WorldWideScience

Sample records for absorbed gamma dose

  1. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  2. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  3. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  4. Evaluation of absorbed dose-distribution in the X-ray or gamma-irradiator for blood products

    International Nuclear Information System (INIS)

    Moriyama, Satoshi; Kurihara, Katsuhiko; Yokokawa, Nobuhiko; Satake, Masahiro; Juji, Takeo

    2001-01-01

    Irradiation of blood products abrogates the proliferation of lymphocytes present in cellular component, which is currently the only accepted methodology to prevent transfusion-associated graft versus host disease (TA-GVHD). A range of irradiation dose levels between 15 Gy and 50 Gy is being used, but the majority of facilities are employing 15 Gy. It should, however, be recognized that the delivered dose in the instrument canister might differ from the actual dose absorbed by the blood bag. This study have evaluated the actual dose distribution under practical conditions where a container was loaded with blood products or water bags, or filled with distilled water. This approach provides data that the maximum attenuation occurred when the container was completely filled with a blood-compatible material. Thus, an error of approximately 20 percent should be considered in the dose measured in the in-air condition. A dose calibration in an in-air condition may lead to substantial underexposure of the blood products. A dose distribution study using adequately prearranged exposure period verified that the absorbed dose of 15 Gy was attained at any point in the container for both linear accelerator and gamma-irradiator. The maximal difference in the absorbed dose between measured points was 1.5- and 1.6-fold for linear accelerator and gamma-irradiator, respectively. In conclusion, using blood-compatible materials, a careful dose calibration study should be employed in which the absorbed dose of 15 Gy is obtained at the point where the lowest dose could be expected. (author)

  5. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  6. Determination of Absorbed Dose to Water for Leksell Gamma Knife Unit

    International Nuclear Information System (INIS)

    Hrsak, H.

    2013-01-01

    Because of geometry of photon beams in Leksell Gamma Knife Unit (LGK), there are several technical problems in applying standard protocols for determination of absorbed dose to water (Dw). Currently, Dw in LGK unit, measured at the center of spherical plastic phantom, is used for dose calculation in LGK radiosurgery. Treatment planning software (LGP TPS) accepts this value as a measurement in water and since plastic phantom has higher electron density than water, this leads to systematic errors in dose calculation. To reduce these errors, a photon attenuation correction (PAC) method was applied. For that purpose, measurements of absorbed dose in a center of three different plastic phantoms with 16 cm diameter (ABS - acrylonitrile butadiene styrene, PMMA - polymethyl metacrylate, PMMA + teflon - polytetrafluoroethylene 5 mm shell) were made with ionization chamber (Semiflex, PTW Freiburg). For measured dose values, PAC to water was applied based on electron density (ED) and equivalent water depths (EWD) of the plastic phantoms. The relation between CT number and ED was determined by measuring CT number of standard CT to ED phantom (CIRS Model 062 Phantom). Absorbed dose in plastic phantoms was 2.5 % lower than calculated dose in water for ABS phantom and more than 5.5 % lower for PMMA and PMMA+teflon phantom. Calculated dose in water showed more consistent values for all three phantoms (max. difference 2.6 %). EWD for human cranial bones and brain has value close to the EWD of ABS phantom, which makes this phantom most suitable for dose measurements in clinical application. In LGK radiosurgery determination of errors related to the difference of phantom materials should not be neglected and measured dose should be corrected before usage for patient treatment dose calculation.(author)

  7. Intensity of the absorbing dose of the gamma rays in the air of Krusevac during and after nuclear accident in Chernobil

    International Nuclear Information System (INIS)

    Fortuna, D.

    1997-01-01

    In this paper are compared overage daily values of the intensity of the absorbing doses of the gamma rays in the air of Krusevac, during and after nuclear accident in Cernobil. Average daily values of intensity of the absorbing doses of gamma rays in the air of Krusevac, immediately after nuclear accident in Cernobil were, three to seven time higher than of the average daily values of the natural rays. (author)

  8. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  9. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  10. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  11. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  12. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Bowen, B.M.; Chen, A.I.; Olsen, W.A.; Van Etten, D.M.

    1985-01-01

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 12 0 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  13. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  14. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  15. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  16. Absorbed dose calculation from beta and gamma rays of 131I in ellipsoidal thyroid and other organs of neck with MCNPX code

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2012-09-01

    Full Text Available Background: The 131I radioisotope is used for diagnosis and treatment of hyperthyroidism and thyroid cancer. In optimized Iodine therapy, a specific dose must be reached to the thyroid gland with minimum radiation to the cervical spine, cervical vertebrae, neck tissue, subcutaneous fat and skin. Dose measurement inside the alive organ is difficult therefore the aim of this research was dose calculation in the organs by MCNPX code. Materials and Methods: First of all, the input file for MCNPX code has been prepared to calculate F6 and F8 tallies for ellipsoidal thyroid lobes with long axes is tow times of short axes which the 131I is distributed uniformly inside the lobes. Then the code has been run for F6 and F8 tallies for variation of lobe volume from 1 to 25 milliliters. From the output file of tally F6, the gamma absorbed dose in ellipsoidal thyroid, spinal neck, neck bone, neck tissue, subcutaneous fat layer and skin for the volume lobe variation from 1 ml to 25 ml have been derived and the graphs are drew. As well as, form the output of F8 tally the absorbed energy of beta in thyroid and soft tissue of neck is obtained and listed in the table and then absorbed dose of bate has been calculated. Results: The results of this research show that for constant activity in thyroid, the absorbed dose of gamma decreases about 88.3% in thyroid, 6.9% at soft tissue, 19.3% in adipose layer and 17.4% in skin, but it increases 32.1% in spinal of neck and 32.3% in neck bone when the lobe volume varied from 1 to 25 milliliters. For the same situation, the beta absorbed dose decreases 95.9% in thyroid and 64.2% in soft tissue. Conclusion: For the constant activity in thyroid by increasing the thyroid volume, absorbed dose of gamma in thyroid and soft tissue of neck, adipose layer under the skin and skin of neck decreased, but it increased at spinal of neck and neck bone. Also, by increasing of the lobe volume in constant activity, the beta absorbed dose

  17. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  18. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  19. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  20. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  1. Natural terrestrial radiation exposure in Hong Kong. A survey on environmental gamma absorbed dose rate in air

    International Nuclear Information System (INIS)

    Wong, M.C.; Poon, H.T.; Chan, Y.K.; So, C.K.

    2000-01-01

    Hong Kong is a metropolitan city located on the southern coast of China with a population of some six million. About 90% of the population is concentrated in heavily built-up residential and commercial areas, which accounts for less than 50% of the total area in the territory. Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China. In order to understand the spatial variations in the environmental radiation levels in Hong Kong, the Hong Kong Observatory (HKO) in early 1999 conducted a study of the environmental gamma absorbed dose rate in air. The study combined data collected by the HKO radiation monitoring network (RMN) and data from a comprehensive territory-wide radiological survey conducted in January and February 1999. The RMN of ten stations each equipped with a Reuter-Stokes Model RSS-1013 HPIC has been in operation since 1987 to continuously monitor the environmental radiation levels over the territory as part of the emergency monitoring programme for response to nuclear accidents at a nearby nuclear power station. The terrestrial component of the environmental radiation field was estimated by subtracting from the measurements the cosmic contribution, which is determined to be about 39 nGy/h from measurements conducted over two large fresh water reservoirs. The RMN data with the long history was analysed to derive the seasonal variations in the environmental radiation levels. On average the environmental gamma absorbed dose rate in air in January and February is 1.03 times of the annual figure. This seasonal correction was applied to the results of the year 1999 survey. As the radiation field in the heavily built-up areas is enhanced by contribution from buildings, in the territory-wide survey measurements were made both in the open field and built-up areas. The territory of Hong Kong was divided into 42 grid boxes of 5 km x 5 km for open field and 61 grid boxes of 2.5 km x 2.5 km for built-up areas according to the population and land use. A

  2. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for {sup 60}Co {gamma} rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Bregadze, Y.; Korostin, S. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2003-09-15

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  3. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  4. Electrical Conductivity of Gamma Irradiated Aqueous Urea Solution and its Application for Determination of Absorbed Radiation Dose; Sife-Eldeen Dosimeter

    International Nuclear Information System (INIS)

    Sife- Eldeen, Kh.A.

    2008-01-01

    In This Study, the radiation induced electrical conductivity (RIC) of aqueous urea solutions was investigated after gamma radiolysis. It was found that the RIC depends on preirradiation urea concentration, absorbed radiation dose and storage time. At the same absorbed dose, RIC increases as preirradiation urea concentration increases. The RIC change of aqueous urea solutions reaches a maximum value at 3.5 M aqueous urea solutions. RIC of 0.133 and 3.5 M aqueous urea solutions as a function of dose, have been investigated in the range between 2.18 and 119.4 kGy. RIC of the 0.133 and 3.5 M aqueous urea solutions increased linearly with increasing dose (R 2 =0.9963, 0.9972 respectively). The calibration factors was found to be 2.1448 and 9.53 μS/kGy for sets with 0.133 and 3.5 M urea respectively .The coefficient of variation CV %, associated with RIC measurement of 3.5 M aqueous urea solution as a function of absorbed radiation dose was found to be 1.8025% and the uncertainty was found to be 3.6 % and 5.4 % for 95 % and 99 % confidence levels, respectively. The effective atomic number of 3.5 M aqueous urea solutions is 6.58, which indicates tissue equivalency of this system. The RIC values of 3.5 M aqueous urea solutions were found to be relatively stable over storage period of three weeks at 0 degree C. Accordingly, this system could be considered as a promising radiation-sensitive material for dosimetry of gamma rays in both technical and research fields

  5. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  6. Intercomparison of standards of absorbed dose between the USSR and the UK

    Science.gov (United States)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  7. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  8. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-01

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60 Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  9. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  10. Absorbed dose/melting heat dependence studies for the PVDF homopolymer

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Gual, Maritza R.; Pereira, Claubia

    2013-01-01

    Differential Scanning Calorimetry (DSC) of gamma irradiated Poly (vinylidene Fluoride) [PVDF] homopolymer has been studied in connection with the use of material in industrial high gamma dose measurement. Interaction between gamma radiation and PVDF leads to the radio-induction of C=O and conjugated C=C bonds, as it can be inferred from previous infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometric data. These induced defects result in a decrease of the polymer crystallinity that can be followed with DSC scans, by measuring the latent heat during the melting transition (Hmelt). After a systematic investigation, we have found that Hmelt is unambiguously related to the delivered doses ranging from 100 to 2,000 kGy of gamma radiation. One the other hand, further fading investigation analysis has proved that the Hmelt x Dose relationship can be fitted by an exponential function that remains constant for several months. Both the very large range of dose measurement and also the possibility of evaluating high gamma doses until five months after irradiation make PVDF homopolymers very good candidates to be investigated as commercial high gamma dose dosimeters. The high gamma dose irradiation facilities in Brazil used to develop high dose dosimeters are all devoted to industrial and medical purposes. Therefore, in view of the uncertainties involved in the dose measurements related to the electronic equilibrium correction factors and backscattering in the isodose curves used at the irradiation setup, a validation process is required to correctly evaluate the delivered absorbed doses. The sample irradiations were performed with a Co-60 source, at 12kGy/h and 2,592 kGy/h, in the high gamma dose facilities at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The comparison of the curve of the Hmelt vs Dose is presented in this paper. (author)

  11. Level of terrestrial gamma radiation and doses to population in Jiangsu province

    International Nuclear Information System (INIS)

    1985-01-01

    In this paper the results of investigation of terrestrial gamma radiation level in Jiangsu Province are reported and the population doses due to this radiation are estimated. The sketch map of the geographical distribution of the terrestrial gamma radiation level is given. In this investigation FD-71 portable scintillation counters and RSS-111 high pressure ionization chambers were used. The results showed that the terrestrial gamma absorbed dose rates in air for indoors and outdoors were 10.7 x 10 -8 Gy/h and 6.5 x 10 -8 Gy/h (weighted values) respectively. The indoors-to-outdoors ratio was 1.65. The total (indoor plus outdoor) annual effective dose equivalent from terrestrial gamma radiation, averaged over the population in this province, was 6.0 x 10 -4 Sv. The collective annual effective dose equivalent was 3.6 x 10 4 man.Sv. Therefore, the absorbed dose to population in Jiangsu Province is in the range of the normal background

  12. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  13. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  14. A comparison of Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation.

    Science.gov (United States)

    Shortt, K R; Huntley, R B; Kotler, L H; Boas, J F; Webb, D V

    2006-06-01

    Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation have been compared using transfer standard ionization chambers of types NE 2561 and NE 2611A. Whilst the primary standards of air kerma are similar, both being thick-walled graphite cavity chambers but employing different methods to evaluate the Awall correction, the primary standards of absorbed dose to water are quite different. The Australian standard is based on measurements made with a graphite calorimeter, whereas the Canadian standard uses a sealed water calorimeter. The comparison result, expressed as a ratio of calibration coefficients R=N(ARPANSA)/N(NRC), is 1.0006 with a combined standard uncertainty of 0.35% for the air kerma standards and 1.0052 with a combined standard uncertainty of 0.47% for the absorbed dose to water standards. This demonstrates the agreement of the Australian and Canadian radiation dosimetry standards. The results are also consistent with independent comparisons of each laboratory with the BIPM reference standards. A 'trilateral' analysis confirms the present determination of the relationship between the standards, within the 0.09% random component of the combined standard uncertainty for the three comparisons.

  15. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  16. Determination of the absorbed dose and dose-distribution in water for low- and medium-energetic photons

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1990-05-01

    The methods to determine the absorbed dose to water for low and medium energy photons were studied. Large differences between the results of these methods exists. So, a research proposition has been made to explain these differences. The goal of this research will be the development of a method to determine the absorbed dose below approximately 400 keV with an ionization chamber calibrated at 60 Co gamma radiation. To explain the differences between the set of methods, some causes were proposed, like the influence of the ionisation chamber on the measurement in water. Also, some methods to determine the factors are proposed. (author). 29 refs

  17. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  18. Using RADFET for the real-time measurement of gamma radiation dose rate

    International Nuclear Information System (INIS)

    Andjelković, Marko S; Ristić, Goran S; Jakšić, Aleksandar B

    2015-01-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h −1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose. (paper)

  19. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  20. Synthesis of poly (acrylamide-co-metacrylic acid) hydrogels By means of gamma irradiation techniques: influence of Absorbed dose on the swelling process

    International Nuclear Information System (INIS)

    Rapado, Manuel; Altanes, Sonia; Sainz, Dianelys; Prado, Stalina

    1999-01-01

    In this report gamma radiation techniques were performed a double function of proceeding the processes of polymerization and crosslinking with the advantage of avoid the uses of chemicals crosslinks. The influence of absorbed dose on the swelling ratio as a function of pH have been presented. For these hydrogels, swelling studies indicated that swelling decrease with the increase of the absorbed dose from 10 to 50 kGy. It was confirmed that at the firsts stages (100-150 min) the diffusion studies were in accordance with Fickian behavior and the diffusion coefficients were obtained, whereas the latest stages were in good agreement with second-order diffusion kinetics proposed by Schott 1 .These news hydrogels exhibit a higher degree of swelling, a factor that, a priori, assures high biocompatibility because it increases the similarity with living tissues

  1. Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in {sup 60}Co gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Kessler, C.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Berlyand, A. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2010-02-15

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. (authors)

  2. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  3. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  4. Development of air equivalent gamma dose monitor

    International Nuclear Information System (INIS)

    Alex, Mary; Bhattacharya, Sadhana; Karpagam, R.; Prasad, D.N.; Jakati, R.K.; Mukhopadhyay, P.K.; Patil, R.K.

    2010-01-01

    The paper describes design and development of air equivalent gamma absorbed dose monitor. The monitor has gamma sensitivity of 84 pA/R/h for 60 Co source. The characterization of the monitor has been done to get energy dependence on gamma sensitivity and response to gamma radiation field from 1 R/hr to 5000 R/hr. The gamma sensitivity in the energy range of 0.06 to 1.25MeV relative to 137 Cs nuclide was within 2.5%. The linearity of the monitor response as a function of gamma field from 10 R/h to 3.8 kR/h was within 6%. The monitor has been designed for its application in harsh environment. It has been successfully qualified to meet environmental requirements of shock. (author)

  5. The EPR investigation of tooth enamel for measurements of tooth enamel for measurements of absorbed gamma doses of people irradiated in Chernobyl accident

    International Nuclear Information System (INIS)

    Baran, N.P.; Barchuk, V.I.; Bar'yakhtar, V.G.; Bugaj, A.A.; Koval', G.N.; Maksimenko, V.M.; Berezhnoj, A.B.; Zakharash, M.P.; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The EPR spectra of the tooth enamel of Chernobyl 'liquidators' were investigated. A lot of people were engaged in work at the Chernobyl area after the accident in 1986. A part of them is under regular medical control at the Ukrainian security service hospital. When patients lose the teeth for some reasons the EPR spectra of radiation centers in tooth enamel caused by emergency gamma radiation were investigated. The measurement of the intensities of the EPR spectra give the real individual absorbed doses of gamma radiation which are much higher than the official values registered in the medical cards of liquidators

  6. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  7. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air

    International Nuclear Information System (INIS)

    Santos, Esau Francisco Sena

    2006-01-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km 2 . Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h -1 ), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  8. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  9. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  10. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  11. Determination of high level absorbed dose in a 60Co gamma ray field with ionization chambers

    International Nuclear Information System (INIS)

    Zhongying Li; Benjiang Mao; Lu Zhang

    1995-01-01

    This paper relates to the principles and methods for determining the absorbed dose of high energy photons radiation with ionization chambers, and its shows the doserate results of high level 60 Co γ-rays in water measured with Farmer chambers. The results with two kinds of chambers at a same point are consistent within 0.3%, and the total uncertainty is less than ± 4%. In the domestic intercomparison on determining high level absorbed dose in which 12 laboratories participated, the deviation of our result from the mean result of the intercomparison is -0.04% [Chen Yundong (1992). Summing up report on a high level absorbed dose intercomparison (in Chinese)]. (author)

  12. Model of the absorbed dose on a small sphere into a gamma irradiation field

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)

  13. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  14. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Campos, L.L.; Rosa, L.A.R. da.

    1988-07-01

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137 Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO 4 : Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author) [pt

  15. Dose rate on the environment generated by a gamma irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation reaching the outdoors floor is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on tables and graphics. (author) [es

  16. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  17. Experimental studies on absorbed dose in radiation sterilization of pharmaceutical preparation

    International Nuclear Information System (INIS)

    Ohnishi, Tokuhiro; Okamoto, Shinichi; Kimura, Syojiro; Taimatsu, Meiko.

    1991-01-01

    For radiation sterilization, it is necessary to decide the irradiation conditions considering a balance between sterilization efficiency and chemical changes of samples by irradiation. These effects may be estimated by the product of two factors (D 10 and G value) and absorbed dose. In this work, it has been found experimentally by using Fricke dosimeter that the absorbed doses of the samples in vessels different in size, material, volume, etc. are not equal under the same gamma-ray irradiation condition. The correction factor from exposure to absorbed dose was estimated to be 6-7% for organic vessels (a polyethylene bag and a polystyrene vial) and a 20-ml glass vial, 9% for a 10-ml glass vial, and 10% for the 5-ml glass vial. These values of the correction factor were confirmed by using the changes of enzymic activity of saccharated powder pepsin preparation. In the cases of using organic vessels and the 10-ml glass vial, G-values for the change of the enzymic activity were calculated to show similar values in the range from 0.79 to 0.82. However, in the case of a small glass vial (5-ml), the value was 0.93. (author)

  18. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba

    International Nuclear Information System (INIS)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Manzano de Armas, J.F.; Alonso A, D.; Prendes A, M.; Zerquera, J.T.; Caveda R, C.A.; Kalberg, O.; Fabelo B, O.; Montalvan E, A.; Cartas A, H.; Leyva F, J.C.

    2006-01-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  19. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  20. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  1. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  2. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  3. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  4. Effects of differents gamma radiation doses absorbed for postharvest tomato fruits

    International Nuclear Information System (INIS)

    Silva Abreu, Toneypson da; Jesus, Edgar F.O. de; Soares, Antonio G.

    1997-01-01

    Postharvest tomato fuits Santa Cruz were submitted to prestorage gamma irradiation treatment with different doses range zero (unirradiated fruits) to 1000 Gy. The aim of this study is to evaluate the postharvest quality parameters: Hunter colour values for light transmittance analysis, pH, total titratable acidity, total soluble solids, maximum firmness and maturity stage. The fruits were stored under (25±1) 0 C with (93±3) relative humidity. The results obtained from the different irradiated treatments showed 600 Gy as the best dose to increase the shelf-life of tomato fruits and to decay its ripening. (author). 5 refs., 12 figs., 1 tab

  5. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: An example in California

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Revzan, K.L.; Smith, A.R.

    1992-01-01

    The authors examine the applicability of radioelement data from the National Aerial Radiometric Reconnaissance (NARR) to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of U, Th, and K concentrations in 1 x 2 degree quadrangles with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends. Low values of 25--30 nG/h occur in the northernmost quadrangles where low-radioactivity basaltic and ultramafic rocks predominate. Dose rates then increase southward due to the preponderance of clastic sediments and basic volcanics of the Franciscan Formation and Sierran metamorphics in north central and central California, and to increasing exposure southward of the Sierra Nevada batholith, Tertiary marine sedimentary rocks, intermediate to acidic volcanics, and granitic rocks of the Coast Ranges. High values, to 100 nGy/h occur in southeastern California, due primarily to the presence of high-radioactivity Precambrian and pre Cenozoic metamorphic rocks. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy/h, respectively. These are intermediate between a population-weighted global average of 51 nGy/h and a weighted continental average of 70 nGy/h, based on the global distribution of rock types. The concurrence of lithologically- and aeroradiometrically- determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the NARR data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters

  6. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  7. Experimental verification of the air kerma to absorbed dose conversion factor Cw,u.

    Science.gov (United States)

    Mijnheer, B J; Wittkämper, F W; Aalbers, A H; van Dijk, E

    1987-01-01

    In a recently published code of practice for the dosimetry of high-energy photon beams, the absorbed dose to water is determined using an ionization chamber having an air kerma calibration factor and applying the air kerma to absorbed dose conversion factor Cw,u. The consistency of these Cw,u values has been determined for four commonly employed types of ionization chambers in photon beams with quality varying between 60Co gamma-rays and 25 MV X-rays. Using a graphite calorimeter, Cw,u has been determined for a graphite-walled ionization chamber (NE 2561) for the same qualities. The values of Cw,u determined with the calorimeter are within the experimental uncertainty equal to Cw,u values determined according to any of the recent dosimetry protocols.

  8. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  9. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    International Nuclear Information System (INIS)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N.; Sohrabi, M.

    2006-01-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 μR/h, and outdoor environments of different cities is 7.9-20.6 μR/h, which their mean value are 14.33 and 12.62 μR/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  10. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  11. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  12. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  13. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters

    Directory of Open Access Journals (Sweden)

    Ernesto Amato

    2014-03-01

    Full Text Available We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'generalized radius', calculated as 3V/S, where V is the ellipsoid volume and S its surface. Radiation-specific parametric functions were obtained in order to calculate the absorbed fraction of a given radiation in a generic ellipsoidal volume. The dose from a generic radionuclide can be calculated through a process of summation and integration over the whole radionuclide emission spectrum, profitably implemented in an electronic spreadsheet. We compared the results of our analytical calculation approach with those obtained from the OLINDA/EXM computer software, finding a good agreement in a wide range of sphere radii, for the high-energy pure beta emitter 90Y, the commonly employed beta-gamma emitter 131I, and the pure alpha emitter 213Po. The generality of our approach makes it useful an easy to implement in clinical dosimetry calculations as well as in radiation safety estimations when doses from internal radionuclide uptake are to be taken into account.

  14. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  15. Prompt-gamma detection towards absorbed energy monitoring during hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J.; Balleyguier, L.; Dauvergne, D.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, Universite de Lyon 1, IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne cedex (France); Krimmer, J.; Freud, N.; L' etang, J.M. [Universite de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA - Lyon, Universite Lyon 1, Centre Leon Berard (France); Herault, J.; Amblard, R.; Angellier, G. [Centre Antoine Lacassagne, Cyclotron Biomedical, 227 Avenue de la Lanterne, 06200 Nice (France)

    2015-07-01

    Hadrontherapy is an emerging technique which exploits the fact that a large quantity of the energy of the incident particles is deposited at the end of their flight path. This allows a conformation of the applied dose to the tumor volume and a simultaneous sparing of surrounding healthy tissue. A real-time control of the ion range during the treatment is possible via the detection of prompt secondary radiation (gamma rays or charged particles). Besides a monitoring of the ion range, the knowledge of the total energy absorbed inside the patient is also of importance for an improvement of the treatment quality. It has been shown that the ambient dose in a treatment room is correlated to the monitoring units, i.e. the number of protons of the beam delivery system. The present study consists in applying time-of-flight (TOF) information to identify prompt gamma-rays generated by interactions inside the patient which provides a direct information on the energy imparted. Results from test measurements will be given, which show that events generated in the nozzle and the target phantom can be discriminated. Furthermore, a standalone detection system is being developed which will be read out by a standard PC. The status of the developments for the corresponding electronics will be presented. (authors)

  16. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  17. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  18. Studies of the sensitivity dependence of float zone silicon diodes on gamma absorbed dose

    International Nuclear Information System (INIS)

    Pascoalino, K.C.S.; Santos, T.C. dos; Barbosa, R.F.; Camargo, F. de; Goncalves, J.A.C.; Bueno, C.C.

    2011-01-01

    Full text: Several advantages of silicon diodes which include small size, low cost, high sensitivity and wide availability, make them suitable for dosimetry and for radiation field mapping. However, the small radiation tolerance of ordinary silicon devices has imposed constraints on their application in intense radiation fields such as found in industrial radiation processes. This scenario has been changed with the development of radiation hard silicon devices to be used as track detectors in high-energy physics experiments. Particularly, in this work it is presented the dosimetric results obtained with a batch of nine junction silicon diodes developed, in the framework of CERN RD50 Collaboration, as good candidates for improved radiation hardness. These diodes were produced with 300 micrometer n-type silicon substrate grown by standard float zone technique and processed by the Microelectronics Center of Helsinki University of Technology. The samples irradiation was performed using a Co-60 irradiator (Gammacell 220) which delivers a dose-rate of 2 kGy/h. During the irradiation, the unbiased diodes were connected through low-noise coaxial cables to the input of a KEITHLEY 617 electrometer, in order to monitor the devices photocurrent as a function of the exposure time. To study the response uniformity of the batch of nine diodes as well the sensitivity dependence on the absorbed dose, they were irradiated with different doses from 5 kGy up to 50 kGy. The sensitivity response of each device was investigated through the on-line measurements of the current signals as a function of the exposure time. For doses up to 5 kGy, all diodes exhibited a current decay of almost six percent in comparison with the value registered at the start-time of the irradiation. However, this decrease in the current sensitivity is much smaller than those observed with ordinary diodes for the same absorbed dose. The dose-response curves of the devices were also investigated through the plot

  19. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  20. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    International Nuclear Information System (INIS)

    Cunha, Elisete L.; Schimitberger, Thiago

    2017-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm -1 and 3271 cm -1 , with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  1. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elisete L.; Schimitberger, Thiago, E-mail: elisete.cunha@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Oliveira, Cristiana M.; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm{sup -1} and 3271 cm{sup -1}, with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  2. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  3. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  4. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  5. A new method for evaluating annual absorbed gamma dose rates in an archaeological site by combining the SSNTD technique with Monte Carlo simulations

    CERN Document Server

    Misdaq, M A; Erramli, H; Mikdad, A; Rzama, A; Yousif-Charif, M L

    1998-01-01

    Uranium and thorium contents in different layers of an archaeological site have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha-particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption coefficient of the gamma-photons emitted by the uranium ( sup 2 sup 3 sup 8 U), thorium ( sup 2 sup 3 sup 2 Th) and their corresponding decay products as well as the potassium-40 ( sup 4 sup 0 K) isotope for evaluating the annual absorbed gamma dose rates in the considered material samples. Results obtained have been compared with data obtained by using the TL dosimetry and Bell's methods. Ceramic samples belonging to the studied archaeological site have been dated.

  6. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  7. Gamma-Dose rate above uranium mineralization areas in western sudan

    International Nuclear Information System (INIS)

    Sam, A.K; Sirelkhatim, D.A; Hassona, R.K.

    2003-01-01

    Absorbed dose rate received from natural external irradiation in uranium mineralisation areas at Uro, Kurun and Jebel Mun was evaluated from the measured activity concentrations of 238 U, 232 Th and 40 K in rock samples.The analyses were performed using alpha-spectrometry and high-resolution gamma-ray spectrometry. A great spatial variability was observed in activity concentration of the primordial radionuclides indicating complexity in geological features. Converses to Jebel Mun, Uro and Kurun deposits exhibit very high U:Th mass ratio. The resulting absorbed dose rate in air as estimated using DRCF's fall within the range of 70-522 (Mun), 569-349 (Uro) and 84-320 n Gy/h (Kurun). At maximum, they correspond to annual effective dose of 0.64, 7.78 and 0.39 mSv, respectively. Uranium is the principal producer of the surface radioactivity at Uro and Kurun as it contributes 99.6% and 95% of the total absorbed dose whereas, in Jebel Mun the cause of radioactive anomaly is due to 40 K and 232 Th. In Uro and Kurun deposits, daughter/parent activity ratios along uranium series, Viz. 234 U: 238 U, 230 Th:U, 210 Po:U, are not differ from the equilibrium value of unity.(Author)

  8. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  9. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  10. Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02

    International Nuclear Information System (INIS)

    Underbrink, A.G.; Kellerer, A.M.; Mills, R.E.; Sparrow, A.H.; Brookhaven National Lab., Upton, N.Y.

    1976-01-01

    Microdosimetric data indicate that the mean specific energy, xi, produced by individual charged particles from X rays and gamma rays is different for the two radiation qualities by nearly a factor of two. In order to test whether this influences the initial, linear component in the dose-effect relations, a comparison was made between dose-response curves for pink somatic mutations in Tradescantia clone 02 stamen hairs following X and gamma irradiations. Absorbed doses ranged from 2.66 to 300 rad. The results are in agreement with predictions made on the basis of microdosimetric data. At low doses gamma rays are substantially less effective than X rays. The RBE of gamma rays vs. X rays at low doses was approximately 0.6, a value lower than those usually reported in other experimental systems. (orig.) [de

  11. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose

    International Nuclear Information System (INIS)

    Hashimoto, T.; Yokosaka, K.; Habuki, H.

    1987-01-01

    The TL spectrometry of natural quartz exposed to a gamma radiation dose of 8.8 kGy proved that the red TL, mainly from volcanically originated quartz, has a broad emission band with a peak around 620 nm, while the blue TL from plutonically originated quartz also has a broad emission band giving a peak around 470 nm. These typical red or blue intrinsic colours were also confirmed on the thermoluminescence colour images (TLCI). Exceptionally, a pegmatite quartz changed its TLCI colour from red to blue when the absorbed dose was increased. By using colour filter assemblies, all these quartz samples were shown to emit mainly blue and red TLs, which have distinctly different TL responses to the absorbed dose; the blue invariably showed a supralinearity relation between 1 and 10 kGy dose. For the purpose of dating, the use of red TL, is preferable. The red TL component is related to the impurity Eu content in quartz minerals. (author)

  12. Radionuclide content in some building materials and gamma dose rate in dwellings in Cuba

    International Nuclear Information System (INIS)

    Brigido, Oslvaldo; Montalvan, Adelmo; Rosa, Ramon; Hernandez, Alberto

    2008-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. This study was undertaken with the purpose of determining radioactivity in some Cuban building materials and for assessing the annual effective dose to Cuban population due external gamma exposure in dwellings for typical Cuban room model. Forty four samples of raw materials and building products were collected in some Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values are in the ranges: 9 to 857 Bq.kg -1 for 40 K; 6 to 57 Bq.kg -1 for 226 Ra; and 1.2 to 22 Bq.kg -1 for 232 Th. The radium equivalent activity in the 44 samples varied from 4 Bq.kg -1 (wood) to 272 Bq.kg -1 (brick). A high pressure ionisation chamber was used for measuring of the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 n Gy.h -1 (Holguin) to 73 n Gy.h -1 (Camaguey) and the corresponding population-weighted annual effective dose due to terrestrial gamma radiation was estimated to be 145 ± 40 μSv. This dose value is 16% higher than the calculated value for typical room geometry of Cuban house. (author)

  13. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  14. Borosilicate glass for gamma irradiation fields

    Science.gov (United States)

    Baydogan, N.; Tugrul, A. B.

    2012-11-01

    Four different types of silicate glass specimens were irradiated with gamma radiation using a Co-60 radioisotope. Glass specimens, with four different chemical compositions, were exposed to neutron and mixed neutron/gamma doses in the central thimble and tangential beam tube of the nuclear research reactor. Optical variations were determined in accordance with standardisation concept. Changes in the direct solar absorbance (αe) of borosilicate glass were examined using the increase in gamma absorbed dose, and results were compared with the changes in the direct solar absorbance of the three different type silicate glass specimens. Solar absorption decreased due to decrease of penetration with absorbed dose. αe of borosilicate increased considerably when compared with other glass types. Changes in optical density were evaluated as an approach to create dose estimation. Mixed/thermal neutron irradiation on glass caused to increse αe.

  15. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  16. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons

    International Nuclear Information System (INIS)

    Hirayama, H.

    1994-01-01

    The general-purpose electron gamma shower Monte Carlo code EGS4 has been used to calculate absorbed doses at 0.07, 3.0 and 10.0 mm depths per unit fluence for broad parallel beams of monoenergetic electrons impinging at an incident angle α on a slab phantom (30 cm x 30 cm x 15 cm) of polymethyl methacrylate (PMMA), water and ICRU 4-element tissue required by EURADOS WG4 for a revision of ICRP Publication 51. Absorbed doses at 7, 300 and 1000 mg.cm -2 were also calculated for PMMA. The electron kinetic energy range covered is 50 keV to 10 MeV. The incident angle (α) varies from 0 o to 75 o with an increment of 15 o . The calculated results are presented as tables. The depth against absorbed dose curves and dependence of the absorbed dose at each depth on the incident electron energy, incident angle and phantom material are also presented and discussed. (author)

  17. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.

    Science.gov (United States)

    Srinivas, D; Ramesh Babu, V; Patra, I; Tripathi, Shailesh; Ramayya, M S; Chaturvedi, A K

    2017-02-01

    The Atomic Minerals Directorate for Exploration and Research (AMD) has conducted high-resolution airborne gamma ray spectrometer (AGRS), magnetometer and time domain electromagnetic (TDEM) surveys for uranium exploration, along the northern margins of Cuddapah Basin. The survey area includes well known uranium deposits such as Lambapur-Peddagattu, Chitrial and Koppunuru. The AGRS data collected for uranium exploration is utilised for estimating the average absorbed rates in air due to radio-elemental (potassium in %, uranium and thorium in ppm) distribution over these known deposit areas. Further, portable gamma ray spectrometer (PGRS) was used to acquire data over two nearby locations one from Lambapur deposit, and the other from known anomalous zone and subsequently average gamma dose rates were estimated. Representative in-situ rock samples were also collected from these two areas and subjected to radio-elemental concentration analysis by gamma ray spectrometer (GRS) in the laboratory and then dose rates were estimated. Analyses of these three sets of results complement one another, thereby providing a comprehensive picture of the radiation environment over these deposits. The average absorbed area wise dose rate level is estimated to be 130 ± 47 nGy h -1 in Lambapur-Peddagattu, 186 ± 77 nGy h -1 in Chitrial and 63 ± 22 nGy h -1 in Koppunuru. The obtained average dose levels are found to be higher than the world average value of 54 nGy h -1 . The gamma absorbed dose rates in nGy h -1 were converted to annual effective dose rates in mSv y -1 as proposed by the United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). The annual average effective dose rates for the entire surveyed area is 0.12 mSv y -1 , which is much lower than the recommended limit of 1 mSv y -1 by International Commission on Radiation protection (ICRP). It may be ascertained here that the present study establishes a reference data set (baseline) in these areas

  18. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.H. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: shs_barc@yahoo.com; Mukherjee, T. [Radiation Safety Systems Division, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2007-02-15

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10{sup -4}moldm{sup -3} and xylenol orange with 2.5x10{sup -1}moldm{sup -3} of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%.

  19. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2007-01-01

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10 -4 moldm -3 and xylenol orange with 2.5x10 -1 moldm -3 of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%

  20. Measurement of high dose rates of 60Co by gamma activation of115In and 111Cd foils

    International Nuclear Information System (INIS)

    Haddad, Kh; Qattan, M.; Taleb, A.

    2009-12-01

    The high gamma dose rate measurement technique using nuclear reaction (γ,(γ ' ') was introduced in this work. This technique is cheap, easy, reliable, and independent of chemical and physical factors, which affect other techniques. The response to the absorbed dose in this technique is linear and can be used for high dose. Cd and In foils were irradiated using 60 Co source and the resulted isomer activities were measured using gamma spectrometer. These foils were calibrated to be used as dosemeter and its results were compared with conventional one. The dose distribution in the irradiation field was determined using In foils. (authors)

  1. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    International Nuclear Information System (INIS)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  2. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F., E-mail: jodinilson@cnen.gov.b, E-mail: fflima@cnen.gov.b, E-mail: jasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide, E-mail: santos_neide@yahoo.com.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  3. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  4. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  5. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Berlyand, V.; Bregadze, Y.; Korostin, S.

    2003-09-01

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  6. Natural radioactivity in some building materials in Cuba and their contribution to the indoor gamma dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Brigido Flores, Osvaldo; Barreras Caballero, Aldo A.; Montalvan Estrada, Alberto; Queipo Garcia, Maite [Ministerio de Ciencia, Tecnologia y Medio Ambiente, Camaguey (Cuba). Centro de Atencion a la Actividad Nuclear. Lab. de Vigilancia Radiologica Ambiental]. E-mail: sean@caonao.cmw.inf.cu; Zerquera, Juan Tomas [Ministerio de Ciencia, Tecnologia y Medio Ambiente, La Habana (Cuba). Agencia de Energia Nuclear. Centro de Proteccion y Higiene de las Radiaciones

    2001-07-01

    The natural radioactivity of some building materials commonly used in Cuba was measured by gamma spectrometry. Typical concentrations, so far encountered, are in the ranges: 47 to 2511 Bq.kg{sup -1} for {sup 40} K; 9 to 71 Bq.kg{sup -1} for {sup 226} Ra; and 2 to 38 Bq.kg{sup -1} for {sup 232} Th. The external gamma ray absorbed doses in indoor air, and the corresponding effective dose equivalents in a typical dwelling are presented in this work. (author)

  7. Real time monitoring automation of dose rate absorbed in air due to environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Carrazana Gonzalez, Jorge A.; Manzano de Armas, Jose F.; Alonso Abad, Dolores; Prendes Alonso, Miguel; Tomas Zerquera, Juan; Caveda Ramos, Celia A.; Kalber, Olof; Fabelo Bonet, Orlando; Montalvan Estrada, Adelmo; Cartas Aguila, Hector; Leyva Fernandez, Julio C.

    2005-01-01

    The Center of Radiation Protection and Hygiene (CPHR) as the head institution of the National Radiological Environmental Surveillance Network (RNVRA) has strengthened its detection and response capacity for a radiological emergency situation. The measurements of gamma dose rate at the main point of the RNVRA are obtained in real time and the CPHR receives the data coming from those points in a short time. To achieve the operability of the RNVRA it was necessary to complete the existent monitoring facilities using 4 automatic gamma probes, implementing in this way a real time measurement system. The software, GenitronProbe for obtaining the data automatically from the probe, Data Mail , for sending the data via e-mail, and Gamma Red , for receiving and processing the data in the head institution ,were developed

  8. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  9. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  10. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  11. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air; Espectrometria gama aerea da provincia uranifera de Lagoa Real (Caetite, BA): aspectos geoambientais e distribuicao da dose absorvida no ar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Esau Francisco Sena

    2006-07-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km{sup 2}. Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h{sup -1}), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  12. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  13. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  14. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  15. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV

    International Nuclear Information System (INIS)

    Gudowska, I.; Brahme, A.; Andreo, P.; Gudowski, W.; Kierkegaard, J.

    1999-01-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm 3 . The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)±0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3 He and 4 He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15±0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60 Co radiation. (author)

  16. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  17. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  18. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  19. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  20. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air; Espectrometria gama aerea da provincia uranifera de Lagoa Real (Caetite, BA): aspectos geoambientais e distribuicao da dose absorvida no ar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Esau Francisco Sena

    2006-07-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km{sup 2}. Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h{sup -1}), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  1. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  2. Application of polystyrene - water calorimeter in determination of absorbed dose. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F A [Nuclear Materials Authority, Maadi, Cairo (Egypt); Ashry, H A; El-Behay, A Z; Abdou, S [National Center, for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The polystyrene-water calorimeter was investigated as a modification of the water calorimeter, where the polystyrene has a low specific heat and negligible known heat defect. This calorimeter was designed, constructed and calibrated for measurement of radiation absorbed dose. The system utilizes a thermistor to detect the radiation-induced temperature rise in the polystyrene absorber at certain point from the radiation source. A temperature stability of as low as 0.0018 degree C/min in a 42.0 degree C environment, and a gamma-radiation sensitivity of as high as 1.9720 ohm/Gy were obtained. Comparisons of the results obtained by using the polystyrene-water calorimeter with those obtained by applying other types of calorimeters i.e., water and graphite calorimeters were also done to aid in the possible realization of an accurate and efficient instrument for use under widely different irradiation conditions. 4 figs., 1 tab.

  3. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  4. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  5. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  6. Dose-response relationship of leukemia incidence among atomic bomb survivors and their controls by absorbed marrow dose and two types of leukemia Hiroshima and Nagasaki, October 1950 - December 1978

    International Nuclear Information System (INIS)

    Ishimaru, Toranosuke; Otake, Masanori; Ichimaru, Michito; Mikami, Motoko.

    1982-07-01

    Analysis of the relationship of the incidence of leukemia to gamma and neutron dose among atomic bomb survivors until 1971 has been reported previously by RERF. The present inquiry was prompted by the extension of case finding to 1978 and by the recent availability of new dose estimates for this fixed cohort. It is focused on the relationship of absorbed marrow dose of gamma rays and neutrons to the incidence of two types of leukemia in the fixed cohort of A-bomb survivors and their controls, the Life Span Study extended sample, in the period October 1950-December 1978. Three dose-response models have been fitted to the data on acute leukemia and chronic granulocytic leukemia. The relationship of the incidence of acute leukemia to gamma and neutron dose again suggests that the ''best'' fitting model involves a dependence on the square of the gamma dose and a linear dependence on neutrons. The estimated relative biological effectiveness (RBE) of neutrons in the induction of acute leukemia is approximately 44/√Dn(Dn = neutron dose) under this model. Based on the 95% confidence limits of the estimated RBE, the risk of this disease is estimated as 0.0026 - 0.0072 cases per million person-years per rem 2 of marrow dose. This analysis has failed, however, to produce a significant dose-response function for the incidence of chronic granulocytic leukemia in relation to the two kinds of radiation. (author)

  7. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  8. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  9. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    International Nuclear Information System (INIS)

    Bertilsson, G.

    1975-10-01

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  10. Methodology for setting the reference levels in the measurements of the dose rate absorbed in air due to the environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Caveda Ramos, Celia; Alonso Abad, Dolores

    2008-01-01

    Full text: The methodology for setting the reference levels of the measurements of the gamma dose rate absorbed in the air is described. The registration level was obtained using statistical methods. To set the alarm levels, it was necessary to begin with certain affectation level, which activates the investigation operation mode when being reached. It is was necessary to transform this affectation level into values of the indicators selected to set the appearance of an alarm in the network, allowing its direct comparison and at the same time a bigger operability of this one. The affectation level was assumed as an effective dose of 1 mSv/y, which is the international dose limit for public. The conversion factor obtained in a practical way as a consequence of the Chernobyl accident was assumed, converting the value of annual effective dose into values of effective dose rate in air. These factors are the most important in our work, since the main task of the National Network of Environmental Radiological Surveillance of the Republic of Cuba is detecting accidents with a situations regional affectation, and this accident is precisely an example of pollution at this scale. The alarm level setting was based on the results obtained in the first year of the Chernobyl accident. For this purpose, some transformations were achieved. In the final results, a correction factor was introduced depending on the year season the measurement was made. It was taken into account the influence of different meteorological events on the measurement of this indicator. (author)

  11. Absorbed decay-photon dose analysis of the IVVS/GDC plug in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D.; Serikov, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. for Neutron Physics and Reactor Technology (INR)

    2011-07-01

    The In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit share a common port at the equatorial level of the ITER tokamak. The plug consists mainly of the IWS probe, capable of performing the laser-based in-vessel viewing and metrology, the GDC electrode, capable of producing glow discharge in the vacuum vessel during intermediate maintenance and wall conditioning periods, and their respective deployment systems to move the electrodes. The plug extends over a length of about 11 m from the GDC tip to the rear end at the bioshield level. At the present stage of the conceptual design a neutronics analysis has been requested to provide valuable input to the design strategy. To this end, a first assessment has been performed focusing on operational loads on the GDC electrode head in the so-called shielding position and on absorbed decay-photon dose rate levels in the structural components of the entire system. In this contribution we are reporting on the absorbed dose rates after the ITER life time irradiation at several cooling times. Gamma sources from activated materials of the IVVS/GDC and surrounding structures, like blanket, vacuum vessel, toroidal and poloidal field coils, have been taken into account. (orig.)

  12. A study on gamma dose rate in Seoul (I)

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Chang Kyun; Choi, Jong Hak; Kim, Jeong Min

    2001-01-01

    This study was conducted to find out gamma dose rate in Seoul, from January to December in 2000, and the following results were achieved : The annual gamma dose rate in Seoul was 17.24 μR/hr as average. The annual gamma dose rate in subway of Seoul was 14.96 μR/hr as average. The highest annual gamma dose rate was Dong-daemon ku. Annual gamma dose rate in Seoul was higher autumn than winter

  13. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  14. Natural gamma-ray spectrometry as a tool for radiation dose and radon hazard modelling

    International Nuclear Information System (INIS)

    Verdoya, M.; Chiozzi, P.; De Felice, P.; Pasquale, V.; Bochiolo, M.; Genovesi, I.

    2009-01-01

    We reviewed the calibration procedures of gamma-ray spectrometry with particular emphasis to factors that affect accuracy, detection limits and background radiation in field measurements for dosimetric and radon potential mapping. Gamma-ray spectra were acquired in western Liguria (Italy). The energy windows investigated are centred on the photopeaks of 214 Bi (1.76 MeV), 208 Tl (2.62 MeV) and 40 K (1.46 MeV). The inferred absorbed dose rate and the radon flux are estimated to be lower than 60 nGy h -1 and 22 Bq m -2 h -1 , respectively.

  15. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  16. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  17. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  18. Environmental gamma-ray dose measurements with thermoluminescence dosemeters (TLD) and environmental radiation characteristics

    International Nuclear Information System (INIS)

    Kanematsu, Seiko

    1999-01-01

    It is important to evaluate environmental gamma-ray exposure both at work and home in order to assess people's collective dosages. Environmental gamma radiation was measured for air-absorbed dose with a thermoluminescence dosemeter at various points in the workplace and Ningyotoge, and workplace radiation characteristics were analyzed. From the results, the public dose due to gamma rays generated artificially was assessed to be sufficiently lower than the annual limit. For indoor environments of the workplace, the maximum dosage rate among measured values was 97 nGy/h and the minimum value was 70 nGy/h, the average over one year was 83 nGy/h. The average annual outdoor dosage for a year was 82 nGy/ h. In Ningyotoge, the maximum was 103 nGy/h, minimum 60 nGy/h, and average 88 nGy/h. These values depend on the nature of the soil and weather factors, showing higher values in the summer than in the winter in the workplace. There was no significant difference in the dosage rate in houses and the workplace. (author)

  19. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  20. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  1. Experimental measures of the energy rate absorbed in the aluminium and the comparison with the calculation using factors of dose and carrier of electrons by means of MCNP code

    International Nuclear Information System (INIS)

    Federico, Claudio A.; Vieira, Wilson J.; Rigolon, Leda S.Y.; Geraldo, Luiz P.

    2000-01-01

    In this paper are presented the results of a Monte Carlo calculation for the energy deposition rate in aluminum plates, when a collimated beam of gamma-rays produced by thermal neutrons capture in nickel target passes through them. The absorbed dose rate as a function of the aluminum thickness crossed by the gamma beam has been measured by using CaSO e :Dy thermoluminescent dosimeters. The capture gamma ray beam was extracted from a tangential beam tube of the IPEN's IEA-R1 2MW research reactor. The absorbed dose calculation was performed employing the Monte Carlo N-particle transport code (MCNP) and two methods of calculation: the simulated gamma ray flux multiplied by a dose conversion factor, and the simulated electron flux multiplied by the collision linear energy loss. The calculation results obtained by the electron transport have shown a good agreement with the experimental measurements. For deeper layers (more than 10 mm aluminum thickness), the calculation using the gamma ray flux multiplied by dose conversion factors, as well the calculation employing the electron transport, exhibit the same decreasing trade observed in experimental data, differing by a normalization factor of approximately 1.4. However, for layers nearer the material surface, the calculation using photon flux produces an overestimation of that using the electron transport as well as of the experimental results. (author)

  2. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  3. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  4. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  5. 122 Contribution à l'étude de dose due à la radioactivité gamma du ...

    African Journals Online (AJOL)

    BRIANT

    Le but de ce travail est d'étudier la radioactivité gamma des sols sur la rive de la baie des français et de déterminer ..... Tableau 3: Activités moyennes dans le sol et débit de dose absorbée à l'air libre .... Sur le bord de la baie, nous constatons.

  6. Validation of a model for calculating environmental doses caused by gamma emitters in the soil

    International Nuclear Information System (INIS)

    Ortega, X.; Rosell, J.R.; Dies, X.

    1991-01-01

    A model has been developed to calculate the absorbed dose rates caused by gamma emitters of both natural and artificial origin distributed in the soil. The model divides the soil into five compartments corresponding to layers situated at different depths, and assumes that the concentration of radionuclides is constant in each one of them. The calculations, following the model developed, are undertaken through a program which, based on the concentrations of the radionuclides in the different compartments, gives as a result the dose rate at a height of one metre above the ground caused by each radionuclide and the percentage this represents with respect to the total absorbed dose rate originating from this soil. The validity of the model has been checked in the case of sandy soils by comparing the exposure rates calculated for five sites with the experimental values obtained with an ionisation chamber. (author)

  7. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  8. Radon-222 related influence on ambient gamma dose.

    Science.gov (United States)

    Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D

    2018-04-03

    Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Kulwinder Singh, E-mail: ksmann6268@gmail.com [Department of Applied Sciences, Punjab Technical University, Kapurthala 144601 (India); Department of Physics, D.A.V. College, Bathinda 151001, Punjab (India); Heer, Manmohan Singh [Department of Physics, Kanya Maha Vidyalaya, Jalandhar 144001 (India); Rani, Asha [Department of Applied Sciences, Ferozpur College of Engineering and Technology, Ferozshah, Ferozpur 142052 (India)

    2015-10-11

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μ{sub m}); half value layer (HVL); tenth value layer (TVL); effective atomic number (Z{sub eff}), electron density (N{sub el}), effective atomic weight (A{sub eff}) and buildup factor. For gamma rays, the accurate measurements of μ{sub m} (cm{sup 2} g{sup −1}) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μ{sub m}. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μ{sub m} of six low-Z (10gamma-ray energies 661.66 keV, 1173.24 keV and 1332.50 keV. A computer program (GRIC2-toolkit) was designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of μ{sub m} was observed for all absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays. - Highlights: • Optimum thickness value is 0.5 mfp for low-Z absorbers in energy range 662–1332 keV. • For accurate measurement of μ{sub m} absorber's thickness should be ≤optimum thickness. • GRIC2-toolkit is useful for γ-ray shielding analysis of composite materials.

  10. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  11. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Silva S, A.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  12. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  13. Data for absorbed dose calculations for external sources and for emitters within the body

    International Nuclear Information System (INIS)

    Hep, J.; Valenta, V.

    1976-01-01

    Tables give data for the calculation of absorbed doses from radioactivity sources accumulated in individual body organs. The tables are arranged in such manner that the gamma energy (J) absorbed in 1 kg of target organ (19 organs and total body) are given for 18 source organs (16 different organs, total doby and surrounding air) resulting from 1 decay event, this for more than 250 radioisotopes evenly distributed in the source organ (1 J/kg=100 rad). Also given are the energies of alpha and beta radiations related to one decay. In tables having the surrounding air as the source it is assumed that the intensity of the external source is 1 decay per 1 m 3 of surrounding air which is constant in the entire half-space. The tables are only elaborated for radioisotopes with a half-life of more than 1 min. (B.S.)

  14. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  15. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  16. Influence of the temperature in the measurement of the gamma automatic probe Gamma Tracer; Influencia de la temperatura en la medicion de la sonda gamma automatica Gamma Tracer

    Energy Technology Data Exchange (ETDEWEB)

    Caveda R, C.A.; Dominguez L, O.; Alonso A, D. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba); Montalvan E, A.; Fabelo B, O. [CIAC, Ave. Finlay Km 2 1/2, Rpto. Puerto Principe, Camaguey 70800 (Cuba)]. e-mail: caveda@cphr.edu.cu

    2006-07-01

    In the following work an analysis of the existent relationship among the measurement of the absorbed dose rate in air due to the environmental gamma radiation and the temperature, magnitudes measured to intervals of 10 minutes by the gamma probe Gamma Tracer located in the post of occident of the National Net of Environmental Radiological Surveillance (RNVRA), in the Center of Protection and Hygiene of the Radiations (CPHR) is made. For it its were analyzed near 100,000 measurements corresponding to the period 2004-2005. For a better processing and interpretation of the data, these were analyzed with one frequency time zone and monthly using the Gamma Red software to which was necessary to add it some options. Finally it was submitted the probe to a heating process inside a stove. The results of the carried out experiments confirmed that the absorbed dose rate in air due to the environmental gamma radiation depends potentially of the probe temperature in the range of environmental temperature to which is subjected daily the same one. (Author)

  17. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  18. Gamma Radiation Doses In Sweden

    International Nuclear Information System (INIS)

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-01-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222 Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings

  19. Photon spectrum and absorbed dose in brain tumor.

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  1. Absorbed dose distributions in patients with bone metastases from hormone refractory prostate cancer treated with Re-186 HEDP

    International Nuclear Information System (INIS)

    Denis Bacelar, A.M.; Dearnaley, D.P.; Divoli, A.; Chittenden, S.; Du, Y.; Flux, G.D.; O'Sullivan, J.M.

    2015-01-01

    Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution

  2. Two Dimensional Verification of the Dose Distribution of Gamma Knife Model C using Monte Carlo Simulation with a Virtual Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.

  3. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  4. Study of the contribution of X-ray and gamma photons to the measured exposure dose

    International Nuclear Information System (INIS)

    Andriampanarivo, H.L.H.

    2000-01-01

    The aim of this work was to study the contribution of X-rays and gamma radiation to the measured dose in the city of Antananarivo. The annual indoor absorbed dose was studied as well. Measurements were carried out in twelve sites, namely public schools and churches. The mean dose rate lies between (0.34±0.03)μSv/h and (0.38±0.04)μSv/h for most of the sites. Two of them showed values between (0.40±0.04)μSv/h and (0.30±0.03)μSv/h. Mean indoor dose rate is of (0.36±0.04)μSv/h and the annual absorbed dose is (3.16±0.32)mSv/person. Indoor measurements showed mean integral values ranging from (277.22±0,22)cps to (733.66±0,37)cps. The lowest mean count rate is (277.22±0,22)cps, measured in the AMARO site, whereas the highest are (733,66±0,37)cps, (697,81±0,36)cps and (689,32±0,36)cps measured in ALO0 , AKELY, and MASINA respectively. [fr

  5. Absorbed body dose simulation in Thyroid cancer therapy using MCNP4Cand ITScodes and comparison to experimental results

    International Nuclear Information System (INIS)

    Hadad, K.; Gorji, Y.

    2004-01-01

    Two standard particle transport codes of MCNP4C and integrated tiger series were used to estimate the total body dose in a thyroid cancer therapy study, with I-131 as the radionuclide source. Human body was modeled by water and soft tissue ellipsoids. Phantoms' dimensions were selected according to Brow nell recommendation. Absorbed fractions were calculated by both codes for different phantoms and for gammas with 0.364 MeV energy, which has the highest fraction in I-131 emitting gammas. Results were compared to the data published by Brow nell et.al.. Figure 1 shows the results of MCNP4C and Integrated Tiger Series with results published by Brow nell et. al.

  6. Radiation absorbed dose estimate for Rb-82 using in vivo measurements in man

    International Nuclear Information System (INIS)

    Ryan, J.; Harper, P.; Stark, V.; Peterson, E.; Lathrop, K.

    1984-01-01

    Radiation absorbed doses from intravenous Rb-82 (t 1/2 = 75 sec) were calculated by conjugate counting in 2 healthy adult men aged 27 and 23. Following an i.v. injection of a carefully calibrated amount of Rb-82, an organ of interest was imaged with a gamma camera equipped with a rotating tungsten collimator and data were collected in 10 second frames. Counts in the region of interest were corrected for adjacent background. Imaging was repeated from the opposite side of the body after a second injection. A calibrated reference source of Ge-68 placed on the body over the organ was similarly imaged in the absence of the rubidium activity. The integrated time activity curve in uCi-hours was obtained by comparing the observed kidney net conjugate counts with the reference source conjugate counts which represented a known number of uCi-hours. The organ self doses to the kidneys, liver, lungs, heart, and testes were determined by this technique which eliminated the effects of attenuation. Total absorbed doses to organs from all sources were calculated using the MIRD formulation and the averages of the 2 determinations (mrads/mCi) are as follows: heart (walls) 6.6; kidneys 31.3; liver 4.4; lungs 7.3; testes (1 subject only) 2.4; red marrow 1.7; and whole body 1.9. The highest dose is to the kidneys, but in an older subject (68 yr old man) the measured self dose to the left kidney was 16 mrads/mCi. These data are consistent with the decline in renal blood flow which occurs with increasing age and decreases renal exposure in older patients at increased risk of acute coronary disease who undergo myocardial perfusion imaging with Rb-82

  7. Assessment of absorbed dose to thyroid, parotid and ovaries in patients undergoing Gamma Knife radiosurgery

    International Nuclear Information System (INIS)

    Hasanzadeh, H; Sharafi, A; Verdi, M Allah; Nikoofar, A

    2006-01-01

    Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 ± 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 ± 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 ± 15.1 cGy, 9.15 ± 3.89 cGy, 0.47 ± 0.3 cGy and 0.53 ± 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours

  8. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba; Automatizacion del monitoreo en tiempo real de la tasa de dosis absorbida en aire debido a la radiacion gamma ambiental en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez L, O; Capote F, E; Carrazana G, J A; Manzano de Armas, J F; Alonso A, D; Prendes A, M; Zerquera, J T; Caveda R, C A [CPHR, Calle 20, No. 4113 e/41 y 47, Playa, La Habana, 11300, A.P. 6195 C.P. 10600 (Cuba); Kalberg, O [Swedish Radiation Protection Institute (SSI) (Sweden); Fabelo B, O; Montalvan E, A [CIAC, Camaguey (Cuba); Cartas A, H [CEAC, Cienfuegos (Cuba); Leyva F, J C [CISAT (Cuba)

    2006-07-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  9. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  10. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  11. Gamma factors of an ambulatory source; Factores gamma de una fuente ambulatoria

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A; Vega C, H R; Manzanares A, E; Salas L, M A; Hernandez D, V M [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Barquero, R [Hospital Universitario del Rio Hortega, E-47010 Valladolid (Spain)

    2007-07-01

    Some of the procedures for diagnostic or treatment used in the medicine use radioactive materials as the I{sup 131}. By means of Monte Carlo methods were calculated the doses in the internal organs of a woman, with three months of pregnancy, due to the radioiodine captured by her thyroid, as well as to 1 meter of the gland. A three-dimensional mathematical model of the body of a woman was used and by means of Monte Carlo, the radioiodine photons were transported isotropically from the thyroid toward the whole body and was calculated the absorbed dose by their internal organs, also the Kerma in air (K) was determined and the environmental equivalent dose (H{sup *}(10)) at 1 m of the gland. Two activity factors at dose were determined, Gamma Factors that it allows to estimate the dose that the patient produces to people to its around. Of the gamma radiation that emits the I{sup 131} in the thyroid was found that the thymus receives the biggest dose while the uterus is the organ that smaller dose receives. The determined gamma factors were: {gamma}{sub KAire} = 56 {mu}Gy-m{sup 2}-h{sup -1}-GBq{sup -1}, and {gamma}{sub H}{sup *}{sub (10)} = 73 {mu}Sv-m{sup 2}-h{sup -1}-GBq{sup -1}. The distribution of the absorbed dose by the internal organs is attributed to the relative distance among the thyroid and the other organs, to the inter-organs shielding, its size and to its elementary composition. The {gamma}{sub KAire} and {gamma}{sub H}{sup *}{sub (10)} factors allow to estimate the exposure that the patient produces on the personnel to its around. With this, the nuclear medicus, the medical physicist or the one responsible of the radiological safety in the hospital can give more precise indications on the behavior of people around the patient. (Author)

  12. Determination of absorbed dose to the lens of eye from external sources

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-01-01

    The methods of determining absorbed dose distributions in human eyeball by means of the experiments and available theories have been reported. A water phantom was built up. The distributions of beta dose were measured by an extrapolation ionization chamber at some depths corresponding to components of human eyeball such as cornea, sclera, anterior chamber and the lens of eye. The ratios among superficial absorbed dose (at 0.07 mm) and average absorbed doses at the depths 1,2,3 mm are obtained. They can be used for confining the deterministic effects of superficial tissues and organs such as the lens of eye for weakly penetrating radiations

  13. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  14. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  15. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  16. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  17. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  18. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  19. Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model isoaid AdvantageTM IAPd-103A

    International Nuclear Information System (INIS)

    Poundra Setiawan; Suharyana; Riyatun

    2015-01-01

    Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model IsoAid Advantage TM IAPd-103A has been conducted. 103 Pd used as a radioactive source in the seed implant and it has energy gamma emission 20,8 keV with half live 16,9 days and has activity 4 mCi. The prostate cancer is modeled with spherical and it has radius 3 cm, after planting the seed implant 103 Pdover 24,4 days, prostate cancer has absorbed dose 2,172Gy. Lethal dose maximum use 103 Pd is 125 Gy and it was reached with 59 seeds. (author)

  20. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  1. Influence of the temperature in the measurement of the gamma automatic probe Gamma Tracer

    International Nuclear Information System (INIS)

    Caveda R, C.A.; Dominguez L, O.; Alonso A, D.; Montalvan E, A.; Fabelo B, O.

    2006-01-01

    In the following work an analysis of the existent relationship among the measurement of the absorbed dose rate in air due to the environmental gamma radiation and the temperature, magnitudes measured to intervals of 10 minutes by the gamma probe Gamma Tracer located in the post of occident of the National Net of Environmental Radiological Surveillance (RNVRA), in the Center of Protection and Hygiene of the Radiations (CPHR) is made. For it its were analyzed near 100,000 measurements corresponding to the period 2004-2005. For a better processing and interpretation of the data, these were analyzed with one frequency time zone and monthly using the Gamma Red software to which was necessary to add it some options. Finally it was submitted the probe to a heating process inside a stove. The results of the carried out experiments confirmed that the absorbed dose rate in air due to the environmental gamma radiation depends potentially of the probe temperature in the range of environmental temperature to which is subjected daily the same one. (Author)

  2. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  3. Radiation absorbed dose and expected risk in head and neck tissues after thyroid radioiodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, A [National Center for Nuclear and Radiation Control, AEA., Cairo (Egypt); Farag, H I [National Cancer instiute, Cairo University, Cairo (Egypt); Saleh, A [Al-hussien Hospital, Al-Azhar University, Cairo (Egypt)

    1997-12-31

    Measurement of absorbed dose in head and neck phantom after applying I-131 therapeutic dose for the treatment of thyroid malignancies was conducted. The measurement were carried out at several sites of phantom using TL dosimeters. The absorbed doses were also measured on the skin of four patients during their administration of I-131 therapeutic doses 1.332 GBq (36 mci) I-131. The measurements were taken over 69 hours exposure at different sites of phantom. The same measurements were carried out on the four patients. At five sites of the patients head and neck, the absorbed dose were measured and compared with that measured on the phantom. The values measured are discussed in the light of the published individual absorbed doses in the organs by ICRP tables. High absorbed doses were absorbed in the different sites of the head and neck during the I-131 therapy (0.14-9.68 mGy/mCi). 3 figs., 2 tabs.

  4. Primordial Radionuclides Distribution and dose Evaluation in Udagamandalam Region of Nilgiris in India

    International Nuclear Information System (INIS)

    Manikandan, N. Muguntha; Selvasekarapandian, S.; Sivakumar, R.; Meenakshisundaram, V.; Raghunath, V. M.

    2001-01-01

    The activity concentration of primordial radionuclides i.e., 238 U series, 232 Th series and 40 K, in soil samples collected from Udagamandalam environment, have been measured by employing NaI (TI) Gamma ray Spectrometer. The absorbed gamma dose rate has also been simultaneously measured by using both environmental radiation dosimeter at each soil sampling location (ambient gamma dose) as well as from the gamma dose derived from the activity concentration of the primordial radionuclides. The results of activity concentration of each radionuclides in soil, absorbed dose rate in air due to soil activity and possible cosmic radiation at each location along with human effective dose equivalent for Udagamandalam environment are presented and discussed

  5. Primordial Radionuclides Distribution and dose Evaluation in Udagamandalam Region of Nilgiris in India

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, N. Muguntha; Selvasekarapandian, S.; Sivakumar, R.; Meenakshisundaram, V. [Bharathiar Univ., Coimbatore (India); Raghunath, V. M. [Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2001-09-15

    The activity concentration of primordial radionuclides i.e., {sup 238}U series, {sup 232}Th series and {sup 40}K, in soil samples collected from Udagamandalam environment, have been measured by employing NaI (TI) Gamma ray Spectrometer. The absorbed gamma dose rate has also been simultaneously measured by using both environmental radiation dosimeter at each soil sampling location (ambient gamma dose) as well as from the gamma dose derived from the activity concentration of the primordial radionuclides. The results of activity concentration of each radionuclides in soil, absorbed dose rate in air due to soil activity and possible cosmic radiation at each location along with human effective dose equivalent for Udagamandalam environment are presented and discussed.

  6. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    several points of the irradiation chamber. It is found that the calculated horizontal dose distribution agrees with the measured data within 5% deviation. The calculated vertical dose distribution generally agrees well with the measured data, but there exist large discrepancies between the calculated and measured data at some points. It is found that these discrepancies have originated from the MOSFET dosimeters used rather than from the computation models. The computed results show a smooth pattern of the dose distribution while the measured data show a very irregular pattern which seems very unnatural. It is deemed that the some of the dosimeters have been inaccurately calibrated. The calculated doses behind a thick lead shield agree with the data measured with ion chamber within 4% deviation. The calculated absorbed doses delivered to the biological samples agrees with the measured data within 5% deviation. The effect of different tally options dose not show a consistent pattern. In some points one tally option agrees better with the measured data while in other points another tally option agrees better. The gamma ray energy spectra for a BGO scintillator calculated with the MCNPX computation model show the full energy peaks more prominent as the detector is closer to the source. The heights of full energy peaks become lower behind the lead shield due to the interference of the scattered gammas

  7. Use of gamma irradiation for microbial inactivation of buckwheat flour and products, 8

    International Nuclear Information System (INIS)

    Muramatu, Nobuyuki; Ohinata, Hiroshi; Karasawa, Hideyuki; Oike, Terutake; Ito, Hitoshi; Ishigaki, Isao.

    1991-01-01

    Effects of irradiation at 3.0-7.0 kGy with 2 MeV electron beams were investigated on the number of microorganisms and quality of buckwheat flour. Electron beams and gamma-rays were compared in terms of the effects on the quality of buckwheat flour. The results were as follows. (1) Electron beams at 3 kGy reduced the number of microorganisms almost to the same level as gamma-rays. Oxygen content in buckwheat flour had no effect on inactivation of microorganisms by irradiation with electron beams and gamma-rays. (2) Peroxide-value (POV) of lipid in buckwheat flour increased with absorbed dose of gamma-rays and electron beams. The increase of POV was suppressed by the usage of oxygen absorber. The color change of buckwheat flour was suppressed by the usage of oxygen absorber as well. Acid-value (AV) of lipid in buckwheat flour was not changed by irradiation at high dose with gamma-rays or electron beams. (3) Maximum torque in Farinograph test of dough prepared from irradiated buckwheat flour decreased with increase of absorbed dose of electron beams. However, oxygen absorber suppressed the change of these properties induced by irradiation. (4) The usage of oxygen absorber resulted in a high sensory score of noodles from irradiated buckwheat flour with small changes of color, flavor and texture. (author)

  8. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  9. Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Kessler, C.; Burns, D.T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. (authors)

  10. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  11. Absorbed dose from a beta source as shown by thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Wintle, A.G.; Aitken, M.J.

    1977-01-01

    The depth-dose curve was obtained for a 90 Sr- 90 Y beta source using a fine grain TL phosphor to measure the observed dose, aluminium absorbers being interposed between the source and the detector; the curve went through a maximum at an absorber thickness of about 40 mg cm -2 . This curve was then used to predict the average dose rate to various thicknesses of calcium fluoride which has a similar absorption characteristic to aluminium; these values were compared with experimentally determined dose rates. This work was done in connection with thermoluminescence dating of flint and calcite in archaeology and geology. (author)

  12. External exposure level from natural radiation and population dose in Gansu province

    International Nuclear Information System (INIS)

    Guo Shanxiang; Li Fuzeng; Jiao Yufang

    1985-01-01

    The resultts of measurement of absorbed dose rate in air from natural gamma radiation in Gansu measured with FD-71 scintillation radiometers are reported in this paper. Sketch maps of distribution of absorbed dose rates from natural radiation in this province are also presented. The mean values of absorbed rates in air from terrestrial gamma radiation for outdoors and indoors are 0.7 mGy/a (range 0.32 to 1.11 mGy/a) and 1.02 mGy/a (range 0.73 to 1.4 mGy/a), respectively. The annual effective dose equivalent from terrestrial gamma radiation to population in this province is estimated to be 1,14 mSv

  13. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  14. Cellular response to low Gamma-ray doses

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E; Vega C, H R; Leon, L.C. de . [Unidades Academicas de Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Rebolledo D, O; Radillo J, F [Facultad de Ciencias Biologicas y Agropecuarias de la Universidad de Colima, Colima (Mexico)

    2002-07-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  15. Cellular response to low Gamma-ray doses

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Leon, L.C. de; Rebolledo D, O.; Radillo J, F.

    2002-01-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  16. FTIR spectroscopy as an alternative tool for high gamma dose dosimetry using P(VDF-TrFE) fluorinated copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S.; Liz, Otavio S., E-mail: asm@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline homopolymer and some of its fluorinated copolymer has demonstrated to have sensitiveness to high doses of ionizing radiation. We have recently proposed a semicrystalline fluorinated PVDF copolymer, the poly(vinylidene-trifluorethylene) [P(VDF-TrFE], as a candidate for measuring larger dose ranges. In fact, in these copolymers the optical absorption peak at 274 nm has been used to measure gamma doses ranging from 1.0 to 100.0 kGy and the melting latent heat, collected by differential scanning calorimetry (DSC), have been used to measure gamma doses from 1.0 to 1,000.0 kGy. In this paper, the infrared stretching vibration of radio-induced in-chain unsaturations (CH=CF) in P(VDF-TrFE) copolymers has been considered as an alternative tool for high dose dosimetric purposes. FTIR spectroscopic data revealed two optical absorption bands at 1754 cm{sup -1} and 1854 cm{sup -1} whose intensities are unambiguously related to gamma delivered doses ranging from 100.0 kGy to 1,000.0 kGy. Fading was evaluated one month after irradiation. The results indicate that the sample dose evaluation should be performed in the first two hours after being exposed to the radiation beam. The radio-induced formation of unsaturations was also investigated by ultraviolet and visible spectroscopy, which has confirmed the gradual increase of conjugated C=C bonds with the absorbed dose. Our results indicate that quantitative analysis of FTIR absorption bands is a useful tool to perform a product end-point dosimetry in radiation processing facilities that use high gamma dose irradiation. (author)

  17. The absorbed dose to blood from blood-borne activity

    International Nuclear Information System (INIS)

    Hänscheid, H; Fernández, M; Lassmann, M

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10 −11  Gy·s −1 ·Bq −1 ·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1–1.2·10 −11  Gy·s −1 ·Bq −1 ·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m. (paper)

  18. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  19. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    Science.gov (United States)

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  1. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    Institute of Scientific and Technical Information of China (English)

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  2. Nature of gamma rays background radiation in new and old buildings of Qatar University

    International Nuclear Information System (INIS)

    Al-Houty, L.; Abou-Leila, H.; El-Kameesy, S.

    1987-01-01

    Measurements and analysis of gamma-background radiation spectrum in four different places of Qatar University campus were performed at the energy range 10 keV-3 MeV using hyper pure Ge-detector. The dependence of the detector absolute photopeak efficiency on gamma-ray energies was determined and correction of the data for that was also done. The absorbed dose for each gamma line was calculated and an estimation of the total absorbed dose for the detected gamma lines in the four different places was obtained. Comparison with other results was also performed

  3. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    International Nuclear Information System (INIS)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P.; Rojas P, E.; Marquez P, F.

    2015-10-01

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe 133 or Tc 99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133 Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133 Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc 99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc 99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  4. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  5. Determining absorbed dose of Ramsar people from natural radioactivity

    International Nuclear Information System (INIS)

    Ismaieli; Abdolreza

    1999-01-01

    Radiation exposure versus natural resources of environment is in external form. Especially, in some regions of the world radionuclides assembling in soils caused background of high radioactivity. Ramsar is one of these regions. The main purpose is to estimate gamma radiation exposure inside and outside of residential buildings in Ramsar and the suburbs and to present exposure map of Ramsar; also estimating internal exposure of radon gas and obtaining effective dose of Ramsar population. There for, SAPOS 90M gamma monitor and RSS-112 and Na I(Tl) scintillator were used. To determine the concentration of 226 Ra, 232 Th, 40 K in soil and building materials gamma spectrometer and Germanium detector were used. In addition to exposure rate of different sections of Ramsar and its suburbs, 200 residential houses with high exposure rate and more than 600 ones with normal exposure rate were determined. The results of measurement were respectively 11μRh -1 to 3 μRh -1 in indoor region and 11μRh -1 to 2μR -1 in indoor regions. Annual gamma exposure was 5.99+-18.01 mSv. Maximum of annual gamma exposure rate of this region is 131 mSv. The estimated radon dose, through previous measurement is approximated to 14.67+-39.14 mSv annually. normal exposure is respectively 8μRh -1 to 17μRh -1 in outdoor regions and 10μRh -1 to 130μRh -1 in indoor regions. Annual exposure rate of gamma radiation is 0.68+-0.01 mSv and estimated radon gas from indoor and outdoor exposure for effective dose is 2.34+ 0 .02 mSv

  6. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  7. Absorbed dose to the patient by computerized whole body X-ray tomography

    International Nuclear Information System (INIS)

    Krauss, O.; Schuhmacher, H.

    1977-01-01

    The absorbed dose to the patient was measured for several medical investigations by computerized whole body scanning. An Alderson-phantom mounted with LiF-TLD was irradiated with a Delta-Scan (Ohio-Nuclear, 120 kV, 30 mA). The integral dose to the brain during a full examination (6 scans, filtration 3 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 3.2 rd and at the exit 0.6 rd. The dose to the eyes is 0.7 rd and to the thyroid gland 0.03 rd. The integral dose to the trunk (5 scans in the region of liver and kidneys, filtration 6 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 2.4 rd and at the exit 0.25 rd. The dose to the gonads is less than 2 and 4 mrd if the distance between the last scan and the gonads is more than 15 cm

  8. Gamma dose rates to body organs from immersion in a semi-infinite radioactive cloud; an alternate approach using absorbed fraction data for internal radionuclides

    International Nuclear Information System (INIS)

    Gillespie, F.C.

    1982-01-01

    This note shows that reasonable estimates of absorbed γ-dose rates for specific organs arising from whole body immersion in semi-infinite radioactive clouds may be obtained very simply from well known data on absorbed fractions for mono-energetic γ-sources uniformly distributed in the whole body. (author)

  9. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  10. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  11. Mapping the terrestrial air-absorbed gamma dose rate based on the data of airborne gamma-ray spectrometry in southern cities of China

    International Nuclear Information System (INIS)

    Xiong Shengqing; Fan Zhengguo; Wu Qifan; Wan Jianhua; Wang Nanping; Chu Xingming; Pei Shaoying; Zeng Lihui

    2012-01-01

    An environmental radioactivity survey by Airborne Gamma-ray Spectrometry (AGS) on a large scale was undertaken in Zhuhai Zone (ZZ) and Shenzhen Zone (SZ), which include major cities in southern China, covering areas of 3800 km 2 and 4660 km 2 , respectively. The estimated dose rates by AGS have been compared with observed results by ionization chamber and portable dosemeter. Maps of the terrestrial dose rate at 1m above ground level have been calculated based on the data of AGS. The mean dose rates are 84.37 ± 51.69 and 82.10 ± 32.98 nGy/h in ZZ and SZ, and the maximum rates are 343.11 and 368.36 nGy/h, respectively. Dose rates in some places are above 180 nGy/h; the areas covered where 149 km 2 in ZZ and 43 km 2 in SZ. The dominant geological conditions that evidently contribute to the radioactive anomalies are outcrops of Middle and Late Jurassic and Cretaceous biotitic-granite. The growth of industrialization and urbanization has dramatically altered radiation background. Stone mining results in the increase of radiation levels with maximum dose rates approaching 368.36 nGy/h in an open pit. The investigation results provide valuable background data and give a good example for mapping nationwide natural radiation terrestrial dose rates in China by AGS. (author)

  12. A study on mice exposure dose for low-dose gamma-irradiation using glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Jeong, Dong Hyeok; Son, Tae Gen; Kim, Jung Ki; Yang, Kwang Mo; Kang, Yeong Rok [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, Sang Hee [Dept. of Biomedical Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-12-15

    The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using {sup 137}C{sub s} irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological and Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

  13. Absorbed dose to the urinary bladder wall for different radiopharmaceuticals using dynamic S-values

    International Nuclear Information System (INIS)

    Andersson, M.; Minarik, D.; Mattsson, S.; Leide-Svegborn; Johansson, L.

    2015-01-01

    Full text of publication follows. Aim and background: the urinary bladder wall is a radiosensitive organ that can receive a high absorbed dose from radiopharmaceuticals used in diagnostic nuclear medicine. Current dynamic models estimate the photon and electron absorbed dose at the inner surface of the bladder wall. The aim of this work has been to create a more realistic estimation of the mean absorbed dose to the urinary bladder wall from different radiopharmaceuticals. This calculation also uses dynamic specific absorption fractions (SAF) that changes with bladder volume and are gender specific. Materials and Methods: the volume of the urinary bladder content was calculated using a spherical approximation with a urinary inflow of 1.0 ml/min and 0.5 ml/min during day and night time, respectively. The activity in the bladder content was described using a bi-exponential extraction from the body. The absorbed dose to the bladder wall was estimated using linear interpolation of SAF values from different bladder volumes, ranging from 10 ml to 800 ml. Administration of the activity was assumed to start at 09:00 with an initial voiding after 40 minutes and a voiding interval of 3.5 hours during the day. A six hour night gap, starting at midnight, with a voiding right before and after the night period, was used. Calculations were made, with the same assumptions, for an earlier dynamic bladder model and with a static SAF value from the ICRP/ICRU adult reference computational phantoms for a bladder containing 200 ml. Values for the absorbed dose per unit administered activity for 19 commonly used radiopharmaceuticals were calculated, e.g. 18 F-FDG, 99m Tc-pertechnetate, 99m Tc-MAG3 and 123 I-NaI. Results and conclusion: the results of the estimates of the absorbed doses to the inner bladder wall were a factor of ten higher than the estimates mean absorbed doses. The mean absorbed doses to the bladder wall were slightly higher for females than males, due to a smaller female

  14. Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions

    International Nuclear Information System (INIS)

    Geber, Therese; Gunnarsson, Mikael; Mattsson, Sören

    2011-01-01

    This study investigated the relationship between the absorbed dose to the lens of the eye and the absorbed dose at different measurement positions near the eye of interventional radiologists. It also visualised the dose distribution inside the head, both when protective eyewear were used and without such protection. The best position for an eye lens dosimeter was found to be at the side of the head nearest to the radiation source, close to the eye. Positioning the dosimeter at the eyebrow could lead to an underestimation of the lens dose of as much as 45%. The measured dose distribution showed that the absorbed dose to the eye lenses was high compared to the other parts of the head, which stresses the importance of wearing protective eyewear. However, many models of eyewear were found to be deficient as the radiation could slip through at several places, e.g. at the cheek. The relationship between the absorbed dose to the lens and the kerma-area-product (P KA ) delivered to the patient was also studied.

  15. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  16. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  17. beta. and. gamma. -comparative dose estimates on Enewetak Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L. (California Univ., Livermore (USA). Lawrence Livermore National Lab.)

    1982-05-01

    Enewetak Atoll in the Pacific is used for atmospheric testing of U.S. nuclear weapons. Beta dose and ..gamma..-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the ..beta.. and low energy ..gamma..-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a ..beta..-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to ..beta..- or low energy ..gamma..-contribution. The contribution at any particular site, however, is reduced by vegetation. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey. Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the ..beta..'s or low energy ..gamma..'s, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  18. Localization of the gamma-radiation sources using the gamma-visor

    Directory of Open Access Journals (Sweden)

    Ivanov Kirill E.

    2008-01-01

    Full Text Available The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures allowed localizing the new gamma-source.

  19. Localization of the gamma-radiation sources using the gamma-visor

    International Nuclear Information System (INIS)

    Ivanov, K. E.; Ponomaryev-Stepnoi, N. N.; Stepennov, B. S.; Teterin, Y. A.; Teterin, A. Y.; Kharitonov, V. V.

    2008-01-01

    The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures al lowed localizing the new gamma-source. (author)

  20. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  1. Evaluation of the absorbed dose in odontological computerized tomography

    International Nuclear Information System (INIS)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da; Khoury, Helen J.

    2011-01-01

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  2. Real-time measurement and monitoring of absorbed dose for electron beams

    Science.gov (United States)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  3. Real-time measurement and monitoring of absorbed dose for electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-10-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  4. Real-time measurement and monitoring of absorbed dose for electron beams

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-01-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators

  5. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  6. Electrical behavior research of silicon photo-cell used in online monitoring absorbed dose rate of γ-ray

    International Nuclear Information System (INIS)

    Yang Guixia; Li Xiaoyan; Fu Lan; Wu Wenhao; An You; Zeng Fansong

    2015-01-01

    The real-time online monitoring system for γ-ray absorbed dose rate was established to study the relationship between the photocurrent of semi-conductive silicon photo-cell BBZSGD-4 and γ-ray absorbed dose rate under the open circuit. The radioactive experiments in "6"0Co γ radiation field show that photo-cell BBZSGD-4 has good response to "6"0Co γ-ray, and their relationship accords with the linear law. The photocurrent of photo-cell can be up to 1.26 μA when the absorbed dose rate is 94.54 Gy/min. The relationship between photocurrent and the absorbed dose accords with exponential law when absorbed dose rate is 50 Gy/min, and the attenuation of photocurrent is 1% when the absorbed dose is 5445.8 Gy. Thus photo-cell BBZSGD-4 has the potential to be a real-time detector to detect low absorbed dose rate in "6"0Co γ radiation field. (authors)

  7. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  8. Absorbed dose measurement by the MIRD system in the 131-I treated Thyroid Cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woon; Lim, Sang Mu; Kim, Chang Hui; Kim, Ki Sub; Cho, Jong Sio; Jeong, Jin Sung; Park, Heung Kyu; Kwon, Oh Jin [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    Medical Internal Radiation Dose(MIRD) schema was developed for calculating the absorbed dose from the administrated radiopharmaceuticals. With the biological distribution data and physical properties of the radionuclide, we can estimated the absorbed dose by the MIRD schema. For the thyroid cancer patients received high dose 131-I therapy, the absorbed dose to the bone marrow is limiting factor to the administered dose and the duration of admission is determined by the retained activity in the whole body. To the monitoring of whole body radioactivity, we used Eberline Smart 200 system using ionization chamber as a detector. With the time activity (Author).

  9. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Torres, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J.; Andres, U.; Mendez, G.

    2003-01-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137 Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  10. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  11. Mapping the outdoor gamma dose rate in Indonesia

    International Nuclear Information System (INIS)

    Iskandar, Dadong; Syarbaini, Sutarman; Bunawas, Kusdiana

    2008-01-01

    Full text: Indonesia is the largest archipelago in the world, comprising five main islands - Java, Sumatra, Sulawesi, Kalimantan and Papua - as well as 30 archipelagoes totaling 17,508 islands with about 6000 of those inhabited. Mapping the outdoor gamma dose rate in Indonesia is a research project conducted by National Nuclear Energy Agency since 2005 aiming to produce a baseline data map as an overview for planning purposes. In these three years 4 main islands has been measured. The grid system has been used in the research. In Sumatra Island the grid is 50 x 50 km 2 , while in Java 40 x 40 km 2 , in Kalimantan 60 x 60 km 2 , and in Sulawesi 40 x 40 km 2 . The gamma dose rates have been measured by Mini Gamma Ray Spectrometer Model GR-130 made by Exploranium-Canada. Figure 1 shows the map of outdoor gamma dose rate in Indonesia. Range of dose rate are in Sumatra from 22,96 ± 0,46 n Sv/h to 186,08 ± 3,72 n Sv/h, in Java 11,32 ± 0,72 n Sv/h to 127,54 ± 6,14 n Sv/h, in Kalimantan 10.72 ± 8.32 n Sv/h to 349,48 ± 57,21 n Sv/h, and in Sulawesi 17.7 ± 11,5 n Sv/h to 467 ± 102 n Sv/h. The arithmetic and geometric mean of dose rate in Indonesia are 68 n Sv/h and 53 n Sv/h, respectively. In general, outdoor gamma dose rate in Indonesia is in a normal range. There are some regions have anomaly of gamma dose rate, for examples at North Sumatra 186.08 ± 3,72 n Sv/h (N 2.12727, E 99.80909), at West Kalimantan 349,48 ± 57,21 n Sv/h (S 1.39507, E 110.57584), at West Sulawesi 487 ± 103 n Sv/h (S 2.95781, E 118.86995), etc. These data is very useful as a radiation baseline in Indonesia. (author)

  12. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  13. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  14. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  15. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  16. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-12-01

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  17. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  18. Population doses from terrestrial gamma exposure in China

    International Nuclear Information System (INIS)

    Ren, T.; Wang, Z.; Zhu, C.

    1992-01-01

    In order to estimate terrestrial gamma radiation exposure three nationwide surveys have been completed since 1981. The population-weighted outdoor and indoor arithmetic means of gamma dose rate based on momentary dose rate measurements using a NaI(Tl) environmental radiation meter and high-pressure ionisation chamber are, respectively, 80.3 nGy.h -1 and 120 nGy.h -1 . Based on integrating dose measurement using TLD CaSO 4 /Dy they are 67 nGy.h -1 and 89 nGy.h -1 respectively, and based on natural radionuclides concentrations in soil, determined by gamma spectroscopy analyses, they are 72.8 nGy.h -1 and 102 nGy.h -1 , respectively. These surveys were conducted independently by different groups. The best estimations of population-weighted gamma dose rates in China, based on all these surveys, would be 70 nGy.h -1 and 98 nGy.h -1 for outdoors and indoors, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of 232 Th and 40 K in the soil of China are much higher than the world average estimated. (author)

  19. Measurement of absorbed doses near metal and dental material interfaces irradiated by x- and gamma-ray therapy beams

    International Nuclear Information System (INIS)

    Farahani, M.; Eichmiller, F.C.; McLaughlin, W.L.

    1990-01-01

    Soft-tissue damage adjacent to dental restorations is a deleterious side effect of radiation therapy associated with low-energy electron scatter from dental materials of high electron density. This study was designed to investigate the enhancement of dose to soft tissue (or water) close to high electron-density materials and to measure the detailed lateral and depth-dose profiles in soft-tissue-simulating polymer adjacent to planar interfaces of several higher atomic-number materials: 18-carat gold dental casting alloy; Ag-Hg dental amalgam alloy; Ni-Cr dental casting alloy; and natural human tooth structure. Results indicate that the dose-enhancement in 'tissue' is as great as a factor of 2 on the backscatter side adjacent to gold and a factor of 1.2 adjacent to tooth tissue, but is insignificant on the forward-scatter side because of the predominant effect of attenuation by the high-density, high atomic-number absorbing material. (author)

  20. Determination of dose factors for external gamma radiation in dwellings

    International Nuclear Information System (INIS)

    Maduar, M.F.; Hiromoto, G.

    2000-01-01

    A significant contribution to the global population exposure to ionizing radiation arises from natural sources, especially from radionuclides present in terrestrial crust. Human activities can eventually increase that exposure to significant levels, from the point of view of radiological protection. The presence of natural radionuclides in building materials may lead to an increment of both external and internal radiation exposure of the population. External exposure in dwellings arises from gamma-emitter radionuclides existing in the walls, floor and ceiling of their rooms. Mathematical models can be used to predict external dose rates inside the room, known the radionuclide concentration activities in dwelling constituents. This paper presents a methodology for theoretical evaluation of external gamma doses due to radionuclides present in the walls of an hypothetical standard room. The room is modeled as three pairs of rectangular sheets with finite thickness. Assessment of doses was performed through the application of photon transport model, taking in account self-absorption and radiation buildup. As the external dose due to a particular radionuclide is proportional to its activity concentration, results are presented as dose factors, defined as a ratio of absorbed dose (nGy.h -1 ) to the activity concentration (Bq.kg -1 ), for each radionuclide. The radionuclides were assumed to be uniformly distributed in the building materials. Calculations were performed for concrete walls and results are presented for 40 K, 226 Ra, and 232 Th, taking in account, for dose calculations, all gamma emitters from 226 Ra and 232 Th decay chains. Sensitivity of the model was estimated by varying four of its input parameters within a reasonable range of applicability, while leaving all other parameters at fixed selected values. The parameters studied and respective ranges of variation were: for thickness, 5 to 60 cm; for density, 0.5 to 4 g.cm -3 ; for the room length, 1.5 to 10 m

  1. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  2. Use of national metrological references of dose absorbed in water and application of the IAEA TRS nr 398 dosimetry protocol to high energy photon beams. BNM-LNHB-LCIE-SFPM working group

    International Nuclear Information System (INIS)

    Chauvenet, B.; Delaunay, F.; Dolo, J.M.; Le Roy, G.; Bridier, A.; Francois, P.; Sabattier, R.

    2003-01-01

    Metrological references of dose absorbed in water for high energy photon beams used in radiotherapy have been elaborated during the past years by national calibration laboratories, and these new references are the basis of recent dosimetry protocols. However, the passage from metrological references of air kerma to dose absorbed in water, as well as the practical application of new calibration opportunities for dosemeters in high energy X ray beams requires a specific attention to maintain the consistency of dose measurement references over the hospital site. In this respect, this guide aims at the application of these metrological references. It proposes recommendations for the application of metrological references in terms of dose absorbed in water on the hospital site with reference to their determination conditions and to the implementation of the new IAEA dosimetry protocol (TRS nr 398). Thus, this guide proposes an overview of metrological references in French calibration laboratories, presents calibration methods (air kerma in a cobalt 60 gamma photon beam, dose absorbed in water) and a comparison with the IAEA TRS 277 dosimetry protocol. It addresses various practical aspects, and discusses uncertainties

  3. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  4. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation

    International Nuclear Information System (INIS)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza

    2011-01-01

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  5. Cellular Stress to Low Gamma-ray Dose

    International Nuclear Information System (INIS)

    Manzanares-Acuna, E.; Vega-Carrillo, H. R.; Letechipia de Leon, C.; Guzman Enriquez, L. J.; Garcia-Talavera, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp 70 expression in human lymphocytes. the heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. when a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered through overexpression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the lymphocytes were isolated by ficoll-histopaque gradient. Experimental lots were irradiated in a ''137Cs gamma-ray. Hsp70 expression was found since 0.5 cGy, indicating a threshold to very low doses of gamma rays. (Author) 27 refs

  6. LiF thermoluminescence dosimetry for mapping absorbed dose distributions in the gamma ray disinfection of machine-baled sheep wool

    International Nuclear Information System (INIS)

    Dexi Jiang

    1985-01-01

    The measurement of absorbed dose distributions of 60 Co γ-rays in machine-baled sheep wool, which is disinfected of certain parasitic bacteria (e.g. Brucella bacilli) by γ-ray treatment, is summarized. The preparation and main physical properties of the LiF-TLD are described, as well as the shape, structure and the activity of the 60 Co source and typical dose distributions measured around the source in free air. The results of dose distributions measured by the LiF-TLD agreed within +-5% with those given by a calibrated ionization chamber. The exposure rates (units R/min) at three typical measurement points inside a bale of sheep's wool were found to be quite uniform: centre 3.8x10 3 (+-2.1%); upper region 3.9x10 3 (+-2.4%); lower region 3.9x10 3 (+-1.9%). (author)

  7. beta- and gamma-Comparative dose estimates on Eniwetok Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L.

    1982-05-01

    Eniwetok Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Eniwetok Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  8. The properties of two starch super absorbent polymers synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Wang Changbao; Zhao Yongfu; Li Lili; Ji Ping; Shi Yan; Ge Cailin; Wang Zhidong

    2013-01-01

    Two types of super absorbent polymers were synthesized from corn starch, wheat starch and acrylic acid under gamma irradiation, without any initiator. The water absorption capacity of the super absorbent products were studied. The results indicated that the prepared polymer from wheat starch per gram could absorb 755 g distilled water, 249 g tap water, and 80 g 0.9% NaCl; and the polymer from corn starch per gram could absorb 747 g distilled water, 238 g tap water, and 84 g 0.9% NaCl. The absorption capacity of the two polymers was decreased quickly at first and then slow down with the concentration of NaCl solutions increased. The two polymers have similar absorption capacity in pH value between 4 and 11 for distilled water and at temperature between 4 and 60℃ for distilled water. The two polymers have good water retention properties in high temperature and pressure conditions. (authors)

  9. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters

    OpenAIRE

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2014-01-01

    We developed a general model for the calculation of absorbed fractions in ellipsoidal volumes of soft tissue uniformly filled with alpha, beta and gamma emitting radionuclides. The approach exploited Monte Carlo simulations with the Geant4 code to determine absorbed fractions in ellipsoids characterized by a wide range of dimensions and ellipticities, for monoenergetic emissions of each radiation type. The so-obtained absorbed fractions were put in an analytical relationship with the 'general...

  10. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling

    International Nuclear Information System (INIS)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T.; Correa, Samanda Cristine Arruda; Rocha, Paula L.F.

    2011-01-01

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  11. Methodology comparison for gamma-heating calculations in material-testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A. [CEA, DEN, DER, Cadarache F-13108 Saint Paul les Durance (France); Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France)

    2015-07-01

    heating is represented by the physical quantity called absorbed dose (energy deposition induced by particle-matter interactions, divided by mass). Its calculation with Monte Carlo codes is possible but computationally expensive as it requires transport simulation of charged particles, along with neutrons and photons. For that reason, the calculation of another physical quantity, called KERMA, is often preferred, as KERMA calculation with Monte Carlo codes only requires transport of neutral particles. However, KERMA is only an estimator of the absorbed dose and many conditions must be fulfilled for KERMA to be equal to absorbed dose, including so-called condition of electronic equilibrium. Also, Monte Carlo computations of absorbed dose still present some physical approximations, even though there is only a limited number of them. Some of these approximations are linked to the way how Monte Carlo codes apprehend the transport simulation of charged particles and the productive and destructive interactions between photons, electrons and positrons. There exists a huge variety of electromagnetic shower models which tackle this topic. Differences in the implementation of these models can lead to discrepancies in calculated values of absorbed dose between different Monte Carlo codes. The magnitude of order of such potential discrepancies should be quantified for JHR gamma-heating calculations. We consequently present a two-pronged plan. In a first phase, we intend to perform compared absorbed dose / KERMA Monte Carlo calculations in the JHR. This way, we will study the presence or absence of electronic equilibrium in the different JHR structures and experimental devices and we will give recommendations for the choice of KERMA or absorbed dose when calculating gamma heating in the JHR. In a second phase, we intend to perform compared TRIPOLI4 / MCNP absorbed dose calculations in a simplified JHR-representative geometry. For this comparison, we will use the same nuclear data

  12. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  13. Absorbed dose in the fetus of a pregnant patient when I"1"3"1 (iodide/Tc"9"9"m (pertechnetate) is administered during thyroid studies

    International Nuclear Information System (INIS)

    Vasquez A, M.; Murillo C, V.; Arbayza F, J.; Sanchez S, P.; Cabrera S, C.

    2016-10-01

    The radiation absorbed dose in the fetus of a pregnant woman during thyroid studies is estimated through the analysis of the bio-kinetics of radiopharmaceuticals containing I"1"3"1 (iodide) or Tc"9"9"m (pertechnetate). MIRD formalism and its representation Cristy-Eckerman are used. The results indicate that the absorbed dose by the fetus of a woman of 3, 6 and 9 months of gestation due to Tc"9"9"m emissions is lower than that obtained by I"1"3"1; represent 34.7%, 6% and 3.5% of the dose generate by the iodide. The auto-dose in the fetus of a pregnant woman is mainly due to the local energy deposition of the beta and gamma emissions of I"1"3"1, being greater than the one reported by the gamma emissions and conversion electrons of the Tc"9"9"m, for fetuses of 6 and 9 months. The dose incorporated to the fetus due to the organs of the maternal tissues, which are part of the bio-kinetics, are basically due to the emission of its gamma photons and correspond to 38.50% /60.52% in fetuses of 3 months, 64.71% /12.43% in fetuses of 6 months and 69.79% /10.97% in fetuses of 9 months for the radiopharmaceuticals Tc"9"9"m (pertechnetate) / I"1"3"1 (iodide). The organs of bio-kinetics that contribute to the fetus dose are mainly due to the bladder, followed by the rest, and small intestine (fetuses of 3 months); of the rest, followed by the small intestine and bladder (fetuses of 6 months); of the bladder, followed by the small intestine and stomach (fetuses of 9 months) when using I"1"3"1; while for the Tc"9"9"m the bladder and rest contribute (fetuses of 3 months); of the placenta, followed by the rest and bladder (fetuses of 6 and 9 months). (Author)

  14. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  15. Population doses from terrestrial gamma exposure in China

    Energy Technology Data Exchange (ETDEWEB)

    Ren, T.; Wang, Z.; Zhu, C. (Ministry of Public Health, Beijing, BJ (China))

    1992-01-01

    In order to estimate terrestrial gamma radiation exposure three nationwide surveys have been completed since 1981. The population-weighted outdoor and indoor arithmetic means of gamma dose rate based on momentary dose rate measurements using a NaI(Tl) environmental radiation meter and high-pressure ionisation chamber are, respectively, 80.3 nGy.h[sup -1] and 120 nGy.h[sup -1]. Based on integrating dose measurement using TLD CaSO[sub 4]/Dy they are 67 nGy.h[sup -1] and 89 nGy.h[sup -1] respectively, and based on natural radionuclides concentrations in soil, determined by gamma spectroscopy analyses, they are 72.8 nGy.h[sup -1] and 102 nGy.h[sup -1], respectively. These surveys were conducted independently by different groups. The best estimations of population-weighted gamma dose rates in China, based on all these surveys, would be 70 nGy.h[sup -1] and 98 nGy.h[sup -1] for outdoors and indoors, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of [sup 232]Th and [sup 40]K in the soil of China are much higher than the world average estimated. (author).

  16. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  17. Effect of absorbed dose and storage length on electron paramagnetic resonance (EPR) signal strength in irradiated alfalfa seeds

    International Nuclear Information System (INIS)

    Li Naining

    2006-01-01

    A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h -1 in a self-shielded irradiator of 137 Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radicals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the alfalfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude decreased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to stabilize after half a month since the seeds were irradiated. the differences of the EPR signal strength between the irradiated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to determine whether the seeds have been irradiated or not is feasible, relatively fast and simple. (authors)

  18. Methods to verify absorbed dose of irradiated containers and evaluation of dosimeters

    International Nuclear Information System (INIS)

    Gao Meixu; Wang Chuanyao; Tang Zhangxong; Li Shurong

    2001-01-01

    The research on dose distribution in irradiated food containers and evaluation of several methods to verify absorbed dose were carried out. The minimum absorbed dose of treated five orange containers was in the top of the highest or in the bottom of lowest container. D max /D min in this study was 1.45 irradiated in a commercial 60 Co facility. The density of orange containers was about 0.391g/cm 3 . The evaluation of dosimeters showed that the PMMA-YL and clear PMMA dosimeters have linear relationship with dose response, and the word NOT in STERIN-125 and STERIN-300 indicators were covered completely at the dosage of 125 and 300 Gy respectively. (author)

  19. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Ryan, J. W.; Harper, P.V.; Stark, V.S.; Peterson, E.L.; Lathrop, K.A.

    1986-01-01

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  20. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, William H., E-mail: gourdin1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Girard, Sylvain [Laboratoire Hubert Curien − UMR CNRS 5516, 18 rue du Pr. Benoît Lauras, F-42000 Saint Etienne (France); Paillet, Philippe; Alozy, Eric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-11-15

    Highlights: • The effects of neutrons and gammas on PTFE are equivalent for a given absorbed dose. • A neutron fluence of 10{sup 13} n/cm{sup 2} corresponds to a gamma dose of 200 Gy. • The dose-to-fluence conversion factor is approximately 5 × 10{sup 10} n/(cm{sup 2}-Gy). • Irradiation in a low-oxygen environment enhances loads and elongations. • Mechanical properties of PTFE will deteriorate at a neutron fluence of 10{sup 13} n/cm{sup 2}. - Abstract: We establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  1. Dose estimative in operators during petroleum wells logging with nuclear wireless probes through computer modelling; Estimativa da dose em operadores durante procedimentos de perfilagem de pocos de petroleo com sondas wireless nucleares atraves de modelagem computacional

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson Monteiro de; Silva, Ademir Xavier da; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lima, Inaya C.B., E-mail: inaya@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto Politecnico do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil); Correa, Samanda Cristine Arruda, E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil); Rocha, Paula L.F., E-mail: ferrucio@acd.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ)., RJ (Brazil). Dept. de Geologia

    2011-10-26

    This paper evaluates the absorbed dose and the effective dose on operators during the petroleum well logging with nuclear wireless that uses gamma radiation sources. To obtain the data, a typical scenery of a logging procedure will be simulated with MCNPX Monte Carlo code. The simulated logging probe was the Density Gamma Probe - TRISOND produced by Robertson Geolloging. The absorbed dose values were estimated through the anthropomorphic simulator in male voxel MAX. The effective dose values were obtained using the ICRP 103

  2. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Boas, J.F.; Van der Gaast, H.

    1998-05-01

    The arrangements for the maintenance of the Australian standards for 60 Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90 Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90 Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90 Sr is confirmed. The usefulness of 90 Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau

  3. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    Energy Technology Data Exchange (ETDEWEB)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.; Daures, J.; Bordy, J. M., E-mail: jean-marc.bordy@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette F-91191 (France)

    2016-07-15

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAP measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.

  4. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  5. Population doses from terrestrial gamma exposure in China

    International Nuclear Information System (INIS)

    Ren, T.; Wang, Z.; Zhu, C.

    1993-01-01

    In order to estimate terrestrial gamma radiation exposures, three nationwide surveys have been completed since 1981. The population weighted outdoor and indoor arithmetic means of gamma dose rates based on momentary measurements using a NaI(T1) environmental radiation meter and a high pressured ionization chamber are 80.3 and 120 nGy.h -1 . The means based on integrating measurements using TLD natural radionuclides concentrations in soil, determined by gamma spectrometry analyses, are 72.8 and 102 nGy.h -1 , respectively. These surveys were conducted independently and equally representative. The best estimation of site-averaged and population weighted gamma dose rates in China, based on all these surveys, would be 70 and 98 nGy.h -1 for indoor and outdoor, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of 232 Th and 40 K in soil of China are much higher than the world average estimated. (author). 4 refs, 2 tabs

  6. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  7. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    Daures, J.; Ostrowsky, A.; Chauvenet, B.

    2002-01-01

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  8. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  9. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  10. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  11. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  12. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  13. Poker-camp: a program for calculating detector responses and phantom organ doses in environmental gamma fields

    International Nuclear Information System (INIS)

    Koblinger, L.

    1981-09-01

    A general description, user's manual and a sample problem are given in this report on the POKER-CAMP adjoint Monte Carlo photon transport program. Gamma fields of different environmental sources which are uniformly or exponentially distributed sources or plane sources in the air, in the soil or in an intermediate layer placed between them are simulated in the code. Calculations can be made on flux, kerma and spectra of photons at any point; and on responses of point-like, cylindrical, or spherical detectors; and on doses absorbed in anthropomorphic phantoms. (author)

  14. Practice for dosimetry for a self-contained dry-storage gamma-ray irradiator

    International Nuclear Information System (INIS)

    2002-01-01

    This practice outlines dosimetric procedures to be followed with self-contained dry-storage gamma-ray irradiators. If followed, these procedures will help to ensure that calibration and testing will be carried out with acceptable precision and accuracy and that the samples processed with ionizing radiation from gamma rays in a self-contained dry-storage irradiator receive absorbed doses within a predetermined range. This practice covers dosimetry in the use of dry-storage gamma-ray irradiators, namely self-contained dry storage 137 Cs or 60 Co irradiators (shielded free-standing irradiators). It does not cover underwater pool sources, panoramic gamma-ray sources such as those raised mechanically or pneumatically to irradiate isotropically into a room or through a collimator, nor does it cover self-contained bremsstrahlung x-ray units. The absorbed dose range for the use of the dry-storage self-contained gamma-ray irradiators covered by this practice is typically 1 to 10 5 Gy, depending on the application. The absorbed-dose rate range typically is from 10 -2 to 10 3 Gy/min. This practice describes general procedures applicable to all self-contained dry-storage gamma-ray irradiators. For procedures specific to dosimetry in blood irradiation, see ISO/ ASTM Practice 51939. For procedures specific to dosimetry in radiation research on food and agricultural products, see ISO/ASTM Practice 51900. For procedures specific to radiation hardness testing, see ASTM Practice E 1249. For procedures specific to the dosimetry in the irradiation of insects for sterile release programs, see ISO/ASTM Guide 51940. In those cases covered by ISO/ASTM Practices 51939, 51900, 51940, or ASTM E 1249, those standards take precedence. In addition, this practice does not cover absorbed-dose rate calibrations of radiation protection instrumentation

  15. Quality Properties of Cakes Containing Gamma-Irradiated Egg White

    International Nuclear Information System (INIS)

    Lee, J.W.; Seo, J.H.; Ahn, H.J; Byun, M.W; Kim, Y.H.; Choi, J.M.; Yook, H.S.

    2003-01-01

    As a research on the practical approaches of gamma irradiation for the reduction of egg allergy, cakes including gamma-irradiated egg white were manufactured, and rheological characteristics and sensory qualities of the cakes were evaluated. Egg white was separated from whole egg and then gamma-irradiated with the absorbed dose of 10 or 20 kGy

  16. A study of the terrestrial and cosmic gamma-rays in Jordan

    International Nuclear Information System (INIS)

    Mansi, M. A.

    1996-01-01

    Natural terrestrial gamma and cosmic radiations dose rates in Jordan were measured during a period of three years in thirty four stations distributed over all Jordanian territories using the thermoluminescence dosimeter(TLD) Coso 4 :Tm. The average absorbed dose rates in air from terrestrial gamma and cosmic radiations were found to vary from(57 ±3;9) n Gy/hr in Assafi to (350 ± 14; 42) n Gy/hr in Manjam Alhisa. The mean dose rate due to terrestrial gamma radiations was found to be equal to (55 ± 2; 13) nGy/hr, and that due to cosmic radiations was calculated to be(35 ± 1;4) n Gy/hr. The annual effective dose equivalent from terrestrial and cosmic gamma radiations was found to be equal to(0.65±0.02; 0.12)mSv/year. It was found that the absorbed dose rate due to cosmic radiations in Jordan can be fitted by the formula, D c osmic=27+5.2 h+1.86 h 2 where h is the altitude reference to the Dead Sea measured in km. 19 refs., 17 figs., 6 tabs.(Author)

  17. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  18. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  19. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    Directory of Open Access Journals (Sweden)

    Feras M. Aldweri

    2018-03-01

    Full Text Available Thymol blue (TB solutions and Thymol blue Polyvinyl Alcohol (TB-PVA films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125–1 kGy and of 5–20 kGy, respectively. Keywords: Dose sensitivity, Radio-chromic dosimeter, Thymol blue, Absorbance, Concentrations

  20. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  1. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  2. Target and peripheral dose from radiation sector motions accompanying couch repositioning of patient coordinates with the Gamma Knife® Perfexion™

    International Nuclear Information System (INIS)

    Tran, Tuan-Anh; Wu, Vincent; Malhotra, Harish; Steinman, James P.; Prasad, Dheerendra; Podgorsak, Matthew B.

    2011-01-01

    The GammaPlan ™ treatment planning system (TPS) does not fully account for shutter dose when multiple shots are required to deliver a patient’s treatment. The unaccounted exposures to the target site and its periphery are measured in this study. The collected data are compared to a similar effect from the Gamma Knife ® model 4C. A stereotactic head frame was attached to a Leksell ® 16 cm diameter spherical phantom; using a fiducial-box, CT images of the phantom were acquired and registered in the TPS. Measurements give the relationship of measured dose to the number of repositions with the patient positioning system (PPS) and to the collimator size. An absorbed dose of 10 Gy to the 50% isodose line was prescribed to the target site and all measurements were acquired with an ionization chamber. Measured dose increases with frequency of repositioning and with collimator size. As the radiation sectors transition between the beam on and beam off states, the target receives more shutter dose than the periphery. Shutter doses of 3.53±0.04 and 1.59±0.04 cGy/reposition to the target site are observed for the 16 and 8 mm collimators, respectively. The target periphery receives additional dose that varies depending on its position relative to the target. The radiation sector motions for the Gamma Knife ® Perfexion ™ result in an additional dose due to the shutter effect. The magnitude of this exposure is comparable to that measured for the model 4C

  3. A test of the IAEA code of practice for absorbed dose determination in photon and electron beams

    International Nuclear Information System (INIS)

    Leitner, A.; Tiefenboeck, W.; Witzani, J.; Strachotinsky, C.

    1990-12-01

    The IAEA Code of Practice TRS 277 gives recommendations for absorbed dose determination in high energy photon and electron beams based on the use of ionisation chambers calibrated in terms of exposure or air kerma. The scope of the present work was to test the Code for 60 Co gamma radiation and for several radiation qualities at four different types of electron accelerators and to compare the ionisation chamber dosimetry with ferrous sulphate dosimetry. The results show agreement between the two methods within about one per cent for all the investigated qualities. In addition the response of the TLD capsules of the IAEA/WHO TL dosimetry service has been determined. (Authors) 5 refs., 9 tabs., 3 figs

  4. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Meguenni, H.; Mahlous, M.; Mansouri, B. [Centre de Recherche Nucléaire d' Alger, 2Bd Frantz Fanon BP-399 Alger (Algeria); Bouchfer, S. [ONA Office National de l’Assainissement, Alger (Algeria)

    2012-07-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  5. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    International Nuclear Information System (INIS)

    Meguenni, H.; Mahlous, M.; Mansouri, B.; Bouchfer, S.

    2012-01-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  6. Response of human lymphocytes to low gamma ray doses

    International Nuclear Information System (INIS)

    Vega Carrillo, HR; Banuelos Valenzuela, R; Manzanares Acuna, E; Sanchez-Rodriguez, S.H

    2001-01-01

    Radiation and non-radiation workers lymphocytes were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp25, Hsp60, Hsp70 and Hsp90; from these, only Hsp70 protein was detected before and after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 70.5 mGy gamma-ray dose, radiation worker's lymphocytes expressed more Hsp70 protein, than non-radiation workers' lymphocytes, indicating a larger tolerance to gamma rays (gamma tolerance), due to an adaptation process developed by their labor condition (Au)

  7. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    International Nuclear Information System (INIS)

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-01-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed

  8. Metabolic kinetics and absorbed doses of 137Cs in lactating rats and progeny during suckling

    International Nuclear Information System (INIS)

    Lyaginskaya, A.M.; Osipov, V.A.; Dement'ev, S.I.; Ermalitskij, A.P.

    2000-01-01

    The transfer of 137 Cs with maternal milk to progeny was studied in rats The rats were administered with 25 kBq/g of 137 Cs nitrate (pH = 6) in a single oral dose immediately after delivery. Nonpregnant females served as control. Absorbed doses per activity unit to lactating rats were 23 % lover than to nonlactating ones. Over the suckling period absorbed doses to young rats amounted to about 35 % of the absorbed dose to the nursing female. For nonlactating females the internal dose approximately equalled the sum of doses to the nursing female and young rats. Lactating is the effective way for removal of 1 '3 7 Cs from organism of the rats. Content of 1 '3 7 Cs in lactating rat becomes on 42.9 % lower than in organism of nonlactating rat during period of lactating (near 20 days) [ru

  9. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  10. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  11. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  12. Comparision between the IAEA's protocols (TRS-277 and TRS-398) for absorbed dose determination

    International Nuclear Information System (INIS)

    Bero, M.; Anjak, O.

    2007-12-01

    The aim of this study is to compare between two IAEA's Protocols [IAEA-TRS-277 (1987) and IAEA-TRS-398 (2000)] for Absorbed Dose Determination. Five types (5 Chamber) of commonly used cylindrical ionization chambers (Farmer type, 0.6 cc) were used to check the difference in absorbed dose to water determination for Co-60 beams under reference condition. TLD dosimeter was also used for inter-comparison with IAEA's SSDL. The mean values of the measured absorbed dose were found to be similar in both cases and the relative error D (TRS-398)/D (TRS-277) is found to be approximately less than 0.5% for all chambers used in this study.(authors)

  13. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry

    International Nuclear Information System (INIS)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre

    2016-01-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  14. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  15. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  16. gamma-induced modification on optical band gap of CR-39 SSNTD

    International Nuclear Information System (INIS)

    Zaki, M.F.

    2010-01-01

    effect of gamma irradiation on optical absorption of nuclear track detectors like CR-39 was studied at different absorbed doses using ultraviolet-visible (UV-VIS)spectroscopy. the existence of the peaks, their shifting and broadening as a result of gamma irradiation has been discussed. the width of the tail of localized states in the band gap (E u )was evaluated using the Urbach edge method. finally the indirect and direct band gap in pristine and gamma irradiated CR-39 have been determined. the values of indirect band gap have been found to be lower than the corresponding values of direct band gap. a decrease in the optical energy gap with increasing the gamma absorbed dose can be discussed on the basis of gamma-irradiation-induced defects in the CR-39. the correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39.

  17. Influence of thyroid volume reduction on absorbed dose in "1"3"1I therapy studied by using Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Rahman, Ziaur; Arshed, Waheed; Ahmed, Waheed; Mirza, Sikander M.; Mirza, Nasir M.

    2014-01-01

    A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of "1"3"1I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm"3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (± 6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for "1"3"1I radiotherapy of the thyroid. (authors)

  18. Thyroid doses from external gamma-exposure following the Chernobyl accident

    International Nuclear Information System (INIS)

    Tretyakevich, Sergey; Kukhta, Tatyana; Minenko, Victor; Drozdovitch, Vladimir; Luckyanov, Nickolas; Gavrilin, Yury; Khrouch, Valeri; Shinkarev, Sergey

    2008-01-01

    Full text: An increase of thyroid cancer incidence among children in Belarus has been observed after the Chernobyl accident. The main contributor to the thyroid dose was caused by 131 I intake with fresh milk in 1986. Other contributions to the thyroid dose (external gamma-exposure, short-lived iodine isotopes, internal radiocesium) were small in comparison to the dose from 131 I intakes soon after the accident. However, exposures to external radiation continued for a number of years after the accident. Thyroid doses from external gamma-exposure following the Chernobyl accident were mainly caused by gamma-exposure to 24 nuclides: 95 Zr, 95 Nb, 99 Mo, 99 mTc, 103 Ru, 103m Rh, 106 Ru, 125 Sb, 125m Te, 131m Te, 131 I, 132 Te, 132 I, 133 I, 135 I, 134 Cs, 136 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 239 Np. Data of personal interview were used to take into account the personal residence history for the time elapsed from the Chernobyl accident until the interview (10 to 15 years later). Cumulative thyroid doses caused by external gamma-exposure during the passage of the radioactive cloud and from the ground contamination following the Chernobyl accident have been reconstructed. The median thyroid dose from external gamma-exposure to ∼11,770 cohort members of an epidemiological study was estimated to be ∼6 mGy. There are ∼3,400 persons with external dose estimates that exceed 20 mGy. Exposure from radionuclides deposited on the ground was the main source of external dose. The contribution from the passing radioactive cloud to external dose was found to be negligible. (author)

  19. Practice for dosimetry in gamma irradiation facilities for radiation processing. 2. ed.

    International Nuclear Information System (INIS)

    2004-01-01

    This practice outlines the installation qualification program for an irradiator and the dosimetric procedures to be followed during operational qualification, performance quali- fication, and routine processing in facilities that process product with ionizing radiation from radionuclide gamma sources to ensure that product has been treated within a predetermined range of absorbed dose. Other procedures related to installation qualification, operational qualification, performance qualification, and routine processing that may influence absorbed dose in the product are also discussed. Information about effective or regulatory absorbed-dose limits is not within the scope of this practice

  20. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  1. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  2. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  3. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR

    International Nuclear Information System (INIS)

    Wieser, A.

    2012-01-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. (author)

  4. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    Science.gov (United States)

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  5. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  6. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  7. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  8. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  9. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    International Nuclear Information System (INIS)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2011-01-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources 241 AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to 137 Cs gamma rays at 137 Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after 137 Cs and 241 AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  10. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  11. Determination of the absorbed dose rate to a person exposed to a spent source of {sup 60}Co for radiotherapy; Determinacion de la rapidez de dosis absorbida a una persona expuesta a una fuente gastada de {sup 60}Co para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Angeles C, A.; Benitez, J. A.; Ruiz C, M. A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Departamento de Proteccion Radiologica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In this work the analysis of absorbed dose rate to a person in made due to the exposure to a spent source of {sup 60}Co of radiotherapy, which has been removed from its shielding clandestinely to sell the shielding as scrap. During the removal of the source of their shielding the people were necessarily exposed to the field of gamma radiation. The activity of the source is considered to be 2595 Ci at the exposure time and to determine the rate of absorbed dose to different organs and the velocity of effective absorbed dose to which the person (s) who manipulated the source of {sup 60}Co were considered three plausible scenarios of manipulation of the source , through modeling with MCNP5. For the execution of the scenarios and the determination of the absorbed doses, two different phantoms are considered. The results obtained for each scenario show that the dose rates to which the people who manipulated the source without the shielding were exposed are extremely high, and in short time the lethal dose is reached. (Author)

  12. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  13. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1989-08-01

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  14. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  15. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  16. Decomposition of PCBs in Oils Using Gamma Radiolysis A Treatability Study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Mincher; R. E. Arbon

    1996-08-01

    Several legacy hydraulic oil waste streams contaminated with Aroclor 1260 and small amounts of Cesium-137 have been in storage at the Idaho National Engineering Laboratory (INEL) due to the lack of appropriate treatment facilities. The goal of this study was to demonstrate that polychlorinated biphenyls (PCBs) could be selectively decomposed in the oils. Removal of the PCB component to less than the 2 mg/L treatment standard should result in a waste oil that is not regulated by the Toxic Substances Control Act. Irradiation of the oils with high gamma-ray doses produces free electrons in the solution that react with PCBs. The reaction results in dechlorination of the PCBs to produce biphenyl. The gamma-ray source was spent reactor fuel stored in the Advanced Test Reactor canal at the INEL. A dry tube extends into the canal which allowed for positioning of samples in the proximity of the fuel. The gamma-ray dose rates at the samples varied from 10 to 30 kGy/h. This was measured using commercially available FWT-60 dosimeters. Irradiation of samples in a series of progressively increasing absorbed doses allowed the generation of rate constants used to predict absorbed doses necessary to meet the 2 mg/kg treatment standard. Three separate irradiation experiments were performed. The first irradiation used a maximum absorbed dose of 183 kGy. This experiment demonstrated that the PCB concentration decreased and allowed calculation of preliminary rate constants. The second irradiation used a maximum absorbed dose of 760 kGy. From this experiment, accurate rate constants were calculated, and the necessary absorbed dose to achieve the treatment standard was calculated. In the third irradiation of 2,242 kGy, all three waste streams were adequately decontaminated.

  17. Decomposition of PCBs in Oils Using Gamma Radiolysis A Treatability Study - Final Report

    International Nuclear Information System (INIS)

    Mincher, B. J.; Arbon, R. E.

    1996-01-01

    Several legacy hydraulic oil waste streams contaminated with Aroclor 1260 and small amounts of Cesium-137 have been in storage at the Idaho National Engineering Laboratory (INEL) due to the lack of appropriate treatment facilities. The goal of this study was to demonstrate that polychlorinated biphenyls (PCBs) could be selectively decomposed in the oils. Removal of the PCB component to less than the 2 mg/L treatment standard should result in a waste oil that is not regulated by the Toxic Substances Control Act. Irradiation of the oils with high gamma-ray doses produces free electrons in the solution that react with PCBs. The reaction results in dechlorination of the PCBs to produce biphenyl. The gamma-ray source was spent reactor fuel stored in the Advanced Test Reactor canal at the INEL. A dry tube extends into the canal which allowed for positioning of samples in the proximity of the fuel. The gamma-ray dose rates at the samples varied from 10 to 30 kGy/h. This was measured using commercially available FWT-60 dosimeters. Irradiation of samples in a series of progressively increasing absorbed doses allowed the generation of rate constants used to predict absorbed doses necessary to meet the 2 mg/kg treatment standard. Three separate irradiation experiments were performed. The first irradiation used a maximum absorbed dose of 183 kGy. This experiment demonstrated that the PCB concentration decreased and allowed calculation of preliminary rate constants. The second irradiation used a maximum absorbed dose of 760 kGy. From this experiment, accurate rate constants were calculated, and the necessary absorbed dose to achieve the treatment standard was calculated. In the third irradiation of 2,242 kGy, all three waste streams were adequately decontaminated

  18. Radiation transport simulation in gamma irradiator systems using E G S 4 Monte Carlo code and dose mapping calculations based on point kernel technique

    International Nuclear Information System (INIS)

    Raisali, G.R.

    1992-01-01

    A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained

  19. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  20. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    Science.gov (United States)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  1. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  2. Response of STFZ diode as on-line gamma dosimeter in radiation processing

    International Nuclear Information System (INIS)

    Camargo, Fabio de; Goncalves, Josemary A.C.; Pascoalino, Kelly C.; Bueno, Carmen C.; Tuominen, Eija; Tuovinen, Esa; Haerkoenen, Jaakko

    2009-01-01

    In this work, it is presented the results obtained with this rad-hard STFZ silicon diode as a high-dose gamma dosimeter. This device is a p + /n/n + junction diode, made on FZ Si wafer manufactured by Okmetic Oyj., Vantaa, Finland and processed by the Microelectronics Center of Helsinki University of Technology. The results obtained about the photocurrent registered and total charge accumulated on the diode as a function of the total absorbed dose are presented. The diodes' response showed a significant saturation effect for total absorbed doses higher than approximately 15 kGy. To reduce this effect, some STFZ samples have been pre-irradiated with gamma rays at accumulated dose of 700 kGy in order to saturate the trap production in the diode's sensitive volume. (author)

  3. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  4. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2017-10-01

    Full Text Available Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT. Material and Methods: The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD in 18 anatomical points of the phantom. Results: The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Conclusions: Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5:705–713

  5. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  6. Peculiarities of absorbed dose forming in some wild animals in Chornobyl,y exclusion zone

    International Nuclear Information System (INIS)

    Gaychenko, V.A.; Krainiuk, O.Yu.

    2015-01-01

    Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, identified the peculiarities of formation absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. Was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Was displayed data about the importance of different types of irradiation according to the period of stay the animals in the ground, in burrows and nests. Was reviewed the questions about value of external and internal radiation in absorbed dose of different types of wildlife. Was shown the results of the calculation of the absorbed dose of bird embryos from egg shell

  7. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  8. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  9. Dose-response of photographic emulsions under gamma irradiation

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Do Thi Nguyet Minh; Le Van Vinh

    2003-01-01

    Photographic emulsion is irradiated under gamma rays irradiation of 137 Cs in the IAEA/WHO secondary standard dosimetry laboratory. Dose-response of the film is established. The sensitivity of the film is determined. The dose-rate effect is studied. (author)

  10. Measurement of gamma radiation doses at the RA reactor by thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Prokic, M.

    1974-01-01

    This paper presents the procedures and gamma radiation doses measured at the exit from the horizontal experimental channel HK-5, vertical experimental channel VK-5 and in the thermal column of the RA reactor in Vinca. Measurement of gamma radiation dose in the mixed intense gamma and neutron radiation field was done by two types of thermoluminescent dosemeters, LiF (TLD-700) and CaF 2 (TLD-08). Gamma dose in the VK-5 was measured in the air and on the bottle filled with tissue-equivalent solution. Increase of the dose on the surface of the bottle was 2.3 compared to the gamma dose value in the air. Correction for the influence of neutrons having different energies was done by using the known sensitivity values of both TL dosemeter types for thermal, intermediate and fast neutrons. Results showed that the TLD-700 dosemeter contains 5 time more Li-6 isotopes (0.035%) than the declared value causing increased neutron sensitivity of this dosemeter. This paper includes numerical sensitivity data for neutrons of different energies for both types of TL dosemeters. Neutron sensitivity values for TLD-700 are related to LiF with 0.035% of Li-6 isotope. Result of measurement have also shown that the CaF 2 :Mn (TLD-08) thermoluminescent dosemeter is more suitable for gamma radiation dose measurements in mixed n-gamma fields with intensive neutron fluxes due to lower neutron sensitivity compared to TLD-700 [sr

  11. Gamma ray doses proceeding from natural occurring radionuclides in closed environments

    International Nuclear Information System (INIS)

    Aguiar, Vitor Angelo P. de; Medina, Nilberto H.; Silveira, Marcilei A. Guazzelli da; Moreira, Ramon H.

    2009-01-01

    In this work we report on the application of gamma-ray spectrometry in the study of the effective dose coming from terrestrial natural elements present in building materials such as sand, cement, lime (CaO) and milled granitic stones. The major contribution to annual gamma-ray radiation effective dose is due to the natural occurring radionuclides 40 K, 232 Th and 238 U. Two spectrometry systems were employed to measure the gamma radiation: one with a 60% efficient GeHP detector and the second one with a 2''x2'' NaI(Tl) scintillator. The estimated effective dose coming from the three reference rooms assumed is 0.63 mSv/yr, proceeding from terrestrial natural elements. The principal gamma radiation sources are cement, sand and bricks. (author)

  12. High gamma dose response of the electrical properties of polyethylene terephthalate thin films

    International Nuclear Information System (INIS)

    Radwan, R.M.

    2007-01-01

    Electrical properties of polyethylene terephthalate (PET), irradiated with gamma rays, have been investigated. The PET films were irradiated with high gamma dose levels in the range from 100 to 2000 kGy. The changes in the DC (σ DC ) and the ac (σ ac ) conductivities, with the dose, have been performed. The effect of gamma irradiation on the dielectric constant (ε') and loss (ε'') has been determined. Also, the dose dependence of the frequency exponent index (S), the resonance frequency (Fc) and the hopping frequency (ω P ) have been obtained. The obtained results show that increasing gamma dose leads to slight increase in σ DC , σ ac and ε', while no change was observed in ε'' value. Meanwhile, S, Fc and ω P are inversely proportional to the dose. Accordingly, the study suggests the possibility of using PET films in electronic components (capacitors, resistors, etc.), especially that operate at high gamma dose environments for the frequency independent applications

  13. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    Science.gov (United States)

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  15. Car-borne survey of natural background gamma dose rate in Canakkale region (Turkey)

    International Nuclear Information System (INIS)

    Turhan, S.; Arikan, I. H.; Oquz, F.; Aezdemir, T.; Yuecel, B.; Varinlioqlu, A.; Koese, A.

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Canakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of 238 U, 226 Ra, 232 Th and 40 K in soil samples from the Canakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92 856 data of the background gamma dose rate were collected for the Canakkale region. The background gamma dose rate of the Canakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h -1 , respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 μSv. (authors)

  16. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    International Nuclear Information System (INIS)

    Vettese, F.; Donichak, C.; Bourgeault, P.

    1995-01-01

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.)

  17. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    International Nuclear Information System (INIS)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M.; Carrillo F, J.; Montero C, M. E.

    2015-10-01

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226 Ra, 232 Th, 40 K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h -1 . Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg -1 , of 226 Ra, 232 Th and 40 K, respectively. From the analysis of the spatial distribution of 232 Th, 226 Ra, and 40 K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  18. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B.

    2017-01-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  19. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B., E-mail: mariajhho@yahoo.com.br, E-mail: pavsalva@ipen.br, E-mail: ablugao@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  20. Current in-pile absorbed dose measurements at the Boris Kidric Institute of nuclear sciences - Vinca, Status report

    Energy Technology Data Exchange (ETDEWEB)

    Draganic, G I [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    So far in-pile absorbed dose measurements have been limited only to experiments in the RA reactor at the Boris Kidric Institute of Nuclear Sciences at Vinca (6.5 D{sub 2}O moderated and 2% enriched uranium). The methods used for absorbed dose and neutron flux measurements were 1,2 discussed in some earlier reports at the IAEA meetings. The purpose of the present report is to illustrate the further development of methods of determining in-pile absorbed doses (author)

  1. Gamma, radon, natural radioactivity measurements in Chile

    International Nuclear Information System (INIS)

    Stuardo, E.

    1997-01-01

    Different natural radiation measurements, performed since 1983, are analysed and discussed regarding the average effective population dose. A decade of absorbed gamma dose measurements in air (1983-93), were carried out using compensated TLD detectors, during long periods of integration time and with a network of 11 stations, along the country, from Arica to the Antarctic territory. An indoor Rn -222 and gamma survey dwellings, in high background zones, underground mines and drinking water was started in 1988 using different kind of detectors, including electret radon chambers. The methods, dose assessments and results are presented and discussed in the frame of worldwide average effective population doses. None of the average effective doses found over the evaluated areas, exceed the comparison levels. (author)

  2. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  3. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  4. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  5. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  6. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  7. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  8. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  9. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.; Sharabi, N.

    2002-11-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays. (author)

  10. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    CERN Document Server

    Shamma, M A; Sharabi, N

    2002-01-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays.

  11. Effect of Addition of Soybean Oil and Gamma-Ray Cross-linking on the Nanoporous HDPE Membrane

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2012-01-01

    Full Text Available A nanoporous high-density polyethylene (HDPE membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.

  12. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    International Nuclear Information System (INIS)

    Bjerke, H.

    2002-01-01

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm 3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of

  13. Variation of the optical energy gap with {gamma}-radiation and thickness in Bi-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I. [Qatar Univ., Doha (Qatar). Dept. of Physics

    1995-02-01

    The effect of {gamma}-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different {gamma}-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be {gamma}-dose dependent. (author).

  14. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  15. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  16. Calibration of gamma cell 220 excel irradiator using Fricke and alanine dosimeters

    International Nuclear Information System (INIS)

    Rushdi, M. A. H.

    2006-06-01

    Using of gamma cell 220 excel irradiators is widely spread in many countries. This type of irradiators is being used for research purposes. Gamma cell 220 excel was provided by the International Atomic Energy Agency (IAEA) to the radiation processing laboratory of Sudan Atomic Energy Commission (SAEC). It is a self-contained gamma irradiator and self shielded, this makes it operates safely. Dose calibration for this cell is important for samples irradiation. In this work, a dosimetry system for the GC220E of SAEC was established using Fricke dosimeter. Fricke dosimeter has a confidence 95% in the rang not exceed 400 Gy. To establish routine dosimetry at high doses up to 5000 Gy, alanine dosimeter was used. This range can demonstrate the ability of GC220E to deliver known controllable doses in reproducible manner for high doses. The irradiation specifications often include a lower and upper limit of absorbed dose or central target dose. Absorbed dose mapping was carried out by both dosimeters to determine the magnitude and locations of D.max and D.min in the irradiation chamber. The results are in good agreement with dose distribution given in the machine manual. A comparison between the tow dosimeters was done and explained.(Author)

  17. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  18. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  19. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  20. Development of dosimeters with rad-hard silicon diodes for high dose dosimetry

    International Nuclear Information System (INIS)

    Camargo, Fabio de

    2009-01-01

    In this work we report on results obtained with rad-hard Standard Float Zone (FZ), Diffusion Oxygenated Float Zone (DOFZ) and Magnetic Czochralski (MCz) silicon diodes in gamma radiation processing dosimetry. These p ± n-n + junction devices were manufactured by Okmetic Oyj. (Vantaa, Finland) and processed by the Microelectronics Center of Helsinki University of Technology in the framework of the CERN RD50 Collaboration. The dosimetric probes, based on FZ, DOFZ and M Cz devices, were designed to operate without bias voltage in the direct current mode as on-line radiation dosimeter. The irradiations were performed in the Radiation Technology Center (CTR) at IPEN-CNEN/SP using a 60 Co source (Gamma cell 220 - Nordion) with a dose rate around of 2.4 kGy/h. The current response of each diode was measured as a function of the exposure time in steps from 5 kGy up to 50 kGy to achieve a total absorbed dose of 275 kGy. The results obtained showed a significant decrease in the photocurrent generated in all devices for total absorbed doses higher than approximately 25 kGy. To reduce this effect, the samples were pre-irradiated with 60 Co gamma rays at 700 kGy in order to saturate the trap production in the diode's sensitive volume. After pre-irradiation, despite of being less sensitive, all devices exhibited more stable photocurrent signals, even for total absorbed doses of 275 kGy. To monitor possible gamma radiation damage effects produced on the diodes, their dynamic leakage current and capacitance were measured as a function of the absorbed dose. (author)

  1. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  2. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs

    International Nuclear Information System (INIS)

    Carrizales, L.; Carreno, S.

    1998-01-01

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  3. Proceedings of the workshop 'Absorbed dose in water and air'

    International Nuclear Information System (INIS)

    Rapp, Benjamin; Bordy, Jean-Marc; Camacho Caldeira, Margarida Isabela; Sochor, Vladimir; Celarel, Aurelia; Cenusa, Constentin; Cenusa, Ioan; Donois, Marc; Dusciac, Dorin; Iliescu, Elena; Ostrowsky, Aime; Bercea, Sorin; Blideanu, Valentin; Bordy, Jean-Marc; Steurer, Andrea; Tiefenboeck, Wilhelm

    2017-05-01

    The project 'Absorbed dose in water and air' (Absorb) is aimed at sharing and improving the knowledge on the design of Primary Standards (calorimeter, cavity ionization chambers, free air ionization chambers) for 'dose' measurements in radiation therapy and diagnostic, the harmonization of calibration procedures, the determination of uncertainty and harmonization of uncertainty budgets. Within the framework of this project a workshop was organized at the LNE (Laboratoire National de metrologie et d'Essais) in Paris from February, 29 to March, 2 2016. This report is the proceeding of this workshop. It includes a state of the art of two bilateral collaborations, launched to go beyond the framework of Absorb, between CEA LIST (LNE) LNHB and in one hand IFIN-HH (Romania), and in the other hand IST-LPSR-LMRI (Portugal) to build primary cavity ionization chambers for photons emitted by cobalt-60 and Cesium-137. Absorb is a Joint Research Project of the European Metrology Programme for Innovation and Research (EMPIR) which is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

  4. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  5. Development of DL-alanine systems for gamma radiation and electron dosimetry

    International Nuclear Information System (INIS)

    Costa, Zelia Maria da

    1994-01-01

    Two different dosimetric systems using DL-Alanine samples were employed to determine the absorbed dose from 60 Co gamma-rays source and electrons emitted from an accelerator. The first dosimetric system is based on the relationship between free radicals produced and the absorbed dose using the electron spin resonance (ESR) technique. Details on the sample preparation, the spectrometer parameter setting, the analysis of the ESR signal to dose, the influence of dose rate and the radiation type dependence are described. The second dosimetric system is based on the determination by absorbance spectrophotometry of the complex produced, which are formed when the irradiated alanine is dissolved in a solution containing ferrous ammonium sulphate xylenol in 0,05 N H 2 SO 4 . Different concentrations for each reagents has been analyzed in the preparation of this solution as well as the influence caused by radiation type and dose rate in the absorbance. (author)

  6. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Boas, J.F.; Martin, L.J.; Young, J.G.

    1982-01-01

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO 4 :Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  7. The effect of gamma dose on the PADC detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    The effect of irradiation by 6 0C O gamma rays in the range 0-60 K gray has been examined on CR-39 SSNTDs. The fission fragment tracks diameter were measured using an optical microscope, the bulk etching rate was calculated using the equation V B = D/2 t. The results indicate that, the track diameter is seen increase slowly in the range 0-60 K gray. The bulk etching rate increases almost linearly as the given gamma dose increases up to (22.5 K Gray), at higher doses the bulk etching rate increases exponentially. The exposure of the CR-39 to gamma rays could sensitize the CR-39 plastic and thus improve the Z/P threshold for track registration

  8. In vivo measurement by thermoluminescence of the gamma ray radiation dose to the uterus delivered during 131I therapy of Basedow's disease

    International Nuclear Information System (INIS)

    Philippon, B.; Briere, J.

    1977-01-01

    131 I is often the therapy of choice for BASEDOW's disease. The determination of radiation dose to the gonads from a therapeutic dose of 131 I is therefore of importance and the accuracy of radiation dose calculation is uncertain because of the numerous biological variables involved. The dose to the uterus was directly measured in 20 volonteers with Basedow's disease using a thermoluminescent dosimeter of lithium fluoride and calcium dysprosium sulfate, attached to a copper intrauterine contraceptive device. The dosimeters were inserted at the time of administration of 131 I and were retreived one month later. By this method, the dose to the uterus from gamma rays only was measured and a gamma ray dose equal to the dose to the uterus, was assumed to the ovaries. In vivo experimental results were compared with the values calculated using the specific absorbed fractions (PHI (r 2 - r 1 ) determined by SNYDER. In the calculations, the morphology of the patient, in particular the distance from thyroid to uterus was taken into account. The in vivo measurements have also been compared with direct in vivo measurements using phantoms. In vivo measurements indicate that the average dose to the uterus and ovaries is of the order of 1 rad per 10 mCi concentrated in the thyroid gland. These figures are below the generally accepted maximum admissible dose to the gonads of 10 rems [fr

  9. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  10. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies

    International Nuclear Information System (INIS)

    Mejia, A.A.; Nakamura, T.; Masatoshi, I.; Hatazawa, J.; Masaki, M.; Watanuki, S.

    1991-01-01

    Radiation absorbed doses due to intravenous administration of fluorine-18-fluorodeoxyglucose in positron emission tomography (PET) studies were estimated in normal volunteers. The time-activity curves were obtained for seven human organs (brain, heart, kidney, liver, lung, pancreas, and spleen) by using dynamic PET scans and for bladder content by using a single detector. These time-activity curves were used for the calculation of the cumulative activity in these organs. Absorbed doses were calculated by the MIRD method using the absorbed dose per unit of cumulated activity, 'S' value, transformed for the Japanese physique and the organ masses of the Japanese reference man. The bladder wall and the heart were the organs receiving higher doses of 1.2 x 10(-1) and 4.5 x 10(-2) mGy/MBq, respectively. The brain received a dose of 2.9 x 10(-2) mGy/MBq, and other organs received doses between 1.0 x 10(-2) and 3.0 x 10(-2) mGy/MBq. The effective dose equivalent was estimated to be 2.4 x 10(-2) mSv/MBq. These results were comparable to values of absorbed doses reported by other authors on the radiation dosimetry of this radiopharmaceutical

  11. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  12. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  13. Indoor radon and environmental gamma radiation in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Young, E.C.M.; Stokes, M.J.; Luo, D.L.; Zhang, C.X.

    1992-01-01

    Activated charcoal canisters have been used to measured the indoor radon concentrations of 160 sites in different buildings in Hong Kong during the period from July to October 1990. The average value is 40.0 Bq.m -3 . Furthermore, CR-39 nuclear track detectors and two kinds of LiF TLDs have been used to measure the average indoor radon concentrations and the absorbed gamma dose rates in air of 71 sites over the period from January to April 1991. The results all show log-normal distribution. The indoor radon concentrations are respectively 72.2 Bq.m -3 and 155.4 Bq.m -3 for dwellings and offices, while the absorbed gamma dose rates in air are respectively 213.0 nGy.h -1 and 198.3 nGy.h -1 . (author)

  14. The effect of Low-dose Gamma Radiation on the Bio-chemical ...

    African Journals Online (AJOL)

    Low-dose gamma radiation has been applied to intravenous fluids to enhance the sterility assurance levels. This study was undertaken to determine the stability of gamma irradiated 2.5 % dextrose, 2.5 % dextrose in saline, Ringers lactate and Gastrointestinal replacement fluid at doses of 0, 2, 4, 6, 8, 10 and 20 kGy.

  15. Calibration and testing of the DMG gamma dosimeter

    International Nuclear Information System (INIS)

    Dolgirev, E.I.

    1987-01-01

    25-1000 nGy/h (2.5-1000 μrad/h) absorbed dose gamma dosimeter for measuring the efficient equivalent irradiation dose for population is developed. It has two subranges 1000 nGy/h and 250 nGy/h. Results of dosimeter calibration and testing are presented. The dosimeter error for both subranges is less than 10%

  16. Biological dosimetry for mixed gamma-neutron field

    International Nuclear Information System (INIS)

    Brandao, J.O.C.; Santos, J.A.L.; Souza, P.L.G.; Lima, F.F.; Vilela, E.C.; Calixto, M.S.; Santos, N.

    2011-01-01

    There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mitogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemide accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two experts after painted by giemsa 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  17. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  18. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  19. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  20. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.

    1977-01-01

    The purpose of the study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which used Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input (i.e., the source routine) to the modified Monte Carlo codes which were used to calculate organ doses in children. Experimental work included the fabrication of child phantoms to match the existing mathematical models. These phantoms were constructed of molded lucite shells filled with differing materials to simulate lung, skeletal, and soft-tissue regions. The skeleton regions of phantoms offered the opportunity to perform meaningful measurements of absorbed dose to bone marrow and bone. Thirteen to fourteen sites in various bones of the skeleton were chosen for placement of TLDs. These sites represented important regions in which active bone marrow is located. Sixteen typical radiographic examinations were performed representing common pediatric diagnostic procedures. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms. For selected radiological exposures, the risk factors of leukemia, thyroid cancer, and genetic death are estimated for one-year- and five-year-old children

  1. Gamma factors of an ambulatory source

    International Nuclear Information System (INIS)

    Arcos P, A.; Vega C, H.R.; Manzanares A, E.; Salas L, M.A.; Hernandez D, V.M.; Barquero, R.

    2007-01-01

    Some of the procedures for diagnostic or treatment used in the medicine use radioactive materials as the I 131 . By means of Monte Carlo methods were calculated the doses in the internal organs of a woman, with three months of pregnancy, due to the radioiodine captured by her thyroid, as well as to 1 meter of the gland. A three-dimensional mathematical model of the body of a woman was used and by means of Monte Carlo, the radioiodine photons were transported isotropically from the thyroid toward the whole body and was calculated the absorbed dose by their internal organs, also the Kerma in air (K) was determined and the environmental equivalent dose (H * (10)) at 1 m of the gland. Two activity factors at dose were determined, Gamma Factors that it allows to estimate the dose that the patient produces to people to its around. Of the gamma radiation that emits the I 131 in the thyroid was found that the thymus receives the biggest dose while the uterus is the organ that smaller dose receives. The determined gamma factors were: Γ KAire = 56 μGy-m 2 -h -1 -GBq -1 , and Γ H * (10) = 73 μSv-m 2 -h -1 -GBq -1 . The distribution of the absorbed dose by the internal organs is attributed to the relative distance among the thyroid and the other organs, to the inter-organs shielding, its size and to its elementary composition. The Γ KAire and Γ H * (10) factors allow to estimate the exposure that the patient produces on the personnel to its around. With this, the nuclear medicus, the medical physicist or the one responsible of the radiological safety in the hospital can give more precise indications on the behavior of people around the patient. (Author)

  2. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    Roth, P.; Werner, E.; Henrichs, K.; Elsasser, U.; Kaul, A.

    1986-01-01

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59 Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  3. Neutron and gamma dose and spectra measurements on the Little Boy replica

    International Nuclear Information System (INIS)

    Hoots, S.; Wadsworth, D.

    1984-01-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30 0 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables

  4. Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel

    International Nuclear Information System (INIS)

    Gambarini, G.; Gomarasca, G.; Marchesini, R.; Pecci, A.; Pirola, L.; Tomatis, S.

    1999-01-01

    We describe a technique to obtain three-dimensional (3-D) imaging of an absorbed dose by optical transmittance measurements of phantoms composed by agarose gel in which a ferrous sulphate and xylenol orange solution are incorporated. The analysis of gel samples is performed by acquiring transmittance images with a system based on a CCD camera provided with an interference filter matching the optical absorption peak of interest. The proposed technique for 3-D measurements of an absorbed dose is based on the imaging of phantoms composed of sets of properly piled up gel slices. The slice thickness was optimized in order to obtain a good image contrast as well as a good in-depth spatial resolution. To test the technique, a phantom has been irradiated with a collimated γ-beam and then analysed. Proper software was adapted in order to visualise the images of all slices and to attain the 2-D profiles of the dose absorbed by each slice

  5. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  6. Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S., E-mail: samadchemistry@gmail.com [Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali; Nawaz, Shah; Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2014-08-15

    Highlights: • Removal of endosulfan was assessed by gamma irradiation under different conditions. • Removal of endosulfan by gamma irradiation was mainly due to reaction of aqueous electron. • The radiation yield value decreased while dose constant increased with increasing gamma-ray dose-rate. • Second-order rate constant of endosulfan with aqueous electron was determined by competition kinetic method. • Degradation pathways were proposed from the nature of identified by-products. - Abstract: The removal of endosulfan, an emerging water pollutant, from water was investigated using gamma irradiation based advanced oxidation and reduction processes (AORPs). A significant removal, 97% of initially 1.0 μM endosulfan was achieved at an absorbed dose of 1020 Gy. The removal of endosulfan by gamma-rays irradiation was influenced by an absorbed dose and significantly increased in the presence of aqueous electron (e{sub aq}{sup −}). However, efficiency of the process was inhibited in the presence of e{sub aq}{sup −} scavengers, such as N{sub 2}O, NO{sub 3}{sup −}, acid, and Fe{sup 3+}. The observed dose constant decreased while radiation yield (G-value) increased with increasing initial concentrations of the target contaminant and decreasing dose-rate. The removal efficiency of endosulfan II was lower than endosulfan I. The degradation mechanism of endosulfan by the AORPs was proposed showing that reductive pathways involving e{sub aq}{sup −} started at the chlorine attached to the ring while oxidative pathway was initiated due to attack of hydroxyl radical at the S=O bond. The mass balance showed 95% loss of chloride from endosulfan at an absorbed dose of 1020 Gy. The formation of chloride and acetate suggest that gamma irradiation based AORPs are potential methods for the removal of endosulfan and its by-products from contaminated water.

  7. Effect of low gamma ray doses on sugar beet

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1993-01-01

    We studied the effect of presowing irradiation simulation on sugar beet seeds in two regions (Deir Elzour and Damascus) and for three successive cropping seasons (1986-1989). Those seeds were irradiated with gamma radiation doses varying from 0.005 to 0.050 kGy in the first region, and from 0.005 to 0.025 kGy in the second region. Results showed that doses varying from 0.005 to 0.05 kGy in Deir Elzour gave a mean yield increase varying from 17.4% to 22.6%. However, doses varying from 0.005 to 0.025 in Damascus gave an increase of the same parameter between 19.5% and 23.8%. The best results for pure sugar yield increase obtained for a dose of 0.015 kGy (27.1% in Deir Elzour and 31.9% in Damascus). Yields on the farm level obtained from presowing irradiated seeds showed an increase in sugar beets when using 0.015 kGy gamma radiation dose. (author)

  8. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  9. Study of the contribution of the radon in the measurement with an automatic gamma probe

    International Nuclear Information System (INIS)

    Caveda Ramos, C.A.; Dominguez Levy, O.; Alonso Abad, D.; Montalvan Estrada, A.; Fabelo Bonet, O.

    2008-01-01

    In this work, study about the influence of the radon in the daily measurements of the dose rate absorbed in air due to the environmental gamma radiation is achieved. This magnitude is measured each ten minutes for the Gamma Tracer probe, which is located in the western station of the National Network of Environmental Radiological Surveillance of the Republic of Cuba, this station belongs to the Center of Protection and Hygiene of the Radiations (CPHR). For achieving such study approximately 157 680 measurements of the gamma dose rate corresponding the period 2004-2006 were analyzed. The gamma probe used has two independent counter channels which are both complemented with a Geiger-Muller detector; also it can only detect gamma radiation and perform measurements of the gamma dose rate between 8.7 n Gy/h and 8.7 mGy/h. This probe is located at the height of 3.5 m and is exposed to the sun rays directly. For improving the interpretation of the data, the average of all the values of gamma dose rate was calculated, for each hour of the 365 days of the year. The values were also monthly averaged out. The data were processed by employing the software Gamma Red which was improved by adding some options. A comparison between the results obtained and the annual radon variation internationally published was made. With the present study, it was proved that the main contribution to the daily measurements of the dose rate absorbed in the air due to environmental gamma radiation, on stable weather conditions, is associated with the radon daughters which emit gamma radiation. (author)

  10. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  11. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  12. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  13. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  14. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  15. Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy

    International Nuclear Information System (INIS)

    Morsy, Zeinab; Abd El-Wahab, Magda; El-Faramawy, Nabil

    2012-01-01

    Highlights: ► We examined the radioactivity of different type samples from Abo Zaabaal Lake. ► We evaluated the natural nuclide gamma-ray activities and their annual dose rates. ► We evaluated the concentrations of 226 Ra and its hazard indices. ► We assessed the absorbed dose in human. ► All results are within normal ranges. - Abstract: The natural nuclide gamma-ray activities and their respective annual effective dose rates, produced by 238 U, 232 Th, 40 K and 226 Ra, are determined for 10 different natural samples (soil–plant–water) from Abo Zaabaal Lake. This lake is located very close to the Egyptian reactors. The gamma spectra analysis indicates that the photo-gamma lines represent ten radioactive nuclides 234 Th, 239 Pu, 228 Ac, 226 Ra, 212 Pb, 214 Pb, 208 Tl, 212 Bi, 214 Bi and 40 K. These nuclides represent the daughters of the natural radioactive series 238 U and 232 Th with 40 K. The mean activity concentration of 238 U was found to be 6.57, 10.16 and 5.44 Bq kg −1 for (soil–plant–water); 8.46, 8.33 and 6.04 Bq kg −1 of 232 Th, and 136.3, 216.8 and 119.2 Bq kg −1 of 40 K respectively. The mean activity concentrations of 226 Ra were obtained which help to evaluate the radiation hazard indices as radium equivalent, internal and external hazard indices. In addition, to assess the radiation risk to a biosystem, the annual effective dose rate, the absorbed dose in human and the absorbed dose outdoor are also evaluated.

  16. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  17. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  18. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  19. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  20. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    International Nuclear Information System (INIS)

    Markovic, V.

    1961-12-01

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  1. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  2. Release of doxorubicin from hydrogels of poly-2-hydroxyethyl methacrylate-co-acrylamide obtained by gamma radiations

    International Nuclear Information System (INIS)

    Rodriguez Rodriguez, A.; Rapado Paneque, M.; Covac Peniche, C.

    2013-01-01

    The release matrixes used were a hydrogel based on HEMA-co-AAm copolymers obtained by gamma radiation; the synthesis was conducted by varying the absorbed dose with the same composition, with the aim to establish the swelling behavior according to the absorbed dose in synthesis. Similarly was settled release profiles of doxorubicin. The mechanism of drug diffusion was established. (Author)

  3. Gamma-Ray Doses Affected on Alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zayed, E.M; Tarrad, M.M.; Abd El-Daem, G.A.N.A.

    2013-01-01

    Field experiments were conducted at the experimental from, Nuclear Research Center at Inshas. Atomic Energy Authority (AEA) at Egypt during 2011– 2012 growing seasons on alfalfa genotype. The aim of this investigation to evaluate the effect of different gamma ray doses (100-300 Gy) on the alfalfa yield and related traits. Seeds lots of alfalfa genotype were subjected to five gamma ray treatments (100,150,200,250 and 300 Gray). Over all cuts, the dose treatment 300 Gy increased the majority of studied traits i.e., plant height, No. of shoots/plant, fresh weight/plant, fresh yield/Fadden and dry weight yield/fed. The results observed indicated that. In addition, dose of 200 and 250 Gy increased No. of leaves /plant, No. of shoots/plant, stem diameter and fresh weight /plant. However, the plant dry weight was decreased by all doses used and over all cuts, but the dose of 100 and 150 Gy increased leaves /stem ratio. Meanwhile, the later cuts were more affected by irradiation treatments than the earlier ones. In general, the low doses had negative effects on yield traits, but, the relatively high doses exhibited an increase in yield traits

  4. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H.; Jaervinen, H.; Grimbergen, T.W.M.; Grindborg, J.E.; Chauvenet, B.; Czap, L.; Ennow, K.; Moretti, C.; Rocha, P.

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use. (author)

  5. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H; Jaervinen, H; Grimbergen, T W M; Grindborg, J-E; Chauvenet, B; Czap, L; Ennow, K; Moretti, C; Rocha, P

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use

  6. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  7. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  8. The ferrous ammonium sulfate solid system, as dosemeter for processes at low temperatures and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Juarez C, J.M.; Ramos B, S.; Negron M, A.

    2005-01-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and dose from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is Fe 3+ and molar concentration of ferric ion was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosemeter, at low temperatures and high dose. (Author)

  9. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  10. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    Science.gov (United States)

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the

  11. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment

    International Nuclear Information System (INIS)

    Unger, L.M.; Trubey, D.K.

    1982-05-01

    Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed

  12. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  13. Linear optical absorption response of poly(vinylidene fluoride - trifluoroethylene) copolymers to high gamma dose

    International Nuclear Information System (INIS)

    Medeiros, Adriana S.

    2009-01-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a

  14. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    International Nuclear Information System (INIS)

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  15. Dosimetry of electron and gamma radiation with DL-alanine

    International Nuclear Information System (INIS)

    Costa, Z.M. da; Campos, L.L.

    1996-01-01

    A dosimetric method based on the quantitative determination of stabilised free radicals in irradiated crystalline DL-alanine by electron spin resonance (ESR) spectroscopy was proposed as early in 1962. Since then, alanine dosemeters owing to their unique properties have been investigated by many authors and used in dosimetry of various types of radiation, namely gamma rays, electron and neutrons. Alanine is a simple aminoacid, on irradiation at room temperature predominantly free paramagnetic radicals of the type CH 3 -CH-COOH are produced. This paper reports the application of powder DL-alanine/ESR dosemeter for measurement of absorbed dose of gamma radiation from 60 Co sources and reactor nucleus and electron beams from accelerator. The obtained results give useful information about the instrumental care necessary to obtain the needed overall accuracy in determination of absorbed dose. (author)

  16. Distribution and characteristics of gamma and cosmic ray dose rate in living environment

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Moriuchi, Shigeru

    1991-01-01

    A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)

  17. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  18. Intercomparison of absorbed dose to water and air-kerma based dosimetry protocols for photon and electron beams

    International Nuclear Information System (INIS)

    Huq, M.S.

    2002-01-01

    Full text: During the last three decades the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM) and organizations from various countries have published Codes of Practice (CoP) and dosimetry protocols for the calibration of high-energy photon and electron beams. They are based on the air-kerma or exposure calibration factor of an ionization chamber in a 60 Co gamma ray beam and formalism for the determination of absorbed dose to water in reference conditions. In recent years, the IAEA (IAEA TRS-398) and the AAPM (AAPM TG-51) have published new external beam dosimetry protocols that are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. These two new protocols follow those by the German Standard DIN, the British IPSM and the IAEA CoP for plane-parallel chambers, which have discussed and implemented the procedures for the determination of absorbed dose-to-water based on standards of absorbed dose-to-water. Since the publication of these protocols and CoPs, many comparisons, theoretical as well as experimental, between them have been published in the literature providing valuable information about the sources of similarities and discrepancies that exist among them. For example, the differences in the basic data for photon and electron beams included in the various IAEA CoPs are very small for the second edition of TRS-277 for photons, TRS-381 for electrons and TRS-398. In these cases the data changes posed by the adoption of TRS-398 are within about ±0.3% for the most commonly used energies. When implementing TRS-398 in these cases, the main difference will arise from the transition from K air to D w standards. For example, experimental comparison of absorbed doses between TRS-398 and TRS-277 for photons show an average difference of about 0.3% for most commonly used energies with a maximum difference of about 1% at a TPR 20

  19. KEY COMPARISON: Comparison of the standards for absorbed dose to water of the VNIIFTRI, Russia and the BIPM in 60Co γ rays

    Science.gov (United States)

    Allisy-Roberts, P. J.; Kessler, C.; Burns, D. T.; Berlyand, V.; Berlyand, A.

    2010-01-01

    A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  20. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  1. Radiation resistance of elastomeric O-rings in mixed neutron and gamma fields: Testing methodology and experimental results

    Science.gov (United States)

    Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.

    2017-11-01

    Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects

  2. Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-12-15

    In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.

  3. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    International Nuclear Information System (INIS)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V.

    2014-08-01

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  4. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  5. Robotic stereotactic radioablation of breast tumors: Influence of beam size on the absorbed dose distributions

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2016-01-01

    Robotic stereotactic radioablation (RSR) therapy for breast tumors has been shown to be an effective treatment strategy when applied concomitantly with chemotherapy, with the purpose of reducing the tumor volume thus making it more amenable for breast conserving surgery. In this paper we used Monte Carlo simulation within a realistic patient model to determine the influence that the variation in beam collimation radius has on the resultant absorbed dose distributions for this type of treatment. Separate optimized plans were obtained for treatments using 300 circular beams with radii of 0.5 cm, 0.75 cm, 1.0 cm and 1.5 cm. Cumulative dose volume histograms were obtained for the gross, clinical and planning target volumes as well as for eight organs and structures at risk. Target coverage improves as the collimator size is increased, at the expense of increasing the volume of healthy tissue receiving mid-level absorbed doses. Interestingly, it is found that the maximum dose imparted to the skin is highly dependent on collimator size, while the dosimetry of other structures, such as both the ipsilateral and contralateral lung tissue are basically unaffected by a change in beam size. - Highlights: • Stereotactic body radiation therapy of breast tumors is analyzed using Monte Carlo simulation. • The influence of beam collimation on the absorbed dose distributions is determined. • Large field sizes increase target dose uniformity and midlevel doses to healthy structures. • Skin dose is greatly affected by changes in beam collimation.

  6. Investigation of the effect of gamma rays on some organic dyes (stains)

    International Nuclear Information System (INIS)

    Ajji, Z.

    2002-08-01

    The effect of gamma radiation on the organic dye methyl red and its use possibility as dosimeter has been investigated. Aqua solutions of this indicator were prepared with different P hs. The absorbance in the acidic medium decreased linearly by increasing the absorbed dose up to 200 Gy. Various amounts of ethanol was added to the solution in order to extend the operating range of the indicator. Addition of 1% alcohol extends the use range to 1250 Gy. In distilled water, the absorbance decreased as a logarithmic function by increasing the absorbed dose up to 2000 Gy. Addition of alcohol did not improve the operation conditions of the indicator in this medium. The absorbance decreased also in the alkali medium as a logarithmic function with the absorbed dose. The range of linearity was between 30 and 6000 Gy. Addition of alcohol did not extend the operation range of the indicator, but increased its sensitivity. (author)

  7. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  8. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  9. Chromogene properties of the betalains before gamma photons; Propiedades cromogenas de las betalainas ante fotones gamma

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez N, S.; Quintero M, C. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Quimicas, Programa de Quimica en Alimentos, Km. 0.5 Carretera a Guadalajara Ejido La Escondida, Zacatecas (Mexico); Vega C, H. R., E-mail: srneri@hotmail.co [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    The coloration changes of four natural extracts in function of the absorbed dose produced by a gamma rays source of {sup 137}Cs have been studied. The natural extracts were obtained of tuna varieties that contain betalains that are natural pigments of some plants as the beet of where is derived its name. These also are found in abundant form in the fruits of some species of opuntia genus (tunas). The extracts were obtained by maceration, starting from beet and three tuna varieties that were stabilized to a p H of 5.5. The extracts were exposed to the gamma rays of a {sup 137}Cs source and the change in the coloration was observed by means of an ultra violet/visible spectrophotometer through of the absorption of the samples to photons of wave longitude 535 nm. The absorption was measured, to different time intervals. The relation between the absorbed dose in D{sub w} water and the chromogene properties of the pigment was established, with the intention of using it as possible dosemeter. (Author)

  10. Absorbed doses to the main parts of eyeball due to use 90Sr + 90Y ophthalmic applicator

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-05-01

    The ophthalmic radiotherapy dosimetry and some affecting factors are introduced. The distributions of absorbed doses to the main parts of a fresh eyeball such as the cornea, sclera, lens and anterior chamber, during the radiotherapy by using a 90 Sr + 90 Y ophthalmic applicator are presented. An tissue-equivalent extrapolation ionization chamber was used in the dose measurement. The reasonable doses during ophthalmic radiotherapy for different depths have been obtained. Therefore, the absorbed dose to the lens, the most sensitive organ, can be given. These data are useful for radiation protection in ophthalmic radiotherapy

  11. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  12. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi

    2005-01-01

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  13. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography.

    Science.gov (United States)

    Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi; Tsujii, Hideo; Yamamoto, Tomoyuki

    2005-12-20

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols.

  14. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki [Kanazawa Univ., Hospital, Kanazawa, Ishikawa (Japan); Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi [Kanazawa Univ., Graduate School of Medical Sciences, Kanazawa, Ishikawa (Japan)

    2005-12-15

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  15. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation; Analise de FT-IR para caracterizacao dosimetrica do poli(fluoreto de vinilideno - hexafluorpropileno) irradiado com altas doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz Oliveira de, E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  16. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    Science.gov (United States)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  17. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  18. Physical changes associated with gamma doses of PM-555 solid-state nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.

    2004-01-01

    The effect of gamma irradiation on the electrical, molecular and structural properties of copolymers of methacrylic esters and olefins, PM-555 solid-state nuclear track detector was investigated. DC conductivity measurements were studied in the temperature range 293-417 K using solid-state samples of the PM-555 polymer. These samples were irradiated with gamma doses in the range 5-63 kGy. Furthermore, the activation energy was measured, at various temperatures, as a function of the gamma dose. It was found that many changes in electrical resistance of PM-555 polymer could be produced by gamma irradiation via the degradation mechanism. Also, the gamma dose gives an advantage for the increasing correlation between the DC conductivity and the number and mobility of the charge carriers created by the ionizing effect of gamma radiation. Moreover, solutions of different loadings (0.2%, 0.4%, 0.6% and 0.8%) were prepared from the irradiated and non irradiated sheets using pure chloroform as a solvent. The effect of both temperature and gamma dose on the intrinsic viscosity of the liquid samples, as a measure of the mean molecular mass of the PM-555 polymer, were studied. In addition, structural and optical property studies using X-ray diffraction and refractive index measurements were performed on all irradiated and non irradiated PM-555 samples. The results indicate that both the degree of ordering or disordering and the anisotropic character of the PM-555 polymer are dependent on the gamma dose

  19. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  20. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  1. Evaluation of the absorbed doses in conditions of external and internal contamination with radionuclides

    International Nuclear Information System (INIS)

    Milivojevic, K.; Stojanovic, D.; Markovic, P.

    1981-01-01

    In experimental conditions of contamination with radionuclides of the skin and skin injuries, an evaluation of the degree of local irradiation in decontamined region and doses absorbed in organs of selective accumulating was carried out by use of mathematical models and tissue-equivalent thermoluminescent dosemeters. The evaluation of the absorbed doses based on conception, that in adequate analyses of decontamination effect, as a most efficient medico-prophilactic measure from local and total irradiation, should be taken into account the total body burden of the penetrated radionuclide, selective accumulating in critical organs or tissues, as well as the residual radioactivity in decontaminated region. (author)

  2. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  3. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  4. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  5. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  6. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia; Pereira, Aline Garcia

    2011-01-01

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  7. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  8. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  9. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  10. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  11. Muscle and plastic equivalent glass dosimeter for high-dose dosimetry

    International Nuclear Information System (INIS)

    Abdel-Rehim, F.; Maged, A.F.; Morsy, M.A.; Hashad, A.M.

    1990-01-01

    The alkali-silicate glass dosimeter is made up of 66.8% SiO 2 , 31.2% Li 2 O, 2% K 2 O. It is nearly colourless before irradiation and then takes on an amber colour with increasing doses of gamma radiation. This colouration is represented by the appearance of broad absorption bands at 405 nm and 600 nm wavelengths. The change in absorbance is linear with the absorbed dose in the range of 0.1-4.5 kGy, when measured at its 405 nm absorption band maximum. This glass dosimeter simulates low-z plastics and muscle tissue in terms of gamma-ray absorption properties over broad radiation spectra (0.1 MeV to 10 MeV). (author) 22 refs.; 4 figs.; 2 tabs

  12. Gamma knife simulation using the MCNP4C code and the zubal phantom and comparison with experimental data

    International Nuclear Information System (INIS)

    Gholami, S.; Kamali Asl, A.; Aghamiri, M.; Allahverdi, M.

    2010-01-01

    Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  13. Gamma Knife Simulation Using the MCNP4C Code and the Zubal Phantom and Comparison with Experimental Data

    Directory of Open Access Journals (Sweden)

    Somayeh Gholami

    2010-06-01

    Full Text Available Introduction: Gamma Knife is an instrument specially designed for treating brain disorders. In Gamma Knife, there are 201 narrow beams of cobalt-60 sources that intersect at an isocenter point to treat brain tumors. The tumor is placed at the isocenter and is treated by the emitted gamma rays. Therefore, there is a high dose at this point and a low dose is delivered to the normal tissue surrounding the tumor. Material and Method: In the current work, the MCNP simulation code was used to simulate the Gamma Knife. The calculated values were compared to the experimental ones and previous works. Dose distribution was compared for different collimators in a water phantom and the Zubal brain-equivalent phantom. The dose profiles were obtained along the x, y and z axes. Result: The evaluation of the developed code was performed using experimental data and we found a good agreement between our simulation and experimental data. Discussion: Our results showed that the skull bone has a high contribution to both scatter and absorbed dose. In other words, inserting the exact material of brain and other organs of the head in digital phantom improves the quality of treatment planning. This work is regarding the measurement of absorbed dose and improving the treatment planning procedure in Gamma-Knife radiosurgery in the brain.

  14. Luminescence from {gamma}-irradiated humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, Wieslaw [Faculty of Chemical Technology, Radio- and Photochemistry Department, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan (Poland); Slawinski, Janusz [Institute of Ecotechnology, State Higher Vocational School, ul. Ks. Kard. S.Wyszynskiego 38, 62-200 Gniezno (Poland)

    2008-07-15

    This study was conducted to investigate the ultraweak delayed radiochemiluminescence (RCL) spectra, kinetics and spectroscopic properties of humic acids (HAs) after {gamma}-radiation exposure (absorbed doses of 1-10 kGy, Co-60) in model systems. The kinetics and spectral distribution of RCL (340-650 nm) were measured using the single photon counting (SPC) method and cut-off filters. The intensity of fluorescence ({lambda}{sub ex}=390, 440, 490 and 540 nm) covering the spectral range 400-580 nm was heavily dependent on the {lambda}{sub ex} and slightly increased with the absorbed dose of {gamma}-radiation. Absorption spectra (the range 240-800 nm) and color coefficients E{sub 2.6/4} and E{sub 4/6} of irradiated solutions indicated that post-radiative degradation/polymerization processes take place in the HA, changing their macromolecule size or properties. Comparison of FTIR spectra and elemental analysis proved an increased O and decreased C atoms in irradiated samples. The data indicate on the radiolysis-induced degradation of native HA into fulvic-like acids with higher hydrophilicity and lower molecular size.

  15. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  16. Comparison and limitations of three different bulk etch rate measurement methods used for gamma irradiated PM-355 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Abu-Jarad, F.; Al-Jarallah, M.I.; Farhat, M

    2001-06-01

    Samples of Nuclear Track Detectors (PM-355) were exposed to high gamma doses from 1x10{sup 5} Gy (10 Mrad) up to 1.2x10{sup 6} Gy (120 Mrad) at an incremental dose of 1x10{sup 5} Gy (10 Mrad). The gamma source was a 9.03 PBq (244 kCi) Co-60 source used for sterilization of medical syringes. The bulk etch rate (V{sub b}) was measured for various high gamma doses by three different methods: 1--thickness change method; 2--mass change method; 3--fission track diametric method. The study gives a comparison and limitations of these three methods used for bulk etch rate measurements in the detectors as a function of high gamma doses. The track etch rate (V{sub t}) and the sensitivity (V) of the detector were also measured using the fission track diametric method. It was observed that V{sub b} increases with the increase of the gamma absorbed dose at a fixed etching time in each bulk etch measuring method. The bulk etch rate decreases exponentially with the etching time at a fixed gamma absorbed dose in all three methods. The thickness change and mass change methods have successfully been applied to measure V{sub b} at higher gamma doses up to 1.2x10{sup 6} Gy (120 Mrad). The bulk etch rate determined by the mass change and thickness change methods was almost the same at a certain gamma dose and etching time whereas it was quite low in the case of the fission track diametric method due to its limitations at higher doses. Also in this method it was not possible to measure the fission fragment track diameters at higher doses due to the quick disappearance of the fission tracks and therefore the V{sub b} could not be estimated at higher gamma doses.

  17. Gamma regularization based reconstruction for low dose CT

    International Nuclear Information System (INIS)

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-01-01

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)

  18. Applicability of thermoluminescent dosimeters in X-ray organ dose determination and in the dosimetry of systemic and boron neutron capture radiotherapy

    International Nuclear Information System (INIS)

    Aschan, C.

    1999-01-01

    The main detectors used for clinical dosimetry are ionisation chambers and semiconductors. Thermoluminescent (TL) dosimeters are also of interest because of their following advantages: (i) wide useful dose range, (ii) small physical size, (iii) no need for high voltage or cables, i.e. stand alone character, and (iv) tissue equivalence (LiF) for most radiation types. TL detectors can particularly be used for the absorbed dose measurements performed with the aim to investigate cases where dose prediction is difficult and not as part of a routine verification procedure. In this thesis, the applicability of TL detectors was studied in different clinical applications. Particularly, the major phenomena (e.g. energy dependence, sensitivity to high LET radiation, reproducibility) affecting on the precision and accuracy of TL detectors in the dose estimations were considered in this work. In organ dose determinations of diagnostic X-ray examinations, the TL detectors were found to be accurate within 5% (1 S.D.). For in viva studies using internal irradiation source, i.e. for systemic radiation therapy, a method for determining the absorbed doses to organs was introduced. The TL method developed was found to be able to estimate the absorbed doses to those critical organs near the body surface within 50%. In the mixed neutron-gamma field of boron neutron capture therapy (BNCT), TL detectors were used for gamma dose and neutron fluence measurements. They were found able to measure the neutron dose component with the accuracy of 16%, and therefore to be a useful addition to the activation foils in BNCT neutron dosimetry. The absorbed gamma doses can be measured with TL detectors within 20% in the mixed neutron-gamma field, which enables in viva measurements at BNCT beams with approximately the same accuracy. In this study, the uncertainties of TL dosimeters were found to be high but not essentially greater than those in other measurement techniques used for clinical dosimetry

  19. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  20. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    Science.gov (United States)

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. A comparison of the alpha and gamma radiolysis of CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Stephen P. Mezyk; Gary Groenewold; Gracy Elias

    2011-06-01

    The radiation chemistry of CMPO has been investigated using a combination of irradiation and analytical techniques. The {alpha}-, and {gamma}-irradiation of CMPO resulted in identical degradation rates (G-value, in {mu}mol Gy{sup -1}) for both radiation types, despite the difference in their linear energy transfer (LET). Similarly, variations in {gamma}-ray dose rates did not affect the degradation rate of CMPO. The solvent extraction behavior was different for the two radiation types, however. Gamma-irradiation resulted in steadily increasing distribution ratios for both forward and stripping extractions, with respect to increasing absorbed radiation dose. This was true for samples irradiated as a neat organic solution, or irradiated in contact with the acidic aqueous phase. In contrast, {alpha}-irradiated samples showed a rapid drop in distribution ratios for forward and stripping extractions, followed by essentially constant distribution ratios at higher absorbed doses. These differences in extraction behavior are reconciled by mass spectrometric examination of CMPO decomposition products under the different irradiation sources. Irradiation by {gamma}-rays resulted in the rupture of phosphoryl-methylene bonds with the production of phosphinic acid products. These species are expected to be complexing agents for americium that would result in higher distribution ratios. Irradiation by {alpha}-sources appeared to favor rupture of carbamoyl-methylene bonds with the production of less deleterious acetamide products.

  2. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2008-01-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue whe