on the HfO2-based MOS devices using the proposed techniques, not apparent by conventional CV measurements. The large flat-band voltage shift is mainly attributed to the radiation-induced oxide trapped charges, which are not readily compensated by bias-induced charges produced over the measurement timescales of less than 5 ms. Analysis of the experimental results suggest that both hole and electron trapping can dominate the radiation response performance of the HfO2-based MOS devices depending on the applied bias. No distinct loop width variation has been found with irradiation in all cases.

  13. System and method for dose verification and gamma ray imaging in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Lucian

    2017-12-26

    This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.

  14. Nanocrystalline MgB{sub 4}O{sub 7}:Dy for high dose measurement of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067 (India); Pandey, A. [Department of Physics, Sri Venkateswara College, University of Delhi, Benito Juarez Road, Dhaula Kuan, New Delhi-110021 (India); Sahare, P.D.; Ranjan, Ranju [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Chauhan, R.S. [Department of Physics, RBS College, B. R. Ambedkar University, Agra-282002 (India); Salah, Numan [Department of Physics, Faculty of Applied Sciences, Thamar University, Thamar (Yemen)

    2007-07-15

    Magnesium borate activated by dysprosium (MgB{sub 4}O{sub 7}:Dy) is a low-Z{sub eff}, tissue-equivalent material that is commonly used for medical dosimetry of ionizing radiations such as gamma and X-rays using the thermoluminescence (TL) technique. Nanocrystals of the same material are produced and their TL characteristics are studied. It is found that the nanocrystalline MgB{sub 4}O{sub 7}:Dy with a dopant concentration of 1000 ppm is the most sensitive amongst varying dopant concentrations, with its sensitivity equal to 0.025 times that of the standard phosphor CaSO{sub 4}:Dy. The glow curve has two peaks at 154 C and 221 C. The nanophosphor has very poor sensitivity for low doses up to 10 Gy but beyond this dose the phosphor exhibits a linear response up to 5000 Gy. On increasing the dose further the response first becomes supralinear and then sublinear, finally resulting into saturation. Considering also its low fading particularly under post-irradiation annealing and excellent reusability features, this nanophosphor may be used for high dose (10-5000 Gy) measurements of ionizing radiations. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    Science.gov (United States)

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dose-dependent interferon-gamma release in dairy calves experimentally infected with Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Mortier, Rienske A R; Barkema, Herman W; Wilson, Todd A; Sajobi, Tolulope T; Wolf, Robert; De Buck, Jeroen

    2014-10-15

    The interferon-gamma (IFN-γ) release assay is considered useful for diagnosis of subclinical paratuberculosis. However, interpretation can be subjective and complex; therefore, additional information regarding the course of the cellular immune response and effects of age and dose at infection would be helpful. Thirty-three calves were randomly allocated to 10 challenge groups and a negative control group. Calves were inoculated orally at 2 weeks or at 3, 6, 9, or 12 months of age. Within each age group, calves received either a high or low dose of Mycobacterium avium subspecies paratuberculosis (MAP). Monthly blood samples were collected, stimulated with Purified Protein Derivative (PPD) Johnin in vitro, and the subsequent release of IFN-γ measured. Calves inoculated with a high dose had earlier and stronger IFN-γ responses than low-dose calves. Furthermore, calves inoculated at 2 weeks of age produced less IFN-γ compared to those inoculated later in life. The IFN-γ response peaked (on average) 4 months after exposure; therefore, this would be an optimal interval to test cattle for MAP-infection (although the timing of field-based infections is unknown and clearance of infection a possibility). To conclude, the IFN-γ release assay could be a valuable diagnostic test on herd-level to indicate exposure to MAP. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... are outlined. The subjects dealt with compromise: the quantity to be measured, the required accuracy of measurement, calibration procedures, and dosemeter design including the main parameters influencing the energy and angular response of the dosemeter, such as detector thickness, filter thickness, dosemeter...

  18. Image processing techniques revealing the relationship between the field-measured ambient gamma dose equivalent rate and geological conditions at a granitic area, Velence Mountains, Hungary

    Science.gov (United States)

    Beltran Torres, Silvana; Petrik, Attila; Zsuzsanna Szabó, Katalin; Jordan, Gyozo; Szabó, Csaba

    2017-04-01

    In order to estimate the annual dose that the public receive from natural radioactivity, the identification of the potential risk areas is required which, in turn, necessitates understanding the relationship between the spatial distribution of natural radioactivity and the geogenic risk factors (e.g., rock types, dykes, faults, soil conditions, etc.). A detailed spatial analysis of ambient gamma dose equivalent rate was performed in the western side of Velence Mountains, the largest outcropped granitic area in Hungary. In order to assess the role of local geology in the spatial distribution of ambient gamma dose rates, field measurements were carried out at ground level at 300 sites along a 250 m x 250 m regular grid in a total surface of 14.7 km2. Digital image processing methods were applied to identify anomalies, heterogeneities and spatial patterns in the measured gamma dose rates, including local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction, second derivative profile curvature, local variability, lineament density, 2D autocorrelation and directional variogram analyses. Statistical inference showed that different gamma dose rate levels are associated with the rock types (i.e., Carboniferous granite, Pleistocene colluvial, proluvial, deluvial sediments and talus, and Pannonian sand and pebble), with the highest level on the Carboniferous granite including outlying values. Moreover, digital image processing revealed that linear gamma dose rate spatial features are parallel to the SW-NE dyke system and possibly to the NW-SE main fractures. The results of this study underline the importance of understanding the role of geogenic risk factors influencing the ambient gamma dose rate received by public. The study also demonstrates the power of the image processing techniques for the identification of spatial pattern in field-measured geogenic radiation.

  19. Clinical and symptomatological study of pigs subjected to a lethal dose of integral gamma irradiation; Etude clinique et symptomatologique chez le porc soumis a une irradiation gamma totale a dose letale

    Energy Technology Data Exchange (ETDEWEB)

    Vaiman, M.; Guenet, J.-L.; Maas, J.; Nizza, P

    1966-05-01

    Results are reported from a clinical and haematological study on a Corsican species of pigs wholly exposed to an approximately lethal dose of {gamma} radiation. The aim of this work was to examine the changes in the irradiation syndrome of irradiation for pigs to make it thus possible to devise further experiments, in particular in the therapeutic field. The dose received was 285 rads (measured as the absorption in the vertical antero-posterior medial plane). Data are presented on cyto-haematological changes in the blood circulating immediately after irradiation, and followed up to death, and changes in the medullary cytology after irradiation. The clinical picture of lethal radiation injury in swine is described. (authors) [French] Les auteurs rapportent les resultats d'une etude clinique et hematologique chez des porcs de race corse irradies in toto a dose sensiblement letale. Le but de cette etude etait de connaitre l'evolution du syndrome aigu d'irradiation chez le porc et de permettre ainsi le developpement d'experimentations ulterieures, en particulier dans le domaine therapeutique. La dose delivree etait de 285 rad (en dose absorbee au niveau du plan median vertical anteroposterieur. L'etude a porte essentiellement: 1. Sur les modifications cyclo-hematologiques du sang circulant immediatement apres l'irradiation, pour les differentes lignees cellulaires; l'evolution de ces modifications a ete notee jusqu'a la mort; 2. Sur les modifications de la cytologie medullaire apres irradiation (evolution du myelogramme et essai d'evaluation de la cellularite de la moelle osseuse);: 3. Sur les signes cliniques, d'ailleurs tres discrets, observes chez les porcs apres irradiation. (auteurs)

  20. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry; Comparacao entre o LCR/Brasil e o NRC/Canada da dose absorvida na agua usando a dosimetria Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro (Brazil). Lab. de Ciencias Radiologicas; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom, E-mail: mila.salata@gmail.com [National Research Council, Ottawa (Canada)

    2014-07-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  1. Absorbed dose in the fetus of a pregnant patient when I{sup 131} (iodide/Tc{sup 99m} (pertechnetate) is administered during thyroid studies; Dosis absorbida en el feto de una paciente embarazada cuando se administra I{sup 131} (yoduro)/Tc{sup 99m} (pertecnetato) durante estudios tiroideos

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M.; Murillo C, V.; Arbayza F, J.; Sanchez S, P.; Cabrera S, C., E-mail: marvva@hotmail.com [Universidad Nacional de Trujillo, Laboratorio de Fisica Nuclear, Trujillo (Peru)

    2016-10-15

    The radiation absorbed dose in the fetus of a pregnant woman during thyroid studies is estimated through the analysis of the bio-kinetics of radiopharmaceuticals containing I{sup 131} (iodide) or Tc{sup 99m} (pertechnetate). MIRD formalism and its representation Cristy-Eckerman are used. The results indicate that the absorbed dose by the fetus of a woman of 3, 6 and 9 months of gestation due to Tc{sup 99m} emissions is lower than that obtained by I{sup 131}; represent 34.7%, 6% and 3.5% of the dose generate by the iodide. The auto-dose in the fetus of a pregnant woman is mainly due to the local energy deposition of the beta and gamma emissions of I{sup 131}, being greater than the one reported by the gamma emissions and conversion electrons of the Tc{sup 99m}, for fetuses of 6 and 9 months. The dose incorporated to the fetus due to the organs of the maternal tissues, which are part of the bio-kinetics, are basically due to the emission of its gamma photons and correspond to 38.50% /60.52% in fetuses of 3 months, 64.71% /12.43% in fetuses of 6 months and 69.79% /10.97% in fetuses of 9 months for the radiopharmaceuticals Tc{sup 99m} (pertechnetate) / I{sup 131} (iodide). The organs of bio-kinetics that contribute to the fetus dose are mainly due to the bladder, followed by the rest, and small intestine (fetuses of 3 months); of the rest, followed by the small intestine and bladder (fetuses of 6 months); of the bladder, followed by the small intestine and stomach (fetuses of 9 months) when using I{sup 131}; while for the Tc{sup 99m} the bladder and rest contribute (fetuses of 3 months); of the placenta, followed by the rest and bladder (fetuses of 6 and 9 months). (Author)

  2. Effects of gamma irradiation dose-rate on sterile male Aedesaegypti

    Science.gov (United States)

    Ernawan, Beni; Tambunan, Usman Sumo Friend; Sugoro, Irawan; Sasmita, Hadian Iman

    2017-06-01

    Aedesaegypti is the most important vector for dengue, yellow fever and Zika viruses. Considering its medical importance, vector population control program utilizing radiation-based sterile insect technique (SIT) is one of the potential methods for preventing and limiting the dispersal of these viruses. The present study was undertaken to evaluate the dose-rates effects of γ-sterilization on quality parameters of sterile males. Males Ae.aegypti at the pupal stage were sterilized by applying 70 Gyγ-rays in varies dose-rates, i.e. 0 (control), 300, 600, 900, 1200 and 1500Gy/h utilizing panoramic irradiator. Adult males that emerged from the pupal stage were assessed for their quality parameters, which are the percentage of emergence, longevity, sterility and mating competitiveness. The results herein indicate that there was no major effect of dose-rate on the percentage of emergence, the data showedthat there were no differences between irradiated males compared with control. Generally, the longevity of irradiated males was lower compared to control. The data also demonstrated that longevity was significantly increased at the dose-rate from 300 to 900Gy/h, then decreased at the dose-rate 900 to 1500 Gy/h. Sterility of irradiated maleswas significantly different compared to control, while there was no significantly different at dose rate 300 to 1500 Gy/h. Mating competitiveness of irradiated males was increased at the dose rate from 300 to 1200 Gy/h, then the value was decreased significantly at the dose rate 1500 Gy/h. The dose-rate effects of γ-sterilization were discussed in the context genetic vector control, in particular, the SIT. The results give information and contribute to better understanding towards γ-sterilization optimization and quality parameters of sterile male Ae. aegypti on SIT methods.

  3. Increased Radioresistance to Lethal Doses of Gamma Rays in Mice and Rats after Exposure to Microwave Radiation Emitted by a GSM Mobile Phone Simulator.

    Science.gov (United States)

    Mortazavi, Smj; Mosleh-Shirazi, Ma; Tavassoli, Ar; Taheri, M; Mehdizadeh, Ar; Namazi, Sas; Jamali, A; Ghalandari, R; Bonyadi, S; Haghani, M; Shafie, M

    2013-01-01

    The aim of this study was to investigate the effect of pre-irradiation with microwaves on the induction of radioadaptive response. In the 1(st) phase of the study, 110 male mice were divided into 8 groups. The animals in these groups were exposed/sham-exposed to microwave, low dose rate gamma or both for 5 days. On day six, the animals were exposed to a lethal dose (LD). In the 2(nd) phase, 30 male rats were divided into 2 groups of 15 animals. The 1(st) group received microwave exposure. The 2(nd) group (controls) received the same LD but there was no treatment before the LD. On day 5, all animals were whole-body irradiated with the LD. Statistically significant differences between the survival rate of the mice only exposed to lethal dose of gamma radiation before irradiation with a lethal dose of gamma radiation with those of the animals pre-exposed to either microwave (p=0.02), low dose rate gamma (p=0.001) or both of these physical adapting doses (p=0.003) were observed. Likewise, a statistically significant difference between survival rates of the rats in control and test groups was observed. Altogether, these experiments showed that exposure to microwave radiation may induce a significant survival adaptive response.

  4. The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Saffuwan Mohamed, E-mail: saffuwan@uthm.edu.my [Department of Science, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (Malaysia); Embong, Zaidi [Department of Science, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (Malaysia); Research Center for Soft Soil (RECESS), Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Center for Soft Soil (RECESS), Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (Malaysia)

    2016-01-22

    An assessment of absorbed dose and radiation hazard index as well as its relationship with soil pH was performed in this study. The area was chosen due to its variety of soil types from the Alluvial and the Sedentary group. The radioactivity concentration levels and the soil acidity were measured using the Canberra GC3518 high pure germanium with a relative efficiency of 35% at 1.3 MeV and the Takemura Soil pH and Moisture Tester (DM15), respectively. Overall results show the Holyrood-Lunas soil of Alluvial group recorded the highest external terrestrial gamma radiation dose rate (TGRD) of 286.4±37.9 nGy h{sup −1} and radioactivity concentrations of 78.1±8.9 Bq kg{sup −1} ({sup 226}Ra), 410.5±55.4 Bq kg{sup −1} ({sup 232}Th) and 56.4±8.8 Bq kg{sup −1} ({sup 40}K), respectively, while the Peat soil of Alluvial group recorded the lowest TGRD of 4.4±2.7 nGy h{sup −1} and radioactivity concentrations of 4.8±1.7 Bq kg{sup −1} ({sup 226}Ra), 3.1±1.1 Bq kg{sup −1} ({sup 232}Th) and 6.1±2.0 Bq kg{sup −1} ({sup 40}K), respectively. The estimated mean outdoor annual effective dose, the mean radium equivalent activity (R{sub eq}) and the mean external (H{sub ext}) and internal hazard index (H{sub int}) associated with the alluvial and sedentary soil group were evaluated at 0.15 and 0.20 mSv, 280 and 364 Bq kg{sup −1}, H{sub ext} = 0.78 and 1.01, and H{sub int} = 0.93 and 1.26, respectively. Correlation analysis between 238U, {sup 232}Th and {sup 40}K with soil pH level for alluvial group was r = +0.68, +0.48 and 0, respectively, while for sedentary soil, the Pearson’s, r = −0.30, −0.90 and +0.14, respectively.

  5. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    Energy Technology Data Exchange (ETDEWEB)

    De la Mora, Eugenio [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico); Lovett, Janet E. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland (United Kingdom); Blanford, Christopher F. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN (United Kingdom); Garman, Elspeth F. [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Valderrama, Brenda; Rudino-Pinera, Enrique, E-mail: rudino@ibt.unam.mx [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico)

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  6. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  7. Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods.

    Science.gov (United States)

    Allaveisi, Farzaneh; Mirzaei, Majid

    2016-08-01

    There are growing interests in the radioprotective methods that can reduce the damaging effects of ionizing radiation on sterilized bone allografts. The aim of this study was to investigate the effects of 50kGy (single dose, and fractionated) gamma irradiation, in presence and absence of l-Cysteine (LC) free radical scavenger, on tensile properties of human femoral cortical bone. A total of 48 standard tensile test specimens was prepared from diaphysis of femurs of three male cadavers (age: 52, 52, and 54 years). The specimens were assigned to six groups (n=8) according to different irradiation schemes, i.e.; Control (Non-irradiated), LC-treated control, a single dose of 50kGy (sole irradiation), a single dose of 50kGy in presence of LC, 10 fractions of 5kGy (sole irradiation), and 10 fractions of 5kGy in presence of LC. Uniaxial tensile tests were carried out to evaluate the variations in tensile properties of the specimens. Fractographic analysis was performed to examine the microstructural features of the fracture surfaces. The results of multivariate analysis showed that fractionation of the radiation dose, as well as the LC treatment of the 50kGy irradiated specimens, significantly reduced the radiation-induced impairment of the tensile properties of the specimens (Psterilization on tensile properties of human cortical bone can be substantially reduced by free radical scavenger treatment, dose fractionation, and the combined treatment of these two methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evaluation of different doses of gamma radiation on physicochemical characteristics of peach Prunus persica (cv. Chimarrita) minimally processed

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Claudia S.; Silva, Lucia C.A.S.; Perecin, Thalita Neme; Arthur, Valter; Harder, Marcia N.C. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Dept. de Radiobiologia e Ambiente], e-mail: acsoliveira@usp.br, e-mail: arthur@cena.usp.br; Mansi, Debora N.; Canniatti-Brazaca, Solange G. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2009-07-01

    The objective was to evaluate the effect of different doses of gamma radiation on the physico-chemical characteristics of peach Prunus persica (cv. Chimarrita) minimally processed, to increase the useful life of the fruit. The peaches were purchased at Ceasa of Campinas/SP and taken to the Laboratory of Radiobiology and Environment of CENA/USP (Piracicaba/SP), which were washed in tap water, peeled and cut into four pieces. The pieces of peach were dipped in sodium hypochlorite solution of 15 mL/L for 4 minutes and dry in a plastic support. Then it were placed in plastic containers (polypropylene). Subsequently, they were irradiated in a Cobalt-60 source, type Gammacell-220 (dose rate of 0,543 kGy/hour) with doses of: 0 (control), 1.0 and 2.0 kGy and stored at a temperature of 8 deg C. The experimental was developed entirely at random with 3 replicates for each treatment. For the statistic analysis was using the Tuckey test at 5% level of probability. Subsequently, analysis was carried out: color factors (l, a, b), pH, soluble solids (deg Brix), acidity and vitamin C. The tests were performed at 1, 3 and 6 days after irradiation. According to the results concluded that the analysis of color and acidity there was no significant difference between treatments, however, for the soluble solids (deg Brix), vitamin C and texture significant difference showing a decrease proportional to increasing doses of radiation and storage time. But the pH increased in relation to dose and during the analysis. (author)

  9. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  10. Low-Dose Gamma Irradiation of Decellularized Heart Valves Results in Tissue Injury In Vitro and In Vivo.

    Science.gov (United States)

    Helder, Meghana R K; Hennessy, Ryan S; Spoon, Daniel B; Tefft, Brandon J; Witt, Tyra A; Marler, Ronald J; Pislaru, Sorin V; Simari, Robert D; Stulak, John M; Lerman, Amir

    2016-02-01

    Decellularized heart valves are emerging as a potential alternative to current bioprostheses for valve replacement. Whereas techniques of decellularization have been thoroughly examined, terminal sterilization techniques have not received the same scrutiny. This study evaluated low-dose gamma irradiation as a sterilization method for decellularized heart valves. Incubation of valves and transmission electron microscopy evaluation after different doses of gamma irradiation were used to determine the optimal dose of gamma irradiation. Quantitative evaluation of mechanical properties was done by tensile mechanical testing of isolated cusps. Sterilized decellularized heart valves were tested in a sheep model (n = 3 [1 at 1,500 Gy and 2 at 3,000 Gy]) of pulmonary valve replacement. Valves sterilized with gamma radiation between 1,000 Gy and 3,000 Gy were found to be optimal with in vitro testing. However, in vivo testing showed deteriorating valve function within 2 months. On explant, the valve with 1,500 Gy gamma irradiation showed signs of endocarditis with neutrophils on hematoxylin and eosin staining, and positive gram stain resembling streptococcus infection. The 3,000 Gy valves had no evidence of infection, but the hematoxylin and eosin staining showed evidence of wound remodeling with macrophages and fibroblasts. Tensile strength testing showed decreased strength (0 Gy: 2.53 ± 0.98 MPa, 1,500 Gy: 2.03 ± 1.23 MPa, and 3,000 Gy: 1.26 ± 0.90 MPa) with increasing levels of irradiation. Low-dose gamma irradiation does not maintain the mechanical integrity of valves, and the balance between sterilization and damage may not be able to be achieved with gamma irradiation. Other methods of terminal sterilization must be pursued and evaluated. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment; Perfiles de dosis absorbida vs profundidad de tejido sinovial para el Y-90 y el P-32 empleados en tratamiento de radiosinoviortesis

    Energy Technology Data Exchange (ETDEWEB)

    Torres B, M.B.; Ayra P, F.E. [Centro de Isotopos (Cuba); Garcia R, E. [Hospital General Docente Enrique Cabrera (Cuba); Cornejo D, N. [CPHR, (Cuba); Yoriyaz, H. [IPEN, (Brazil)]. e-mail: nestor@cphr.edu.cu

    2006-07-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm{sup 2} to 250 cm{sup 2} keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  12. Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaole, E-mail: zhangxiaole10@outlook.com [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany); Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084 (China); Raskob, Wolfgang; Landman, Claudia; Trybushnyi, Dmytro; Li, Yu [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany)

    2017-03-05

    Highlights: • Sequentially reconstruct multi-nuclide emission using gamma dose rate measurements. • Incorporate a priori ratio of nuclides into the background error covariance matrix. • Sequentially augment and update the estimation and the background error covariance. • Suppress the generation of negative estimations for the sequential method. • Evaluate the new method with twin experiments based on the JRODOS system. - Abstract: In case of a nuclear accident, the source term is typically not known but extremely important for the assessment of the consequences to the affected population. Therefore the assessment of the potential source term is of uppermost importance for emergency response. A fully sequential method, derived from a regularized weighted least square problem, is proposed to reconstruct the emission and composition of a multiple-nuclide release using gamma dose rate measurement. The a priori nuclide ratios are incorporated into the background error covariance (BEC) matrix, which is dynamically augmented and sequentially updated. The negative estimations in the mathematical algorithm are suppressed by utilizing artificial zero-observations (with large uncertainties) to simultaneously update the state vector and BEC. The method is evaluated by twin experiments based on the JRodos system. The results indicate that the new method successfully reconstructs the emission and its uncertainties. Accurate a priori ratio accelerates the analysis process, which obtains satisfactory results with only limited number of measurements, otherwise it needs more measurements to generate reasonable estimations. The suppression of negative estimation effectively improves the performance, especially for the situation with poor a priori information, where it is more prone to the generation of negative values.

  13. Fecundity changes induced by low-doses of gamma radiation on Biomphalaria straminea (Dunker, 1848)

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Mauricy A. da; Melo, Ana M.M.A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia

    1997-07-01

    Biomphalaria straminea, intermediate host of Schistosoma manzoni, are hermaphrodite snails (Paraense and Deslandes 1955, Leal 1976). Widespread in northeast Brazil, and existing in others regions, it contributes to the endemic schistosomiasis occurring in some regions of this country (Paraense and Deslandes 1955). The research on this snail has a social and epidemiological interest for public health (Pessoa and Martins 1982). Previous reports state that the reproductive activity of snails is particularly affected by ionizing radiation (Liard 1968). Aiming to examine more closely some aspects of this subject, this study was performed in order of schistosomiasis after its exposure to low intensity gamma rays, in cross and self fertilization. 10 refs.; e-mail: motta at npd.ufpe.br.

  14. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  15. Fishes of water bodies within the Ukrainian part of the Chernobyl exclusion zone: current levels of radioactive contamination and absorbed dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Kaglyan, Alexander Ye.; Gudkov, Dmitri I. [Institute of Hydrobiology of the NAS of Ukraine, Geroyiv Stalingrada Ave. 12, UA- 04210, Kyiv (Ukraine)

    2014-07-01

    The results of studies of radioactive contamination of ichthyofauna of water bodies of the Chernobyl exclusion zone (ChEZ) during 2012-2013 are presented. The fish sampled from water bodies with different hydrological mode was used: (1) stagnant lakes (Vershyna, Glyboke, Azbuchyn, Daleke); (2) reservoir with slow water exchange (cooling pond of the Chernobyl NPP); (3) conditionally stagnant water bodies (separated from the main riverbed of the Pripyat River - Yanovsky and Novoshepelichesky Crawls and part of the Krasnensky former river bed); (4) semi-flowing water body (Krasnensky former river bed located outside of the dammed territory); (5) open crawls of the Pripyat river ('Schepochka' and Chernobylsky) and (6) waterway (riverbed sites of the Pripyat River). The highest levels of radionuclide concentrations were determined in fish of the stagnant water objects - 937-25907 Bq/kg (w.w.) of {sup 137}Cs and 1845-101220 Bq/kg of {sup 90}Sr. In fish of cooling pond the concentration of {sup 137}Cs registered in range 750-4200 and {sup 90}Sr - 41-512 Bq/kg. In ichthyofauna of water bodies which concern to the third group, specific activity of {sup 137}Cs and {sup 90}Sr fluctuated accordingly within range of 520-3385 and 722-6210, and in a semi-flowing reservoir - 573-2948 and 97-4484 Bq/kg. The concentrations of {sup 137}Cs in fish of the fifth and sixth groups were accordingly 25-159 and 11-224 as well as {sup 90}Sr - 36-174 and 3-14 Bq/kg. The ratio of specific activity of {sup 90}Sr/{sup 137}Cs for pray fish from all studied groups of water bodies, except the second and the sixth ones, was in range 1.5-39.7. Thus intensity of water exchange is one of the defining factors, influencing on level of radionuclide specific activity in fish, especially {sup 90}Sr - the higher the flow age, the lower the level of radioactive contamination of fish inhabiting it. Calculation of the absorbed dose rate has shown that highest radiation dose was in fish inhabiting lake

  16. Effect of low-dose {gamma}-irradiation on the shelf life and quality characteristics of minimally processed potato cubes under modified atmosphere packaging

    Energy Technology Data Exchange (ETDEWEB)

    Baskaran, Revathy [Department of Fruit and Vegetable Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Usha Devi, A. [Department of Fruit and Vegetable Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Nayak, Chetan A. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Kudachikar, V.B. [Department of Fruit and Vegetable Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Keshava Prakash, M.N. [Department of Fruit and Vegetable Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Prakash, Maya [Department of Sensory Science, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Ramana, K.V.R. [Department of Fruit and Vegetable Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India); Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020, Karnataka (India)]. E-mail: nkrastogi@yahoo.com

    2007-06-15

    The processing conditions involving {gamma}-irradiation for minimally processed potato cubes were optimized by response surface methodology. The effect of {gamma}-irradiation dose (0-1.5 kGy), citric acid concentration (0-1.0%), KMS concentration (0-1.0%) and their complex interaction on L, a, b value, hardness and total sugar content were studied using a central composite rotatable design of experiments. The results showed that at the optimum conditions ({gamma}-irradiation dose 1.0 kGy; citric acid concentration 0.33% and KMS concentration 0.55%) the L-value was {>=}48.50%, a-value {<=}0.95, b-value {<=}7.5, hardness {>=}100 N, sucrose concentration {<=}0.19% and sensory score {>=}6.0 at the end of the storage period of 4 weeks.

  17. The Effects of Low Dose {gamma}-Irradiation on MIA Induced Joint Inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Seok Chan; Lee, Ko Eun; Kim, Eun-hea; Lee, Tae Woong; Lee, Won Ho; Kim, June Sun [Korea University, College of Health Science, Seoul (Korea, Republic of)

    2010-10-15

    Inflammation of the synovial membrane is associated with the progression of cartilage degeneration and unexpected pain in osteoarthritis (OA). Inflammation produces painful sensations which are largely divided into spontaneous (non-evoked) pain and evoked pain depending on the presence of external stimuli and are characterized by hyperalgesia and allodynia Nitric oxide (NO) is related to the pathogenesis of OA as inflammatory mediator. Inducible nitric oxide synthase (iNOS) is marker of enhanced NO production in arthritic pain. In previously, low dose irradiation can suppress pro-inflammatory cytokines. But, ray therapeutic effect is unclear. Thus, present study examined the preemptive effect of low dose irradiation on the development of inflammatory pain in MIA induced OA animal model

  18. Suppression of in vitro IFN-gamma production by spleen cells of Plasmodium chabaudi-infected C57BL/10 mice exposed to dexamethasone at a low dose.

    Science.gov (United States)

    Tsutsui, N; Kamiyama, T

    1998-01-01

    After infection with Plasmodium chabaudi, C57BL/10 mice produced significant amounts of serum IFN-gamma, developed a low level of parasitemia and survived the infection. Production of IFN-gamma was also obvious when spleen cells of the infected mice were stimulated with the parasite antigen contained in an erythrocyte lysate in vitro. Depletion of CD4+ T cells abrogated production of IFN-gamma, leading to loss of resistance to the infection. The CD4+ T cells/IFN-gamma-dependent resistance of the C57BL/10 mice against P. chabaudi was applied to assess immunotoxicological effect of dexamethasone (DEX). Administration of a high dose (0.75 mg/kg) resulted in loss of the splenic cellularity, remarkable decrease in serum IFN-gamma production, increased level of parasitemia, and eventual death of the infected mice. In contrast, DEX at a low dose (0.02 mg/kg) induced no alternation in the in vivo host immune activity and the mice survived the infection. However, when spleen cells were obtained from the infected mice administered the low dose of DEX and stimulated in vitro with the parasite antigen, a significantly decreased level of IFN-gamma was demonstrated with compared to control mice. These findings demonstrate that the in vitro production of IFN-gamma by spleen cells from P. chabaudi-resistant C57BL/10 mice was more sensitive to the immunosuppressive effect of in vivo administration of DEX. This ex vivo assay might provide a method for evaluation of drug-induced immunotoxicity at a higher sensitivity than the conventional host resistant assays such as comparison of severity of disease or time to death.

  19. Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Barbosa, Isvania; Pereira-MagnataI, Simey; Amaral, Ademir [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia - GERAR; Sotero, Graca [Fundacao de Hematologia e Hemoterapia, Recife, PE (Brazil); Melo, Homero Cavalcanti [Hospital do Cancer, Recife, PE (Brazil). Centro de Radioterapia de Pernambuco]. E-mail: isvania@uol.com.br

    2005-07-15

    Scoring of unstable chromosome aberrations (dicentrics, rings and fragments) and micronuclei in circulating lymphocytes are the most extensively studied biological means for estimating individual exposure to ionizing radiation (IR), which can be used as complementary methods to physical dosimetry or when the latter cannot be performed. In this work, the quantification of the frequencies of chromosome aberrations and micronuclei were carried out based on cytogenetic analyses of peripheral blood samples from 5 patients with cervical uterine cancer following radiotherapy in order to evaluate the absorbed dose as a result of partial-body exposure to 60Co source. Blood samples were collected from each patient in three phases of the treatment: before irradiation, 24 h after receiving 0.08 Gy and 1.8 Gy, respectively. The results presented in this report emphasize biological dosimetry, employing the quantification of chromosome aberrations and micronuclei in lymphocytes from peripheral blood, as an important methodology of dose assessment for either whole or partial-body exposure to IR.

  20. Gamma Knife Surgery as Monotherapy with Clinically Relevant Doses Prolongs Survival in a Human GBM Xenograft Model

    Directory of Open Access Journals (Sweden)

    Bente Sandvei Skeie

    2013-01-01

    Full Text Available Object. Gamma knife surgery (GKS may be used for recurring glioblastomas (GBMs. However, patients have then usually undergone multimodal treatment, which makes it difficult to specifically validate GKS independent of established treatments. Thus, we developed an experimental brain tumor model to assess the efficacy and radiotoxicity associated with GKS. Methods. GBM xenografts were implanted intracerebrally in nude rats, and engraftment was confirmed with MRI. The rats were allocated to GKS, with margin doses of 12 Gy or 18 Gy, or to no treatment. Survival time was recorded, tumor sections were examined, and radiotoxicity was evaluated in a behavioral open field test. Results. In the first series, survival from the time of implantation was 96 days in treated rats and 72 days in controls (P<0.001. In a second experiment, survival was 72 days in the treatment group versus 54 days in controls (P<0.006. Polynuclear macrophages and fibrosis was seen in groups subjected to GKS. Untreated rats with GBM xenografts displayed less mobility than GKS-treated animals in the open field test 4 weeks after treatment (P=0.04. Conclusion. GKS administered with clinically relevant doses prolongs survival in rats harboring GBM xenografts, and the associated toxicity is mild.

  1. Total Ionizing Dose Effects of Gamma-Ray Radiation on NbOx-Based Selector Devices for Crossbar Array Memory

    Science.gov (United States)

    Gao, Ligang; Holbert, Keith E.; Yu, Shimeng

    2017-06-01

    The transition metal oxide NbO2 is regarded as a promising selector device to be integrated with resistive random access memory for the high-density crossbar array architecture. Understanding its total ionizing dose (TID) response would help assess the reliability of using this selector device in radiation environments. In this paper, we investigate the TID effect of gamma-ray (γ-ray) radiation on a Pt/NbOx/Pt selector device using electrical characterization and an X-ray photoelectron spectroscopy (XPS). The NbOx devices were irradiated with 60Co γ-rays to a maximum dose of 5 Mrad (NbO2). The experimental results show that the threshold switching behavior can withstand the 5 Mrad (NbO2) without significant change in the switching parameters. The XPS results reveal that there are mixed NbO2 and Nb2O5 phases in the NbOx thin film. After 5 Mrad (NbO2) γ-ray irradiation, the peak intensity of NbO2 increases and the peak intensity of Nb2O5 decreases in the XPS spectra, probably due to the reduction of Nb2O5 under radiation. Nevertheless, the electrical properties of the NbOx-based selector have remained after 5 Mrad (NbO2) γ-ray irradiation, indicating the potential use of the NbOx-based selector device in aerospace applications.

  2. Calculus of spatial distribution of absorbed dose to cellular level by Monte Carlo simulation for a radio-labelled peptide with {sup 188}Re and with nuclear internalization : preliminary results; Calculo de la distribucion espacial de dosis absorbida a nivel celular por simulacion Monte Carlo para un peptido radiomarcado con {sup 188}Re y con internalizacion nuclear : resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santos C, C. L. [Universidad Autonoma del Estado de Mexico, Paseo Tollocan y Jesus Carranza, Toluca 50120, Estado de Mexico (Mexico)], e-mail: leticia.rojas@inin.gob.mx

    2009-10-15

    The {sup 188}Re is a radionuclide of radiation gamma emitter, useful in obtaining of gamma-graphic images, but it is also emitter of beta radiations and Auger electrons. A bio-molecule directed to a specific receptor of a cancer cell labeled with a emitter radionuclide of beta particles and Auger electrons, as the {sup 188}Re-Tat-Bombesin, it has the potential to be used in radiotherapy of molecular targets for its capacity to penetrate to cellular nucleus. In this system, the radiation dose is distributed in way located at microscopic levels in sub cellular specific places, where Auger emissions contributes of significant way in absorbed dose. The cellular dosimetry is realized in most of cases, using analytic or semi analytical methods, for example the cellular MIRD methodology. However, it is required to complement these calculations simulating the electrons transport and considering experimental bio kinetics data. Therefore, in this work preliminary results are presented of dosimetric calculation to sub cellular level for {sup 188}Re-Tat-Bombesin by Monte Carlo simulation, using the 2008 version of PENELOPE: PENEASY code. The spatial distribution of absorbed dose in membrane, cytoplasm and nucleus, was calculated with geometry of a cell of 10 {mu}m of diameter, a nucleus of 2 {mu}m of ratio and membrane of 0.2 {mu}m of thickness, considering elementary constitution for each cellular compartment proposal in literature. The total number of disintegrations at sub cellular level was evaluated integrating the activity in function of time starting from experimental bio kinetics data in mamma cancer cells MDA-MB231. The preliminary results show that 46.4% of total disintegrations for unit of captured activity by cell occurs in nucleus, 38.4% in membrane and 15.2% in cytoplasm. The due absorbed dose to Auger electrons for 1 Bq of {sup 188}Re located in cellular membrane were respectively of 1.32E-1 and 1.43E-1 Gy in cytoplasm and nucleus. (Author)

  3. High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment.

    Science.gov (United States)

    Hoburg, A; Keshlaf, S; Schmidt, T; Smith, M; Gohs, U; Perka, C; Pruss, A; Scheffler, S

    2015-06-01

    Allografts have gained increasing popularity in anterior cruciate ligament (ACL) reconstruction. However, one of the major concerns regarding allografts is the possibility of disease transmission. Electron beam (Ebeam) and Gamma radiation have been proven to be successful in sterilization of medical products. In soft tissue sterilization high dosages of gamma irradiation have been shown to be detrimental to biomechanical properties of grafts. Therefore, it was the objective of this study to compare the biomechanical properties of human bone-patellar tendon-bone (BPTB) grafts after ebeam with standard gamma irradiation at medium (25 kGy) and high doses (34 kGy). We hypothesized that the biomechanical properties of Ebeam irradiated grafts would be superior to gamma irradiated grafts. Paired 10 mm-wide human BPTB grafts were harvested from 20 donors split into four groups following irradiation with either gamma or Ebeam (each n = 10): (A) Ebeam 25 kGy, (B) Gamma 25 kGy, (C) Ebeam 34 kGy (D) Gamma 34 kGy and ten non-irradiated BPTB grafts were used as controls. All grafts underwent biomechanical testing which included preconditioning (ten cycles, 0-20 N); cyclic loading (200 cycles, 20-200 N) and a load-to-failure (LTF) test. Stiffness of non-irradiated controls (199.6 ± 59.1 N/mm) and Ebeam sterilized grafts did not significantly differ (152.0 ± 37.0 N/mm; 192.8 ± 58.0 N/mm), while Gamma-irradiated grafts had significantly lower stiffness than controls at both irradiation dosages (25 kGy: 126.1 ± 45.4 N/mm; 34 kGy: 170.6 ± 58.2 N/mm) (p properties than gamma irradiation. Considering the results of this study and the improved control of irradiation application with electronic beam, this technique might be a promising alternative in soft-tissue sterilization.

  4. Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Tufail, M. [Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan)]. E-mail: dr_mtufail@yahoo.com; Akhtar, Nasim [Health Physics Division, NIAB, Jhang Road, Faisalabad (Pakistan); Waqas, M. [Department of Earth Sciences, Quad-i-Azam University, Islamabad (Pakistan)

    2006-04-15

    Natural radioactivity originates from extraterrestrial sources as well as from primordial radioactive elements in the earth crust. The amount of radioactivity in soil varies widely and is a source of continuous exposure of human beings to terrestrial radioactivity that depends upon the type of soil and its uses. For the investigation of radioactivity in barren and cultivated soil, an area of about 80ha of saline soil was selected in Pakka Anna near the city of Faisalabad in the Punjab province of Pakistan. Activity concentration levels due to {sup 40}K, {sup 137}Cs, {sup 226}Ra and {sup 232}Th were measured with HPGe detector in 250 saline soil samples collected at a spacing of about 8ha at a depth of 0-25cm with intervals of 5cm depth. Activity concentration ranges of the concerned radionuclides for both of the soils were as follows: {sup 40}K, for barren and cultivated saline soil was 499-604 and 563-629Bqkg{sup -1}, respectively; {sup 137}Cs, 3.57-3.63 and 1.98-5.15Bqkg{sup -1}; {sup 226}Ra, 24-29 and 27-33Bqkg{sup -1}, and {sup 232}Th, 49-54 and 46-62Bqkg{sup -1}. Gamma dose was estimated using the activity to dose rate conversion factors. The measured activity concentrations and the estimated radiation dose were found to be lying within the range specified in the 2000 report of UNSCEAR. Chemical analysis for Na, Ca and Mg was also carried out along with the measurement of electrical conductivity and pH of soil samples.

  5. SU-E-T-517: Investigation of Factors Contributing to Extracranial Radiation Doses From Leksell Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Kon, D [The University of Tokyo Graduate school of Medicine, Tokyo, JP (Japan); Kameda Medical Centre, Chiba, JP (Japan); Nakano, M [The University of Tokyo Graduate school of Medicine, Tokyo, JP (Japan); Nawa, K; Haga, A; Nakagawa, K [University of Tokyo Hospital, Tokyo, JP (Japan)

    2015-06-15

    Purpose The purpose of this study is to investigate dominant factors for doses to extracranial sites in treatment with Leksell Gamma Knife (LGK). Methods Monte Carlo simulation was implemented using EGS5 version 1.4.401. The simulation was divided into two major steps for the purpose of efficiency. As the first step, phase-space files were obtained at a scoring plane located just below patient-side surface of the collimator helmet of LGK. Scored particles were classified into three groups, primary, leakage and scatter, using their history information until their arrival to the scoring plane. Then classification was used at the following second step simulation to investigate which type of particle is dominant in the deposited energy at extra-cranial sites. In the second stage, a cylindrical phantom with a semisphere shaped head was modeled such that the geometrical center of the phantom’s head corresponds to the unit center point (UCP) of LGK. Scoring regions were arranged at 10 cm intervals from the UCP to 70 cm away on the central axis of the phantom. Energy deposition from each type of particles and location of interaction were recorded. Results The dominant factor of deposited energy depended on the collimator size. In the case of smaller collimator size, leakage was dominant. However, contribution of leakage was relatively small in the case of larger collimator size. The contribution of internal scatter varied with the distance from the UCP. In the proximal areas, internal scatter was dominant, whereas in the distal areas, particles interacting with machine components became dominant factor. Conclusion The Result of this study indicates that the dominant factor to dose to an extracranial site can vary with the distance from UCP and with collimator size. This means that the variation of this contribution must be considered for modeling of the extracranial dose especially in the distal area. This work was partly supported by the JSPS Core-to-Core Program (No

  6. Measurement of radiocesium concentration in trees using cumulative gamma radiation dose rate detection systems - A simple presumption for radiocesium concentration in living woods using glass-badge based gamma radiation dose rate detection system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, T.; Hashida, S.N. [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Kawachi, N.; Suzui, N.; Yin, Y.G.; Fujimaki, S. [Radiotracer Imaging Gr., Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagao, Y.; Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-07-01

    Radiocesium from the severe accident at the Fukushima Dai-ichi Nuclear Power Plant on 11 March 2011 contaminates large areas. After this, a doubt for forest products, especially of mushroom, is indelible at the areas. Pruned woody parts and litters are containing a considerable amount of radiocesium, and generates a problem at incineration and composting. These mean that more attentive survey for each subject is expected; however, the present survey system is highly laborious/expensive and/or non-effective for this purpose. On the other hand, we can see a glass-badge based gamma radiation dose rate detection system. This system always utilized to detect a personal cumulative radiation dose, and thus, it is not suitable to separate a radiation from a specific object. However, if we can separate a radiation from a specific object and relate it with the own radiocesium concentration, it would enable us to presume the specific concentration with just an easy monitoring but without a destruction of the target nature and a complicated process including sampling, pre-treatment, and detection. Here, we present the concept of the measurement and results of the trials. First, we set glass-badges (type FS, Chiyoda Technol Corp., Japan) on a part of bough (approximately 10 cm in diameter) of Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) with four different settings: A, a direct setting without any shield; B, a setting with an aluminum shield between bough and the glass-badge; C, a setting with a lead shield between bough and the glass-badge; D, a setting with a lead shield covering the glass-badge to shut the radiation from the surrounding but from bough. The deduction between the amount of each setting should separate a specific radiation of the bough from unlimited radiation from the surrounding. Even if the hourly dose rate is not enough to count the difference, a moderate cumulative dose would clear the difference. In fact, results demonstrated a

  7. Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume; Determination de l'incertitude statistique optimale pour realiser un calcul de dose dans le volume cible en utilisant la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Isambert, A.; Lefkopoulos, D. [Institut Gustave-Roussy, Medical Physics Dept., 94 - Villejuif (France); Brualla, L. [NCTeam, Strahlenklinik, Universitatsklinikum Essen (Germany); Benkebil, M. [DOSIsoft, 94 - Cachan (France)

    2010-04-15

    Purpose of study Monte Carlo based treatment planning system are known to be more accurate than analytical methods for performing absorbed dose estimation, particularly in and near heterogeneities. However, the required computation time can still be an issue. The present study focused on the determination of the optimum statistical uncertainty in order to minimise computation time while keeping the reliability of the absorbed dose estimation in treatments planned with electron-beams. Materials and methods Three radiotherapy plans (medulloblastoma, breast and gynaecological) were used to investigate the influence of the statistical uncertainty of the absorbed dose on the target volume dose-volume histograms (spinal cord, intra-mammary nodes and pelvic lymph nodes, respectively). Results The study of the dose-volume histograms showed that for statistical uncertainty levels (1 S.D.) above 2 to 3%, the standard deviation of the mean dose in the target volume calculated from the dose-volume histograms increases by at least 6%, reflecting the gradual flattening of the dose-volume histograms. Conclusions This work suggests that, in clinical context, Monte Carlo based absorbed dose estimations should be performed with a maximum statistical uncertainty of 2 to 3%. (authors)

  8. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  9. Influence of the temperature in the measurement of the gamma automatic probe Gamma Tracer; Influencia de la temperatura en la medicion de la sonda gamma automatica Gamma Tracer